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Abstract

A group A is said to be endoprimal if its term functions are precisely the functions which permute with
all endomorphisms of A. In this paper we describe endoprimal groups in the following three classes of
abelian groups: torsion groups, torsionfree groups of rank at most 2, direct sums of a torsion group and a
torsionfree group of rank 1.
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1. Introduction

An algebra is called primal if every finitary function defined on it is a term function.
The most common primal algebra is the 2-element Boolean algebra. Primal algebras
were introduced when studying categorical properties of the variety of Boolean alge-
bras. Subsequently, several generalisations have been investigated: algebras in which
the term functions are exactly the functions that preserve some derived structure. Fol-
lowing this line, an algebra is called endoprimal if its term functions are precisely
those functions which permute with all endomorphisms.

Endoprimal algebras have arisen, however, in a different way: in the course of
investigations into duality theory. Without using this name, Davey [2] proved in 1976
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[2] Endoprimal abelian groups 413

that every finite chain is endoprimal as a Heyting algebra. In 1985 Davey and Werner
[5] proved that the Heyting algebra 22 © 1 is also endoprimal, and this paper marks the
appearance of the name 'endoprimal'. The next result appeared in 1993, when Marki
and Poschel [9] proved that a distributive lattice is endoprimal if and only if it is not
relatively complemented. In 1996 Davey [3] showed that the occurrence of endoprimal
algebras in duality theory is not an accident: every endodualisable finite algebra (that
is, every finite algebra which admits a particular kind of natural duality) is endoprimal.
And, finally, in a recent paper Davey and Pitkethly [4] developed, based on an idea
from [9], a general method to construct endoprimal algebras in several varieties. They
described endoprimal members in the varieties of vector spaces, semilattices, Boolean
algebras, and Stone algebras, and obtained partial results for Heyting algebras and
abelian groups. In particular, they proved the following two results.

THEOREM 1.1 ([4, Theorem 6.2]). An abelian group A of exponent m is endoprimal
if and only ifl}m embeds into A.

THEOREM 1.2 ([4, Theorem 6.4]). An abelian group A e ISP(Z) is endoprimal if
and only ifl} embeds into A.

In the present paper, work on which started parallelly to the investigations of Davey
and Pitkethly, we observe that all endoprimal abelian torsion groups are bounded.
This result together with the results of [4] yields a complete description of endoprimal
torsion groups. One of our central results describes endoprimal members in the class of
abelian groups having a nonzero free homomorphic image. This result is considerably
stronger than Theorem 1.2. A similar idea of proof is used in several other situations,
in particular, it gives an alternative proof for the sufficiency part of Theorem 1.1. Our
basic idea in the case of torsionfree groups is to embed a group A into its injective hull,
which is a vector space over the field of rationals, and then apply linear algebra. So far
we have been able to handle completely the torsionfree abelian groups of rank at most
2. For mixed groups, only partial results have been obtained. The most important of
them gives a complete description of endoprimal members in the class of direct sums
of a torsionfree abelian group of rank 1 and a torsion abelian group.

2. General observations

In what follows, group will mean abelian group. We shall use the notations 2,
Zn, and Q for the (additive) groups (or sometimes, by abuse, for the sets or rings) of
integers, integers mod n, and rational numbers, respectively. The letter p will denote
an arbitrary prime number. For undefined notions and notations we refer to [7].
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414 Kalle Kaarli and Laszlo Marki [3]

For short, we call a function / of finite arity on a group A an endofunction of A if
it permutes with all endomorphisms of A, that is,

4>(f(au...,an))=f(<P(al),...,<t>(an))

for every endomorphism <$> of A. Hence a group A is endoprimal if and only if all
its endofunctions are term functions (that is, functions of the form f (xu ... ,xn) =
kiXi + • • • + knxn with some integers k\,..., kn).

PROPOSITION 2.1. If End A is isomorphic to a subring ofQ then the group A is not
endoprimal.

PROOF. AS is well known, if End A is isomorphic to a subring of Q then A must be
a torsionfree group. Consider the function

if y = 0,

if y ^ o

in A. Clearly, / is not a term function. We prove that it is an endofunction. Indeed,
let <t> be an arbitrary endomorphism of A. Then <p (x) = rx with an appropriate r e Q
for all x in A, and by straightforward checking we see that (pf (x, y) — f (4> (x), <p (v))
for all*, y e A. •

COROLLARY 2.2. No torsionfree group of rank 1 is endoprimal.

The following proposition shows that in Corollary 2.2 one cannot manage with
unary functions. This follows easily from the fact that every endofunction permutes
with all endomorphisms of the form (p(x) = kx where k is a fixed rational number. In
particular, every unary endofunction preserves the zero.

