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Abstract

Human health is strongly mediated by the gut microbiota ecosystem, which, in turn, depends
not only on its state but also on its dynamics and how it responds to perturbations. Healthy
microbiota ecosystems tend to be in criticality and antifragile dynamics corresponding to a
maximum complexity configuration, which may be assessed with information and network
theory analysis. Under this complex system perspective, we used a new analysis of published
data to show that a children’s population with an industrialized urban lifestyle from Mexico
City exhibits informational and network characteristics similar to parasitized children from a
rural indigenous population in the remote mountainous region of Guerrero, México. We
propose then, that in this critical age for gut microbiota maturation, the industrialized urban
lifestyle could be thought of as an external perturbation to the gutmicrobiota ecosystem, andwe
show that it produces a similar loss in criticality/antifragility as the one observed by internal
perturbation due to parasitosis by the helminth A. lumbricoides. Finally, several general
complexity-based guidelines to prevent or restore gut ecosystem antifragility are discussed.

Introduction

The introduction discusses the complexity of the gut microbiota, which is composed of
thousands of bacterial species that self-organize to exhibit non-trivial global structures and
behaviors. Two main characteristics of complex systems – emergence and self-organization –
are described, and it is explained how complexity can be considered a balance between these two
factors. The concept of criticality is introduced, which is a scale-invariant dynamical regime that
maintains a balance between flexibility and robustness in a system. Criticality is present in all
living systems and is associated with maximum inference and computational capabilities. We
propose that complexity is a universal payoff function of living systems and may be used in the
measurement of both criticality and antifragility. Please see the glossary in the supplementary
materials.

The gut microbiota is an ecosystem mainly composed of thousands of bacterial species that,
through local interactions with each other, self-organize to exhibit non-trivial global structures
and behaviors at larger scales, giving place to properties that may not be understood or predicted
from the full knowledge of the species biology alone. These properties are acknowledged in the
standard definition of a complex system, and it is well recognized that new mathematical
frameworks and scientific methodologies are required for their understanding.1

Two of the main characteristics of complex systems are Emergence and Self-organization.
Emergence is the information that results in a system after being subjected to any process that
modifies it. This information is only observable when all elements of the system are included,
and it can be mapped and measured by Shannon information (S). On the other hand, Self-
organization can be considered as themagnitude of change in the system order over time,2 and it
is usually seen as the opposite of emergence since whenever the system increases organization,
information diminishes. In that sense, Complexity (C) can be considered as the product of
emergence and self-organization, somehow encoding a balance between processes that generate
information and randomness with processes that generate order-reducing information.3

In terms of dynamics, this translates into a balance between flexibility and robustness4 that
usually evolve into a scale-invariant dynamical regime called criticality. This property is present
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in all living systems,5 where the maximum inference and
computational capabilities are achieved.6

Criticality is, in consequence, a state that maintains the system
in an equable trade-off between flexibility and robustness in a
specific scale of observation. Hence, it is expected that the
criticality regime would be observed as part of what we consider
health in a system. For instance, there is cumulative empirical
evidence that in young and healthy individuals, both the heart and
brain are in criticality7-10; on the opposite side of the coin, under
conditions of elderly or chronic diseases (such as obesity or
diabetes), there is a loss of criticality mainly by loss of flexibility/
emergence.11 There is also solid evidence that gene regulatory
networks of natural organisms are in or close to criticality.12-15

Taking into consideration the ecosystems formed by the
microbiota, and from a more general network theory perspective,
Huitzil and co-workers4 have proposed that microbiota ecological
networks are critical,16 conferring the system evolvability17,18 that
enhances faster information storage, processing, and transfer.19,20

This informational capability means that healthy microbiota
ecosystems are able to respond to external perturbations.21 For
instance, recent work has shown that greater network complexity is
related to higher resilience to perturbation by microbiota
communities22 and that more complex microbial networks are
characteristic of the least disturbed (external) ecosystems, as shown
in soil microbial networks that reduce their complexity when
agriculture intensifies.23

