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Abstract

An EMV-algebra resembles an MV-algebra in which a top element is not guaranteed. For σ-complete
EMV-algebras, we prove an analogue of the Loomis–Sikorski theorem showing that every σ-complete
EMV-algebra is a σ-homomorphic image of an EMV-tribe of fuzzy sets where all algebraic operations
are defined by points. To prove it, some topological properties of the state-morphism space and the space
of maximal ideals are established.
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1. Introduction

Boolean algebras are well-known structures that have been studied over many decades.
They describe an algebraic semantics for two-valued logic. In the 1930s, Boolean rings
appeared, or equivalently, generalized Boolean algebras, which have almost Boolean
features, but a top element is not assumed. For such structures, Stone, see for example
[16, Theorem 6.6], developed a representation of Boolean rings by rings of subsets,
and also some logical models with such incomplete information were established,
see [20, 21].

Our approach in [10] was based on analogous ideas: develop a Łukasiewicz-
type algebraic structure with incomplete total information, that is, find an algebraic
semantics very similar to MV-algebras with incomplete information, which however
in a local sense is complete, meaning the following: conjunctions and disjunctions
exist, negation only in a local sense, that is, negation of a in b exists whenever a ≤ b
but total negation of the event a is not assumed. For such ideas we have introduced
in [10] EMV-algebras which are locally close to MV-algebras, however, a top element
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is not assumed. Every EMV-algebra with a top element is termwise equivalent to an
MV-algebra and vice versa.

The basic representation theorem says, [10, Theorem 5.21], that even in such a
case, we can find an EMV-algebra with a top element where the original algebra can
be embedded as its maximal ideal, that is, incomplete information hidden in an EMV-
algebra is sufficient to find a Łukasiewicz logical system where a top element exists
and where all original statements are valid.

EMV-algebras generalize Chang’s MV-algebras, [3]. Nowadays, MV-algebras
have many important applications in different areas of mathematics and logic.
Therefore, MV-algebras have many different generalizations, like BL-algebras, pseudo
MV-algebras, [8, 12], GMV-algebras in the realm of residuated lattices, [11], and
so on. In recent years, MV-algebras have also been studied in frames of involutive
semirings, see [6]. The presented EMV-algebras are another kind of generalization of
MV-algebras inspired by Boolean rings.

We note that for σ-complete MV-algebras, a variant of the Loomis–Sikorski
theorem was established in [1, 7, 18]. It was shown that, for every σ-complete
MV-algebra M, there is a tribe of fuzzy sets, which is a σ-complete MV-algebra
of [0, 1]-valued functions with all MV-operations defined by points, that can be σ-
homomorphically embedded onto M.

The aim of the present paper is to formulate and prove a Loomis–Sikorski-type
theorem for σ-complete EMV-algebras showing that every σ-complete EMV-algebra
is a σ-homomorphic image of an EMV-tribe of fuzzy sets, where all EMV-operations
are defined by points.

To show this, we introduce the hull-kernel topology of the maximal ideals of EMV-
algebras and the weak topology of state-morphisms which are EMV-homomorphisms
from the EMV-algebra into the MV-algebra of the real interval [0, 1], or equivalently,
a variant of extremal probability measures.

The paper is organized as follows. Section 2 gathers the main notions and
results on EMV-algebras showing that every EMV-algebra without a top element
can be embedded into an EMV-algebra with a top element as its maximal ideal.
Dedekind σ-complete EMV-algebras are studied in Section 3 where some one-to-
one relationships among maximal ideals, maximal filters and state-morphisms are also
established. In Section 4 we introduce the weak topology of state-morphisms and
the hull-kernel topology of maximal ideals. We show that these spaces are always
mutually homeomorphic, locally compact Hausdorff spaces which are compact if and
only if the EMV-algebra possesses a top element. We prove that if our EMV-algebra
has no top element, then the state-morphism space of the representing MV-algebra
is the one-point compactification of the state-morphism space of the original EMV-
algebra. The Loomis–Sikorski representation theorem will be established in Section 5
together with some topological properties of the state-morphism space and the space
of the maximal ideals.
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2. Elements of EMV-algebras

An MV-algebra is an algebra (M; ⊕,∗ , 0, 1) (henceforth write simply M =

(M;⊕,∗ , 0, 1)) of type (2, 1, 0, 0), where (M;⊕, 0) is a commutative monoid with the
neutral element 0 and for all x, y ∈ M:

(i) x∗∗ = x;
(ii) x ⊕ 1 = 1;
(iii) x ⊕ (x ⊕ y∗)∗ = y ⊕ (y ⊕ x∗)∗.

In any MV-algebra (M;⊕,∗ , 0, 1), we can also define the following operations:

x � y := (x∗ ⊕ y∗)∗, x 	 y := (x∗ ⊕ y)∗.

Then M is a distributive lattice where x ∨ y = (x 	 y) ⊕ y and x ∧ y = x � (x∗ ⊕ y).
Note that, for each x ∈ M, x∗ is the least element of the set {z ∈ M | x ⊕ z = 1}, that is,

x∗ := min{z ∈ M | z ⊕ x = 1}. (2.1)

For example, if (G, u) is an Abelian unital `-group with strong unit u, then the interval
[0, u] can be converted into an MV-algebra as follows: x ⊕ y := (x + y) ∧ u, x∗ := u − x
for all x, y ∈ [0, u]. Then Γ(G, u) := ([0, u];⊕,∗ , 0, u) is an MV-algebra and due to the
Mundici result, every MV-algebra is isomorphic to some Γ(G, u), see [17]. For more
information about MV-algebras, see [4].

An element a ∈ M is said to be Boolean or idempotent if a ⊕ a = a, or equivalently,
a ∨ a∗ = 1. The set B(M) of Boolean elements of M forms a Boolean algebra.

Given a ∈ B(M), we can define a new MV-algebra Ma whose universe is the
interval [0, a] and the MV-operations are inherited from the original one as follows:
Ma = ([0, a];⊕,∗a , 0, a), where x∗a = a � x∗ for each x ∈ [0, a]. Then,

x∗a = min{z ∈ [0, a] : z ⊕ x = a}, x ∈ [0, a].

In this paper, we will also write λa(x) := x∗a , x ∈ [0, a].
Inspired by these properties of MV-algebras, in [10], we have introduced EMV-

algebras as follows. Let (M;⊕, 0) be a commutative monoid with a neutral element 0.
An element a ∈ M is said to be an idempotent if a ⊕ a = a. We denote by I(M) the set
of idempotent elements of M; clearly 0 ∈ I(M), and if a, b ∈ I(M), then a ⊕ b ∈ I(M).

According to [10], an EMV-algebra is an algebra (M;∨,∧,⊕, 0) of type (2, 2, 2, 0)
such that:

(i) (M;⊕, 0) is a commutative ordered monoid with a neutral element 0;
(ii) (M;∨,∧, 0) is a distributive lattice with the bottom element 0;
(iii) for each idempotent a ∈ I(M), the algebra ([0, a];⊕, λa, 0, a) is an MV-algebra,

where
λa(x) = min{z ∈ [0, a] | z ⊕ x = a}, x ∈ [0, a];

(iv) for each x ∈ M, there is an idempotent a of M such that x ≤ a.
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We note that the existence of a top element in an EMV-algebra is not assumed,
and if it exists, then M = (M; ⊕, λ1, 0, 1) is an MV-algebra. We note that every
MV-algebra (M; ⊕,∗ , 0, 1) forms an EMV-algebra (M;∨,∧, ⊕, 0) with top element
1, every Boolean ring or equivalently a generalized Boolean algebra (= a relatively
complemented distributive lattice with a bottom element) is an EMV-algebra.

Besides the operation ⊕ we can define an operation � as follows: let x, y ∈ M and
let x, y ≤ a ∈ I(M). Then

x � y := λa(λa(x) ⊕ λa(y)).

As shown in [10, Lemma 5.1], the operation � does not depend on a ∈ I(M). Then, if
x, y ∈ [0, a] for some idempotent a ∈ M, then

x � λa(y) = x � λa(x ∧ y) and x = (x ∧ y) ⊕ (x � λa(y)). (2.2)

For any integer n ≥ 1 and any x of an EMV-algebra M, we can define

0.x = 0, 1.x = x, (n + 1).x = (n.x) ⊕ x,

and
x1 = x, xn = xn−1 � x, n ≥ 2,

and if M has a top element 1, we define also x0 = 1.
We define the classical notions like ideal: an ideal of an EMV-algebra is a nonvoid

subset I of M such that (i) if x ≤ y ∈ I, then x ∈ I, and (ii) if x, y ∈ I, then x ⊕ y ∈ I. An
ideal is maximal if it is a proper ideal of M which is not properly contained in another
proper ideal of M. Despite M not necessarily having a top element, every M , {0} has
a maximal ideal, see [10, Theorem 5.6]. We denote by MaxI(M) the set of maximal
ideals of M. The radical Rad(M) of M, is the intersection of all maximal ideals of M,
and for it,

Rad(M) = {x ∈ M\{0} | ∃ a ∈ I(M) : x ≤ a & (n.x ≤ λa(x), ∀ n ∈ N)} ∪ {0}. (2.3)

A filter is a dual notion to ideals, that is, a nonvoid subset F of M such that (i)
x ≥ y ∈ F implies x ∈ F, and (ii) if x, y ∈ F, then x � y ∈ F.

A subset A ⊆ M is called an EMV-subalgebra of M if A is closed under ∨, ∧, ⊕ and
0 and, for each b ∈ I(M) ∩ A, the set [0, b]A := [0, b] ∩ A is a subalgebra of the MV-
algebra ([0, b];⊕, λb, 0, b). Clearly, the last condition is equivalent to the following
condition:

∀b ∈ A ∩ I(M), ∀x ∈ [0, b]A, min{z ∈ [0, b]A | x ⊕ z = b} = min{z ∈ [0, b] | x ⊕ z = b},

or equivalently, x ∈ [0, b] ∩ A implies λb(x) ∈ [0, b] ∩ A whenever b ∈ A ∩ I(M). Let
(M1;∨,∧,⊕, 0) and (M2;∨,∧,⊕, 0) be EMV-algebras. A map f : M1 → M2 is called
an EMV-homomorphism if f preserves the operations ∨, ∧, ⊕ and 0, and for each
b ∈ I(M1) and for each x ∈ [0, b], f (λb(x)) = λ f (b)( f (x)).

As it was said, it can happen that an EMV-algebra M has no top element, however,
it can be embedded into an EMV-algebra N with a top element as its maximal ideal as
it was proved in [10, Theorem 5.21].
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Theorem 2.1 (Basic representation theorem). Every EMV-algebra (M;∨,∧,⊕, 0) is
either termwise equivalent to the MV-algebra (M;⊕, λ1, 0, 1) or M can be embedded
into an EMV-algebra N with a top element as a maximal ideal of N such that every
element x ∈ N either belongs to the image of the embedding of M, or it is a complement
of some element x0 belonging to the image of the embedding of M, that is, x = λ1(x0).

The EMV-algebra N from the latter theorem is said to be representing the EMV-
algebra M. A similar result for generalized Boolean algebras was established in [5,
Theorem. 2.2].

A mapping s : M → [0, 1] is called a state-morphism if s is an EMV-
homomorphism from M into the EMV-algebra of the real interval [0, 1] such that
there is an element x ∈ M with s(x) = 1. We denote by SM(M) the set of state-
morphisms on M. In [10, Theorem 4.2] it was shown that if M , {0}, M admits at
least one state-morphism. In addition, there is a one-to-one correspondence between
state-morphisms and maximal ideals given by a relation: if s is a state-morphism, then
Ker(s) = {x ∈ M | s(x) = 0} is a maximal ideal of M, and conversely, for each maximal
ideal I there is a unique state-morphism s on M such that Ker(s) = I.

An EMV-algebra M is said to be semisimple if Rad(M) = {0}. Semisimple EMV-
algebras can be characterized by EMV-clans. A system T ⊆ [0, 1]Ω of fuzzy sets of a
set Ω , ∅ is said to be an EMV-clan if:

(i) 0Ω ∈ T where 0Ω(ω) = 0 for each ω ∈ Ω;
(ii) if a ∈ T is a characteristic function (that is, Im(a) ⊆ {0, 1}), then (a) a − f ∈

T for each f ∈ T such that f (ω) ≤ a(ω) for each ω ∈ Ω, (b) if f , g ∈ T
with f (ω), g(ω) ≤ a(ω) for each ω ∈ Ω, then f ⊕ g ∈ T , where ( f ⊕ g)(ω) =

min{ f (ω) + g(ω), a(ω)}, ω ∈ Ω;
(iii) for each f ∈ T , there is a characteristic function a ∈ T such that f (ω) ≤ a(ω) for

each ω ∈ Ω;
(iv) given ω ∈ Ω, there is f ∈ T such that f (ω) = 1.

Then M is semisimple if and only if there is an EMV-clan T that is isomorphic to
M, see [10, Theorem 4.11].

For other unexplained notions and results, please see the paper [10].

3. Dedekind σ-complete EMV-algebras
In the present section, we study Dedekind σ-complete EMV-algebras and we show

a one-to-one correspondence between the set of maximal ideals and the set of maximal
filters using the notion of state-morphisms.

We say that an EMV-algebra M is Archimedean in the sense of Belluce if, for each
x, y ∈ M with n.x ≤ y for all n ≥ 0, we have x � y = x. This notion was introduced
by [2] for MV-algebras, see also [9, page 395].

Proposition 3.1. Let M be an EMV-algebra. The following statements are equivalent.

(i) M is Archimedean in the sense of Belluce.
(ii) For each a ∈ I(M), the MV-algebra [0, a] is Archimedean in the sense of Belluce.
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(iii) For each a ∈ I(M), the MV-algebra [0, a] is semisimple.
(iv) M is semisimple.

Proof. (i)⇒ (ii) If x, y ∈ [0, a], then x � y ∈ [0, a] so that the implication is evident.
(ii)⇒ (i) Let x, y ∈ M and let n.x ≤ y for each n ≥ 0. There is an idempotent a ∈ M

such that x, y ≤ a. Hence n.x ≤ y ≤ a, so that x � y = x.
(ii)⇔ (iii) It follows from [2, Theorems 31, 33].
(iii) ⇒ (iv) We use equation (2.3). Assume x ∈ Rad(M). By [10, Theorem 5.14],

there is an idempotent a ∈ M such that x ≤ a and n.x ≤ λa(x). Using Archimedeanicity
in the sense of Belluce holding in the MV-algebra [0, a], we have 0 = x � λa(x) = x,
so that Rad(M) = {0} and M is semisimple.