PROPOSITION 2.3. All unary endofunctions of a torsionfree group of rank 1 have
the form f (x) = rx where r is a fixed rational number.

COROLLARY 2.4. Let C be a torsionfree group of rank 1. Then all unary endofunc-
tions ofC are term functions if and only ifC is not p -divisible for any prime p .

PROOF. If C is p-divisible then the function f (x) = (\/p)x is an endofunction
which is not a term function. Conversely, if/ is a unary endofunction but not a term
function then it is of the form rx where r e Q \ 2. Hence C must be p -divisible for
any prime divisor p of the denominator of r. •

Another very useful observation is that endofunctions of a direct sum of two groups
are sums of endofunctions of the direct summands.
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[4] Endoprimal abelian groups 415

PROPOSITION 2.5. Let A = B 0 C and f be an (ji-ary) endofunction of A. Let
fB and fc be the restrictions of f to B and C, respectively. Then fB and fc are
endofunctions of B and C, respectively, andf = (fB,fc)> that is,

+ c l , . . . , b n + c n ) = f B ( b u . . . , b n ) + f c ( c l t . . . , c n )

for all k € B , c, € C, i = I,..., n .

PROOF. Denote by nB and nc the projection maps from A to B and C, respectively,
followed by embedding into the same components of A. Clearly, nB and nc are
endomorphisms of A and nB + nc is the identical mapping of A. Hence

cu...,bn + cn)) + nc(f(bi + clt...,bn + c ) )

c , ) , . . . , jrB(bn + c ) ) +f(7tc(b1 + d ) , . . . , nc{bn + cn))

= f (by, ...,bn) + / ( c , , . . . , c,) = fB(bu ...,bn) +fc(ci, ...,cn)

for all bi e B,Cj e C, i — I,... ,n.
Every pair of endomorphisms </> 6 End B, ijs 6 End C defines via componentwise

action an endomorphism of A. Since / must permute with this endomorphism, we
immediately have that fB and fc are endofunctions of B and C, respectively. •

COROLLARY 2.6. Let A be the direct sum of nonzero groups B and C with
Hom(B, C) = Hom(C, B) = 0. Then

(i) the set of endofunctions of A consists of all pairs (fB,fc) where fB and fc
are endofunctions of B and C, respectively;

(ii) the group A is endoprimal if and only ifB and C are bounded and endoprimal.

PROOF, (i) By our assumption, all endomorphisms of A act componentwise and
therefore all pairs (fB,fc) of endofunctions of the components are endofunctions
of A.

(ii) If/B is any endofunction of B then by (i) it extends to the endofunction (JB, 0)
of A. Since A is endoprimal, this function must be a term function and so / B is a term
function as well. Thus B, and similarly C, is endoprimal.

If, say, B is unbounded then the function/ = (fB,fc) with/B = 1B, the identity
function on B, and fc = 0 is an endofunction of A which is not a term function. On
the other hand, if both B and C are bounded then the Chinese Remainder Theorem
applies to show that every pair of n-ary term functions of the components is induced
by a common n-ary term t. •
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We conclude the section with a positive result that proves the existence of a large
class of endoprimal groups. Recall that a group A admits T as a direct summand if
and only if it has Z as a homomorphic image.

THEOREM 2.7. Let a group A have I as a direct summand: A = B ©Z, and assume
that B is unbounded. Then A is endoprimal.

PROOF. Let / be an n-ary endofunction on A. By Proposition 2.5 we have / =
(fB,fi) where/B and/z are n-ary endof unctions of B and Z, respectively. We shall
prove by induction on n that / is a term function.

Firstly, let n = 1. Then by Proposition 2.3 fi is a term function. We may assume,
without loss of generality, that/z = 0. For every b e B, there exists a <p e End A
such that </>(l) = b. Then

fB{b) =f{b)=f (</>(D) = 4><j (D) = 4>diW) = 0,

hence fB = 0 and / = 0.
It remains to make the induction step. Let n > 2 and, given an arbitrary element

d e B, let V be the endomorphism of A such that \jr{\) = d and f\B = Is- This
endomorphism ir is given by the formula

f k) = b + kd,

where b € B and k e Z are arbitrary. Then

/ 0K&, + * , ) , . . . , V(&» + *»)) = / 0 > i + M , . . . , * „ + knd)

= fBQ>x + kxd,...,bn + knd)

and

W (&. + *i bH + *„)) = W * 0 » i . •••.*») + / z ( * i , • • •, *-

= fB(bu...,bn)+fz(ku...,kn)d,

hence

(1) / B (6 , + kid bn + knd) = fB(bu ..., bn)+Mku ...,kn)d

for all bx,..., bn € B and jfe,,..., kn € 2.
Taking in (1) bi = 0, ki = 1 and k2 = • • • = kn — 0, we get