On the other hand, microbiota ecosystems (and ecosystems in
general) could also and must do much more than merely respond
to environmental perturbations; they most certainly have built-in
characteristics that enable them to even take advantage of them.
Antifragility is maybe the core one of these characteristics24,25;
which is the exact opposite of fragility (being broken by
randomness, perturbations, or time) and is defined by Taleb as
the nonlinear locally convex response of a specific payoff function
in front to a well-defined perturbation, in terms of type, intensity or
frequency (i.e., A formal definition of antifragility as convexity in
the payoffs space is found in Taleb & Douady26 and Taleb.27

As we have eco-evolutionary reasons and empirical evidence
that strongly support the idea that all living systems tend to
criticality in which complexity (balance of Emergence and Self-
organization) and Fisher information (system stability) are
maximum, meaning that they have the best computational and
inferential capabilities, then any deviation from criticality (depart
from maximum complexity) must result in a diminishing of the
system capabilities to respond to perturbations. So, one may
consider that complexity is a universal payoff function for living
systems and may be used in the measurement of criticality and
antifragility.6,28,29

A gut ecosystem perturbation might come from internal and
external factors. For instance, it is known that gut parasites could
be a source of internal perturbation, since they produce changes in
physiological processes, including hormonal,30 neurological,31 and
immunological32 processes, that can even affect the host’s
behavior; for example, the parasitic wasp cotesia congregata
induces the host manduca sexta to increase the octopamine
concentration in its hemolymph, then the frontal ganglion’s motor
pattern is disrupted by the elevated octopamine concentration,
which prevents food intake.33,34 Evidence points out that, to some
extent, not only micro but also macro-organisms in the gut are
capable of modifying several physiological axes of the host. In
recent work28 authors found compelling evidence that suggests the
presence of the gut parasite Ascaris lumbricoides induced

perturbations in human gut microbiota network properties,
translating to a loss of emergence, a departure from criticality,
and ultimately loss of health.

On the other hand, external perturbations may come from
different sociocultural practices present in a particular lifestyle and
in the ecological conditions in which the individual is living. Both
external factors are essential during childhood since, during this
period, the human gut microbiota is more sensitive to perturba-
tions, which affects its stability and maturity.35,36

Different environments and behaviors have influenced the
evolution of the human microbiota throughout human evolu-
tionary history, and it has become an essential line of research in
which multiple studies have compared the gut microbiota of
industrialized versus non-industrialized (i.e., traditional and rural)
human populations.36,37 As a result, it has been found that gut
microbiota might be very vulnerable to industrialization.

For example, cultural strategies to kill or limit exposure to
pathogenic microbes, such as broad-spectrum antibiotics and
sanitation, or the consumption of ultra-processed foods containing
preservatives and additives, could act as selective forces for gut
microbiota favoring certain groups but affecting others.
Consequently, the gut microbiota of individuals living in
industrialized societies is less rich and diverse than that of
individuals living in non-industrialized societies. Also, this last
lifestyle shares taxa that have been lost or reduced, such as
members of the Spirochaetes or Prevotellaceae family.36,38

The changes in the micro-ecosystem configuration as a product
of industrialization might affect the host´s health due to the
subsequent loss of the ecosystem services offered. The gut
microbiota intervenes in the maturation and regulation of the
immune system, the synthesis of vitamins and hormones, food
digestion, protection against pathogens, etc. Hence, the relation-
ship between gut microbiota and several chronic diseases mainly
present in industrialized societies has become more evident. The
evidence of this relation has been mainly constructed by either
evaluating specific species isolated from the rest of the gut
microbial ecosystem, or by measuring its composition, structure,
and diversity under classical ecological lenses.39-41 However, these
approaches could underestimate ecosystem emergence and self-
organization, both important not only to quantify the current
health state of the microbiota (and its host) but also, its ability to
respond to subsequent perturbations. In that sense, a scenario that
includes internal and external sources of perturbations, such as
lifestyles or parasites, may set an excellent ecologically valid
experiment to determine differences or similarities regarding the
criticality/antifragility of gut microbiotas that have been shaped
under these conditions.