(iv) ⇒ (iii) Let a be an arbitrary idempotent of M. If I is a maximal ideal of M,
then by [10, Proposition 3.23], [0, a] ∩ I is either [0, a] or a maximal ideal of [0, a].
Since {0} = Rad(M) =

⋂
{I | I ∈MaxI(M)}, we have Rad([0, a]) ⊆ [0, a] ∩ Rad(M) =

{0} proving [0, a] is a semisimple MV-algebra. �

According to the basic representation theorem, Theorem 2.1, every EMV-algebra
M is either termwise equivalent to an MV-algebra or it can be embedded into an EMV-
algebra N with a top element as its maximal ideal, so that we can assume that M is an
EMV-subalgebra of N. We define a notion of Dedekind σ-complete EMV-algebras as
follows.

We say that an EMV-algebra M is Dedekind σ-complete if, for each sequence {xn}

of elements of M for which there is an element x0 ∈ M such that xn ≤ x0 for each n,∨
n xn exists in M. It is easy to see that M is Dedekind σ-complete if and only if [0, a]

is a σ-complete MV-algebra for each idempotent a ∈ M.

Lemma 3.2.

(i) If x ∈ M is the least upper bound of a sequence {xn} of elements of an EMV-
algebra M, then it is the least upper bound in N.

(ii) If {xn} has an upper bound a ∈ I(M), then
∨

n xn exists in M if and only if it exists
in the MV-algebra [0, a]. In either case, the suprema coincide.

(iii) M is Dedekind σ-complete if and only if, given a sequence {yn} of elements of
M, there is y =

∧
n yn ∈ M.

If x =
∨

n xn ≤ a ∈ I(M), then

λa(x) =
∧

n

λa(xn),

and if y =
∧

n yn and yn ≤ a ∈ I(M), then

λa(y) =
∨

n

λa(yn).
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206 A. Dvurečenskij and O. Zahiri [7]

Proof.

(i) If M = N, the statement is trivial. So let M be a proper EMV-algebra, that
is, M  N. Assume that for y ∈ N\M, we have xn ≤ y for each n. Then
y = y∗0 := λ1(y0) for some y0 ∈ M, where 1 is the top element of N. We have
xn ≤ x ∧ y∗0 ≤ x, y∗0. Since M is a maximal ideal of N, we have x ∧ y∗0 ∈ M which
entails x ≤ x ∧ y∗0 ≤ x, and finally x ≤ y∗0 proving x is the least upper bound also
in N.

(ii) Let x =
∨

n xn, and x ≤ a ∈ I(M). If y ∈ [0, a] is an upper bound of {xn}, then
clearly x ≤ y, so that x is also its least upper bound taken in [0, a]. Conversely,
let x be the least upper bound of {xn} taken in the MV-algebra [0,a] and let y ∈ M
be an arbitrary upper bound of {xn}. Then xn ≤ y ∧ a ≤ a so that x ≤ y ∧ a ≤ y.

(iii) Assume M is Dedekind σ-complete and let {yn} be a sequence of elements of M.
Since M is a lattice, we can assume yn+1 ≤ yn ≤ y1 for each n ≥ 1. There is an
idempotent a ∈ M such that yn ≤ a for each n ≥ 1. Then λa(yn) ≤ λa(yn+1) ≤ a,
so that there is y0 =

∨
n λa(yn) ∈ [0, a]. We assert λa(y0) =

∧
n yn. Let y′ ≤ yn for

each n ≥ 1, then λa(yn) ≤ λa(y′) so that y0 ≤ λa(y′), and y′ = λ2
a(y′) ≤ λa(y0).

Conversely, let every sequence from M have the infimum in M. Let {xn} be an
arbitrary sequence from M with an upper bound x0 ∈ M; we can assume xn ≤ xn+1 for
each n ≥ 1. There is an idempotent a ∈ M such that xn ≤ x0 ≤ a. Then a ≥ λa(xn) ≥
λa(xn+1) ≥ λa(x0), and there is z0 =

∧
n λa(xn). As in the previous case, we can show

λa(z0) =
∨

n xn. �

For the next result, we need the following notion. We say that an EMV-algebra M
satisfies the general comparability property if, given a ∈ I(M) and x, y ∈ [0, a], there
is an idempotent e, e ∈ [0, a] such that x ∧ e ≤ y and y ∧ λa(e) ≤ x.

Proposition 3.3. If an EMV-algebra M is Dedekind σ-complete, then M is a
semisimple EMV-algebra satisfying the general comparability property, and the set
of idempotent elements I(M) is a Dedekind σ-complete subalgebra of M.

Proof. Let a ∈ M be an idempotent. Since M is Dedekind σ-complete, then [0, a] is a
σ-complete MV-algebra, and by [4, Proposition 6.6.2], [0, a] is semisimple. Applying
Proposition 3.1, we conclude that M is semisimple. Using [13, Theorem 9.9], we can
conclude that every MV-algebra [0, a] satisfies the general comparability property,
consequently, so does M.

Now let {an} be a sequence of idempotent elements of M bounded by some element
x. Clearly, {an} is bounded by some idempotent a0. Let a =

∨
n an exist in M. For any n,

let bn = a1 ∨ · · · ∨ an. Then a =
∨

n bn. Using [12, Proposition 1.21], we have a ⊕ a =

a ⊕ (
∨

n bn) =
∨

n(a ⊕ bn) =
∨

n
∨

m(bn ⊕ bm) =
∨

n(
∨

m≤n(bn ⊕ bm) ∨
∨

m>n(bn ⊕ bm)) =∨
n(
∨

m≤n bn ∨
∨

m>n bm) =
∨

n bn = a. That is, a is an idempotent of M. �
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Proposition 3.4. Let M be an EMV-algebra. If
∨

t yt exists in M, then for each x ∈ M,∨
t(x ∧ yt) exists and

x ∧
∨

t

yt =
∨

t

(x ∧ yt),(∨
t

yt

)
� x =

∨
t

(yt � x).

Proof. Let y =
∨

t yt exist in M. Clearly, x ∧ y ≥ x ∧ yt for each t. Now let z ≥ x ∧ yt

for each t. There is an idempotent a ∈ M such that x, y, z ≤ a. Then the statement holds
in the MV-algebra [0, a], see for example [12, Proposition 1.18], and also does in M.

The second property holds also in the MV-algebra [0, a] as it follows from [12,
Proposition 1.16]. �

Let s be a state-morphism on M. We define two sets

Ker(s) := {x ∈ M | s(x) = 0}, Ker1(s) = {x ∈ M | s(x) = 1}.

We have the following simple but useful characterization of maximal ideals and
maximal filters by state-morphisms.

Lemma 3.5. Let s be a state-morphism on an EMV-algebra M. Then Ker(s) is a
maximal ideal of M and Ker1(s) is a maximal filter of M. Conversely, for each maximal
ideal I and each maximal filter F, there are unique state-morphisms s and s1 on M
such that I = Ker(s) and F = Ker1(s1).

Proof. The one-to-one correspondence between Ker(s) and a maximal ideal I of M
was established [10, Theorem 4.2].

Now we show that Ker1(s) is a maximal filter of M. It is clear that Ker1(s) is a filter.
Let x < Ker1(s). Then s(x) < 1 and since s(x) is a real number in the MV-algebra of
the real interval [0, 1], we have that there is an integer n such that s(xn) = (s(x))n = 0
and an idempotent b ∈ I(M) such that x ≤ b and s(b) = 1. Then xn ⊕ λb(xn) = b, so
that λb(xn) ∈ Ker1(s) which by criterion (ii) of [10, Proposition 5.4] means Ker1(s) is
a maximal filter.

Now let F be a maximal filter of M. Define IF = {λa(x) | x ∈ F, a ∈ I(M), x ≤ a}.
By [10, Theorem 5.6], IF is a maximal ideal of M so that, there is a unique state-
morphism s such that Ker(s) = IF . Now let x ∈ F and let a be an idempotent of M
such that x ≤ a and s(a) = 1. Then s(λa(x)) = 0, so that 1 = s(a) = s(x ⊕ λa(x)) = s(x),
and F ⊆ Ker1(s). The maximality of F and Ker1(s) yields F = Ker1(s).

If there is another state-morphism s′ such that Ker1(s) = F = Ker1(s′), then Ker(s) =

IF = Ker(s′), which by [10, Theorem 4.3] means s = s′. �

4. Hull-kernel topologies and the weak topology of state-morphisms

The present section is devoted to the hull-kernel topology of the set of maximal
ideals and the weak topology of the set of state-morphisms. We show that these spaces
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are homeomorphic, and more information can be derived for EMV-algebras with the
general comparability property. In addition, using the basic representation theorem, we
show that if an EMV-algebra M has no top elements, the state-morphism space is only
locally compact and not compact, and its one-point compactification is homeomorphic
to the state-morphism space of N. A similar property holds for the set of maximal
filters of M and N, respectively.

We recall that a topological space Ω , ∅ is:

(i) regular if, for each point ω ∈ Ω and any closed subspace A of Ω not-containing
ω, there are two disjoint open sets U and V such that ω ∈ U and A ⊆ V;

(ii) completely regular if, for each nonempty closed set F and each point a ∈ Ω\F,
there is a continuous function f : Ω→ [0, 1] such that f (ω) = 1 for each ω ∈ F
and f (a) = 0;

(iii) totally disconnected if every two different points are separated by a clopen subset
of Ω;

(iv) locally compact if every point of Ω has a compact neighborhood;
(v) basically disconnected if the closure of every open Fσ subset of Ω is open.

Of course, (i) implies (ii). We note that the weak topology of state-morphisms on a σ-
complete MV-algebra is basically disconnected, see for example [7, Proposition 4.3].

On the set MaxI(M) of maximal ideals of M we introduce the following hull-kernel
topology TM .

Proposition 4.1. Let M be an EMV-algebra. Given an ideal I of M, let

O(I) := {A ∈MaxI(M) | A + I},

and let TM be the collection of all subsets of the above form. Then TM defines a
topology on MaxI(M) which is a Hausdorff one.

Given a ∈ M, we set

M(a) = {I ∈MaxI(M) | a < I}.

Then {M(a) | a ∈ M} is a base for TM . In addition:

(i) M(0) = ∅;
(ii) M(a) ⊆ M(b) whenever a ≤ b;
(iii) M(a ∧ b) = M(a) ∩ M(b), M(a ∨ b) = M(a) ∪ M(b).

Moreover, any closed subset of TM is of the form

C(I) := {A ∈MaxI(M) : A ⊇ I}.

Proof. We have (i) O({0}) = ∅, O(M) = MaxI(M), (ii) if I ⊆ J, then O(I) ⊆ O(J), (iii)⋃
α O(Iα) = O(I), where I =

∨
α Iα, and (iv)

⋂n
i=1 O(Ii) = O(

⋂n
i=1 Ii) which implies

{O(I) | I ∈ Ideal(M)} defines the topology TM on MaxI(M).
Given a ∈ M, let Ia be the ideal of M generated by a. Then O(Ia) = M(a). Since

O(I) =
⋃
{M(a) | a ∈ I}, we see that {M(a) | a ∈ M} is a base for TM .
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To see that M(a) ∩ M(b) = M(a ∧ b), we have trivially M(a) ∩ M(b) ⊇ M(a ∧ b).
Let A ∈ M(a) ∩ M(b) and let A < M(a ∧ b). Then a ∧ b ∈ A and since A is prime,
either a ∈ A or b ∈ A which is impossible. Then A ∈ M(y) and B ∈ M(x).

Hausdorffness. Let A and B be two maximal ideals of M, A , B. There are x ∈ A\B
and y ∈ B\A. Then x ∧ y ∈ A ∩ B. Let a be an idempotent of M such that x, y ≤ a.
Then x � λa(y) ∈ [0, a]. Since x = (x � λa(y)) ⊕ (x ∧ y), we see that x � λa(y) ∈ A\B.
In a similar way, we have y � λa(x) ∈ B\A. Due to (x � λa(y)) ∧ (y � λa(x)) = 0, we
have also A ∈ M(y � λa(x)) and B ∈ M(x � λa(y)) and M(y � λa(x)) ∩ M(x � λa(y)) =

M((x � λa(y)) ∧ (y � λa(x))) = M(0) = ∅. �

Lemma 4.2. Let M be an EMV-algebra. Then:

(i) if O(I) = O(M), then I = M;
(ii) M(a) = M(0) if and only if a ∈ Rad(M);
(iii) if, for some a ∈ I(M), we have M(a) = O(M), then a is the top element of M and

M is an EMV-algebra with a top element;
(iv) if, for some x ∈ M, we have M(x) = O(M), then M has a top element;
(v) the space MaxI(M) is compact if and only if M has the top element.

Proof.

(i) Assume I is a proper ideal of M. There is a maximal ideal A of M containing I,
then A < O(I) = O(M) which yields a contradiction with A ∈ O(M).

(ii) It follows from the definition of Rad(M).
(iii) Let a be an idempotent and let Ia be the ideal of M generated by a. From (i), we

conclude Ia = M. Hence, if x ∈ M, then x ∈ Ia and henceforth, there is an integer
n such that x ≤ n.a = a, that is, a is the top element of M.

(iv) Let Ix be the ideal of M generated by x. There is an idempotent a of M such that
x ≤ a. We assert a is the top element of M. Indeed, from (i), we have Ix = M,
that is, for any z ∈ M, there is an integer n such that z ≤ n.x. But then z ≤ n.a = a.

(v) Let MaxI(M) be a compact space. Since {M(x) | x ∈ M} is an open covering of
MaxI(M), there are finitely many elements x1, . . . , xn ∈ M such that

⋃n
i=1 M(xi) =

O(M), so that if x0 = x1 ∨ · · · ∨ xn, then M(x0) = O(M) which by (iv) means that
x0 is the top element of M.

Conversely, if M has the top element, then M is in fact an MV-algebra, and the
compactness of MaxI(M) is well known, see for example [9, Proposition 7.1.3], [13,
Corollary 12.19]. �

We say that a net {sα}α of state-morphisms on M converges weakly to a state-
morphism s on M, if limα sα(a) = s(a). Hence, SM(M) is a subset of [0, 1]M and
if we endow [0, 1]M with the product topology which is a compact Hausdorff space,
we see that the weak topology, which is in fact a relative topology (or a subspace
topology) of the product topology of [0, 1]M , yields a nonempty Hausdorff topological
space whenever M , {0}; if M = {0}, the set SM(M) is empty. In addition, the system
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of subsets of SM(M) of the form S (x)α,β = {s ∈ SM(M) | α < s(x) < β}, where x ∈ M
and α < β are real numbers, forms a subbase of the weak topology of state-morphisms.

