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Abstract

Groebner bases for the ideals determining mod 2 cohomology of the real flag manifolds F(1, 1, n) and
F(1, 2, n) are obtained. These are used to compute appropriate Stiefel–Whitney classes in order to
establish some new nonembedding and nonimmersion results for the manifolds F(1, 2, n).
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1. Introduction

The real flag manifold F(n1, n2, . . . , nr) is defined as the set of flags of type
(n1, n2, . . . , nr) (r-tuples (V1, V2, . . . , Vr) of mutually orthogonal subspaces in Rm,
where m = n1 + · · · + nr and dim(Vi) = ni) with the manifold structure coming from
the natural identification F(n1, n2, . . . , nr) = O(n1 + · · · + nr)/O(n1) × · · · × O(nr).
Obviously, there is no loss of generality in assuming that n1 6 n2 6 · · · 6 nr. There are r
canonical vector bundles γ1, γ2, . . . , γr (dim(γi) = ni) over F(n1,n2, . . . ,nr). By Borel’s
description [4], the mod 2 cohomology algebra of F(n1,n2, . . . ,nr) is isomorphic to the
polynomial algebra on the Stiefel–Whitney classes of bundles γ1, γ2, . . . , γr−1 modulo
the ideal In1,...,nr generated by the dual classes.

The theory of Groebner bases is a natural choice when it comes to calculating in the
quotient of the polynomial algebra by an ideal. This is our approach to Z2-cohomology
of flag manifolds in this paper.

An algebraic background is given in Section 2. In this brief opening section we
recall some basic notions from the theory of Groebner bases and point out a few
elementary facts which will be used in proving our results.
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In Section 3, we construct reduced Groebner bases for ideals I1,1,n (for all n > 1) and
present an additive basis for H∗(F(1, 1, n);Z2). These results are stated in Theorem 3.1
and Corollary 3.2. We apply these Groebner bases and give a simple proof of the
theorem of Ajayi and Ilori [2] concerning nonembeddings and nonimmersions of the
manifolds F(1, 1, n). Here, we also point out a mistake that the authors made in [2]
while showing that a certain Stiefel–Whitney class is nonzero. However, this oversight
is not essential, since the Stiefel–Whitney class in question is really nonzero. It just
has a slightly different form than the one specified in [2]. We specify the mistake in a
remark in Section 3.2.

The main results are presented in Section 4. Reduced Groebner bases for ideals
I1,2,n (for all n > 2) are given in Theorem 4.2. As a consequence, an additive basis
for cohomology algebra H∗(F(1, 2, n); Z2) is obtained in Corollary 4.3. We apply
these Groebner bases to establish the following nonembedding and nonimmersion
results for the flag manifolds F(1, 2, n). In the theorem, em(F(1, 2, n)) = min{d |
F(1, 2, n) embeds into Rd} and imm(F(1, 2, n)) = min{d | F(1, 2, n) immerses into Rd}.

Theorem 1.1. Let n > 2 and s > 3 be such that 2s−1 < n + 3 6 2s.

(a) If 2s−1 6 n 6 2s − 3, then

em(F(1, 2, n)) > 3 · 2s − 2 and imm(F(1, 2, n)) > 3 · 2s − 3.

(b) For s > 4,

em(F(1, 2, 2s−1 − 2)) > 4 · 2s−1 − 2 and imm(F(1, 2, 2s−1 − 2)) > 4 · 2s−1 − 3;
em(F(1, 2, 2)) > 11 and imm(F(1, 2, 2)) > 10.

(c) For s > 4,

em(F(1, 2, 2s−1 − 1)) > 5 · 2s−1 − 3 and imm(F(1, 2, 2s−1 − 1)) > 5 · 2s−1 − 4;
em(F(1, 2, 3)) > 16 and imm(F(1, 2, 3)) > 15.

Nonimmersions in the cases n = 2, 3, 4 are known, due to Stong [13], and these are
the cases where these lower bounds for the immersion dimension coincide with the
upper bounds obtained by Lam in [8]. Also, when n is a power of two, Theorem 1.1
gives pretty high lower bounds for imm(F(1, 2, n)). Namely, we show that 3 · 2s − 3 6
imm(F(1, 2, 2s−1)) 6 3 · 2s − 1 for s > 4.

As another illustration of usage of Groebner bases, at the end of Section 4, we give
an alternative proof of the result of Korbaš and Lörinc [7] concerning the Z2-cup-length
of the manifolds F(1, 2, n).

2. Reduction of polynomials, Groebner bases

Let F be a field and F[x1, x2, . . . , xk] the polynomial algebra over F on k
variables. A term on variables x1, x2, . . . , xk is a product of powers xa1

1 xa2
2 · · · x

ak
k ∈

F[x1, x2, . . . , xk], where a1, a2, . . . , ak > 0. The set of all terms in F[x1, x2, . . . , xk] will
be denoted by T .
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A term ordering (monomial ordering) in F[x1, x2, . . . , xk] is a linear ordering 4
on T such that 1 ∈ T is the minimum and such that t 4 s implies t · r 4 s · r for all
r, s, t ∈ T . It is immediate from the definition that t | s implies t 4 s for all s, t ∈ T and
any term ordering 4.

In the rest of this section we assume that a term ordering 4 is fixed. For a nonzero
polynomial f =

∑m
i=1 αiti ∈ F[x1, x2, . . . , xk], where ti are pairwise different terms and

αi ∈ F \ {0}, let T ( f ) := {ti | 1 6 i 6 m}. We define the leading term of f , denoted by
LT( f ), as max T ( f ) with respect to 4. The leading coefficient of f , denoted by LC( f ),
is the coefficient of LT( f ) in f .

We are now able to define the notion of reduction (see [3, page 195]).

Definition 2.1. Let f , g, p ∈ F[x1, x2, . . . , xk], where p , 0, and let P ⊆ F[x1, x2,
. . . , xk].

(i) We say that f reduces to g modulo p (and write f −→p g) if there exists
t ∈ T ( f ) such that LT(p) | t and g = f − (α/LC(p)) · s · p, where α ∈ F \ {0} is
the coefficient of t in f and s ∈ T is such that t = s · LT(p).