Furthermore, microbes in the gut ecosystem interact with each
other in non-trivial ways including the use of intermediary
molecules, metabolites, and/or toxins,42-47 yet the exact nature of
each interaction and more importantly its measurement is usually
inaccessible using standard methods. So, as pointed out by
Cickovski and co-workers,48 an alternative method to assess this
interaction is to measure bacterial co-occurrence networks, which
has been widely applied in exploring the potential interactions
among microbes.23,44,47,49,50 In very general terms, a co-occurrence
network is an undirected, weighted network with nodes that
represent bacterial taxa present in the community and edges that
correspond to how strongly the two taxa tend to co-occur (i.e., co-
infect) in the sampled communities.

Therefore, using a novel perspective of complex systems, we
evaluate the criticality/antifragility of gut microbiotas from
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children subjected to an external perturbation promoted by an
industrialized lifestyle and an internal perturbation promoted by
the presence of the gut parasite Ascaris Lumbricoides. In this work
we are using the labels “external “and “internal” in relation to (1)
the ecological perturbations that come from the ecosystem where
the individuals live in form of their diet regimes (as part of a
specific lifestyle); and, (2) the ecological perturbations that come
from the conditions of the gut microbiome ecosystem inside the
individuals. This labeling, used basically to remind the reader that
we are working with two different types of ecosystems, should not
be interpreted as if we are equating industrialized lifestyle and the
presence of parasites.

Methods

Study subjects

We study two populations of children from 5 to 10 years old under
two sources of perturbations. The first one, living in a non-
industrialized rural indigenous population located in southwest
Mexico, was under the influence of an internal source caused by the
presence of the gut parasite A. lumbricoides. The second one was
affected by an external perturbation induced by the contrasting
lifestyle lead in an urban population in Mexico City.

The geographical region called “la Montaña Alta” in Guerrero,
México, has an essential history of economic marginalization. In
particular, the Me'phaa indigenous communities have access to a
homogeneous and limited variety of diets and depend on
subsistence farming and seasonal foods.51 Data from the federal
office that evaluates poverty and socioeconomic development (i.e.,
CONEVAL) point out that in 2018, 27.8% of the population in

Guerrero was below the threshold of food insecurity; 93% of this
population was located in two regions, “montaña alta” and
“montaña baja.”

We obtained the rural samples from twoMephaa communities;
“Plan de Gatica” (17°7 0 49.5552″N, 99.7 0 W, EASL 510 m) and “El
Naranjo” (17°9'54.0036" N 98°57', 50.9832" W, EASL 860 m); both
communities are part of the geographical region of “the Montaña
Alta” in Guerrero (see Fig. 1) and 56 km away from each other.

The 2020 Population and Housing Census conducted by the
National Institute of Statistics and Geography shows that the
inhabitants of both communities are exclusively indigenous, and
are within the regions with the greatest poverty and social
vulnerability in Guerrero and the entire country. Thus, the
consensus in the municipality that includes the “Plan de Gatica”
community has 28.4% of individuals living in extreme poverty
(20,998 people). Similarly, 67.75% of the people from “Acatepec,”
the other municipality that includes the “El Naranjo” community,
live in the same poverty conditions.