(2) / s ( d , fo2,..., ft.) = / B ( 0 , bi,..., bn) + / z ( l , 0 , . . . , 0)d.
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The function / (0, x2,..., xn) is an (n — l)-ary endofunction of A, which must be a
term function by the induction hypothesis. Then / B ( 0 , X2, • •., xn) is a term function
as well and by (2), since d € B was arbitrary, fB itself is a term function, say

^ h mnxn where m{ = / z ( l , 0 , . . . , 0). Now we can rewrite (1) as follows:

••• + m n ( b n + knd) = m { b i + ••• + m n b n + f z ( k u . . . , k n ) d ,

which implies

mxkxd -\ 1- mnknd = fz(ku ..., kn)d.

Since the latter holds for arbitrary d e B and B is unbounded, we have that/z is also
the term function mxxx-\ h mnxn. Since/ = (fB,fi), the same applies t o / . •

REMARK. 1. In Corollary 5.2 we shall see that the converse statement is also
true: if B is bounded then B © Z is not endoprimal.

2. Actually the proof of Theorem 2.7 goes through in the case of modules over
an arbitrary commutative ring with identity. The result reads as follows: Let R be
a commutative ring with identity and B be a faithful unital R-module. Then the
R-module B © R is endoprimal.

3. Torsion groups

Theorem 1.1 describes bounded endoprimal groups. The rest of the torsion groups
is covered by the following theorem.

THEOREM 3.1. Every endoprimal torsion group is bounded.

PROOF. Let A be an endoprimal torsion group. Then A is the direct sum of its
components Ap, and since there is no nonzero homomorphism between different
components, by Corollary 2.6 all Ap must be endoprimal and there can be only
finitely many nonzero Ap 's. If A is not a p-group for some prime p, then Corollary
2.6 implies that all primary components of A are bounded and then so is A. Finally,
every endoprimal p -group is bounded, for on an unbounded p -group the action of a
non-rational p-adic integer is clearly an endofunction but not a term function (for the
latter see [8, Proposition 4.1]). •

We conclude the section with a short alternative proof of Theorem 1.1. Our proof
does not use the ideas of duality theory.
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PROOF (of Theorem 1.1). Suppose that a group A is of exponent m and first assume
that A has a subgroup isomorphic to ~l2

m. Then A is isomorphic to the direct sum of
Zm and a group of exponent m. That A is endoprimal can be proved exactly in the
same manner as in Theorem 2.7 (see Remark 2 after its proof).

Now assume that A has no subgroup isomorphic to 12
m. Then A must have a primary

component, say of exponent pk, which does not contain any subgroup isomorphic to
(2P*)2. In view of Corollary 2.6, in order to prove that A is not endoprimal it suffices
to show that this component is not endoprimal. In other words, we have reduced the
proof to the case when m is a prime power pk.

By assumption we have a decomposition A = B © C where the exponent of B is
less than pk and C is cyclic of order pk. Define a function / : A2 -*• A as follows:

fo if pk'lc2 = 0,
f(bl + cl,b2 + c2)=\ P '

[pk 'c, if pk 'c2 ^ 0 .

We prove that / is an endofunction but not a term function. First we show that / is
an endofunction, that is,

(3) 0(/"(x,y))=/(0GO.0(y))

for every endomorphism <j> of A.
If fe e B and c e C then /7*"'c = 0 is equivalent to p*~'(fc 4- c) = 0 and the

latter implies pk~l(<p(b + c)) = 0 for every 0 e End A. Hence the equality (3)
holds if pk~lc2 = 0. Similarly, the equality (3) holds if pk~l4>(b2 + c2) ^ 0 or,
equivalently, pk~l4>(c2) ^ 0. So the only case that needs to be handled is pk~lc2 ^ 0,
pk~l<t>(c2) — 0. It follows from these two conditions that c2 is a generator of C and
pk-{<P(A) = pk~l<p(C) = 0. Now

and

4>{f{bx + c , fc2 + c2)) = </>(p*-'c!) = p*-'0(ci) = 0.

It remains to show that the function / is not a term function. Now, / preserves C,
and it suffices to prove that the restriction of/ to C is not a term function. Suppose
that, for certain fixed l,n 6 1, the equality / (x, y) = Ix + ny holds for all x, y 6 C.
Since / (x, 0) = 0 for every x € C,wehave/sO mod pk and hence f(x,y) = ny.
The latter, however, contradicts f (x, y) = pk~lx what we have if y is a generator
of C. •
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4. Torsionfree groups

Firstly, observe that a nonzero torsionfree endoprimal group cannot be p -divisible
for any p because otherwise the function (l/p)x would be an endofunction and,
obviously, this function is not a term function in a torsionfree group.