(ii) We say that f reduces to g modulo P (and write f −→P g) if there exists p ∈ P
such that f −→p g.

(iii) The relation
∗
−→P is defined as the reflexive–transitive closure of −→P in

F[x1, x2, . . . , xk]. In other words, f
∗
−→P g means that either f = g or there

are polynomials f0, f1, . . . , fn ∈ F[x1, x2, . . . , xk] (n > 1) such that f = f0 −→P
f1 −→P · · · −→P fn = g.

The statement of the following lemma is obvious from the definition.

Lemma 2.2. If P ⊆ F ⊆ F[x1, x2, . . . , xk] and f
∗
−→P g, then f

∗
−→F g.

The proof of the next lemma can be found in [3, Lemma 5.24(i)].

Lemma 2.3. If g ∈ P ⊆ F[x1, x2, . . . , xk], then g · h
∗
−→P 0 for every h ∈ F[x1, x2,

. . . , xk].

Recall that for f , g ∈ F[x1, x2, . . . , xk], the S -polynomial of f and g is defined as

S ( f , g) := LC(g) ·
u

LT( f )
· f − LC( f ) ·

u
LT(g)

· g,

where u = lcm(LT( f ),LT(g)) is the least common multiple of LT( f ) and LT(g).
Let us now prove an important fact concerning the S -polynomials. The greatest

common divisor of terms s and t is denoted by gcd(s, t).

Proposition 2.4. Let f , g ∈ F[x1, x2, . . . , xk] be nonzero polynomials and P = { f , g}. If
gcd(LT( f ), t) = 1 for all t ∈ T (g), then S ( f , g)

∗
−→P 0.

Proof. Let f = α1s1 + α2s2 + · · · + αmsm and g = β1t1 + β2t2 + · · · + βntn, where si,
i = 1,m, (and likewise t j, j = 1, n) are pairwise different terms and αi (β j) are
nonzero scalars. We may assume that s1 � s2 � · · · � sm and t1 � t2 � · · · � tn,
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so LT( f ) = s1, LC( f ) = α1, LT(g) = t1 and LC(g) = β1. From gcd(s1, t1) = 1, we
conclude that lcm(s1, t1) = s1 · t1, so

S ( f , g) = β1t1 · f − α1s1 · g

= β1t1 · (α1s1 + α2s2 + · · · + αmsm) − α1s1 · (β1t1 + β2t2 + · · · + βntn)
= β1t1 · (α2s2 + · · · + αmsm) − α1s1 · (β2t2 + · · · + βntn),

where the expressions in the brackets are understood to be zero if m = 1 (n = 1).
Consider now the polynomials

hr := (β1t1 + · · · + βrtr) · (α2s2 + · · · + αmsm) − α1s1 · (βr+1tr+1 + · · · + βntn),

r = 1, n − 1, and

hn := (β1t1 + · · · + βntn) · (α2s2 + · · · + αmsm) = g · (α2s2 + · · · + αmsm).

Obviously, h1 = S ( f , g), and now we prove the following claim:

hr −→ f hr+1 for all r = 1, n − 1.

Note that s1 · tr+1 ∈ T (hr) (that is, the coefficient of s1 · tr+1 in hr is nonzero).
Namely, if this was false, then the term s1 · tr+1 would have to be canceled in the upper
expression for hr by some other term. Hence, it would be equal either to some s1 · t j

(r + 2 6 j 6 n) or to some si · t j (2 6 i 6 m, 1 6 j 6 r). The first option is impossible
since t j , tr+1 for j , r + 1. The second one implies s1 | si · t j, but since gcd(s1, t j) = 1,
we would have s1 | si, and consequently s1 4 si, which contradicts the fact that s1 � si.

So, s1 · tr+1 ∈ T (hr), and we conclude that hr −→ f hr − ((−α1βr+1)/α1) · tr+1 · f . It
is now routine to check that hr + ((α1βr+1)/α1) · tr+1 · f = hr+1. This proves the claim.

Finally, since h1
∗
−→P hn, that is, S ( f , g)

∗
−→P g · (α2s2 + · · · + αmsm), Lemma 2.3

finishes the proof of the proposition. �

There is a number of equivalent ways of defining a Groebner basis for an ideal
in F[x1, x2, . . . , xk] (see [3, page 207]). The most appropriate for our context is the
following one.

Definition 2.5. Let G ⊆ F[x1, x2, . . . , xk], 0 < G, be a finite set of polynomials and let
I = (G) be the ideal in F[x1, x2, . . . , xk] generated by the set G. We say that G is a
Groebner basis for I if f

∗
−→G 0 for all f ∈ I.

If G is a Groebner basis for I = (G) and g1, g2 ∈G, then clearly, S (g1, g2) ∈ I and so,
S (g1, g2)

∗
−→G 0. The Buchberger criterion ([5], see also [3, Theorem 5.48]) states that

the converse is also true, that is, in order to prove that G is a Groebner basis, it suffices
to check that S (g1, g2)

∗
−→G 0 for all g1, g2 ∈ G. In the following theorem, along with

this characterization of Groebner bases, we outline another one which we will use in
the upcoming sections (see [3, Theorem 5.35(x)], [1, Proposition 2.1.6]).
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Theorem 2.6. Let G ⊆ F[x1, x2, . . . , xk], 0 < G, be a finite set of polynomials and let
I = (G) be the ideal in F[x1, x2, . . . , xk] generated by G. Then the following three
conditions are equivalent.

(i) G is a Groebner basis for I.
(ii) For all g1, g2 ∈ G, S (g1, g2)

∗
−→G 0.

(iii) The set of classes (cosets) of all terms in F[x1, x2, . . . , xk] that are not divisible
by any of the leading terms LT(g), g ∈G, forms an additive basis for the quotient
algebra F[x1, x2, . . . , xk]/I.