These indigenous people generally dwell in settlements of fifty
to eighty households, each with five to 10 individuals. Most
residents only speak “Me’phaa,” their native language, and they
mainly depend on subsistence farming of legumes such as beans
and lentils, with corn being the primary grain grown. In addition to
gathering wild edible plants, some fruits and vegetables are grown
in garden plots.52 Hunting and rearing some poultry provide
animal protein, but the consumption of this food is primarily on
special occasions, such as festivities; hence it is not a regular food in
the diet of the “Me’Phaa” people.52

In contrast, the samples from the city group comprise children
from the southern area of Mexico City (18.102" W 19°12'36.36"
W). This urban population is essentially the opposite of the
indigenous population mentioned above. The children of urban
dwellers lead a Western lifestyle that is comparable to that of
upper-middle class families, who routinely consume diets based
on ultra-processed foods and animal-products consumption;
refined products, such as oils, sugar, salts, and grains; as well as
low consumption of whole grains, fiber, and vegetables.
Additionally, they have easy access to allopathic medications,
such as antibiotics and other medications.

It is important to highlight that the urban population does not
present parasites and that previous work41 suggests that the
presence ofAscaris lumbricoides in the rural population can cause a
perturbation in the gut microbiota network, leading to a loss of
emergence and departure from criticality, ultimately resulting in a
loss of health. This highlights the importance of studying the
interactions between gut microbiota and parasites and their
potential impact on human health. The study also demonstrates
the usefulness of network analysis techniques in understanding
these complex interactions. The practical implications of this
research could include the development of new strategies for
managing and treating parasitic infections and their associated
health effects.

The non-industrialized Rural (R) population in this study
consists of 29 children; 18Non-Parasitized (NP) and 11 Parasitized
(P), all of them belong to the Me´phaa population. The Urban (U)
population considers 13 children all NP from México City, who
practice a clearly industrialized style of life. Parasites were
determined following the protocol implemented in Ramírez-
Carrillo et al.41

The Rural population has a particular set of historical
conditions that make it the more contrasting group in terms of
lifestyle in regard to typical urbanized areas of Mexico City.53-55

Figure 1. Locations of Plan de Gatica and El Naranjo, indigenous localities located in
themunicipality of Ayutla de los Libres and Acatepec (respectively) in the Montaña Alta
region of the state of Guerrero, México. Families of these locations were the study
subject of this research.
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Due to the socioeconomic context of this population, associated
with historic poverty and marginalization, they have the lowest
income and the lowest access to health services in the country. In
terms of biological path dependence, this population has almost no
access to allopathic medications that we know and that may have
induced important changes in the microbiota ecosystem.54,56-59

Although allopathic medication is practically absent in these
communities59,60 we selected only participants that had not taken
any medications such as antibiotics or anthelmintic treatment
during the two years prior to the study.

Finally, Lewis et al.61 argues that indigenous populations in
research on the human microbiome are essential for several
reasons. First, indigenous populations often have unique micro-
biomes due to differences in diet, lifestyle, and environmental
exposures, which can provide valuable insights into the factors that
shape the human microbiome. Second, indigenous populations
have a long history of traditional medicine practices that often
involve the use of microbial communities, which can inform new
approaches to microbiome-based therapies. Third, the participa-
tion of indigenous communities in microbiome research can help
to address health disparities and promote health equity by
identifying microbiome-based interventions that are effective in
diverse populations. Overall, the inclusion of indigenous pop-
ulations in microbiome research is essential in increasing our
understanding of the human microbiome and developing new
interventions for improving human health.

Taxonomic bacterial inference

For this work, as explained in more detail by Ramírez-Carrillo
and co-workers (2020), gut microbiota taxonomic inference was
obtained from fecal samples through High Throughput
Sequencing in the Illumina platform. Briefly, each participant
provided a fecal sample in a sterilized plastic bottle, which was
frozen with liquid nitrogen in subsequent storage at −20°C, until
DNA extraction. After extraction, the V4 hypervariable region of
the 16S rRNA gene (ribosomal ribonucleic acid) was amplified
with the universal bacterial/archaeal primers 515F/806R.
Characterization of fecal purified 16S rRNA fragments (20 ng
per sample) was sequenced on an IlluminaMiSeq platform and
paired-end reads of around 250 bp were generated. These
readings were processed in QIIME2, noise was removed with the
DADA2 complement to obtain the Amplicon Sequence Variants
(ASVs). Through filters and comparisons with databases, tables
of abundance and phylogeny of the representative ASVs
were made.