We note that SM(M) is closed in the product topology whenever M has a top
element. In general, it is not closed because if, for a net {sα}α of state-morphisms,
there exists s(a) = limα sα(a) for each a ∈ M, then s preserves ⊕,∨,∧, but there is no
guarantee that there is x ∈ M such that s(x) = 1 as the following example shows.

Example 4.3. LetT be the set of all finite subsets of the setN of natural numbers. Then
T is a generalized Boolean algebra having no top element, and SM(T ) = {sn | n ∈ N},
where sn(A) = χA(n), A ∈ T . However, s(A) = limn sn(A) = 0 for each A ∈ T , so that s
is not a state-morphism.

Therefore, a nonempty set X of state-morphisms is closed if and only if, for each
net of states {sα}α of state-morphisms from X, such that there exists s(x) = limα sα(x)
for each x ∈ M, then s is a state-morphism on M and s belongs to X.

We note that if x ∈ M, then the function x̂ : SM(M)→ [0, 1] defined by

x̂(s) := s(x), s ∈ SM(M),

is a continuous function on SM(M). We denote by M̂ = {x̂ | x ∈ M}.
According to basic representation theorem 2.1, every EMV-algebra M is either

termwise equivalent to the MV-algebra (M;⊕, λ1, 0, 1) or it can be embedded into an
EMV-algebra N with a top element as its maximal ideal, so that we can assume that
M is an EMV-subalgebra of N and N = {x ∈ N | either x ∈ M or λ1(x) ∈ M}. If M is a
proper EMV-algebra, that is, it does not contain any top element, the state-morphism
space SM(N) can be characterized as follows.

Proposition 4.4. Let M be a proper EMV-algebra and, for each x ∈ M, we put
x∗ = λ1(x). Given a state-morphism s on M, the mapping s̃ : N → [0, 1], defined by

s̃(x) =

s(x) if x ∈ M,
1 − s(x0) if x = x∗0, x0 ∈ M,

x ∈ N, (4.1)

is a state-morphism on N, and the mapping s∞ : N → [0, 1] defined by s∞(x) = 0 if
x ∈ M and s∞(x) = 1 if x < M, is a state-morphism on N. Moreover, SM(N) = {s̃ | s ∈
SM(M)} ∪ {s∞} and Ker(s̃) = Ker(s) ∪ Ker∗1(s), s ∈ SM(M), where Ker∗1(s) = {λ1(x) |
x ∈ Ker1(s)}.

A net {sα}α of state-morphisms on M converges weakly to a state-morphism s on M
if and only if {s̃α}α converges weakly on N to s̃.

Proof. Assume that N = Γ(G, u) for some unital Abelian `-group (G, u). Then 1 = u
and x∗ = λ1(x) = u − x, where − is the subtraction taken from the `-group G.

Take s ∈ SM(M). We have s̃(1) = 1. If x, y ∈ M, then s̃(x ⊕ y) = s̃(x) ⊕ s̃(y). If
x = x∗0, y = y∗0 for x0, y0 ∈ M, then x ⊕ y = (x0 � y0)∗, so that s̃(x ⊕ y) = 1 − s̃(x0 � y0) =

(1 − s(x0)) ⊕ (1 − s(y0)) = s̃(x) ⊕ s̃(y). Finally, if x = x0, y = y∗0 for x0, y0 ∈ M, there
exists an idempotent b ∈ I(M) such that x0, y0 ≤ b and s(b) = 1. Since x ⊕ y = x0 ⊕ y∗0 =
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(y0 � x∗0)∗ = (y0 � λb(x0))∗ which yields s̃(x ⊕ y) = 1 − s(y0 � λb(x0)) = 1 − (s(y0) �
(s(b) − s(x0)) = (1 − s(y0)) ⊕ s(x0) = s̃(x) ⊕ s(y). Whence, s̃ is a state-morphism on N.

It is easy to verify that s∞ is a state-morphism on N. We note that the restriction of
s∞ onto M is not a state-morphism on M because it is the zero function on M.

We note that

I(N) = {x ∈ N | either x ∈ I(M) or x∗ ∈ I(M)}.

Let s be a state-morphism on N. We have two cases: (i) there is an idempotent
a ∈ M such that s(a) = 1, then the restriction s0 of s onto M is a state-morphism on M,
so that s = s̃0 ∈ SM(N). (ii) For each idempotent a ∈ M, s(a) = 0. Since given x ∈ M,
there is an idempotent a ∈ I(M) with x ≤ a, we have s(x) = 0 for each x ∈ M which
says s = s∞.

The last assertions are evident. �

The latter proposition can be illustrated by the following example.

Example 4.5. Let T be the system of all finite subsets of the set N of integers. Then
T is an EMV-algebra that is a generalized Boolean algebra of subsets, T has no
top element, SM(T ) = {sn | n ∈ N} where sn = χA(n), A ∈ T . If we define N as
the set of all finite or co-finite subsets of N, N is an EMV-algebra with the top
element such that N = {A ⊆ N | either A ∈ T or Ac ∈ T }, and N is representing T .
Then SM(N) = {s̃n | n ∈ N} ∪ {s∞}, where s̃n = χA(n), A ∈ N , and s∞(A) = 0 if A is
finite and s∞(A) = 1 if A is co-finite. In addition, limn sn(A) = 0 for each A ∈ T and
limn s̃n(A) = s∞(A), A ∈ N .

Remark 4.6. Since a net {sα}α of state-morphisms of M converges weakly to a state-
morphism s ∈ SM(M) if and only if {s̃α}α converges weakly on N to s̃, the mapping
φ : SM(M)→ SM(N), defined by φ(s) = s̃, s ∈ SM(M), is injective and continuous,
φ(SM(M)) is open, but φ is not necessarily closed, see Example 4.5. We have that φ
is closed if and only if M possesses a top element.

Proof. If x ∈ M, then S N(x) = {s ∈ SM(N) | s(x) > 0} = S̃ (x) := {s̃ | s ∈ S (x)}, where
S (x) = {s ∈ SM(M) | s(x) > 0}. Clearly s∞ < S N(x) and S N(x) is an open set of
SM(N). Therefore, for each s̃, there is an open set of SM(N), namely S N(x), which
contains s̃ and s̃ ∈ S N(x) ⊆ φ(X). Whence φ(X) is open in SM(N).

If M has a top element, then N = M and φ is the identity, so it is closed and open as
well. Conversely, let φ be closed, then φ(X) is closed and compact, where X = SM(M).

Hence, for each open subset O of SM(M), we have φ(O) = φ(X\C) = φ(X)\φ(C),
where C is a closed subset of SM(M), so that φ is an open mapping. Now let
{Oα | α ∈ A} be an open covering of X, then φ(X) = φ(

⋃
α Oα) =

⋃
α φ(Oα), and the

compactness of φ(X) yields φ(X) =
⋃n

i=1 φ(Oαi ), so that X =
⋃n

i=1 Oαi which says
SM(M) is compact. Since X =

⋃
{S (x) | x ∈ M}, there are finitely many elements

x1, . . . , xk ∈ M such that X =
⋃k

i=1 S (xi) = S (x0), where x0 = x1 ∨ · · · ∨ xk. If Ix0 is
the ideal of M generated by x0, then S (x0) = {s ∈ SM(M) | Ker(s) ! Ix0}, so that
O(Ix0 ) = O(M) = M(x0) which, by Lemma 4.2(iv), gives M as having a top element. �

https://doi.org/10.1017/S1446788718000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000101
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Proposition 4.7. Let M be an EMV-algebra and X be a nonempty subspace of state-
morphisms on M that is closed in the weak topology of state-morphisms. Let t be
a state-morphism such that t < X. There exists an a ∈ M such that t(a) > 1/2 while
s(a) < 1/2 for all s ∈ X. Moreover, the element a ∈ M can be chosen such that t(a) = 1
and s(a) = 0 for each s ∈ X.

In particular, the space SM(M) is completely regular.

Proof. (1) Let t be a state-morphism such that t < X. We assert that there exists an
a ∈ M such that t(a) > 1/2 while s(a) < 1/2 for all s ∈ X.

Indeed, set A = {a ∈ M : t(a) > 1/2}, and for all a ∈ A, let

W(a) := {s ∈ SM(M)) | s(a) < 1/2},

which is an open subset of SM(M). We note that A , ∅ and A is downward directed
and closed under ⊕.

We assert that these open subsets cover X. Consider any s ∈ X. Since Ker(s)
and Ker(t) are noncomparable subsets of M, there exists x ∈ Ker(t)\Ker(s). Hence
t(x) = 0 and s(x) > 0. Choose an idempotent b ∈ M such that x ≤ b and t(b) = 1.
There exists an integer n ≥ 1 such that s(n.x) > 1/2. Since there is also an integer
k such that s(k.x) = k.s(x) = 1 and k.x ≤ b, we conclude s(b) = 1. Due to t being a
state-morphism, we have t(n.x) = 0. Putting a = λb(n.x), we have t(a) = 1 > 1/2 and
s(a) < 1/2. Therefore, {W(a) | a ∈ A} is an open covering of X.

(i) If M has a top element, the state-morphism space SM(M) is compact and
Hausdorff, so that X is compact, and X ⊆W(a1) ∪ · · · ∪W(an) for some a1, . . . , an ∈ A.

(ii) If M has no top element, embed M into the EMV-algebra N with a top element
as its maximal ideal. Since s(1) = 1 for each state-morphism s on N, we see that
SM(N) is a compact set in the product topology, consequently, it is compact in
the weak topology of state-morphisms on N. The mapping φ : SM(M)→ SM(N)
defined by φ(s) = s̃, where s̃ is defined through (4.1), is by Proposition 4.4 injective
and continuous.

We assert the set φ(X) ∪ {s∞} is a compact subset of SM(N). Indeed, let {sα}α
be a net of state-morphisms from φ(X) ∪ {s∞}. Since SM(N) is compact, there is
a subnet {sαβ}β of the net {sα}α converging weakly to a state-morphism s on N. If
s = s∞, s ∈ φ(X) ∪ {s∞}. If s , s∞, there is a state-morphism s0 ∈ SM(M) such that
s = s̃0. Then there is β0 such that for each β > β0, sαβ ∈ X. Therefore, s0 ∈ X and
s = φ(s0) ∈ φ(X) ∪ {s∞}. We note that t̃ < φ(X) ∪ {s∞}.

For each a ∈ A, let W̃(a) := {s ∈ SM(N) | s(a) < 1/2}. Then t̃(a) = t(a) > 1/2
and 0 = s∞(a) < 1/2, so that s∞ ∈ W̃(a) for each a ∈ A. Then {W̃(a) | a ∈ A} is
an open covering of the compact set φ(X) ∪ {s∞}. There are a1, . . . , an ∈ A such
that φ(X) ∪ {s∞} ⊆ W̃(a1) ∪ · · · ∪ W̃(an), consequently, X ⊆ W(a1) ∪ · · · ∪W(an). Put
a = a1 ∧ · · · ∧ an. Then a ∈ A and for each s ∈ X, we have s(a) ≤ s(ai) < 1/2 for
i = 1, . . . , n, which proves X ⊆ W(a), that is, s(a) < 1/2 for all s ∈ X.

(2) By the first part of the present proof, there exists an a ∈ M such that t(a) > 1/2
while s(a) < 1/2 for all s ∈ X. In addition, there is an idempotent b of M with a ≤ b and
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t(b) = 1. Then t(a ∧ λb(a)) = t(λb(a)) and t(a � λb(a ∧ λb(a))) = t(a) − t(a ∧ λb(a)) =

t(a) − t(λb(a)) = 2t(a) − 1 > 0.
Now let s be an arbitrary element of X. If s(a) = 0, then s(a � λb(a ∧ λb(a))) = 0.

If s(a) > 0, there is an integer ms such that s(ms.a) = ms.s(a) = 1 and since ms.a ≤
ms.b = b, we have s(b) = 1. Hence, s(a ∧ λb(a)) = s(a), so that s(a � λb(a ∧ λb(a))) =

s(a) − s(a ∧ λb(a)) = 0. In any case, the element a � λb(a ∧ λb(a)) is an element of⋂
{Ker(s) | s ∈ X} for which t(a � λb(a ∧ λb(a))) > 0.
(3) From (1) and (2), we have concluded that if we use (2.2), then a � λb(a ∧

λb(a)) = a � a and s(a � a) = 0 for each s ∈ X. In addition, t(a � a) > 0. There
is an integer r such that t(r.(a � a)) = r.t(a � a) = 1 and s(r.(a � a)) = 0 for each
s ∈ X. Hence, for x = r.(a � a), we have x̂(X) = 0 and x̂(t) = 1. Consequently, for
the continuous function f on SM(M) defined by f (s) = 1 − x̂(s), we have f (X) = 1
and f (t) = 0, so that SM(M) is completely regular. �

Theorem 4.8. Let M be an EMV-algebra. The mapping θ : SM(M)→ MaxI(M),
defined by s 7→ Ker(s), is a homeomorphism. In addition, the following statements are
equivalent:

(i) M has a top element;
(ii) SM(M) is compact in the weak topology of state-morphisms;
(iii) MaxI(M) is compact in the hull-kernel topology.

Proof. Define a mapping θ on the set of state-morphisms SM(M) with values in
MaxI(M) as follows θ(s) = Ker(s), s ∈ SM(M). By [10, Theorem 4.2], θ is a bijection.
Let C(I) be any closed subspace of MaxI(M). Then

θ−1(C(I)) = {s ∈ SM(M) | s(x) = 0 for all x ∈ I},

which is a closed subset of SM(M). Therefore, θ is continuous.
Given a nonempty subset X of SM(M), we set

Ker(X) := {x ∈ M | s(x) = 0 for all s ∈ X}.

Then Ker(X) is an ideal of M. If, in addition, X is a closed subset of SM(M), we
assert

θ(X) = C(Ker(X)). (4.2)

The inclusion θ(X) ⊆ C(Ker(X)) is evident. By Proposition 4.7, if t < X, there
is an element a ∈ M such that s(a) = 0 for each s ∈ X and t(a) = 1. Consequently,
t < X implies θ(t) < C(Ker(X)), and C(Ker(X)) ⊆ θ(X). As a result, we conclude θ is a
homeomorphism.