The Groebner basis G is reduced if all g ∈ G are monic (LC(g) = 1) and if for all
g, g1 ∈ G, g , g1, and all t ∈ T (g), LT(g1) - t, that is, if no term of g ∈ G is divisible by
some leading term in G \ {g}. It is a theorem (see [3, Theorem 5.43]) that the reduced
Groebner basis for a given ideal is unique.

3. The real flag manifolds F(1, 1, n)

The real flag manifold F(1, 1, n), n > 1, is a manifold of dimension 2n + 1 which
consists of triples (l1, l2,V), where l1 and l2 are mutually orthogonal lines through the
origin in Rn+2 and V is the n-dimensional subspace of Rn+2 orthogonal to both l1 and
l2. Since V is uniquely determined by l1 and l2, note that the map (l1, l2,V) 7→ (l1, l2)
is a natural embedding of F(1, 1, n) into RPn+1 × RPn+1.

3.1. Groebner basis for cohomology of F(1, 1, n). Let n > 1 be a fixed integer.
It is well known that the mod 2 cohomology algebra of F(1, 1, n) is isomorphic to
the quotient algebra Z2[x, y]/I1,1,n, where x, y ∈ H1(F(1, 1, n);Z2) are Stiefel–Whitney
classes of two canonical line bundles over F(1, 1, n) and I1,1,n = (zn+1, zn+2) is the ideal
in Z2[x, y] generated by the dual classes zn+1 and zn+2. These dual classes are actually
dual to Stiefel–Whitney classes of the Whitney sum of two canonical line bundles, so
they are obtained from the equation

1 + z1 + z2 + · · · = (1 + x)−1(1 + y)−1 =
∑
s>0

xs ·
∑
t>0

yt.

In cohomological dimension r > 1 we have the equality zr =
∑r

t=0 xr−tyt. Observe that

xzn+1 + zn+2 =

n+1∑
t=0

xn+2−tyt +

n+2∑
t=0

xn+2−tyt = yn+2. (3.1)

This means that the ideal generated by zn+1 and yn+2 coincides with the ideal I1,1,n =

(zn+1, zn+2), that is, the set {zn+1, yn+2} is a basis for I1,1,n.
Denote by 4 the lexicographic term ordering (lex ordering) in Z2[x, y] with x > y.

Hence, xayb 4 xcyd if and only if a < c or else a = c and b 6 d.

Theorem 3.1. The set {zn+1, yn+2} is the reduced Groebner basis for I1,1,n with respect
to the lex ordering 4.
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Proof. It is clear that LT(zn+1) = xn+1 and gcd(xn+1, yn+2) = 1, so the conditions of
Proposition 2.4 are satisfied. By that proposition and Theorem 2.6 we conclude that
{zn+1, yn+2} is a Groebner basis for the ideal (zn+1, yn+2) = I1,1,n.

It is pretty obvious that LT(yn+2) = yn+2 does not divide any of the terms in zn+1 and
vice versa, so this Groebner basis is the reduced one. �

As we have noticed in the proof of the theorem, LT(zn+1) = xn+1 and LT(yn+2) = yn+2.
Now, as a consequence of Theorems 3.1 and 2.6, we obtain the following corollary
(compare to [4]).

Corollary 3.2. If x, y ∈ H1(F(1,1,n);Z2) are Stiefel–Whitney classes of two canonical
line bundles over F(1, 1, n), then {xayb | a 6 n, b 6 n + 1} is a vector space basis for
H∗(F(1, 1, n);Z2).

The height of the class y in H∗(F(1, 1, n); Z2), ht(y) = max{i | yi , 0}, is equal to
n + 1 since yn+1 is a basis element in H∗(F(1, 1, n);Z2) and yn+2 ∈ I1,1,n, so yn+2 = 0 in
H∗(F(1, 1, n);Z2).

Likewise, ht(x) = n + 1. This is because xn+1 +
∑n+1

t=1 xn+1−tyt = zn+1 ∈ I1,1,n, thus
xn+1 =

∑n+1
t=1 xn+1−tyt , 0 in H∗(F(1, 1, n);Z2) since this is a (nonempty) sum of distinct

basis elements. On the other hand, in a similar way as for (3.1), one obtains that
xn+2 = yzn+1 + zn+2 ∈ I1,1,n, so xn+2 = 0.

3.2. Nonembeddings and nonimmersions of F(1, 1, n). Now, we are going to
give another proof of nonembedding and nonimmersion results for F(1, 1, n), n > 2,
obtained by Ajayi and Ilori in [2].

Let ν be the stable normal bundle of F(1, 1, n). It is well known (see [9, pages 120
and 49]) that nontriviality of the class wk(ν) implies em(F(1, 1, n)) > dim(F(1, 1, n)) +

k + 1 = 2n + k + 2 and imm(F(1, 1, n)) > 2n + k + 1.
It is also known that the following formula holds for the total Stiefel–Whitney class

of ν (see for example, [2, page 52]):

w(ν) = (1 + x + y)(1 + x)−n−2(1 + y)−n−2.

If r > 2 is the integer such that 2r−1 6 n + 1 < 2r, then, since ht(x) = ht(y) = n + 1 and
2r > n + 2, we may multiply the right-hand side of the formula by (1 + x)2r

(1 + y)2r
=

(1 + x2r
)(1 + y2r

) = 1 and thus obtain that

w(ν) = (1 + x + y)(1 + x)2r−n−2(1 + y)2r−n−2. (3.2)

Theorem 3.3 [2]. Let n > 2 and r > 2 be such that 2r−1 6 n + 1 < 2r. Then:

(a) for 2r−1 6 n 6 2r − 2, em(F(1, 1, n)) > 2r+1 − 1 and imm(F(1, 1, n)) > 2r+1 − 2;
(b) em(F(1, 1, 2r−1 − 1)) > 3 · 2r−1 − 1 and imm(F(1, 1, 2r−1 − 1)) > 3 · 2r−1 − 2.

Proof. The top class in (3.2) is in dimension 2r+1 − 2n − 3 and moreover

w2r+1−2n−3(ν) = (x + y)x2r−n−2y2r−n−2 = x2r−n−1y2r−n−2 + x2r−n−2y2r−n−1.
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If 2r − n − 1 6 n, that is, n > 2r−1, this is the sum of two distinct basis elements
(Corollary 3.2), so w2r+1−2n−3(ν) , 0 in this case. This proves (a).