ASVs represent the biological sequences of the 16S rRNA gene
and distinguish sequence variants that differ by as little as one
nucleotide between each sample.62 Abundance and phylogeny data
were analyzed under R environment using phyloseq63 and ggplot2
packages. 21,000 reads per sample were used as the minimum
sequencing effort for Plastidic ASVs filtering. Sequence data is
available in the NCBI database with Bioproject number
PRJNA593240.64 All the testing and recruitment procedures of
the study were approved (September 25, 2017) by the Research
Ethics Committee of the Faculty of Psychology of the National
Autonomous University of Mexico (FPSI/CE/01/2016) and were
executed in accordance with the ethical principles and guidelines of
the Official Mexican Law (NOM -012-SSA3-2012). The persons
responsible for the care of participating infants read and signed a
written informed consent.

Network modeling and complexity estimation

In this work, we construct a co-occurrence matrix from the ASVs
dataset (i.e., bacteria species) using the Cooccur package65 (https://
cran.r-project.org/web/packages/cooccur/cooccur.pdf) in R (74)
for the three populations under study.

Although the network theory approach has shown to be most
useful in a number of contexts66-69 and the concept of network
complexity is central, there is still a lack of a universally accepted
measure of complexity.70-72 Among many possible measures of
network complexity, the entropy-based ones including number of
vertices, number of neighbors, and number of neighbors at a given
distance have been recognized to be both simple to use and
useful.73 For this, we used the CytoHubb app inside CytoScape,74

an open-source Network Analysis software, to calculate the average
number of neighbors, number of nodes, and Network hetero-
geneity which as we have commented are related to different
aspects of complexity. Additionally, to determine complexity
directly we calculate the Shannon information (S), which is a proxy
of informational emergence,3 for each individual of the population
Rural-P (R-P), Rural-NP (R-NP), U.

As was pointed out before, this study considered an indigenous
community that depends on traditional agriculture and foraging;
and an urban community that relies on industrialized food
production. The rationale for choosing two communities with
contrasting subsistence models is that these dissimilarities were
expected to lead to differences in the gut microbiome of the two
groups, as diet is a significant determinant of gut microbiome
composition. In order to compare the gut microbiome of the two
groups, fecal samples were collected from each participant and
analyzed using 16S rRNA gene sequencing to identify the bacterial
species present in their gut microbiome. The researchers also
collected information on the children’s diets and lifestyles through
surveys and interviews.

Overall, the sample design was devised to test the hypothesis
that different subsistence models lead to differences in gut
microbiome composition, intending to improve our understand-
ing of how diet and lifestyle factors influence the gut microbiome.

Results

In general terms, the current work describes a study case that
analyzes the gut microbiota networks of three populations: U, R-
NP, and R-P. The study uses The Graph Edit Distance (GED)
analysis, to compare the complete network structures of the three
populations. The higher the value of GED, the more dissimilar the
networks are.

In particular, Fig. 2 shows the GED analysis score of the gut
microbiota ecosystem network for the R-NP group (considered the
control group for comparison) and the two under perturbation (R-
P and U-NP). The results indicate that U and R-P characteristics
affect gut microbiota networks in a similar manner, suggesting that
U lifestyle could be thought of as a perturbation that may lead to
similar patterns of microbiota dysbiosis.

Fig. 3 shows three standard network metrics related to
complexity and discusses them in terms of heterogeneity,
highlighting the balance nature of complexity.

Fig. 4 shows complementary network measurement metrics,
while Fig. 5 shows the differences in Shannon Information
(emergence) for the three populations. Both populations under
perturbation, R-P and U, show a statistically lower value of
Shannon information (emergence, diversity) than R-NP.