(i) ⇒ (ii) If 1 is a top element of M, then s(1) = 1 for each state-morphism s,
therefore, SM(M) is a closed subspace of [0, 1]M , consequently, it is compact.

(ii) ⇒ (iii) Let {Oα} be an open cover of MaxI(M). It is enough to take a
cover of the form {O(xα)}. Then SM(M) = θ−1(MaxI(M)) =

⋃
α θ
−1(O(xα)). Hence,

there are finitely many indices α1, . . . , αn such that SM(M) =
⋃n

i=1 θ
−1(O(xαi )) and

consequently,
⋃n

i=1 O(xαi ), which entails MaxI(M) is compact.
(iii)⇔ (i) It was proved in Lemma 4.2(v). �
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Theorem 4.9. Let M be an EMV-algebra with the general comparability property.
Then the mapping ξ : MaxI(M) → MaxI(I(M)) defined by ξ(A) = A ∩ I(M), A ∈
MaxI(M), is a homeomorphism.

In addition, the spaces SM(I(M)), SM(M), MaxI(I(M)) and MaxI(I(M)) are
mutually homeomorphic topological spaces.

Any of the topological spaces is compact if and only if M has a top element.

Proof. Let I be any ideal of I(M), and let Î be the ideal of M generated by I. Then (i)
I = Î ∩ I(M), (ii) I ⊆ J if and only if Î ⊆ Ĵ, (iii) if Î is a maximal ideal M, then so is
I in I(M) (if I is maximal, then Î is not necessarily maximal in M), and (iv) if A is a
maximal ideal of M such that A ⊇ Î, then A ∩ I(M) = I (see [10, Theorem 3.24]).

The mapping ξ : A 7→ A ∩ I(M), A ∈ MaxI(M), gives an ideal of I(M) which is
prime because A is prime. Then ξ(A) has to be a maximal ideal of MaxI(I(M)). In fact,
if a, b < ξ(A), a ≤ b, then b = a ∨ λb(a), so that a ∧ λb(a) = 0 and λb(a) ∈ A ∩ I(M).
Due to [10, Theorem 4.4], the mapping ξ is injective, and in view of [10, Theorem 4.3],
ξ is invertible, that is, given maximal ideal I of I(M), there is a unique extension of I
onto a maximal ideal A of M such that ξ(A) = I.

Now let I be an ideal of I(M). We assert

ξ−1(C(I)) = C(Î).

Indeed, if A is a maximal ideal of I(M) such that A ⊇ I, then ξ−1(A) ⊇ Î. Conversely,
if A is a maximal ideal of M such that A ⊇ Î, then ξ(A) ⊇ Î ∩ I(M) = I. As a result,
we have that ξ is continuous.

According to Theorem 4.8, the spaces SM(M) and MaxI(M) are homeomorphic;
the mapping θ : s 7→ Ker(s), s ∈ SM(M), is a homeomorphism. Similarly, SM(I(M))
and MaxI(I(M)) are homeomorphic under the homeomorphism θ0(s) = Ker(s), s ∈
SM(I(M)). If we define η = θ−1

0 ◦ ξ ◦ θ, then η is a bijective mapping from SM(M)
onto SM(I(M)) such that if s is a state-morphism of M, then η(s) = s0 := s|I(M),
the restriction of s onto I(M). Conversely, if s is a state-morphism on I(M), then
η−1(s) = s̄, the unique extension of s onto M. We see that η is a continuous mapping.

Now take an EMV-algebra N with top element such that M can be embedded into
N as its maximal ideal, and every element x of N either belongs to M or λ1(x) ∈ M.
Given a state-morphism s on M, let s̃ be its extension to N defined by (4.1). According
to the proof of Proposition 4.7, the mapping φ : SM(M)→ SM(N) given by φ(s) = s̃
is injective and continuous, and a net {sα}α of states of SM(M) converges weakly to
a state-morphism s ∈ SM(M) if and only if {φ(sα)}α converges weakly to the state-
morphism φ(s) on N.

Take a closed nonvoid subset X of state-morphisms on M, then φ(X) is a closed
subset of SM(N), consequently, φ(X) is compact. Let {sα}α be a net of state-
morphisms from X and let its restriction {s̄α}α to I(M) converge weakly to a state-
morphism s0 on I(M). Since the net {s̃α}α is from the compact φ(X), there is a subnet
{s̄αβ}β of the net {s̃α}α which converges weakly to a state-morphism t ∈ φ(X) on N, that
is, limβ s̃αβ(x) = t(x) for each x ∈ N. Since s∞ < φ(X), there is a state-morphism s ∈ X
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with s̃ = t. Then limβ sαβ(x) = s(x) for each x ∈ M. In particular, this is true for each
x ∈ I(M), so that η(s) = s0. In other words, we have proved that η is a closed mapping,
and whence, η is a homeomorphism.

Since ξ = θ0 ◦ η ◦ θ
−1, we see that ξ is a homeomorphism, and in view of

Theorem 4.8, the spaces SM(I(M)), SM(M), MaxI(I(M)), and MaxI(I(M)) are
mutually homeomorphic topological spaces.

Consequently, according to Theorem 4.8, any of the topological spaces is compact
if and only if M has a top element. �

Theorem 4.10. Let M be an EMV-algebra. Then the topological spaces SM(M) and
MaxI(M) are locally compact Hausdorff spaces such that if a is an idempotent, then
S (a) and M(a) are compact clopen subsets. If M has a top element, then SM(M) and
MaxI(M) are compact spaces.

Proof. Due to basic representation theorem 2.1, either M has a top element, and M
is termwise equivalent to the MV-algebra (M;⊕, λ1, 0, 1), or M can be embedded into
N as its maximal ideal, and every x ∈ N either belongs to M or λ1(x) belongs to M.
If M has a top element, then SM(M) and MaxI(M) are compact and homeomorphic,
see Theorem 4.8.

Let us assume M has no top element. Given x ∈ M and y ∈ N, let S (x) = {s ∈
SM(M) | s(x) > 0} and S N(y) = {s ∈ SM(N) | s(y) > 0}, they are open sets.

Define a mapping φ : SM(M)→ SM(N) by φ(s) = s̃, s ∈ SM(M), where s̃ is
defined by (4.1). Then φ is an injective mapping such that φ(S (x)) = S N(x) for each
x ∈ M. Take an idempotent a ∈ I(M). Then S (a) = {s ∈ SM(M) | s(a) > 0} = {s ∈
SM(M) | s(a) = 1} is both open and closed. The same is true for S N(a) = {s ∈ SM(N) |
s(a) > 0}, in addition S N(a) is compact because SM(N) is compact.

For each x ∈ M and u, v real numbers with u < v, the sets S (x)u,v = {s ∈ SM(M) |
u < s(x) < v} and S N(x)u,v = {s ∈ SM(N) | u < s(x) < v}, where x ∈ N, are open and
they form a subbase of the weak topologies. Then φ(S (x)u,v) = S N(x)u,v and φ(S (x)) =

S N(x) whenever x ∈ M.
Now we show that S (a) is a compact set in SM(M). Take an open cover of S (a)

in the form {S (xα)uα,vα | α ∈ A}, where xα ∈ M and uα, vα are real numbers such that
uα < vα for each α ∈ A. Then

S (a)⊆
⋃
α

S (xα)uα,vα

φ(S (a))⊆
⋃
α

φ(S (xα)uα,vα)

S N(a)⊆
⋃
α

φ(S (xα)uα,vα).

The compactness of S N(a) entails a finite subset F of A such that S N(a) ⊆⋃
{φ(S (xα)uα,vα) | α ∈ F}, whence, S (a) ⊆

⋃
{S (xα)uα,vα | α ∈ F}. Since the system of all

open sets S (x)u,v forms a subbase of the weak topology of SM(M), we have by [14,
Theorem 5.6], S (a) is compact and clopen as well. In addition, given a state-morphism
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s ∈ SM(M), there is an element x ∈ M with s(x) = 1, and there is an idempotent a ∈ M
such that x ≤ a which entails s ∈ S (x) ⊆ S (a). Whence, SM(M) is locally compact.

Claim. M(a) and MN(a) are both clopen and compact.

Define a mapping θN : SM(N)→MaxI(N) by θN(s) := Ker(s), s ∈ SM(N). Since
N has a top element, θN is a homeomorphism, see Theorem 4.8. Therefore, MN(a) is
clopen and compact.

Whence MN(a) is compact in MaxI(N). We show that also M(a) is compact in
MaxI(M). Take an open covering {M(xα) | α ∈ A} of M(a), where each xα ∈ M. Given
I ∈MaxI(M), there is a unique state-morphism s on M such that I = Ker(s) = θ−1(s),
therefore, we define the mapping ψ : MaxI(M)→MaxI(N) by ψ(I) = θ−1

N (s̃).
Then {ψ(M(xα)) | α ∈ A} is an open covering of ψ(M(a)) = MN(a) which is

a compact set. Whence, there is a finite subcovering {ψ(M(xαi )) | i = 1, . . . , n}
of ψ(M(a)), consequently {M(xαi ) | i = 1, . . . , n} is a finite subcovering of M(a),
consequently, M(a) is compact and clopen as well. �

Corollary 4.11. Let M be an EMV-algebra with the general comparability property.
Then the spaces SM(I(M)), SM(M), MaxI(I(M)), and MaxI(I(M)) are totally
disconnected, locally compact and completely regular spaces.

Proof. By Theorem 4.9, all spaces are mutually homeomorphic, and by Theorem 4.10,
they are completely regular, locally compact and totally disconnected. �

We say that a topological space Ω is Baire if, for each sequence of open and dense
subsets {Un}, their intersection

⋂
n Un is dense.

Corollary 4.12. Let M be an EMV-algebra. The spaces SM(M) and MaxI(M) are
Baire spaces.

Proof. Both spaces are homeomorphic, see Theorem 4.8, due to Theorem 4.10, both
spaces are locally compact, and by Proposition 4.7, they are completely regular.
Therefore, they are also regular. Applying the Baire theorem, [14, Theorem 6.34],
the spaces are Baire spaces. �

Motivated by Example 4.5, we have the following result which describes the state-
morphisms spaces of M and N from the topological point of view.

Theorem 4.13. Let M be an EMV-algebra without a top element which is a maximal
ideal of the EMV-algebra N = {x ∈ N | either x ∈ M or λ1(x) ∈ M}. Then SM(N) and
MaxI(N) are the one-point compactifications of the spaces SM(M) and MaxI(M),
respectively.

Proof. In what follows, we use the result and notation from Proposition 4.4. By
Theorem 4.8, SM(N) is a compact Hausdorff topological space, whereas SM(M) is,
according to Theorem 4.10, a locally compact Hausdorff topological space. Due to the
Alexander theorem, see [14, Theorem 4.21], there is the one-point compactification
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of SM(M). We are going to show that the one-point compactification of SM(M) is
SM(N).

We proceed in five steps.
(1) If ON is an open set of SM(N) such that s∞ < ON , then ON = φ(O) for some

open subset O of SM(M).
(2) Now take an open set ON containing s∞ and ON = S N(x)u,v, where x ∈ M

and u, v are real numbers with u < v. Since s∞(x) = 0, u < 0 < v and we have
S N(x)u,v = {s∞} ∪ {s̃ | s ∈ SM(M), s(x) < v} = {s∞} ∪ φ({s ∈ SM(N) | s(x) < v}). If
X := φ(SM(M))\({s∞} ∪ φ({s ∈ SM(N) | s(x) < v}), then X = {s ∈ SM(M) | s(x) ≥
v} ⊆ {s ∈ SM(N) | s(a) ≥ v}, where a ∈ I(M) such that x ≤ a. If u ≥ 1, then X = ∅

which is a compact set and if u < 1, then X ⊆ {s ∈ SM(M) | s(a) = 1}. Since the latter
set is compact, see Theorem 4.10, we see that X is closed, and consequently, X is
compact, too.

(3) Now let s∞ ∈ ON = S N(x)u,v, where x ∈ M and u, v are real numbers with
u < v and x = λ1(x0), where x0 ∈ M. Since s∞(x) = 1, we have v > 1. Then
S N(x)u,v = {s∞} ∪ {s̃ | s ∈ SM(M), u < s̃(x)} = {s∞}∪, φ({s ∈ SM(M) | s(x0) < 1 − u}).
Therefore, φ(SM(M))\({s∞} ∪ φ({s ∈ SM(M) | s(x0) < 1 − u}) = φ(SM(M)\{s ∈
SM(M) | s(x0) < 1 − u}) = φ({s ∈ SM(M) | s(x0) ≥ 1 − u}) and X = {s ∈ SM(M) |
s(x0) ≥ 1 − u} = ∅, which is a compact set, if u < 0, and X ⊆ {s ∈ SM(M) | s(a) ≥
1 − u} = {s ∈ SM(M) | s(a) = 1} if u ≥ 0 and a is an idempotent of M with x0 ≤ a.
Therefore, X is a closed subset which is a subset of a compact set, see Theorem 4.10,
and we have that X is a compact set.

(4) Let s∞ ∈ ON =
⋂n

i=1 S N(xi)ui,vi , where ui ∈ N, ui < vi and s∞ ∈ S N(xi)ui,vi for
each i = 1, . . . , n. Then S N(xi)ui,vi = {s∞} ∪ φ(S (x′i)u′i ,v

′
i
) where if xi ∈ M, then x′i = xi

and u′i = ui, v′i = vi and if xi ∈ N\M, then x′i = λ1(xi) and u′i = 1 − vi, v′i = 1 − ui. Hence,

φ(SM(M))\
n⋂

i=1

S N(xi)ui,vi = φ
(
SM(M)\

(
{s∞} ∪ φ

( n⋂
i=1

S (x′i)u′i ,v
′
i

)))
= φ

( n⋃
i=1

(SM(M)\S (x′i)u′i ,v
′
i
)
)
,

so that
⋃n

i=1(SM(M)\S (x′i)u′i ,v
′
i
) is a compact set in view of (3).

(5) ON =
⋃
α ON

α , where each ON
α is the set of the form (4). Then ON

α = {s∞} ∪ φ(Oα)
if s∞ ∈ ON

α , otherwise ON
α = Oα, where Oα is an open set in SM(M).