For (b), it suffices to show that wn(ν) , 0 for n = 2r−1 − 1 > 1. In this case, by (3.2)

w(ν) = (1 + x + y)(1 + x)2r−1−1(1 + y)2r−1−1

= (1 + x + y)(1 + x + x2 + · · · + x2r−1−1)(1 + y + y2 + · · · + y2r−1−1)
= (1 + x + y)(1 + x + x2 + · · · + xn)(1 + y + y2 + · · · + yn).

In dimension n, we obtain that

wn(ν) =

n∑
t=0

xn−tyt + (x + y)
n−1∑
t=0

xn−1−tyt

=

n∑
t=0

xn−tyt +

n−1∑
t=0

xn−tyt +

n−1∑
t=0

xn−1−tyt+1

= yn +

n−1∑
t=0

xn−1−tyt+1 =

n−2∑
t=0

xn−1−tyt+1,

and this is nonzero since n > 1 and all summands of the last sum are (distinct) basis
elements (Corollary 3.2). �

Remark. In [2], the authors also show that w2r−1−1(ν) , 0 for the manifold
F(1, 1, 2r−1 − 1), but, unlike here, there the terms (basis elements) x2r−1−1 and y2r−1−1

have nonzero coefficients in w2r−1−1(ν). This is because, in that paper, authors made a
mistake on page 53. The sum of binomial coefficients, appearing at the very beginning
of their calculation of wn−2 (that is, w2r−1−1(ν)), should be

(
2r−1−1−i

i

)
+

(
2r−1−1−i

i+1

)
. This

implies that later, instead of even powers, only odd powers of σ2 will remain. Also,
the statement

(
2r−1−2i+1

2i

)
≡ 1 (mod 2) for all i = 0, 2r−3 − 1 is false.

At the end of this section, we give a few comments on the number imm(F(1, 1, n)).
As it is stated in [2], the previous theorem gives the highest lower bound for
imm(F(1, 1, n)) when n is a power of two. Also, it gives the best possible result
when n = 2, 3, 4. Furthermore, if n = 2r−1, then, as we have already noticed, F(1, 1, n)
embeds in RP2r−1+1 × RP2r−1+1. On the other hand, by the result of Sanderson [11],
RP2r−1+1 immerses into R2r−1 for r > 4, so we obtain an immersion of F(1, 1, 2r−1)
into R2r−1 × R2r−1 = R2r+1−2. Hence, Theorem 3.3 gives the best possible result for all
powers of two and we have that

imm(F(1, 1, 2r−1)) = 2r+1 − 2, r > 2.

4. The real flag manifolds F(1, 2, n)

The real flag manifold F(1, 2, n), n > 2, is a manifold of dimension 3n + 2 which
consists of triples (l, α,V), where l is a line through the origin in Rn+3, α is a plane
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through the origin in Rn+3 orthogonal to l, and V is the n-dimensional subspace of
Rn+3 orthogonal to both l and α. Obviously, V is uniquely determined by l and α,
so the map (l, α,V) 7→ (l, α) is a natural embedding of F(1, 2, n) into RPn+2 ×G2,n+1,
where G2,n+1 = G2(Rn+3) is the Grassmann manifold.

4.1. Groebner basis for cohomology of F(1, 2, n). Let n > 2 be a fixed integer.
As in the case of manifolds F(1, 1, n), the mod 2 cohomology algebra of F(1, 2, n)
is known to be isomorphic to the quotient algebra Z2[x, y1, y2]/I1,2,n, where x ∈
H1(F(1, 2, n); Z2) is the Stiefel–Whitney class of the canonical line bundle over
F(1, 2, n), yi ∈ Hi(F(1, 2, n);Z2), i = 1, 2, are Stiefel–Whitney classes of the canonical
two-dimensional bundle over F(1, 2, n) and I1,2,n = (zn+1, zn+2, zn+3) is the ideal in
Z2[x, y1, y2] generated by the dual classes zn+1, zn+2 and zn+3. In a similar fashion
as in the previous section, the dual classes are calculated from the equation

1 + z1 + z2 + · · · = (1 + x)−1(1 + y1 + y2)−1. (4.1)

It is clear that the classes

ft :=
∑

a+2b=t

(
a + b

a

)
ya

1yb
2, t > 0,

are dual to yi (i = 1, 2), that is, that (1 + y1 + y2)−1 =
∑

t>0 ft, so from (4.1) we now
obtain that

1 + z1 + z2 + · · · = (1 + x)−1
∑
t>0

ft =
∑
s>0

xs ·
∑
t>0

ft.

Finally, we have that for all r > 1

zr =

r∑
t=0

xr−t ft.

Let G := {g0, g1, . . . , gn+2} be the set of polynomials

gm :=
∑

a+2b=n+2+m

(
a + b − m

a

)
ya

1yb
2, 0 6 m 6 n + 2. (4.2)

It is understood that the sum is over nonnegative integers a and b. Obviously, g0 = fn+2,
and also, it is not hard to verify the relations y1g0 + g1 = fn+3 and y2gm + y1gm+1 =

gm+2, m = 0, n [10, page 115]. Note that G corresponds to the Groebner basis for the
ideal determining the Z2-cohomology of Grassmann manifold G2,n+1 obtained in [10],
while the set G defined in [10, page 115] is the Groebner basis for the corresponding
ideal for the Grassmannian G2,n.

In what follows, we are going to prove that the set F := {zn+1} ∪G is the reduced
Groebner basis for the ideal I1,2,n = (zn+1, zn+2, zn+3) with respect to a term ordering
which will be defined later. Now we prove that F is a basis for I1,2,n.
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Lemma 4.1. If (F) is the ideal in Z2[x, y1, y2] generated by F, then

(F) = I1,2,n.