Our first result in this section gives a sufficient condition for endoprimality for
groups in which a rank 1 subgroup splits off. By x(a) we denote the characteristic
sequence of the element a (that is, the sequence of the p -heights of a under a fixed
ordering of the primes). The members of such a sequence are non-negative integers
and oo. Two characteristic sequences are said to be equivalent if they differ only at
finitely many places, and not at the places where oo occurs. The equivalence classes
of characteristic sequences are called types. The type t(a) of an element a is the type
containing x(#)- It is well known that all nonzero elements of a torsionfree group A
of rank 1 have the same type. This type is denoted by t(A).

THEOREM 4.1. Let a torsionfree group A decompose into A = B © C where B
is nontrivial, C has rank 1 and its type does not contain infinity, and suppose that
t(C) < t(b) for every b e B. Then A is endoprimal.

PROOF. The proof follows the lines of Theorem 2.7, and we shall refer to the latter
for some computations. Without loss of generality, assume that C is a subgroup of Q
and 1 e C.

As in Theorem 2.7, an arbitrary endofunction f of A has the form / = (fB,fc)
where fB and fc are endofunctions on B and C, respectively. We shall prove by
induction on the arity of/ that/ is a term function.

Firstly, let / be a unary function. Then by Corollary 2.4 fc is a term function and
we may assume, without loss of generality, that fc = 0. Now, if 0 e End A is such
that 0 (1) 6 B then fB (0 (1)) = 0 follows exactly as in the proof of Theorem 2.7. The
difference is that not every b € B can occur in the role of 0(1). However, in view of
the condition on types, every cyclic subgroup of B contains nonzero elements which
can be in role of 0(1), that is, for every b e B there exist a nonzero integer k and
an endomorphism 0 e End>4 such that 0(1) = kb. Then kfB(b) = fB(kb) = 0 and
fB(b) = 0 because B is torsionfree.

Now we turn to the proof of the induction step. We assume that all (n — l)-ary
endofunctions of A are term functions and consider an n-ary endofunction / . The
formulas (1) and (2), with/z replaced by / c , follow exactly as in the proof of Theorem
2.7. The basic difference with the latter is that d cannot be assumed to be an arbitrary
element of B. However, similarly to the unary case, we may claim that for any d e B
there exists 0 ^ k € 2 such that the formulas (1) and (2) hold when d replaced by kd.
The reason is that because of the condition on types some nonzero integral multiple of
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d must be a homomorphic image of 1 under a suitable </> € Hom(B, C). Hence there
also exists \jr e End A such that tjr\B = lB and r/r (1) = kd.

Consequently, taking in account that fB permutes with multiplication by integers,
we get

kfB(d, b2,..., bn) = fB(kd, kb2,..., kbn)

= f B ( 0 , kb2<..., kbn) + / c ( l , 0 , . . . , 0)kd

= kfB(O, b2,..., bn) + kfc(l,0,.... 0)d.

Since B is torsionfree, this implies

f B ( d , b2,..., bn) = f B ( 0 , b2,..., bn)+fc(\,0, ...,

for all d, b2,..., bn e B. The rest of the proof repeats that of Theorem 2.7 almost liter-
ally. We only have to notice t h a t / c ( l , 0 , . . . , 0) e 2 because the unary endofunctions
of C are term functions. •

Before turning to groups of rank 2, let us advance a general observation. If A
is a torsionfree group then its injective hull D is a vector space over Q and every
endomorphism of A extends in a unique way to an endomorphism of D. Let R
be the Q-algebra of linear transformations of D generated by the extensions of all
endomorphisms of A. Clearly, R has an identity element, and it is easy to see that any
element of R is of the form r<f> where r e Q and 0 e End A.

Let now / be an n-ary endofunction of A. \id\,...,dn are arbitrary elements of
D then there are a\,..., an e A and r € Q such that </, = rat, i = 1 , . . . , n. Now
the formula f (d\,... ,dn) — rf {ay,..., an) extends / to D in a unique way, and it
is easy to see that this function permutes with all members of R. Hence, if we are
able to prove that the only functions on D which permute with all members of R
are multiplications by rational numbers, and A is not p -divisible for any p, then A
is endoprimal. On the other hand, if the centre of R is nontrivial, that is, it contains
a nonscalar linear transformation of D then the centre of End A is also nontrivial,
whence A has an endofunction which is not a term function. If dim R = 1, that is, R
consists of scalar maps, then A, too, has only scalar endomorphisms and thus it is not
endoprimal by Proposition 2.1.