Then φ(SM(M)\
⋃
α ON

α ) = φ(SM(M)\
⋃
α Oα), where Oα is a subset of SM(M)

such that ON
α = φ(Oα). Whence, SM(M)\

⋃
α Oα =

⋂
α(SM(M)\Oα) ⊆ SM(M)\Oα0 ,

where α0 is an index α such that s∞ ∈ ON
α0

, which is by (4) a compact set, consequently,⋂
α(SM(M)\Oα) is a compact set.
Therefore, SM(N) is the one-point compactification of SM(M).
Since the spaces SM(M) and MaxI(M) are homeomorphic, see Theorem 4.8, the

same is true forSM(N) and MaxI(N). If we define I∞ = M, I∞ is a maximal ideal of N,
and I∞ = Ker(s∞). In addition, if s ∈ SM(M), then Ker(s̃) ∩ M = Ker(s). Therefore,
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we get that the one-point compactification of MaxI(M) is MaxI(N) = {Ker(s̃) | s ∈
SM(M)} ∪ {I∞}. �

In a dual way as we did for the set of maximal ideals, we define the hull-kernel
topology on the set MaxF(M) of maximal filters on EMV-algebras M. Thus given a
filter F from the set Fil(M) of all filters on M, we define

O1(F) := {B ∈MaxF(M) | F  B}.

Then (i) F1 ⊆ F2 implies O1(F1) ⊆ O1(F2), (ii)
∨
α O1(Fα) = O1(

∨
α Fα), (iii)⋃

{O1(F) | F ∈ Fil(M)} = O1(M) = Fil(M), (iv)
⋂n

i=1 O1(Fi) = O1(
⋂n

i=1 Fi). Hence,
the system {O1(F) | F ∈ Fil(M)} defines the so-called hull-kernel topology on the set
MaxF(M). Every closed set is of the form C1(F) = {B ∈MaxF(M) | F ⊆ B}. If given
x ∈ M, we set M1(x) = {B ∈MaxF(M) | x < B}, then the system {M1(x) | x ∈ M} is a
base for the hull-kernel topology of maximal filters.

The following result is dual to the one from Proposition 4.7.

Proposition 4.14. Let X be a nonempty set of state-morphisms closed in the weak
topology of state-morphisms of an EMV-algebra M. Let t be a state-morphism such
that t < X. There exists an element a ∈ M such that t(a) = 0 and s(a) = 1 for all s ∈ X.

Proof. Since the proof of the statement is dually similar to the one of Proposition 4.7,
we outline only the main steps.

Let t be a state-morphism such that t < X. We assert that there exists an a ∈ M such
that t(a) < 1/2 while s(a) > 1/2 for all s ∈ X.

Indeed, set A = {a ∈ M : t(a) < 1/2}, and for all a ∈ A, let

W(a) := {s ∈ SM(M)) | s(a) > 1/2},

which is an open subset of SM(M). We note that A , ∅ and A is upward directed and
closed under �.

We assert that these open subsets cover X. Consider any s ∈ X. Since Ker(s) and
Ker(t) are noncomparable subsets of M, there exists x ∈ Ker(t)\Ker(s). Hence t(x) = 0
and s(x) > 0. There exists an integer n ≥ 1 such that s(n.x) > 1/2. Then t(n.x) = 0. If
we put a = n.x, then s ∈ W(a). Therefore, {W(a) | a ∈ A} is an open covering of X.

Similarly as in the proof of Proposition 4.7, we pass to SM(N), where N is an
EMV-algebra with a top element such that M is an EMV-subalgebra of N and we take
the compact space φ(X) ∪ {s∞}. For each a ∈ A, we define W̃(a) = {s ∈ SM(N) | s(a) >
1/2}. Then each W̃(a) is an open subset of SM(N) not containing s∞. Therefore, let
b ∈ M be an arbitrary element and we set W̃(b) = {s ∈ SM(N) | s(b) < 1/2}. Then
W̃(b) is an open set containing the state-morphism s∞, and W̃(b) is disjoint with W̃(a)
for each a ∈ A. Since {W̃(a) | a ∈ A} ∪ {W̃(b)} is an open covering of φ(X) ∪ {s∞}, so
that there are a1, . . . , an ∈ A such that φ(X) ∪ {s∞} ⊆

⋃n
i=1 W̃(ai) ∪ W̃(b). Therefore

X ⊆ W(a1) ∪ · · · ∪ W(an) for some a1, . . . , an ∈ A. Put a0 = a1 ∨ · · · ∨ an. Then
a0 ∈ A and for each s ∈ X, we have s(a0) ≥ s(ai) > 1/2 for i = 1, . . . , n, which proves
X ⊆ W(a0), that is, s(a0) > 1/2 for all s ∈ X. If we put a = a0 ⊕ a0, then t(a) = 0 and
s(a) = 1 for each s ∈ X. �
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Theorem 4.15. Let M be an EMV-algebra. Then the spaces SM(M), MaxI(M) and
MaxF(M) are mutually homeomorphic spaces.

Proof. According to Theorem 4.8, the spaces SM(M) and MaxI(M) are
homeomorphic and the mapping θ : SM(M)→MaxI(M), defined by θ(s) = Ker(s), is
a homeomorphism. According to Lemma 3.5, the mapping ζ : SM(M)→MaxF(M)
given by ζ(s) = Ker1(s), s ∈ SM(M), is bijective.

Let C1(F) be any closed subspace of MaxF(M). Then

θ−1(C1(F)) = {s ∈ SM(M) | s(x) = 1 for all x ∈ F}

is a closed subspace of SM(M), so that ζ is continuous.
Given a nonempty subset X of SM(M), we define

Ker1(X) := {x ∈ M | s(x) = 1 for all s ∈ X}.

Then Ker1(X) is a filter of M. If, in addition, X is a closed subset of SM(M), we assert

ζ(X) = C1(Ker1(X)).

The inclusion ζ(X) ⊆ C1(Ker1(X)) is evident. By Proposition 4.14, if t < X, there is
an element a ∈ M such that s(a) = 1 for each s ∈ X and t(a) = 0. Consequently, t < X
implies ζ(t) < C(Ker1(X)), and C(Ker1(X)) ⊆ ζ(X). As a result, we conclude ζ is a
homeomorphism. �

Lemma 4.16. Let M be an EMV-algebra, x ∈ M, and b ∈ I(M) with x ≤ b.
(i) Then

M(b)\M(x) ⊆ M(λb(x)).

(ii) If x ∈ I(M), then
M(b)\M(x) = M(λb(x)).

(iii) If x, y ∈ M, x, y ≤ b ∈ I(M), then

M(y)\M(x ∧ y) = M(y)\M(x) ⊆ M(y � λb(x)) ⊆ M(λb(x)).

(iv) Let M be semisimple, x ∈ M, and x ≤ b ∈ I(M). Then x ∈ M is an idempotent
if and only if M(b)\M(x) = M(λb(x)).

(v) Let M be semisimple, x, y ∈ I(M), and x, y ≤ b ∈ I(M). Then

M(y)\M(x ∧ y) = M(y)\M(x) = M(y � λb(x)).

(vi) If M is an arbitrary EMV-algebra having a top element 1, then for each
idempotent a ∈ I(M), we have M(λ1(a)) = M(1)\M(a) = M(a)c, where M(a)c is the
set complement of M(a) in MaxI(M).
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Proof.
(i) Let x ≤ b ∈ I(M) and take A ∈ M(b)\M(x). Then b < A and x ∈ A. We assert

λb(x) < A. If not then from b = x ⊕ λb(x) we get a contradiction.
(ii) Assume that x is also an idempotent and take A ∈ M(λb(x)). Due to b =

x ⊕ λb(x), we have λb(x) < A and b < A. Since A is a prime ideal of M, then
0 = λa(x) � x = λb(x) ∧ x ∈ A entails x ∈ A so that A ∈ M(b)\M(x).

(iii) Let x, y ≤ b ∈ I(M). We have M(y)\M(x ∧ y) = M(x)\(M(x) ∧ M(y)) =

M(x)\M(y). Choose A ∈ M(x)\M(y). Then x < A and y ∈ A. Due to (2.2), we have
y = (x ∧ y) ⊕ (y � λb(x)) so that we get y � λb(x) < A. It is evident that M(y � λb(x)) ⊆
M(λb(x)).

(iv) Now let M be semisimple and x ≤ b ∈ I(M). If x is idempotent, we have already
established in (ii) M(b)\M(x) = M(λb(x)). Conversely, let M(b)\M(x) = M(λb(x)).
Then for each A ∈ M(b), we have either x ∈ A or λb(x) < A. Whence x ∧ λb(x) ∈ A,
and since A ∩ [0,b] is a maximal ideal of the MV-algebra [0,b], [10, Proposition 3.23],
we have x ∧ λb(x) ∈ [0, b] ∩ A; the same is true if A < M(b), whence it holds for each
maximal ideal A of M. Since M is semisimple, x ∧ λb(x) = 0 and x is an idempotent
in the MV-algebra [0, b], so it is an idempotent in M, too.

(v) Let A ∈ M(y � λb(x)). Then y � λb(x) < A and y, λb(x) < A. Due to (2.2), we
have y = (x ∧ y) ⊕ (y � λb(x)) and (x ∧ y) ∧ (y � λb(x)) = (x � y) � (y � λb(x)) = 0 ∈ A
(x, y and also λb(x) are idempotents). Then x ∧ y ∈ A and in addition, x ∈ A. Therefore,
A ∈ M(y)\M(x).

(vi) If 1 is a top element of M, a ∈ I(M), then the assertion follows from the above
proved equality. �

Proposition 4.17. Let M be a semisimple EMV-algebra. If x =
∨

t xt ∈ M, then

M(x)\
⋃

t

M(xt)

is a nowhere dense subset of MaxI(M).

Proof. Let x =
∨

t xt and suppose M(x)\
⋃

t M(xt) is not nowhere dense. Since
{M(y) | y ∈ M} is a base of the topological space TM , there exists a nonzero element
b ∈ M such that ∅ , M(b) ⊆ M(x)\

⋃
t M(xt). Due to M(b) = M(b) ∩ M(x) = M(b ∧ x),

we take b0 := b ∧ x which is a nonzero element of M. Then M(b0) ∩ M(xt) = ∅ for any
t, so that M(b0 ∧ xt) = ∅ and the semisimplicity of M yields b0 ∧ xt = 0 for any t.

Using Proposition 3.4, we have

b0 = b0 ∧ a = b0 ∧
∨

t

xt =
∨

t

(b0 ∧ xt) = 0,

which gives M(b) = ∅, a contradiction, so that our assumption was false, and
consequently, M(x)\

⋃
t M(xt) is a nowhere dense set. �

Proposition 4.18. Let M be a semisimple EMV-algebra and let xt ≤ x ≤ a ∈ I(M) for
any t. If

⋂
t M(x � λa(xt)) is a nowhere dense subset of MaxI(M), then x =

∨
t xt.
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Proof. It is clear that in order to prove x =
∨

t xt it is sufficient to verify that xt ≤ y ≤ x
for any t implies y = x.

So let
⋂

t M(x � λa(xt)) be a nowhere dense set, and let y , x for some y ≥ xt,
y ≤ x. Then x � λa(y) , 0 and M(x � λa(y)) is a nonempty open subset of MaxI(M).
By assumptions, there exists a nonzero open subset O ⊆ M(x � λa(y)) such that
O ∩

⋂
t M(x � λa(xt)) = ∅. Consequently, there is a nonzero element z ∈ M such that

M(z) ⊆ O. Hence, for any A ∈ M(z) ⊆ M(x � λa(y)), we have z < A, x � λa(y) < A and
A <

⋂
t M(x � λa(xt)). This entails that there is an index t such that x � λa(xt) ∈ A.

Since xt ≤ y, we have x � λa(y) ≤ x � λa(xt) ∈ A which implies x � λa(y) ∈ A, and this
is a contradiction with x � λa(y) < A. Finally, our assumption y < x was false, and
whence y = x and x =

∨
t xt. �

Corollary 4.19. Let M be a generalized Boolean algebra. Let {xt} be a system
of elements of M which is majorized by x ∈ M. Then x =

∨
t xt if and only if

M(x)\
⋃

t M(xt) is a nowhere dense set of MaxI(M).

Proof. By [10, Lemma 4.8], M is a semisimple EMV-algebra. If x =
∨

t xt, the
statement follows from Proposition 4.17. Conversely, let M(x)\

⋃
t M(xt) be nowhere

dense. Then by Lemma 4.16(v), we have M(λx(xt)) = M(x ∧ λx(xt)) = M(x � λx(xt)) =

M(x)\M(xt), so that
⋃

t M(λx(xt)) = M(x)\
⋂

t M(xt) is a nowhere dense set and
applying Proposition 4.18, x =

∨
t xt. �

Corollary 4.20. A generalized Boolean algebra M is Dedekind σ-complete if and
only if, for each sequence {an} of elements of M which is majorized by an element
a ∈ M, we have

∨
n an = a if and only if M(a)\

⋃
n M(an) is a nowhere dense set of

MaxI(M).

Proof. It follows from Corollary 4.19. �

Proposition 4.21. Let M be an EMV-algebra. For each x ∈ M, we have

M(x) =

∞⋃
n=1

(M(a)\M(λa(n.x))), (4.3)

where a is an idempotent of M such that x ≤ a.

Proof. If x ∈ Rad(M), then M(x) = ∅. If a ∈ Rad(M), then M(a) = M(λa(n.x)) = ∅

and (4.3) holds. If a < Rad(M), then M(a) , ∅. From a = n.x ⊕ λa(n.x) we conclude
A ∈ M(a) if and only if λa(n.x) < A, so that M(a) = M(λa(n.x)) for each n ≥ 1,
henceforth (4.3) holds.

Now let x < Rad(M). Then M(x) , ∅ and let A ∈ M(x). Again from a = n.x ⊕
λa(n.x), we conclude A < M(a) and there is an integer n ≥ 1 such that λa(n.x) ∈ A.
Therefore, M(x) ⊆

⋃∞
n=1(M(a)\M(λa(n.x))).

Now, if
⋃∞

n=1(M(a)\M(λa(n.x))) is empty, then M(x) = ∅ and the equality holds.
Thus let A ∈

⋃∞
n=1(M(a)\M(λa(n.x))). There is an integer n ≥ 1 such that A ∈

M(a)\M(λa(n.x)) which means a < A and λa(n.x) ∈ A. From a = n.x ⊕ λa(n.x), we
have n.x < A, so that x < A and A ∈ M(x) which proves (4.3). �
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5. The Loomis–Sikorski theorem for σ-complete EMV-algebras

In this section, we define a stronger notion of σ-complete EMV-algebras than
Dedekind complete EMV-algebras and for them we establish a variant of the
Loomis–Sikorski theorem which will say that every σ-complete EMV-algebra is
a σ-homomorphic image of some σ-complete EMV-tribe of fuzzy sets, where all
operations are defined by points.