Proof. The following relations are crucial in proving the lemma:

xzn+1 + g0 =

n+1∑
t=0

xn+2−t ft + fn+2 =

n+2∑
t=0

xn+2−t ft = zn+2;

x2zn+1 + (x + y1)g0 + g1 = x(xzn+1 + g0) + y1g0 + g1 = xzn+2 + fn+3

=

n+2∑
t=0

xn+3−t ft + fn+3 =

n+3∑
t=0

xn+3−t ft = zn+3.

It is now clear that zn+2, zn+3 ∈ (F), so I1,2,n ⊆ (F). Conversely, g0 = xzn+1 + zn+2 ∈ I1,2,n

by the first relation and g1 = x2zn+1 + (x + y1)g0 + zn+3 ∈ I1,2,n by the second. Now,
using induction and the relations gm+2 = y2gm + y1gm+1 (m = 0, n), one can show that
G ⊆ I1,2,n, and consequently (F) ⊆ I1,2,n. �

In [10] it is shown that the set G is the reduced Groebner basis for the ideal
(G) C Z2[y1, y2] (which determines the Z2 cohomology of the Grassmannian G2,n+1)
with respect to the grlex ordering in Z2[y1, y2] (ya

1yb
2 4grlex yc

1yd
2 if and only if a + b <

c + d or else a + b = c + d and a 6 c). We wish to define a term ordering in Z2[x, y1, y2]
which restricts to this grlex ordering in Z2[y1, y2].

In order to do so, for two terms xkya
1yb

2 and xlyc
1yd

2 in Z2[x, y1, y2], we write
xkya

1yb
2 4 xlyc

1yd
2 if and only if k < l or else k = l and ya

1yb
2 4grlex yc

1yd
2. It is routine

to check that 4 is a term ordering in Z2[x, y1, y2], and obviously, it has the desired
property: ya

1yb
2 4 yc

1yd
2 if and only if ya

1yb
2 4grlex yc

1yd
2.

Theorem 4.2. The set F = {zn+1} ∪G is the reduced Groebner basis for the ideal I1,2,n

with respect to the ordering 4.

Proof. By Lemma 4.1, (F) = I1,2,n. In order to prove that F is a Groebner basis for
I1,2,n, by Theorem 2.6 it is enough to show that S ( f , g)

∗
−→F 0 for all f , g ∈ F.

If gl, gm ∈ G ⊆ F, then S (gl, gm)
∗
−→G 0 since G is a Groebner basis [10,

Theorem 2.7]. According to Lemma 2.2, S (gl, gm)
∗
−→F 0.

Also, since zn+1 =
∑n+1

t=0 xn+1−t ft and ft are polynomials in variables y1 and y2, we
conclude that the leading term of zn+1 is obtained for t = 0. Since f0 = 1, we have
that LT(zn+1) = xn+1. Furthermore, the polynomials gm ∈ G are also polynomials in
variables y1 and y2, so gcd(xn+1, t) = 1 for all t ∈ T (gm). By Proposition 2.4 and
Lemma 2.2, S (zn+1, gm)

∗
−→F 0 for all gm ∈ G.

We are left to prove that F is reduced. Since gcd(LT(zn+1), t) = 1 for all t ∈ T (gm)
and all gm ∈ G, no term of gm ∈ G is divisible by LT(zn+1). Also, no term of
gm ∈ G is divisible by the leading term of some gl ∈ G \ {gm} since G is reduced
[10, Theorem 2.7]. It remains to show that no term of zn+1 is divisible by some LT(gm),
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m = 0, n + 2. This is due to the fact that LT(gm) = yn+2−m
1 ym

2 [10, page 115] and the fact
that for all terms xn+1−tya

1yb
2 appearing in zn+1 =

∑n+1
t=0 xn+1−t ft, the sum of the exponents

a + b 6 a + 2b = t 6 n + 1. �

As we have outlined in the proof of the theorem, LT(zn+1) = xn+1 and LT(gm) =

yn+2−m
1 ym

2 , m = 0, n + 2. This means that a term xkya
1yb

2 is not divisible by any of the
leading terms in F if and only if k 6 n and a + b 6 n + 1. The following corollary is
immediate from this observation, Theorems 4.2 and 2.6.

Corollary 4.3. If x ∈ H1(F(1, 2, n);Z2) is the Stiefel–Whitney class of the canonical
line bundle over F(1, 2, n) and yi ∈ Hi(F(1, 2, n); Z2), i = 1, 2, are Stiefel–Whitney
classes of the canonical two-dimensional bundle over F(1, 2, n), then the set {xkya

1yb
2 |

k 6 n, a + b 6 n + 1} is a vector space basis for H∗(F(1, 2, n);Z2).

Remark. Note that, if p is a polynomial in variables y1 and y2 and if p −→ f q for some
f ∈ F and q ∈ Z2[x, y1, y2], then f must belong to G and q must also be a polynomial
in variables y1 and y2 only. This is because p −→ f q implies that LT( f ) divides some
t ∈ T (p) and LT(zn+1) = xn+1. So f ∈ F \ {zn+1} = G and now since both p and f are
polynomials in variables y1 and y2 only, the same is true for q (see Definition 2.1(i)).

The quotient algebra Z2[y1, y2]/(G) is isomorphic to H∗(G2,n+1;Z2) [10]. It is known
that the projection map F(1, 2, n)→ G2,n+1 ((l, α,V) 7→ α) induces a monomorphism
in Z2-cohomology [7, page 146], so this algebra is (algebraically) embedded in
H∗(F(1, 2, n); Z2). This fact is also easily seen from Theorem 4.2, as we show in
the following proposition and corollary.

Proposition 4.4. Let p = p(y1, y2) ∈ Z2[y1, y2] ⊂ Z2[x, y1, y2]. Then p ∈ (G) if and
only if p ∈ (F) = I1,2,n. In other words, p(y1, y2) is trivial in the quotient algebra
Z2[y1, y2]/(G) if and only if it is trivial in Z2[x, y1, y2]/I1,2,n � H∗(F(1, 2, n);Z2).