We now focus on groups of rank 2. If dim R < 2 then R is commutative, hence by
the above arguments A is not endoprimal. We are going to show that if dim R > 3
and A is endoprimal then necessarily A is a direct sum of two groups of rank 1.

Recall that a torsionfree group is called homogeneous of type x if all its elements
are of the same type x. We shall call a torsionfree group A almost homogeneous if
either it is homogeneous or it has a rank 1 subgroup B < A such that all elements
in A \ B are of the same type r . In the latter case we call T the type of A and write
x = t(A).
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LEMMA 4.2. Let A be an almost homogeneous torsionfree group of rank 2 which
is not p-divisible for any p. If A has a non-nilpotent endomorphism of rank 1 then A
has a nontrivial direct summand.

PROOF. First observe that the type x of A does not contain the infinity. Indeed, if
it did then, for some p, we would have two linearly independent p -divisible elements
of A, which would imply that A is p-divisible. Let 4> e End A be non-nilpotent and
of rank 1 and put B = 4>(A). Suppose first that B is contained in a rank 1 subgroup
of A of type x. Then obviously t(B) < x. On the other hand, there are elements of
type r that do not belong to Ker</>. Hence, <j> embeds some group of type x into B,
which implies r < t(B). Thus, t(B) = x.

Now suppose that B is not contained in any rank 1 subgroup of A of type r . Then,
however, there is another non-nilpotent endomorphism f of rank 1 whose image is
contained in such a subgroup of A. Indeed, since <f> is not nilpotent, we have <t>2 ^ 0.
Since B is of rank 1, there is a nonzero r e Q such that <p(x) = rx for all x e B.
Replacing 0 by a suitable integral multiple of it we may assume that r e 2. Now put
\j/ — r-\A—(j>. We see that Ker i/f consists of the elements a e A suchthatra = <p(a),
and this is the maximal rank 1 subgroup of A containing B. Hence xfr is of rank 1. An
easy calculation shows that \j/2 = r\j/, hence \jr is not nilpotent. Therefore the image
of i/r cannot be contained in Ker \j/. Since A is almost homogeneous and Ker rjr is not
of type r, the image of \}r must be of type r . This proves that under our assumptions
there exists <p € End A such that B = <t>{A) is a group of rank 1 and type x.

Let C be any maximal subgroup of rank 1 in A. Then either C — Ker0 or
C D Ker<£ = 0, and in the latter case <f> embeds C into B. Assume first that t(C) ^ x.
This means that the group A is not homogeneous and C is the only maximal rank 1
subgroup of A whose type is not r . Then, since A is of rank 2 and almost homogeneous
of type r, some element 0 ^ c e C can be written as a sum of two elements of type
T. So t(c) > T in A. But C is a maximal rank 1 subgroup, hence if a multiple of
an element belongs to C then so does the element itself. Therefore t(c) > x in C,
whence t(C) > x must hold by the assumption. Then C cannot be embedded into B,
so C must be the kernel of 0.

If t(C) = T and C ^ Ker</> then </> embeds C into B. Now </>(C) is a subgroup of
B isomorphic to B, so it must be of the form rB for some nonzero rational number r.
Since there is no infinity in r , r must be an integer. Thus there is an m e 2 such that
0(C) = mB.

Since A is the union of its maximal rank 1 subgroups, the above discussion implies
that B is the union of its subgroups of the form 4>{Ct) where all C, are maximal rank
1 subgroups of type x. Moreover, each of them has the form mtB where mi e l . Let
m > 0 be the greatest common divisor of all m,'s and suppose that m ^ 1. Then,
</>(A) is contained in mB which is a proper subset of B because there is no infinity

https://doi.org/10.1017/S1446788700002093 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002093


422 Kalle Kaarli and Laszlo Marki [11]

in T, a contradiction.
Consequently, m = 1 and there exist finitely many of the m,'s, say m{,..., ms, and

integers jfci,..., ks e 2 such that

1 = fc^i -1 1- ksms.

Fix a nonzero element b e B and in every C, take the element c, such that <p (c() = rriib.
Let c = k\C\ + h kscs, then <p(c) = b and hence c ^ 0. Denote by C the maximal
rank 1 subgroup of A containing c.

Now, if b' is another element of B, it can be written as rb for some r e Q. Again,
in every C, there exists a unique element c\ such that 0(c-) = m,fo' and it is easy to
see that di = rct for every i. Putting d = k\dx H h ksds, we have

</>(d) = 0 ( V , + • • • + fcs<) = 0(*irci + • • • + fere,)
= r(ki<t>(Cl) + ••• + ks<t>(cs)) = r { k i r n i b + • • • + k s m s b ) = r b = V.