We say that an EMV-algebra M is σ-complete if any countable family {xn} of
elements of M has the least upper bound in M. Clearly, every σ-complete EMV-
algebra is Dedekind σ-complete. Therefore, all results of the previous section
concerning Dedekind σ-complete EMV-algebras are valid also for σ-complete ones.
We note that both notions coincide if M has a top element. In the opposite case,
these notions may be different. Indeed, let T be the set of all finite subsets of the
set N of natural numbers. Then T is a generalized Boolean algebra that is Dedekind
σ-complete but not σ-complete. On the other hand, if T is a system of all finite or
countable subsets of the set of reals, then T is a σ-complete generalized Boolean
algebra without a top element.

Lemma 5.1. Let M be a σ-complete EMV-algebra. Then no nonempty open set of
SM(M) can be expressed as a countable union of nowhere dense sets.

Proof. By Proposition 3.3, M satisfies the general comparability property, and by
Theorem 4.9, the spaces SM(M), MaxI(M), SM(I(M)), and MaxI(I(M)) are
mutually homeomorphic spaces. In addition, I(M) is σ-complete. Therefore, we
prove the lemma for MaxI(I(M)). We note, that given x ∈ I(M), M(x) = {I ∈
MaxI(I(M)) | x < I}, and by Theorem 4.10, M(x) is clopen and compact.

Let O , ∅ be an open set of MaxI(I(M)) and let O =
⋃

n S n, where each S n is
a nowhere dense subset of MaxI(I(M)). Let O0 be a nonempty open set, there is
x1 , 0 such that M(x1) ⊆ O0 and M(x1) ∩ S 1 = ∅. Since also S 2 is nowhere dense, in
the same way, there is 0 < x2 ∈ M such that M(x2) ⊆ M(x1) and M(x2) ∩ S 2 = ∅. By
induction, we obtain a sequence of nonzero elements {xn} such that M(xn+1) ⊆ M(xn)
and M(xn) ∩ S n = ∅. We define yn = x1 ∧ · · · ∧ xn for each n ≥ 1. Then M(yn) = M(xn),
n ≥ 1, and M(yn) ⊆ M(y1). Put y0 =

∧
n yn. Since M(y1) is compact,

⋂
n M(yn) , ∅,

otherwise there is an integer n0 such that M(yn0 ) =
⋂n0

i=1 M(yi) = ∅, a contradiction.
Therefore, there is a maximal ideal I belonging to each M(yn) and I < S n, so that

I <
⋃

n S n which is absurd, and the lemma is proved. �

Given an element x ∈ M, the set S (x) was defined as S (x) = {s ∈ SM(M) | s(x) > 0}.

Theorem 5.2. Let M be a σ-complete EMV-algebra. For each x ∈ M, we define

a0(x) :=
∨

n

n.x. (5.1)

Then a0(x) is an idempotent of M such that a0(x) ≥ x and

a0(x) =
∧
{a ∈ I(M) | a ≥ x}. (5.2)
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In addition, S (x) = S (a0(x)), and if S (x) = S (b) for some idempotent b ∈ I(M), then
a0(x) = b.

On the other hand, there is an idempotent b0(x) of M such that

b0(x) =
∧

n

xn

and
b0(x) =

∨
{b ∈ I(M) | b ≤ x}. (5.3)

(1) If y is an element of M such that x ≤ y and if b is an idempotent with S (y) = S (b),
then a0(x) ≤ b.

(2) Let x, x1, . . . and a,a1, . . . be a sequence of elements of M andI(M), respectively,
such that S (x) = S (a) and S (xn) = S (an) for each n ≥ 1. If x =

∨
n xn, then a =

∨
n an.

Proof. Since M is σ-complete, the element a0(x) =
∨

n n.x exists in M for each x ∈ M.
Using [12, Proposition 1.21], we have a0(x) ⊕ a0(x) = a0(x) ⊕

∨
n n.x =

∨
n(a0(x) ⊕

n.x) =
∨

n
∨

m(n + m).x = a0(x), so that a0(x) is an idempotent of M. Now let b ∈ I(M)
be an idempotent such that x ≤ b. Then n.x ≤ b for each integer n, so that a0(x) ≤ b
which yields (5.2).

Since S (x.n) = S (x) for each n ≥ 1, we have
⋃

n S (n.x) ⊆ S (a0(x)), which by
Proposition 4.17 means that S (a0(x))\

⋃
n S (n.x) = S (a0(x))\S (x) is a nowhere dense

subset of SM(M). Then S (x) = S (n.x) ⊆ S (a0(x)). Because S (a0(x)) is compact
and clopen by Theorem 4.10, S (a0(x))\S (x) ⊆ S (a0(x))\S (x), which gives that
S (a0(x))\S (x) is nowhere dense and open. Lemma 5.1 yields S (a0(x))\S (x) = ∅ and
S (a0(x)) = S (x).

Assume that b is another idempotent of M such that S (x) = S (b). First, let
a := a0(x) ≤ b. Then b = a ∨ λb(a), and λb(a) is an idempotent of M, which entails
s(λb(a)) = 0 for each state-morphism s of M. The semisimplicity of M yields λb(a) = 0
and a = b. In general, we have S (a) = S (a) ∪ S (b) = S (a ∨ b), that is, a = a ∨ b = b.

Let a = a0(x). Then a = x ⊕ λa(x). By (5.2), there is an idempotent c0 =
∧
{c ∈

I(M) | λa(x) ≤ c}. Then for the idempotent λa(c0) we have λa(c0) =
∨
{b ∈ I(M) | b ≤

x}. Clearly, n.λa(x) ≤ c0, so that λa(c0) ≤ xn for each n ≥ 1, and whence λa(c) ≤ y0 :=∧
n xn. Using [12, Proposition 1.22], we have y0 � y0 = y0 so that y0 is an idempotent

of M with y0 ≤ x. Therefore, y0 ≤ λa(c0).
(1) Now let x ≤ y. There is a unique idempotent b of M such that S (y) = S (b). Then

S (b) = S (y) ⊇ S (x) = S (a) and S (b ∨ a) = S (b) ∪ S (a) = S (b), that is, a ∨ b = b and
a ≤ b.

(2) By the above parts, the idempotents a and an with S (x) = S (a) and S (xn) = S (an)
are determined unambiguously, where x =

∨
n xn. Put a0 =

∨
n an. Then a0 ≥ an ≥ xn,

a0 ≥ x, so that a0 ≥ a0(x) := a. Now let b be any idempotent of M with b ≥ x. Then
b ≥ xn for each n ≥ 1, so that b ≥ an for each n ≥ 1, and b ≥ a0 which by (5.2) yields
a0 = a0(x) = a. �
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The elements a0(x) and b0(x) defined in the latter theorem are said to be the least
upper idempotent of x and the greatest lower idempotent of x, respectively, and for
them, we have

b0(x) ≤ x ≤ a0(x).

Proposition 5.3. Let M be a σ-complete EMV-algebra and let B(M) be the system of
all compact and open subsets of MaxI(M). ThenB(M) = {M(a) | a ∈ I(M)}. Moreover,
for a, b ∈ I(M), we have M(a) = M(b) if and only if a = b, and the closure of the union
of countably many elements of B(M) belongs to B(M).

In particular, for every sequence {an} of elements of I(M),⋃
n

M(an) = M(a), (5.4)

where a =
∨

n an and a ∈ I(M). Similarly,
⋃

n S (xn) = S (a).

Proof. Due to Theorem 4.10, every M(a) is open and compact for each idempotent
a ∈ I(M). Therefore, each M(a) belongs to B(M).

If K is a compact and open subset of MaxI(M), we assert there is an element
x0 ∈ M such that K = O(x0). Indeed, we have K = C(J) = O(I) for some ideals J
and I of M. Since I =

∨
{Ix | x ∈ I}, where Ix is the ideal of M generated by an

element x, then O(I) =
⋃
{O(Ix) | x ∈ I}, and the compactness of K provides us with

finitely many elements x1, . . . , xn of I such that if x0 = x1 ∨ · · · ∨ xn ∈ I, then K =

O(I) =
⋃n

i=1 O(Ixi ) = O(Ix0 ) = M(x0). Define a0(x0) by (5.1). Then by Theorem 5.2,
K = M(x0) = M(x0) = M(a0(x0)). From the same theorem, we conclude that for two
idempotents a, b ∈ I(M), M(a) = M(b) implies a = b.

Now let {Kn} be a sequence of elements from B(M). For each Kn, there is a
unique idempotent an ∈ I(M) such that Kn = M(an). Put a =

∨
n an; then a ∈ I(M).

By Proposition 4.17, M(a)\
⋃

n M(an) is nowhere dense. Since M(a)\
⋃

n M(an) ⊆
M(a)\

⋃
n M(an), the set M(a)\

⋃
n M(an) is open and nowhere dense which by

Lemma 5.1 yields M(a)\
⋃

n M(an) = ∅, that is, M(a) =
⋃

n M(an) =
⋃

n Kn.
The second equality

⋃
n S (xn) = S (a) follows from Theorem 4.10. �

An important notion of this section is an EMV-tribe of fuzzy sets which is a σ-
complete EMV-algebra where all operations are defined by points.

Definition 5.4. A system T ⊆ [0, 1]Ω of fuzzy sets of a set Ω , ∅ is said to be an
EMV-tribe if

(i) 0Ω ∈ T where 0Ω(ω) = 0 for each ω ∈ Ω;
(ii) a ∈ T is a characteristic function, then (a) if f ∈ T and f (ω) ≤ a(ω) for each

ω ∈ Ω, then a − f ∈ T (b) if { fn} is a sequence of functions from T with
fn(ω) ≤ a(ω) for each ω ∈ Ω and each n ≥ 1, where a ∈ T is a characteristic
function, then

⊕
n fn ∈ T , where

⊕
n fn(ω) = min{

∑
n fn(ω), a(ω)}, ω ∈ Ω;

(iii) for each f ∈ T , there is a characteristic function a ∈ T such that f (ω) ≤ a(ω) for
each ω ∈ Ω;
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(iv) given ω ∈ Ω, there is f ∈ T such that f (ω) = 1.

Proposition 5.5. Every EMV-tribe of fuzzy sets is a Dedekind σ-complete EMV-clan
where all operations are defined by points. If {gn} is a sequence from T , then g =

∧
n gn

exists in T and g(ω) = infn gn(ω), ω ∈ Ω.
If for a sequence { fn} from T , f =

∨
n fn exists in T , then f (ω) = supn fn(ω), ω ∈ Ω.

An EMV-tribe is σ-complete if and only if, for each sequence { fn} of elements of T ,
there is a characteristic function a ∈ T such that fn(ω) ≤ a(ω), ω ∈ Ω.

Proof. By [10, Proposition 4.10], we see that T is an EMV-clan of fuzzy sets of
Ω which is closed under ∨ and ∧, defined by points. We have to show that the
operation

⊕
is correctly defined. Let { fn} be any sequence for which there are two

characteristic functions a, b ∈ T such that fn(ω) ≤ a(ω), b(ω), ω ∈ Ω and n ≥ 1. There
is another characteristic function c ∈ T with a(ω), b(ω) ≤ c(ω), ω ∈ Ω. We denote
(
⊕a

n fn)(ω) := min{
∑

n fn(ω), a(ω)} for each ω ∈ Ω. In the same way we define
⊕b

n fn
and

⊕c
n fn. Then( a⊕

n

fn
)
(ω) =


∑

n fn(ω) if
∑

n fn(ω) ≤ a(ω)
a(ω) if

∑
n fn(ω) > a(ω),

ω ∈ Ω,

and ( c⊕
n

fn
)
(ω) =


∑

n fn(ω) if
∑

n fn(ω) ≤ c(ω)
c(ω) if

∑
n fn(ω) > c(ω),

ω ∈ Ω.

If a(ω) = 0, then fn(ω) = 0 for each n and (
⊕a

n fn)(ω) = 0 = (
⊕c

n fn)(ω). If
a(ω) = 1, then c(ω) = 1 and (

⊕a
n fn)(ω) = (

⊕c
n fn)(ω). In the same way we have

(
⊕b

n fn) = (
⊕c

n fn), so that (
⊕a

n fn) = (
⊕b

n fn), and
⊕

n fn is well-defined.
Choose an arbitrary sequence { fn} from T which is dominated by some

characteristic function a ∈ T . Without loss of generality we can assume that fn(ω) ≤
fn+1(ω), ω ∈ Ω, n ≥ 1. We set h1 = f1 and hn = fn − fn+1 for n ≥ 1. Then each hn

belongs to T and it is dominated by a. Therefore,
⊕

n hn ∈ T and (
⊕

n hn)(ω) =∑
n hn(ω) = supn fn(ω), which proves that T is Dedekind σ-complete. Consequently,
T is σ-complete if and only if for each sequence { fn} we can find a characteristic
function a ∈ T which dominates each fn.

Now let {gn} be any sequence from T . Since T is a lattice where ( f ∧ g)(ω) =

min{ f (ω), g(ω)}, ω ∈ Ω, without loss of generality, we can assume that gn+1 ≤ gn

for each n ≥ 1. Then there is a characteristic function a ∈ T such that gn(ω) ≤
a(ω), ω ∈ Ω, n ≥ 1, and a − gn ∈ T , a − gn ≤ a − gn+1. Whence, (

∨
n(a − gn))(ω) =

supn(a − gn)(ω) for each ω ∈ Ω. Consequently (
∧

n gn)(ω) = a(ω) − (
∨

n(a − gn))(ω) =

a(ω) − supn(a(ω) − gn(ω)) = infn gn(ω), ω ∈ Ω. �

We note that a tribe is a system T ⊆ [0, 1]Ω of fuzzy sets on Ω , ∅ such that (i)
1Ω ∈ T , (ii) if f ∈ T , then 1 − f ∈ T , and (iii) for any sequence { fn} of elements of
T , the function

⊕
n fn belongs to T , where (

⊕
n fn)(ω) = min{

∑
n fn(ω), 1}, ω ∈ Ω.

Then the notion of an EMV-tribe is a generalization of the notion of a tribe because

https://doi.org/10.1017/S1446788718000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000101
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an EMV-tribe T is a tribe if and only if 1Ω ∈ T . We note that in [7, 18], it was proved
that every σ-complete MV-algebra is a σ-homomorphic image of some tribe of fuzzy
sets.

We say that an EMV-homomorphism h : M1 → M2 is a σ-homomorphism, where
M1 and M2 are EMV-algebras, if for any sequence {xn} of elements from M1 for which
x =

∨
n xn is defined in M1, then

∨
n h(xn) exists in M2 and h(x) =

∨
n h(xn).