Proof. Since G ⊂ F, one direction is trivial. Conversely, if p ∈ (F), then p
∗
−→F 0

since F is a Groebner basis. By the remark above, we conclude that p
∗
−→G 0 and so,

p ∈ (G). �

Corollary 4.5. The subalgebra of H∗(F(1, 2, n);Z2) generated by the classes y1 and
y2 is isomorphic to Z2[y1, y2]/(G) � H∗(G2,n+1;Z2).

Via the isomorphism Z2[y1, y2]/(G) � H∗(G2,n+1; Z2), the classes y1 and y2
correspond to the Stiefel–Whitney classes w1 and w2 of the canonical bundle γ2 over
the Grassmannian G2,n+1. The heights of these Stiefel–Whitney classes are well known
[12], so the following corollary is straightforward (compare to [7, page 147]).

Corollary 4.6. Let yi ∈ Hi(F(1, 2, n);Z2), i = 1, 2, be Stiefel–Whitney classes of the
canonical two-dimensional bundle over F(1, 2, n). Then ht(y2) = n + 1 and if s > 3 is
the integer such that 2s−1 < n + 3 6 2s, then ht(y1) = 2s − 2.

As a direct consequence of Corollaries 4.3 and 4.5, we obtain the following
proposition.
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Proposition 4.7. Every cohomology class σ ∈ H∗(F(1, 2, n);Z2) can be written in the
form σ =

∑n
i=0 xi pi(y1, y2), where pi(y1, y2) are polynomials in variables y1 and y2 only.

Moreover, σ = 0 if and only if pi(y1, y2) = 0 in Z2[y1, y2]/(G) � H∗(G2,n+1;Z2) for all
i = 0, n.

By looking at this proposition, one might think that the cohomology algebra
H∗(F(1, 2, n);Z2) is isomorphic to the tensor product of H∗(G2,n+1;Z2) with truncated
polynomial algebra Z2[x]/(xn+1). However, this is not the case, since xn+1 , 0 in
H∗(F(1, 2, n);Z2). Namely, xn+1 +

∑n+1
t=1 xn+1−t ft = zn+1 = 0 in H∗(F(1, 2, n);Z2), and

so

xn+1 =

n+1∑
t=1

xn+1−t ft =

n+1∑
t=1

∑
a+2b=t

(
a + b

a

)
xn+1−tya

1yb
2

=

n∑
t=0

∑
a+2b=t+1

(
a + b

a

)
xn−tya

1yb
2.

(4.3)

The summand for t = 0 in the last sum is xn ∑
a+2b=1

(
a+b

a

)
ya

1yb
2 = xny1, and since y1 , 0,

by Proposition 4.7 we conclude that xn+1 , 0.
As for xn+1, it will be convenient for our purposes to have xn+2 expressed as a sum

of basis elements from Corollary 4.3. By (4.3), we have that

xn+2 =

n∑
t=0

∑
a+2b=t+1

(
a + b

a

)
xn+1−tya

1yb
2

=
∑

a+2b=1

(
a + b

a

)
xn+1ya

1yb
2 +

n∑
t=1

∑
a+2b=t+1

(
a + b

a

)
xn+1−tya

1yb
2

= xn+1y1 +

n−1∑
t=0

∑
a+2b=t+2

(
a + b

a

)
xn−tya

1yb
2.

Observe that the (missing) summand for t = n in the sum is actually equal to g0 ∈ G
(see (4.2)) which vanishes in cohomology, so we may allow that t = 0, n in this sum.
Having this in mind and applying formula (4.3) again, we obtain that

xn+2 =

n∑
t=0

∑
a+2b=t+1

(
a + b

a

)
xn−tya+1

1 yb
2 +

n∑
t=0

∑
a+2b=t+2

(
a + b

a

)
xn−tya

1yb
2

=

n∑
t=0

∑
a+2b=t+2

(
a + b − 1

a − 1

)
xn−tya

1yb
2 +

n∑
t=0

∑
a+2b=t+2

(
a + b

a

)
xn−tya

1yb
2.

Finally, since
(

a+b−1
a−1

)
+

(
a+b

a

)
≡

(
a+b−1

a

)
(mod 2), we have the desired relation

xn+2 =

n∑
t=0

∑
a+2b=t+2

(
a + b − 1

a

)
xn−tya

1yb
2. (4.4)
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Obviously, the summand for t = 0 is xny2, so xn+2 , 0 by Proposition 4.7. Actually, it
is a result of Korbaš and Lörinc that ht(x) = n + 2 [7, page 147]. Using (4.4), it is not
hard to prove that xn+3 = 0 by our method, but in order to save some space, we omit
this proof.

4.2. Nonembeddings and nonimmersions of F(1, 2, n). Let γ1, γ2 and γ3 be
canonical vector bundles over F(1, 2, n) (dim(γ1) = 1, dim(γ2) = 2, dim(γ3) = n). If
τ is the tangent bundle over F(1, 2, n), then, due to Lam [8], we know that

τ � (γ1 ⊗ γ2) ⊕ (γ1 ⊗ γ3) ⊕ (γ2 ⊗ γ3).

If we add the bundle (γ1 ⊗ γ1) ⊕ (γ1 ⊗ γ2) ⊕ (γ2 ⊗ γ2) to both sides of this
isomorphism, then, using the fact that γ1 ⊕ γ2 ⊕ γ3 is a trivial (n + 3)-dimensional
bundle, we obtain that

τ ⊕ (γ1 ⊗ γ1) ⊕ (γ1 ⊗ γ2) ⊕ (γ2 ⊗ γ2) � (n + 3)γ1 ⊕ (n + 3)γ2.

Now, γ1 ⊗ γ1 is a trivial line bundle, since it is the tensor product of a line bundle
with itself. Total Stiefel–Whitney classes of tensor products γ1 ⊗ γ2 and γ2 ⊗ γ2
are calculated by the method described in [9, Problem 7-C], so for the total Stiefel–
Whitney class w(τ) one obtains the relation

w(τ) · (1 + y1 + x2 + xy1 + y2)(1 + y2
1) = (1 + x)n+3(1 + y1 + y2)n+3,

where x, y1 and y2 are, as before, the Stiefel–Whitney classes of canonical bundles γ1
and γ2. Hence, for the total Stiefel–Whitney class of the stable normal bundle ν over
F(1, 2, n), we have that

w(ν) = (1 + y1 + x2 + xy1 + y2)(1 + y2
1)(1 + x)−n−3(1 + y1 + y2)−n−3.