We proved that the restriction of 0 to C is a bijection from C to B. Denoting by
i/s the inverse of this bijection, we have an idempotent endomorphism \[r<p of rank 1
proving that A has the required decomposition. •

THEOREM 4.3. A torsionfree group A of rank 2 is endoprimal if and only if A =
B @ C where B and C are groups of rank 1, t(B) > t(C), and C (or, equivalently, A)
is not p-divisible for any prime p.

PROOF. The sufficiency of the conditions follows from Theorem 4.1. As we have
noticed at the beginning of this section, if A is p -divisible for some p then it is not
endoprimal.

Next we prove that any torsionfree endoprimal group A of rank 2 satisfies the
assumptions of Lemma 4.2. So we have to prove that A is almost homogeneous and
has an endomorphism 4> of rank 1 such that <p2 ^ 0. By the above remarks, the
Q-algebra R must have dimension at least 3.

Suppose first that the injective hull D of A is an irreducible /?-module with the
R defined above. By the density theorem, R must be isomorphic to a full matrix
ring over the division ring K = EndR D which contains Q, and D is a vector space
over K. Since A is of rank 2, we have dimQ D = 2, hence R is not isomorphic to
K and therefore dim*- R > 4. In view of dimQ R < 4, we must have K = Q and
dimQ R — 4. Obviously, then A is homogeneous and has an endomorphism <p with
the required properties.

If the ^-module D is not irreducible, then it has a proper nonzero submodule 5
and we may take a basis ex, e2 of the vector space QD such that e\ 6 5. This gives a
representation of all elements of R in the form of upper triangular matrices of order
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2 over Q. Since the dimension of R over Q cannot be less than 3, we see that R is
isomorphic to the ring of all upper triangular matrices of order 2. In particular, for
every two elements a, b e A \ (5 n A), there exists^ e EndA suchthat$(a) ^ Oand
<p(a) linearly depends on b. This easily implies that A is almost homogeneous. Also,
there exists a nonzero endomorphism <j> of A such that </>(ei) = 0 and (j>{e2) linearly
depends on e2. Obviously, such <f> is of rank 1 and <f>2 ^ 0.

Hence Lemma 4.2 applies and A decomposes into a direct sum of two (rank 1)
subgroups. If the types of these subgroups are incomparable then there is no homo-
morphism between them in either direction, whence A is not endoprimal in view of
Corollary 2.6. •

5. Mixed groups

Most of our results about mixed groups concern the case when the torsion part of
the group splits off. We start, however, with a few results where a different sort of
direct decomposition is assumed.

PROPOSITION 5.1. Let A be the direct sum of a nontorsion group B and a bounded
group T and suppose that T has no p-component for primes p which occur as orders
of some elements of B. If A is endoprimal then B is also endoprimal.

PROOF. L e t / be an n-ary endofunction of B and e = exp(7). Define the function
g on A by putting

g(bx + tu...,bn + tn)=f (ebu

and denote by n the projection map A —>B. Then, for an arbitrary endomorphism (j>
of A, both <f>(g(au ..., an)) and g(</>(fli),..., </>(an)) are equal to e((f)(f (x^),...,
n(an)))) for any ax,... ,an e A, hence g is an endofunction of A.

Since A is endoprimal, the function g must be a term function. Moreover, since A is
not a torsion group, the term kixt H \-knxn which determines g is unique. Obviously
the function g vanishes on T, so e must divide all jfc,-. Let kt = el,, i = 1 , . . . , n. Since
g induces on B the function ef, we get

e(llbi + --- + lnbn-f(bu...,bn)) = O

for all b\,..., bn 6 B. By our assumption this implies / (b\,..., bn) — /i b\ + • • • +

Kbn. •

REMARK. Proposition 5.1 always applies if the torsion part of A is bounded.
Namely, by a theorem of Baer [1] and Fomin [6] (see also [7, Theorem 100.1]) if
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an abelian group has bounded torsion part then the latter is a direct summand of the
group. In particular, in view of Corollary 2.2 we have the following result.

COROLLARY 5.2. Groups of torsionfree rank 1 with bounded torsion part are not
endoprimal.

Together with Theorem 2.7, this yields

THEOREM 5.3. Let A be the direct sum of a group B and the infinite cyclic group.
Then A is endoprimal if and only if B is not bounded.

Now we prove a theorem which shows that endoprimality of a direct summand
sometimes yields endoprimality of the whole group.

THEOREM 5.4. Let A = B © T where B is an endoprimal non-torsion group and
T is a torsion group such that T has no p-component for primes p for which the
torsionfree part of B is p-divisible. Then A is endoprimal.