472 I. G-Santoyo et al.

https://doi.org/10.1017/S2040174423000144 Published online by Cambridge University Press

https://cran.r-project.org/web/packages/cooccur/cooccur.pdf
https://cran.r-project.org/web/packages/cooccur/cooccur.pdf
https://doi.org/10.1017/S2040174423000144


Overall, the study suggests that the U lifestyle could lead to
similar patterns of microbiota dysbiosis as R-P and that the rural
populations exhibit greater complexity in their gut microbiota
networks than the urban population.

In more detail, Fig. 2 presents the results of The GED analysis,
which compares complete network structures75 for the three
populations, U, R-NP and R-P. The higher the value of GED the
more dissimilar the networks are. We see that the interval of GED
between U and R-P is given by GED(U, R-P) <GED(U, R-NP) and
GED(U, R-P) < GED(R-P, R-NP). So U and R-P characteristics
affect gut microbiota networks in a similar manner. As it was
previously reported, R-P corresponds to a perturbation that might
produce a dysbiosis in gut microbiota, then U lifestyle could be
thought of also as a perturbation that may lead also to similar
patterns of microbiota dysbiosis.

In Fig. 3 we show three standard network metrics related to
complexity. Both rural populations show greater values of the
number of nodes and neighbors than urban (industrialized)
populations. Between both rural populations, the R-NP exhibits
greater values than R-P. We also found that urban microbiota
networks are much more heterogeneous than rural ones, being the
Parasitized the lowest. In general, systems that are either too
heterogeneous or too homogeneous are less complex. Complexity
is always manifested in the balance between self-organization (in
this context homogeneity as a manifestation of the structuring that
comes from order) and emergence (in this context heterogeneity as
a manifestation of randomness).

Moreover, both populations under perturbation, R-P and U,
show a statistically (Wilcoxon rank sum test one tail, W= 162,
p-value = 0.037) lower value of Shannon information (emergence,
diversity) than R-NP, as we can see in Fig. 5.

Discussion and conclusions

In a structural taxonomic approximation of these two children’s
populations, Sanchez-Quinto et al76 found that compared with

children from Mexico City, the indigenous population showed
higher alpha diversity in several indexes, such as Faith’s
phylogenetic diversity, Shannon diversity, and observed ASVs.
In addition, a subsequent beta diversity analysis indicated a clear
separation between these two populations. In consequence, only a
quarter (23.64%) of the total species (i.e., ASVs) were shared
among the indigenous and urban populations (Fig. 6B; SUP); from
these, 56 species showed statistically differentiated abundances,
most of them overrepresented in the Me'phaa children.

Related to a specific taxonomic structure, Firmicutes,
Bacteroidetes, and Actinobacteria Phyla were more prevalent in
children from México City than those from the Me'phaa
(Supplementary Fig. 6H). Interestingly, several phyla were only
found in the indigenous community in very low abundances, such as
Deinococcus-Thermus (0.079%), Chloroflexi (0.01%), Elusimicrobia
(0.01%), Acidobacteria (0.0071%), and Fibrobacteres (0.004%).
(Supplementary Table S1) (Supplementary Fig. 6H).

In consequence, the GM composition and structure were
remarkably different. These results are consistent with other
studies that have pointed out the impact of lifestyle on GM.77-82

Our results agree with Kaplan and co-workers.83 They found
that Hispanic populations who immigrate early in life to the USA
have low GM alpha diversity through the Shannon index,
contrasting with those who relocate to the USA during adulthood,
over 45 years old.

In that sense, our results contribute to the emergent concept of
“social microbiome,”which suggests that interactions of social and
ecological contexts that can take place at various levels of the
biological organization may have an impact on the microbial
exchange between organisms, and hence, in the states of GM
ecosystems health.

We consider that by studying this interplay between lifestyles
and GM ecosystems, we are starting to understand how the
Holobiont co-evolves in a particular social context, in what we have
proposed as a new eco-evolutionary ontological unit, named the
ecobionts.