If s > 3 is the integer such that 2s−1 < n + 3 6 2s, then in view of the heights of classes
x, y1 and y2, we have that (1 + x)2s

= 1 + x2s
= 1 and likewise, (1 + y1 + y2)2s

= 1.
Finally, this means that we may multiply the right-hand side of the above equality by
(1 + x)2s

(1 + y1 + y2)2s
, and thus we obtain the formula

w(ν) = (1 + y1 + x2 + xy1 + y2)(1 + y2
1)(1 + x)2s−n−3(1 + y1 + y2)2s−n−3. (4.5)

Proof of Theorem 1.1. We know that wk(ν) , 0 implies em(F(1, 2, n)) >
dim(F(1, 2, n)) + k + 1 = 3n + k + 3 and imm(F(1, 2, n)) > 3n + k + 2 (see [9, pages
49 and 120]).

The top class in (4.5) is in dimension 3 · 2s − 3n − 5 and

w3·2s−3n−5(ν) = (x2 + xy1 + y2)y2
1x2s−n−3y2s−n−3

2

= x2s−n−1y2
1y2s−n−3

2 + x2s−n−2y3
1y2s−n−3

2 + x2s−n−3y2
1y2s−n−2

2 .

According to Corollary 4.3, if 2s − n 6 n + 1, that is, n > 2s−1, this is a sum of three
distinct basis elements and so, w3·2s−3n−5(ν) , 0 in this case. This proves (a).
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If n = 2s−1 − 2, then (4.5) simplifies to

w(ν) = (1 + y1 + x2 + xy1 + y2)(1 + y2
1)(1 + x)2s−1−1(1 + y1 + y2)2s−1−1.

We now multiply this equality by (1 + x)(1 + y1 + y2) and obtain that

w(ν) · (1 + x)(1 + y1 + y2)

= (1 + y1 + x2 + xy1 + y2)(1 + y2
1)(1 + x2s−1

)(1 + y2s−1

1 + y2s−1

2 ).

For s > 4, the class in dimension 2s−1 + 4 on the right-hand side is

σ = (x2 + xy1 + y2)y2
1(x2s−1

+ y2s−1

1 ) = (x2y2
1 + xy3

1 + y2
1y2)(xn+2 + yn+2

1 )
= xn+2y2

1y2 + x2yn+4
1 + xyn+5

1 + yn+4
1 y2,

since ht(x) = n + 2. Using (4.4), we can write the class σ in the form
∑n

i=0 xi pi(y1, y2).
When we do so, we obtain that the polynomial pn(y1, y2) is

y2
1y2

∑
a+2b=2

(
a + b − 1

a

)
ya

1yb
2 = y2

1y2
2 , 0,

since n > 2. By Proposition 4.7, σ , 0. Finally, this means that for some k > 2s−1 + 1,
the class wk(ν) must be nonzero.

By direct calculation, one shows that w2(ν) = xy1 + y2
1 , 0 for n = 2. This

proves (b).
In the case n = 2s−1 − 1, (4.5) gives us that

w(ν) = (1 + y1 + x2 + xy1 + y2)(1 + y2
1)(1 + x)2s−1−2(1 + y1 + y2)2s−1−2.

If we multiply this relation by (1 + x)2(1 + y1 + y2)2 = (1 + x2)(1 + y2
1 + y2

2), we obtain
that the class w(ν) · (1 + x2)(1 + y2

1 + y2
2) is equal to

(1 + y1 + x2 + xy1 + y2)(1 + y2
1)(1 + x2s−1

)(1 + y2s−1

1 + y2s−1

2 ).

If s > 4, the summand in dimension 2s + 3 of this class is

y3
1(x2s−1

y2s−1

1 + y2s−1

2 ) = y3
1(xn+1yn+1

1 + yn+1
2 ) = xn+1yn+4

1 + y3
1yn+1

2 .

Now, we use (4.3) to represent this class in the form
∑n

i=0 xi pi(y1, y2) and obtain that
in this case

pn(y1, y2) = yn+4
1

∑
a+2b=1

(
a + b

a

)
ya

1yb
2 = yn+5

1 , 0,

since ht(y1) = 2n (Corollary 4.6) and n > 7. Arguing as in the previous case, we
conclude that wk(ν) , 0 for some k > 2s − 3.

Again, the direct calculation shows that w4(ν) = x2y2
1 + xy3

1 + y2
1y2 , 0 when n = 3

(one could use (4.3) and Proposition 4.7). �
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By Lam’s estimate [8, Corollary 5.2], imm(F(1, 2, n)) 6 3n + 3 +
(

n
2

)
. By this

result and Theorem 1.1, one obtains that imm(F(1, 2, 2)) = 10, imm(F(1, 2, 3)) = 15,
imm(F(1, 2, 4)) = 21 and these are exactly the cases which are covered by Stong’s
result [13].

Excluding these low-dimensional cases, the strongest results on immersion
dimension provided by Theorem 1.1 are those when n is a power of two. Namely,
imm(F(1, 2, 2s−1)) > 3 · 2s − 3. On the other hand, as we have already noticed,
F(1, 2, 2s−1) embeds into RP2s−1+2 ×G2,2s−1+1. But, for s > 4, RP2s−1+2 immerses into
R2s

(since RP2s−1+3 immerses into R2s
by [11]) and G2,2s−1+1 immerses into R2s+1−1

[10], so we conclude that there is an immersion of the flag manifold F(1, 2, 2s−1) in
R2s
× R2s+1−1 = R3·2s−1. Finally, this means that

3 · 2s − 3 6 imm(F(1, 2, 2s−1)) 6 3 · 2s − 1, s > 4.