PROOF. Let n be a natural number which has no prime factor p for which the
torsionfree part of B is p-divisible. Then B/nB is a group of exponent n, and we
obtain that the cyclic group of order n is a homomorphic image of B.

Take an arbitrary endofunction / of A. Then / = (fB, fT) where fB and fT are
endofunctions of B and T, respectively. Since B is endoprimal, fB is a term function.
By subtracting this term function from / we see that one can assume fB = 0 without
loss of generality, and we have to prove that fT = 0 as well.

Suppose first that / is unary, and pick any t e T. By our first observation there
is a </> e End A such that <f>(B) is the cyclic group generated by t. Let b e B be
such that (f>(b) = t. Since / is an endofunction which vanishes on B, we have
/ (0 = / (0(6)) = <t>(f (b)) = 0 as required.

Suppose now that the statement is true for (n — l)-ary functions, let / be an n-ary
endofunction which vanishes on B, and take an arbitrary n-tuple (tu ..., tn) from
T. Again, in view of our first observation, we can pick an element bx e B and an
endomorphism 0 of A such that <t>{b{) = —h a n d 0 | r = lT. Take any b2, ...,bneB.
Now

f,, •••, '*)) = <t>(fB<,bu . . . , 6B)

= 4>(f (6, + r , , . . . , bn + O ) - / (0 (6 . + ' . ) , . . . . 0 ( 6 . + f j

However, / (0, x2,..., xn) is an (n — l)-ary endofunction which vanishes on B, so it
is the zero map by the induction hypothesis. Thus fT(ty,..., tn) — 0 as required. •
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In view of Proposition 5.1 and the subsequent remark we have now:

COROLLARY 5.5. A group with bounded torsion part is endoprimal if and only if
its largest torsionfree factor is endoprimal.

Our final result characterizes endoprimal groups of the form B © T where B is
torsionfree of rank 1 and T is torsion. Before stating and proving this theorem we
present several auxiliary results. The proof of the first of them again follows the lines
of the proof of Theorem 2.7.

PROPOSITION 5.6. Let A = B © 7 where B is a torsionfree group of rank 1 whose
type does not contain infinity and T is an unbounded torsion group. Then A is
endoprimal.

PROOF. Let T = Tp © T where Tp is the p -component of T. We shall identify
B with a subgroup of Q. Since the type of B does not contain the infinity, we may
assume that 1 € B but (1/p) & B. This agreement implies that all multiples bt where
b e B and t e Tp are well defined and, for every t e Tp, there exists </> e Hom(B, Tp)
(in fact unique) such that 0(1) = f.

An arbitrary endofunction/ of A is represented as (fB, frp, fr) where fB, fTp and
fr are endofunctions of B, Tp and T, respectively. Moreover, the pair (fB,fTp) is
an endofunction of B © Tp. We shall prove by induction on the arity of/ that / is a
term function.

Assume first that/ is unary. Then by Corollary 2.4 fB is a term function kx, and
by fB{x) = fB(\)x (for every x € B) we get k = / B ( l ) (that is, / B ( l ) does not
depend on the choice of the embedding of B into Q). Let t € Tp and <p G End A be
such that 0(1) = t. Then/(r) = fTp(4>{\)) = 4>(fB(l)) =fB(l)t. We see that on
every primary component of A the function / induces the same function kx where
k — fB(\). Hence / (x) = kx on the whole A.

Assume now that / is n-ary and all (n — l)-ary endofunctions of A are term
functions. Following the lines of proof of Theorem 2.7, we have:

(4) fTf (t, t2,..., tn) = kit + k2t2 + --- + kntn,

(5) (fB{bu •.. A ) - M i knbn)t = 0

where t,h,...,tn e Tp,bu...,bn € B,k2,...,kn e Z and ^ = f B ( l , 0 , . . . , 0 ) .
Now observe that fB(x, 0 . . . , 0) is a unary endofuction on B, hence it is a term
function kx for some k e 2 and then obviously k = fB(l, 0 . . . , 0) holds, no matter
how the embedding of B to Q is chosen. This implies that the coefficient k\ in (4)
and (5) is an integer which does not depend on the prime p. In particular, since T is
unbounded and t in (5) is an arbitrary element of A whose order is a prime power,
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(5) implies that / induces the same term function on all primary components of T.
Taking in account also the formula (4), we have that / is a term function. •

PROPOSITION 5.7. Let A = B®Twhere B is a p -divisible torsionfree group ofrank
1 and suppose that the p-component TpofT is reduced. Then A is not endoprimal.