Returning to the discussion of standard analysis versus complex
systems perspective, it is proposed that high GM taxonomic
diversity is a proxy of GM health, since GM low-abundance great
numbers of taxa are essential for the homeostasis and the constant
maintenance of certain functions in human GM.84 Nevertheless,
there are some valid critiques.85,86

For instance, a recent study on soil microbiome showed that its
diversity and functionality can change under global environmental
perturbations, but it does not always lead to microbial diversity
loss. Furthermore, changes in land covered by agricultural
practices increase alpha diversity. This seems to be occurring
even during the conversions from highly diverse natural
ecosystems to homogeneous agricultural monocultures, which is
not a beneficial process for the original ecosystem.

In this sense, the ecosystem’s health is not only a function of
composition, structure, and function in a particular moment, but
it is also a function of how these attributes change over time and,
more importantly, how they combine to allow the ecosystem to
respond to perturbations, variability and ultimately to persist
over time. In terms of how ecosystems respond to perturbations,
there is information not contained in the composition and
structure of its populations, but that emerges from several species
interactions working together as a network. These properties of a
biological system justify why a complex systems perspective using
network theory is necessary and complements more standard
analysis.

Figure 2. We show the GED analysis score of gut microbiota ecosystem network for
the Rural-NP group (considered as the control group for comparison) and the two
under perturbation (Rural-P, Urban NP).
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Aswith diversity in ecology, standard network theorymetrics as
heterogeneity do not map directly to criticality or antifragility, as
has been discussed by López-Corona and co-workers87 who
suggest that maximum antifragility arises at an “optimal” balance
between homogeneity and heterogeneity that seems to be non-
trivial, context-dependent, and in some cases, dynamic.

In that sense, this work implements the idea of how to use
metrics from network theory to assess ecosystem antifragility
which we have shown is a more general and rigorous conceptual
framework to understand EH.29 Contrary to standard network
metrics usually associated with criticality but in an indirect way,
Minimum Spanning Tree has strong theoretical reasons88-90 as well
as empirical evidence associated91 that prove why it is a validmetric
to compare networks in terms of criticality/antifragility, and
therefor is a promising metric for future works. For instance, we
know that MST reflects global information transmission optimal-
ity (a requisite for criticality); it represents an informational
backbone that has been diluted to the maximum possible level
while maintaining connectivity. Specifically, its role as an
informational backbone has been highlighted in recent applica-
tions.87,92,93 Some applications of MST as an informational

backbone include children with math difficulties,94 dyslexic
problems,95 amyotrophic lateral sclerosis disease,96 understanding
sub-networks for the distinction of subject traits,97 discrimination
of motor imagery hand movement,98 testing cognitive impairment
in dementia,99 and to track some changes in the brain’s functional
networks following surgery.90

In the same line of thought, taking the new ideas about what an
ecosystem is from a recent work about planetary antifragility,100 we
consider that the GM is an open thermodynamic system
constituted by a community of living organisms in conjunction
with the nonliving components of their environment that is in
health when through its interactions and evolutionary processes,
constrained by the external conditions, self-organize into a
criticality dynamic regime, with maximum computational and
inferential capabilities that allow it to respond and thrive under
uncertainty, stressors, perturbations and ultimately time, achieving
maximum antifragility.

Even more, we could hypothesize that human systemic health
arises from thermodynamic mechanisms that operate through
human anatomy and physiology in its exchange of matter, energy,
and information with its surroundings, until reaching an

Figure 3. Network metrics usually associated with connectivity for the three populations.
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operational scale-invariant configuration in which there is an
optimal balance, called Criticality; between order/robustness (self-
organization) and random/flexibility (emergence) processes that
confer the organism with the best capacities to respond and adapt
to the environment, in what is called antifragility.