4.3. Cup-length for F(1, 2, n). We can now determine the Z2-cup-length of the
manifolds F(1, 2, n) (n > 2) and thus give another proof of the result originally
obtained by Korbaš and Lörinc [7, Proposition 3.2.4]. Recall that, for a commutative
ring R, the R-cup-length of a path connected space X, denoted by cupR(X), is the
supremum of all integers d such that there exist classes a1, a2, . . . , ad ∈ H̃∗(X; R) with
nonzero cup product (a1a2 · · · ad , 0). First, we prove one lemma. As before, x, y1
and y2 are Stiefel–Whitney classes of canonical bundles over F(1, 2, n).

Lemma 4.8. For all m ∈ {0, 1, . . . , n},

xn+1ym
2 =

n−m∑
t=0

∑
a+2b=t+1+2m

(
a + b − m

a

)
xn−tya

1yb
2.

Proof. The proof is by induction on m. Formula (4.3) verifies the statement of the
lemma for m = 0. Now, let 1 6 m 6 n and suppose that the lemma is true for the
integer m − 1. Then

xn+1ym
2 = y2(xn+1ym−1

2 ) =

n−m+1∑
t=0

∑
a+2b=t−1+2m

(
a + b − m + 1

a

)
xn−tya

1yb+1
2

=

n−m+1∑
t=0

∑
a+2b=t+1+2m

(
a + b − m

a

)
xn−tya

1yb
2.

The latter equality is due to the change of variable b 7→ b − 1 that was made in the
sum. We note that we may suppose that the ‘new’ b is also > 0 since for b = 0 in the
last sum, we obtain the coefficient

(
a−m

a

)
, where a = t + 1 + 2m > m, and obviously,

this binomial coefficient is zero. Hence, to complete the induction step, we are left to
prove that the summand obtained for t = n − m + 1 in the upper sum is zero. But, this
summand is ∑

a+2b=n+2+m

(
a + b − m

a

)
xm−1ya

1yb
2 = xm−1gm = 0,

and we are done. �
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Note that xn+1yn+1
2 = 0 since the dimension of this class is 3n + 3 > 3n + 2 =

dim(F(1, 2, n)). Also, when m is close to n, from Lemma 4.8 it is not hard to explicitly
express the class xn+1ym

2 as the sum of basis elements from Corollary 4.3. For example,
it is an easy exercise to show that

xn+1yn
2 = xny1yn

2; (4.6)
xn+1yn−1

2 = xny1yn−1
2 + xn−1y2

1yn−1
2 + xn−1yn

2. (4.7)

Theorem 4.9 [7]. Let n > 2 and s > 3 be such that 2s−1 < n + 3 6 2s. Then

cupZ2
(F(1, 2, n)) =

{
3n + 2 if 2s−1 − 2 6 n 6 2s−1 − 1,
2n + 2s−1 + 1 if 2s−1 − 1 6 n 6 2s − 3.

Proof. According to [6], the class w2s−2
1 wn−2s−1+2

2 ∈ H2n+2(G2,n+1;Z2) is nonzero, where
w1 and w2 are Stiefel–Whitney classes of the canonical two-dimensional bundle
over the Grassmann manifold G2,n+1. By Corollary 4.5, we conclude that the class
y2s−2

1 yn−2s−1+2
2 ∈ H2n+2(F(1, 2, n);Z2) is also nonzero.

In the case n = 2s−1 − 2, we have that y2n+2
1 = y2s−2

1 , 0, so by Proposition 4.7,
xny2n+2

1 , 0. This means that cupZ2
(F(1, 2, n)) > 3n + 2, and since dim(F(1, 2, n)) =

3n + 2, we certainly have the opposite inequality.
For 2s−1 − 1 6 n 6 2s − 3, let us prove that the class xn+2y2s−2

1 yn−2s−1+1
2 is nonzero.

Denote the class y2s−2
1 yn−2s−1+1

2 ∈ H2n(F(1, 2, n); Z2) by σ. By Corollary 4.3 and
Proposition 4.7, σ is a Z2-linear combination of y2

1yn−1
2 and yn

2, say σ = αy2
1yn−1

2 + βyn
2,

α, β ∈ {0, 1}.
Now, gn = y2

1yn
2 + yn+1

2 [10, page 118], so y2
1yn

2 = yn+1
2 in H∗(F(1, 2, n); Z2). So,

y2σ = αy2
1yn

2 + βyn+1
2 = (α + β)yn+1

2 , and since y2σ is nonzero (y2σ = y2s−2
1 yn−2s−1+2

2 , 0),
we conclude that σ is either equal to y2

1yn−1
2 or to yn

2.
If σ = y2

1yn−1
2 , then using the fact that y3

1yn−1
2 = 0 in H∗(F(1, 2, n);Z2) (gn−1 = y3

1yn−1
2 ;

[10, page 118]) and (4.7), we have that

xn+2σ = xy2
1(xny1yn−1

2 + xn−1y2
1yn−1

2 + xn−1yn
2) = xny2

1yn
2 = xnyn+1

2 , 0,

by Corollary 4.3. If σ = yn
2, then by (4.6), we obtain that

xn+2σ = xn+1y1yn
2 = xny2

1yn
2 = xnyn+1

2 , 0.

So, in either case, xn+2y2s−2
1 yn−2s−1+1

2 = xn+2σ , 0, and consequently, cupZ2
(F(1,2,n)) >

2n + 2s−1 + 1.
In order to prove the opposite inequality, we note first that, since the cohomology

algebra H∗(F(1, 2, n);Z2) is a quotient of the polynomial algebra Z2[x, y1, y2], there
is a monomial xkya

1yb
2 which realizes the cup-length. Since ht(x) = n + 2 and ht(y1) =

2s − 2, we have that k 6 n + 2 and a 6 2s − 2. Also, the dimension of the class xkya
1yb

2
is k + a + 2b and dim(F(1, 2, n)) = 3n + 2, so the inequality k + a + 2b 6 3n + 2 must
hold as well. Summing the previous three inequalities leads to 2(k + a + b) 6 4n +

2s + 2, that is, k + a + b 6 2n + 2s−1 + 1. This concludes the proof of the theorem. �
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