PROOF. If Tp = 0 then (l/p)x is an endofunction of A which is not a term function.
If Tp ^ 0 then by the assumption we can write A = B®TP@T with a torsion group 7"
which has no p -component. Clearly, Tp has no nontrivial homomorphisms to B © V,
nor has T to Tp. But there is no nontrivial homomorphism from B to Tp either for B
is p -divisible and Tp is a reduced p -group. Hence Corollary 2.6 applies. •

PROPOSITION 5.8. Let A = B © T where B is a torsionfree p-divisible group of
rank 1 and T is a p-group which is not reduced. Then every endofunction of A is of
the form rxx\ + • • • + rnxn where ru ..., rn are rational numbers with denominators
prime to p.

PROOF. We first assume that the torsion part T is divisible and identify B with a
subgroup of Q containing 1. Observe that every t e T is the image of 1 under a
suitable <f> e Hom(S, T). Indeed, since T is p -divisible, it suffices to observe that
for every nonzero proper subgroup B' < B the quotient group B/B' is a torsion
group whose p -component is isomorphic to 2p». Moreover, the group B' may be
chosen so that the order of 1 modulo B' equals the order of t. Consider an arbitrary
endofunction / of A. Then / = (fB,fr) where fB and fT are endofunctions of B
and T, respectively. If the function/ is unary then by Proposition 2.3, there exists an
r e Q such that/B(;c) = rx for every x e B.

We have to show that the denominator of r is prime to p. Suppose on the contrary
that r is a reduced fraction k/l where p divides /. Now pick 0 ^ t e T and assume
that the order of fT(t) is pm. Obviously, for a suitable integral multiple g of a power
of / the function gB is multiplication by u/ps where u, s e 2, u is prime to p, and
s > m. Then psgaW = « and if (/> is an endomorphism of A such that </>(l) = t, we
have

ut = <P(u) = <t>(psgB(l)) = p > ( £ B ( O ) = p'gA</>W) = Psgr(t) - 0,

which contradicts the fact that u is prime to the order of t.
Thus p does not divide / and the equality lfB{\) — k implies

kt = 4>(k) = 0 ( / / B (D) = l<t>ifB{\)) =

which is equivalent t o / r ( 0 = rt.
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Assume now that all (n — l)-ary endofunctions of A are of the required form and let
/ be n-ary. As in Theorem 2.7, every element of T is a homomorphic image of 1 under
4> e End A such that <p\T = IT- This allows again to establish analogues of formulas
(1) and (2) and to carry out the induction step. The coefficient / B ( l , 0 , . . . , 0) is a
rational number of the required form because / (x, 0 , . . . , 0) is a unary endofunction
ofB.

Now consider the general case. Let T — C © D where C is reduced and D is
divisible. Let/ be an n-ary endofunction on A. Then/ = ( / B , / C , / D ) where/B , / c ,
and fD are endofunctions of B, C, and D, respectively. By the first part of the proof, we
may assume that/B and/D are zero functions and we have to prove fc = 0. Suppose,
on the contrary, that fc(ci,... ,cn) ^ 0 for some c\,... ,cn e C. Applying Zorn's
lemma, we take a subgroup H of C maximal with respect t o / c ( c i , . . . , cn) & H. The
quotient group C/H is subdirectly irreducible, hence it is isomorphic to lp> where
k € N U {oo}. Let cp be the composition of the natural homomorphism C -*• C/H
and an embedding C/H -> D. Clearly H = Ker0.

Now take any endomorphism \{r of A whose restriction to C is (p. Then

) = 0

implying / c ( c i , . . . , cn) 6 H, a contradiction. •

THEOREM 5.9. Let A = B ®T where B is a torsionfree group of rank 1 and T is a
torsion group. Denote by P the set of those prime numbers p for which XP(B) = oo
and by Tp the p-component of T. Then A is endoprimal if and only if one of the
following cases occurs:

(i) P / 0 and Tp is not reduced for any p € P;
(ii) P = 0 and T is not bounded.

PROOF. If A is endoprimal then one of the two conditions must occur in view of
Proposition 5.7 and Corollary 5.2. Conversely, suppose that A satisfies one of these
conditions. If P = 0 then A is endoprimal by Proposition 5.6. Suppose P ^ 0
and take an arbitrary endofunction/ (jcl r . . . , xn) in A. Since/ is an endofunction in
B © Tp for each p e P, Proposition 5.8 says that/ is of the form r\X\ -\ 1- rnxn in
B ®TP, where ru ..., rn are rational numbers with denominators prime to p. Since
B is torsionfree, the coefficients ru ... ,rn must be the same for the different p 's and
none of the primes p e P may occur in denominators of r,. But the r,'s cannot have
primes q with q £ P in their denominators either since for such q we have Xq(B) < °°
and therefore (l/q)x is not defined over the whole of B. Thus / is a term function
in A. •
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