Let f be a real-valued function on Ω , ∅. We define N( f ) := {ω ∈ Ω | | f (ω)| > 0},
N+( f ) = {ω ∈ Ω | f (ω) > 0} and N−( f ) = {ω ∈ Ω | f (ω) < 0}. Then N( f ) = N+( f ) ∪
N−( f ).

Suppose that T is a system of fuzzy sets on Ω, containing 0Ω, such that, for each f ∈
T , there is a characteristic function a ∈ T with f (ω) ≤ a(ω),ω ∈ Ω. If f ,g ≤ a for some
characteristic function from T , we can define ( f ⊕ g)(ω) = min{ f (ω) + g(ω), a(ω)},
( f � g)(ω) = max{ f (ω) + g(ω) − a(ω), 0}, and ( f ∗ g)(ω) = max{ f (ω) − g(ω), 0} for
each ω ∈ Ω, and these operations do not depend on a.

Then for all f , g ∈ T we have:

(i) N( f ⊕ g) = N( f ) ∪ N(g);
(ii) N( f ∗ g) = {ω ∈ Ω | f (ω) > g(ω)};
(iii) ( f ∗ g) ⊕ (g ∗ f ) = ( f ∗ g) + (g ∗ f );
(iv) N(( f ∗ g) ⊕ (g ∗ f )) = N( f − g);
(v) N( f ) ⊆ N(g) if f ≤ g;
(vi) N( f � g) = {ω ∈ Ω | f (ω) + g(ω) > 1}.

Now we formulate the Loomis–Sikorski theorem for σ-complete EMV-algebras.

Theorem 5.6 (The Loomis–Sikorski theorem). Let M be a σ-complete EMV-algebra.
Then there are an EMV-tribe T of fuzzy sets on some Ω , ∅ and a surjective σ-
homomorphism h of EMV-algebras from T onto M.

Proof. If M = {0}, the statement is trivial. So let M , {0}.
By Proposition 3.3, M is a semisimple EMV-algebra, and by the proof of [10,

Theorem 4.11], M is isomorphic to M̂ = {x̂ | x ∈ M}, where x̂ : SM(M)→ [0, 1] is
defined by x̂(s) = s(x), s ∈ SM(M).

Let T be the system of fuzzy sets f on Ω = SM(M) such that (i) for some x ∈ M,
N( f − x̂) is a meager set (that is, it is a countable union of nowhere dense subsets) in
the weak topology of state-morphisms, and we write f ∼ x, and (ii) there is a ∈ I(M)
such that f ≤ â. It is clear that T contains M̂.

If x1 and x2 are two elements of M such that N( f − x̂i) is a meager set for i = 1, 2,
then

N(x̂1 − x̂2) ⊆ N(x̂1 − f ) ∪ N( f − x̂2)

is a meager set. By Lemma 5.1, we conclude that N(x̂1 − f ) ∪ N( f − x̂2) = ∅ from
which we get x̂1 = x̂2, that is x1 = x2. Therefore, if f ∼ x1 and f ∼ x2, then x1 = x2.

Claim 1. The set T is an EMV-clan.
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Let f ,g,h ∈ T and let N(g − h) be a meager set. We assert N0 := N(( f ⊕ g) ∗ ( f ⊕ h))
is a meager set. Set N1 = {s | min{ f (s) + g(s), 1} > min{ f (s) + h(s), 1}} and check

N1 =
(
N1 ∩ {s | g(s) = h(s)}

)
∪

(
N1 ∩ {s | g(s) > h(s)}

)
∪

(
N1 ∩ {s | g(s) < h(s)}

)
=

(
N1 ∩ {s | g(s) > h(s)}

)
∪

(
N1 ∩ {s | g(s) < h(s)}

)
⊆ N1 ∩ N(g − h),

which shows that N0 is a meager set. Similarly, N(( f ⊕ h) ∗ ( f ⊕ g)) is a meager set.
In a similar way, if N3 := N(( f ∨ g) ∗ ( f ∨ h)) = {s | f (s) ∨ g(s) > f (s) ∨ h(s)}, then

N3 =
(
N3 ∩ {s | g(s) = h(s)}

)
∪

(
N3 ∩ {s | g(s) > h(s)}

)
∪

(
N3 ∩ {s | g(s) < h(s)}

)
=

(
N3 ∩ {s | g(s) > h(s)}

)
∪

(
N3 ∩ {s | g(s) < h(s)}

)
⊆ N3 ∩ N(g − h) ⊆ N(g − h),

which establishes N3 is a meager set. In the same way, the set N(( f ∨ h) − ( f ∨ g)) is
meager, consequently, N(( f ∨ g) − ( f ∨ h)) is a meager set, too.

Therefore, if f ,g ∈ T and f ∼ x and g ∼ y for unique x, y ∈ M, there is an idempotent
a ∈ I(M) such that x, y ≤ a and f , g ≤ â. This implies N(( f ⊕ g) ∗ (x̂ ⊕ ŷ)) ⊆ N(( f ⊕
g) ∗ ( f ⊕ ŷ)) ∪ N(( f ⊕ ŷ) ∗ (x̂ ⊕ ŷ)) is a meager set. Similarly N((x̂ ⊕ ŷ) ∗ ( f ⊕ g)) is
also a meager set. Therefore, f ⊕ g ∼ x ⊕ y which proves T is an EMV-clan and T
is closed also under ∨ and ∧ with pointwise ordering. In the same way, we have also
f ∨ g ∼ x ∨ y.

We note that if f ∈ T is a characteristic function such that f ∼ x ∈ M, f ≤ â for
some a ∈ I(M), then f = f ⊕ f ∼ x ⊕ x = x, so that x is an idempotent of M.

Let f ∈ T , f ∼ x, f ≤ b for some characteristic function b ∈ T . Then there is
a unique idempotent a ∈ I(M) such that b ∼ a, in addition, x ≤ a. Then we have
λ̂a(x) = â − x̂, and N((b − f ) − (λ̂a(x))) = N((b − f ) − (â − x̂)) = N((b − â) − ( f − x̂)) ⊆
N(b − â) ∪ N( f − x̂), which is a meager set. Hence,

λb( f ) = b − f ∼ λa(x). (5.5)

We note that if f , g ∈ T , and if a is an idempotent of M such that f , g ≤ â, then
1 − f , f ∨ g, f ⊕ g are dominated by â. Consequently, T is an EMV-clan.

Claim 2. The set T is closed under pointwise limits of nondecreasing sequences
from T .

Let { fn}n be a sequence of nondecreasing functions from T . Choose xn ∈ M such
that fn ∼ xn for each n ≥ 1. Since fn = f1 ∨ · · · ∨ fn ∼ x1 ∨ · · · ∨ xn for each n ≥ 1, we
have xn ≤ xn+1. Denote f = limn fn, x =

∨∞
n=1 xn, and b0 = limn x̂n. Then x ∈ M. It is

easy to see that there is an idempotent a such that x, x1, . . . ≤ a and f1, fa ≤ â.
We have

N( f − x̂) ⊆ N( f − b0) ∪ N(x̂ − b0)

and N( f − b0) = {s | f (s) < b0(s)} ∪ {s | b0(s) < f (s)}.
If s ∈ {s | f (s) < b0(s)}, then there is an integer n ≥ 1 such that f (s) < x̂n(s) ≤ b0(s).

Hence, fn(s) ≤ f (s) < x̂n(s) ≤ b0(s) so that s ∈ {s | fn(s) < x̂n(s)}.
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Similarly we can prove that if s ∈ {s | b0(s) < f (s)}, then there is an integer n ≥ 1
such that s ∈ {s | b̂n(s) < fn(s)}.

The last two cases imply

N( f − b0) ⊆
∞⋃

n=1

N(x̂n − fn)

is a meager set.
Now it is necessary to show that N(x̂ − b0) is a meager set. We have

N(x̂ − b0) = (N(x̂ − b0) ∩ {s | s(x) > 0}) ∪ (N(x̂ − b0) ∩ {s | s(x) = 0})
= N(x̂ − b0) ∩ S (x)

=

(
N(x̂ − b0) ∩

(
S (x)\

⋃
n

S (xn)
))
∪

(
N(x̂ − b0) ∩

(
S (x) ∩

⋃
n

S (xn)
))
.

By Proposition 4.17, we have that N(x̂ − b0) ∩ (S (x)\
⋃

n S (xn)) is a meager set.
Therefore, it is necessary to prove that N0 := N(x̂ − b0) ∩ (S (x) ∩

⋃
n S (xn)) = N(x̂ −

b0) ∩
⋃

n S (xn) is a meager set.
To prove it, take an arbitrary open nonempty set O in SM(M). Then there is an

ideal I of M such that O = {s ∈ SM(M) | I  Ker(s)}. The ideal I contains a nonzero
element z ∈ I. There is an idempotent a ∈ I(M) such that x, z ≤ a. We note that
in such a case, a0(x) ≤ a, where a0(x) is the least upper idempotent of x defined in
Theorem 5.2. The restriction of any state-morphism s ∈ S (a) onto the MV-algebra
Ma = [0, a] is a state-morphism on Ma; we denote the set of those restrictions by
S 0(a). Then S 0(a) ⊆ SM(Ma). It is clear that Ma is aσ-complete MV-algebra, whence
x, x1, . . . ∈ Ma and x is the least upper bound of {xn} taken in the MV-algebra Ma. By
the proof of [7, Theorem 4.1], S 0 := {s ∈ SM(Ma) | s(x) > limn s(xn)} is a meager set
in the weak topology of SM(Ma). Then {s|Ma | s ∈ S (x) ∩ N(x̂ − b0)} ⊆ S 0 is also a
meager set of SM(Ma).

The element z belongs to [0, a], and let Ia = I ∩ [0, a]. Clearly Ia is an ideal
of Ma containing z, and let Oa(Ia) = {s ∈ SM(Ma) | Ia  Ker(s)}. Then Oa(Ia) is a
nonzero open set of SM(Ma). Therefore, there is an element 0 < y ∈ Ma such that
S a(y) = {s ∈ SM(Ma) | s(y) > 0} ⊆ Oa(Ia) and it has the empty intersection with S 0.
Define S (y) = {SM(M) | s(y) > 0}. Since y ≤ a, we have S (y) ⊆ M(a). For each state-
morphism s on M, let sa be the restriction to s onto Ma. Take s ∈ S (y), then sa(y) > 0,
sa is a state-morphism on Ma, sa ∈ S a(y), and sa ∈ Oa(Ia). That is, there is a nonzero
element t ∈ Ia such that sa(t) = 0, that is, s(t) = 0 for some t ∈ I which gets s ∈ O. We
have proved that S (y) ⊆ O. We assert S (y) ∩ S (x) ∩ N(x̂ − b0) = ∅. If not, there is a
state-morphism s belonging to the intersection. Then s(a) = 1 since s ∈ S (y), so that sa

is a state-morphism on Ma, sa(y) = s(y) > 0, and x̂(s) − b0(s) = sa(x) − limn sa(xn) > 0
which is an absurd, and the intersection is empty. Therefore, the set S (x) ∩ N(x̂ − b0)
is a meager set.

Hence, given a nondecreasing sequence { fn}, for the function f defined by f (s) =

supn fn(s), s ∈ SM(M), we have f ∼ x, where x =
∨

n xn, and clearly f ∈ T .

https://doi.org/10.1017/S1446788718000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000101


[30] The Loomis–Sikorski theorem for EMV-algebras 229

Claim 3. The set T is an EMV-tribe.

Now let { fn} be an arbitrary sequence of functions from T such that fn ∼ xn ∈ M. By
the previous step, there is an idempotent a ∈ M such that x1, x2, . . . ≤ a and f1, f2, . . . ≤
â. Then for each n ≥ 1, gn = f1 ⊕ · · · ⊕ fn = min{ f1 + · · · + fn, â} ∼ x1 ⊕ · · · ⊕ xn and it
does not depend on a. Then

⊕
n fn is a pointwise limit of the nondecreasing sequence

{gn}, that is,
⊕

n fn = limn gn, which by Claim 2 means,
⊕

n fn ∼
∨

n(x1 ⊕ · · · ⊕ xn). In
addition,

⊕
n fn ≤ â, so that, we have shown that

⊕
n fn ∈ T and T is an EMV-tribe

of fuzzy sets on SM(M). Since by the construction of T , for each f ∈ T , there is an
idempotent a ∈ I(M) such that f ≤ â, Proposition 5.5 says that T is an EMV-tribe.

Claim 4. M is a σ-homomorphic image of the EMV-tribe T .

Define a mapping h : T → M by h( f ) = x if and only if f ∈ T and f ∼ x ∈ M.
By the first part of the present proof, h is a well-defined mapping that is surjective.
It preserves ⊕,∨,∧, and h(0Ω) = 0. In addition, if f =

∨
n fn = supn fn, then by Step 2,

fn ∼ xn and f ∼ x =
∨

n xn, that is h( f ) =
∨

n h( fn).
Now let f ≤ b, where f ∈ T and b is a characteristic function from T . There

are unique elements x ∈ M and a ∈ I(M) such that f ∼ x and b ∼ a. Clearly, x ≤
a. Then b = f ⊕ λb( f ), and by (5.5), we have b − f ∼ λa(x), that is, h(b − f ) =

h(λb( f )) = λa(x), so that a = h(b) = h( f ) ⊕ h(λb( f )) = h( f ) ⊕ λh(b)(h( f )) = x ⊕ λa(x).
By definition of λh(b) in M, we have λa(x) = λh(b)(h( f )) ≤ h(λb( f )) = λa(x), that is
h(λb( f )) = λh(b)(h( f )), which proves that h is a homomorphism of EMV-algebras.
Consequently, h is a surjective σ-homomorphism as we needed.

The theorem is proved. �

We recall that if Ω is a nonvoid set, then a ring is a system R of subsets of Ω such
that (i) ∅ ∈ R, (ii) if A, B ∈ R, then A ∪ B, A\B ∈ R. A ring R is a σ-ring if given a
sequence {An} of subsets from R,

⋃
n An ∈ R. Clearly, every ring is an EMV-algebra

and a generalized Boolean algebra of subsets.
We recall that due to the Stone theorem, see for example [16, Theorem 6.6], every

generalized Boolean algebra is isomorphic to some ring of subsets.
A corollary of the Loomis–Sikorski theorem 5.6 is the following result.

Corollary 5.7. Let M be a σ-complete EMV-algebra. Then there are a σ-ring R of
subsets of some set Ω , ∅ and a surjective σ-homomorphism from R onto I(M).

Proof. Since M is σ-complete, by Proposition 3.3, I(M) is a σ-complete subalgebra
of M, in other words, I(M) is a σ-complete generalized Boolean algebra.

Use the system T defined in the proof of Theorem 5.6, that is f ∈ T if and only if
there is an element x ∈ M with f ∼ x and there is an idempotent a ∈ M such that f ≤ â;
T is a σ-complete EMV-tribe of fuzzy functions on Ω = SM(M). Then the mapping
h : T → M defined by h( f ) = x ( f ∈ T ) if f ∼ x ∈ M, is a surjective σ-homomorphism.

Denote by R0 the class of all characteristic functions from T . As proved in
Theorem 5.6, for each f ∈ R0, there is a unique x ∈ I(M) such that f ∼ x. If (i)
χA, χB ∈ R0, then χA ∨ χB = χA ⊕ χB = χA∪B ∈ R0, (ii) if χA, χB ∈ R0 and χA ≤ χB,
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then χB − χA ∈ R0, (iii) if χA, χB ∈ R0, then χA ∧ χB = χA∩B ∈ R0, and (iv) if {χAn}

is a sequence of characteristic functions from R0, then
⊕

n χAn = χA ∈ R0, where
A =

⋃
n An.

We note here, that in Claim 2 of the proof of the Loomis–Sikorski theorem, it was
necessary to prove that N(x̂ − b0) is a meager set. We show that if the nondecreasing
sequence {xn} of elements of M with x =

∨
n xn and b0 = limn x̂n consists only of

idempotent elements, the proof of the fact N(x̂ − b0) is a meager set is very easy.
Indeed, if s ∈ N0 := N(x̂ − b0) ∩ (S (x) ∩

⋃
n S (xn)) = N(x̂ − b0) ∩

⋃
n S (xn), there is

an integer n0 such that s ∈ S (xn0 ). Then we have 1 ≥ s(x) ≥ s(xn0 ) = 1 that yields
x̂(s) = 1 = b0(s) and the set N0 is empty.

Now if h0 : R0 → I(M) is the restriction of the σ-homomorphism h : T → M onto
R0 we see that h0 is a σ-homomorphism from R0 onto I(M). Now let R = {A ⊆ Ω |

χA ∈ R0}. Then R0 is a σ-complete ring of subsets of Ω = SM(M). Define a mapping
ι : R → R0 by ι(A) = χA, A ∈ R. It is clear that ι is a σ-complete isomorphism. If we
set φ = h0 ◦ ι : R→ I(M), then φ is a surjective σ-homomorphism from R onto the set
of idempotents I(M), and the corollary is proved. �

We note that the last result can be found in [14, page 216] using the language
of σ-complete Boolean rings. Therefore, Theorem 5.6 is a generalization of the
Loomis–Sikorski theorem for Boolean σ-algebras, see [15, 19], σ-complete Boolean
rings, [14], and σ-complete MV-algebras, see [1, 7, 18].

We say that an ideal I of an EMV-algebra M is σ-complete if, for each sequence
{xn} of elements of I, the existence of

∨
n xn in M implies

∨
n xn ∈ I.

Theorem 5.8. Every σ-complete EMV-algebra M without a top element can be
embedded into a σ-complete EMV-algebra N with a top element as its maximal ideal
which is also σ-complete. Moreover, this N can be represented as

N = {x ∈ N | either x ∈ M or x = λ1(y) for some y ∈ M}.

Proof. If a σ-complete EMV-algebra M possesses a top element, then it is termwise
equivalent to an MV-algebra, so (M;⊕, λ1, 0, 1) is a σ-complete MV-algebra. Thus,
let M have no top element. According to Theorem 2.1, there is an EMV-algebra N
with a top element such that M can be embedded into N as its maximal ideal. Without
loss of generality let us assume that M is an EMV-subalgebra of N. Let 1 be the top
element of N. By the proof of Theorem 2.1, every element x ∈ N is either from M, or
λ1(x) ∈ M. Due to Mundici’s result, see [17], there is a unital Abelian `-group (G, u)
such that N = Γ(G, u) so that 1 = u. Thus let {xn} be an arbitrary sequence of elements
of N.

There are three cases. (1) Every xn ∈ M. Then there is an element x =
∨

n xn ∈ M,
where the supremum x is taken in the σ-complete EMV-algebra M. Thus let xn ≤ y for
each n, where y ∈ N. It is enough to assume that y = λ1(y0) for some y0 ∈ M. Using the
Mundici representation of MV-algebras by unital `-groups, we obtain xn ≤ λ1(y0) =

u − y0, so that y0 + xn ≤ u, where + and − denote the group addition and the group
subtraction, respectively, taken in the group (G, u). Hence, y0 + xn = y0 ⊕ xn ∈ M, so
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that there is
∨

n(y0 ⊕ xn) in M, which means y0 ⊕
∨

n xn =
∨

n(y0 ⊕ xn) ≤ u as well as
y0 +

∨
n xn =

∨
n(y0 + xn) =

∨
n(y0 ⊕ xn) ≤ u. Then

∨
n xn ≤ u − y0 = y which proves∨

n xn is also a supremum of {xn} taken in the whole MV-algebra (N;⊕, λ1, 0, 1).
We note that for each sequence {zn} of elements of M, there is an idempotent a ∈ M

such that zn ≤ a, so that z =
∧

n zn exists in M and similarly as for
∨

, we can show that
z is also the infimum taken in the whole N.

Case (2), every xn = λ1(x0
n) = u − x0

n, where x0
n ∈ M for each n ≥ 1. Clearly,

∧
n xn

exists in M as well as in (N;⊕, λ1, 0, 1) and they are the same. Hence, in the unital `-
group as well as in the MV-algebra (N;⊕, λ1, 0, 1), we have u −

∧
n x0

n =
∨

n(u − x0
n) =∨

n xn ∈ N which says
∨

n xn exists in N.
Case (3), the sequence {xn} can be divided into two sequences {yi} and {zm}, where

yi ∈ M, zm = λ1(z0
m) with z0

m ∈ M for each n and m. By cases (1) and (2), y =
∨

i yi and
z =

∨
m zm are defined in N, so that y ∨ z exists in N and clearly, y ∨ z =

∨
n xn.

Combining (1)–(3), we see that (N;⊕, λ1, 0, 1) is a σ-complete MV-algebra.
From Theorem 2.1, we conclude M is a maximal ideal of N, and Case (1) says that

M is a σ-ideal of N. �

We mention that if M is a σ-complete MV-algebra, then SM(M) is a basically
disconnected space, see [7, Proposition 4.3]. A similar result holds also forσ-complete
EMV-algebras as it follows from the following statement.

Theorem 5.9. Let M be a σ-complete EMV-algebra. If {Cn} is a sequence of compact
subsets of SM(M) such that A =

⋃
n Cn is open, then the closure of A in the weak

topology of state-morphisms on M is open.

Proof. If M has a top element, the statement follows from [7, Proposition 4.3]. Thus
let M have no top element and let A =

⋃
n Cn be open, where each Cn is compact.

Let N be an EMV-algebra with a top element representing the EMV-algebra given
by Theorem 2.1. According to Theorem 4.13, the state-morphism space SM(N) is
the one-point compactification of SM(M), and the mapping φ : SM(M)→ SM(N)
defined by φ(s) = s̃, s ∈ SM(M), given by (2.1), is a continuous embedding ofSM(M)
into SM(N). Then SM(N) = φ(SM(M)) ∪ {s∞}. We have φ(A) =

⋃
n φ(Cn). Since

s∞ < φ(A), we see that φ(A) is open and every φ(Cn) is closed in the weak topology
of state-morphisms on N. Since (N;⊕, λ1, 0, 1) is by Theorem 5.8 a σ-complete MV-
algebra, the state-morphism space SM(N) is basically disconnected. That is, φ(A)

N

is an open set, where K
N

and K
M

denote the closure of K in the weak topology on
SM(N) and SM(M), respectively. If s∞ < φ(A)

N
, then φ−1(φ(A)

N
∩ φ(X)) = A

M
,

where X = SM(M), which means that A
M

is open. If s∞ ∈ φ(A)
N

, then φ(A)
N

=

φ(A
M

) ∪ {s∞}, so that X\φ−1(φ(A)
N

) = X\A
M

is compact, and A
M

is open. �

Now we present another proof of the Loomis–Sikorski theorem for σ-complete
EMV-algebras which is based on Theorem 5.8 and on the Loomis–Sikorski
representation of σ-complete MV-algebras, see for example [7, 18]. We note that the
proof from Theorem 5.6 gives an interesting and more instructive look into important
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topological methods which follow from the hull-kernel topology of maximal ideals
and the weak topology of state-morphisms than a simple application of the Loomis–
Sikorski theorem for σ-complete MV-algebras.

Theorem 5.10 (Loomis–Sikorski theorem 1). Let M be a σ-complete EMV-algebra.
Then there are an EMV-tribe T of fuzzy sets on some Ω , ∅ and a surjective σ-
homomorphism h of EMV-algebras from T onto M.

Proof. Let M be a proper σ-complete EMV-algebra. According to Theorem 5.8, M
can be embedded into a σ-complete EMV-algebra N with a top element as its maximal
ideal which is also σ-complete. Without loss of generality, we can assume that M is
an EMV-subalgebra of N, and every element x of N is either from M or λ1(x) is
from M. Using Mundici’s representation of MV-algebras by unital `-groups, there is
a unital Abelian `-group (G, u) such that N = Γ(G, u). Hence, if x ≤ a ∈ I(M), then
λa(x) = a − x, where − is the subtraction taken from the `-group G.

By [7, Theorem 5.1], there are a tribe T0 of fuzzy sets of some set Ω , ∅ and
a σ-homomorphism of MV-algebras h0 from T0 onto N. We note that if { fn} is a
sequence of functions from T0 such that there is a characteristic function a ∈ T0 with
fn(ω) ≤ a(ω) for each ω ∈ Ω and each integer n, then

min
{∑

n

fn(ω), a(ω)
}

= min
{∑

n

fn(ω), 1
}
, ω ∈ Ω.

This statement follows the same proof of an analogous equality from the proof of
Proposition 5.5. Therefore, h0( f ⊕ g) = h0( f ) ⊕ h0(g). Let f ∈ T0 and assume that
a is a characteristic function from T0 such that f ≤ a. Then λa( f ) = a − f ∈ T0

and a = f + (a − f ) = f ⊕ (a − f ) which means h0(a) = h0( f ) ⊕ h0(a − f ) = h0( f ) +

(h0(a) − h0( f )) = h0( f ) + λh0(a)(h0( f )) = h0( f ) ⊕ λh0(a)(h0( f )), where + and − are group
addition and subtraction, respectively, taken in the group G. In other words, we have
established that h0 is also a homomorphism of EMV-algebras.

Denote by T the set of functions f ∈ T0 such that (1) there is x ∈ M with h0( f ) = x,
and (2) there is a characteristic function a ∈ T0 such that f ≤ a and h0( f ) ∈ I(M). We
assert that T is an EMV-tribe of fuzzy sets. Indeed, if f , a ∈ T , where f ≤ a and
a is a characteristic function, then h0( f ) = x, b := h0(a) is an idempotent of M, and
x ≤ a. Then a − f ∈ T0 and a − f ≤ a, and using the fact that h0 is a homomorphism
of EMV-algebras, a = f + (a − f ) = a ⊕ (a − f ) implies h0(a − f ) = λh0(a)( f ) ∈ T , that
is, h0(a − f ) = λb(x) ∈ M which means a − f ∈ T . Clearly f , g ∈ T implies f ⊕ g ∈ T ,
f ∨ g = max{ f , g}, f ∧ g = min{ f , g} ∈ T , whence, T is an EMV-tribe.

Now let { fn} be a sequence of functions from T . Since T is closed under ∨ = max,
we can assume that { fn} is nondecreasing. For each n, there is a characteristic function
an ∈ T0 such that fn ≤ an. We can choose {an} to also be nondecreasing. Assume
h0( fn) = xn ∈ M and h0(an) = bn ∈ I(M). Then x =

∨
n xn ∈ M and b =

∨
n bn ∈ I(M).

Define
f (ω) = lim

n
fn(ω), a(ω) = lim

n
an(ω), ω ∈ Ω.
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Then a is a characteristic function with f ≤ a, and h0(a) = h0(
∨

n an) = b, h0( f ) = x and
f ≤ a, so that a, f ∈ T .

Now let { fn} be a sequence of arbitrary functions from T and let each fn be
dominated by a characteristic function a ∈ T . Then gn := f1 ⊕ · · · ⊕ fn = min{ f1 +

· · · + fn, a} ∈ T for each n ≥ 1, f = limn gn ∈ T , and f = min{
∑

n fn, a}. Consequently,
T is an EMV-tribe of fuzzy functions.

Finally, if h is the restriction of h0 onto T , then h is a σ-homomorphism of EMV-
algebras from T onto M which completes the proof of the theorem. �

6. Conclusion

The main aim of the paper was to formulate and prove a variant of the Loomis–
Sikorski theorem for σ-complete EMV-algebras. To do it, we have used some
topological methods. The main complication is that an EMV-algebra does not possess
a top element, in general. We have introduced the weak topology of state-morphisms
and the hull-kernel topology of maximal ideals. We have shown that these spaces are
homeomorphic, Theorem 4.8, and they are compact if and only if the EMV-algebra
possesses a top element. In general, these spaces are locally compact, completely
regular and Hausdorff, Theorem 4.10, and due to Corollary 4.12, they are Baire spaces.
Nevertheless if an EMV-algebra M does not possess a top element, due to the basic
representation theorem, it can be embedded into an EMV-algebra N with a top element
as its maximal ideal and every element of N either belongs to M or is a complement of
some element of M. Therefore, the one-point compactification of the state-morphism
space is homeomorphic to the state-morphism space of N, a similar result holds for
the set of maximal ideals, Theorem 4.13. The main result of the paper is the Loomis–
Sikorski theorem for σ-complete EMV-algebras, Theorem 5.6, which says that every
σ-complete EMV-algebra is a σ-epimorphic image of some σ-complete EMV-tribe,
which is a σ-complete EMV-algebra of fuzzy sets where all EMV-operations are
defined by points. We have presented two proofs of the Loomis–Sikorski theorem,
see also Theorem 5.10.

The presented paper enriches the class of Łukasiewicz-like algebraic structures
where the top element is not assumed.
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