As suggested by Stuart A. Kauffman and others.5,101-106 Life on a
macroscopic scale displays a large amount of variability but it is
much more uniform at the scale of cells, where all living systems
share many common structural and functional features. How this
macroscopic biodiversity emerges from the microscopic subsys-
tems is explained by the principles of evolution, but even then, one
may ask what natural selection chooses. A very promising basic
principle to respond to that fundamental question is that evolution
should have driven living beings toward critical states since they

are favored by maximum computational and inferential capabil-
ities called criticality; and which translate into system capacity to
take advantage of environmental variability, randomness, and
time, captured in the concept of Antifragility.6,25

Traditionally, until recently, the vast majority of studies in gut
microbiota focus on the relationship between some bacterial group
and a specific pathology, comparing the abundances of species
between samples or populations with some disease, versus a
control sample; or through the relationship between the presence
of certain bacteria and genetic properties of the host. These studies
have generated a great deal of useful information by finding
possible key relations with certain diseases, but these isolated
analyses do not capture the complexity of the bacteria–bacteria
interaction and bidirectionality between bacteria-hosts. This

Figure 4. Complementary network measurements metrics.

Figure 5. Difference of Shannon Information (emergence) for
the three populations (W= 162, p-value= 0.037). The box plot
shows the median, quartiles, min-max, and point is the mean.
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multi-scale dynamic set of interactions gives place to a very
complex cascade of bacterial adaptations until a homeostatic
balance is reached between the host and its microbiota. The new
technical capabilities and analytical tools have made clear that the
use of network theory promises to be a key piece in the future
investigation of the complex relationship between the host and its
gut microbiota.4,107,108

In this context, we have shown that the overall structure of the
R-P (internal perturbation) microbiota network is 40% closer to U
(external perturbation) than to R-NP (non-perturbed) population.
We also found that the number of neighbors and nodes is the highest
in the R-NP, followed by the R-P, and the lowest in the U
population. These two-network metrics are directly related to the
biodiversity in the microbiota ecosystem, and if taken together with
the result that the U network is very heterogeneous, the R-P has a
very low value of network heterogeneity and the R-NP has a middle
value, we infer that the R-NP microbiota network is more complex
than that in the perturbed populations. We know that complexity is
lost whenever the system network heterogeneity is very high or low.
In terms of Shannon information – a standard proxy of total
richness and diversity, but also a system emergence3 –we found that

R-NP has a higher value that is statistically different from both R-P
and U. As we know that R-P is a condition that might lead to
dysbiosis due to the presence of parasites,42 then the lower value of
Shannon Information represents a lower complexity level and hence
a loss in criticality/antifragility compared to R-NP. Thus the lower
value of Shannon information for U is also a loss of complexity and
criticality/antifragility.

Our work offers evidence that external perturbations in the
form of U lifestyle may be considered equivalent to internal
perturbations such as the presence of parasites; and that both lead
to a loss of antifragility in the gut microbiota ecosystems. This
result is consistent with recent studies that show that Industrialized
populations exhibit a consistent loss of gut microbial diversity and
also that they are clearly related to several non-communicable
chronic diseases.109-114

Our results also adhere to the idea that microbiota in general
plays a key role in host evolution and ecology and particularly that
the gut microbiota acts as a fast response network coupled with a
slow response one, the genome, that confers evolutionary
criticality. In this sense, there is accumulated evidence that
industrialized lifestyles have rapidly changed the human gut

Figure 6. Conceptual figure showing the effect
of path dependence on the set of possible future
configurations for gut microbiota ecosystem in
terms of how it responds to perturbations to
complexity as a general payoff function valid for
systems under eco-evolutionary processes, and
that define three types of configurations: fragility
when it responds in a nonlinear concave way;
robust if it is essentially insensible to perturba-
tions or antifragile if it responds in a nonlinear
convex way.
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microbiota ecosystem which translates into high rates of these
Noncommunicable diseases.4,109,115 We now know that some kind
of “extinction event” in human gut bacteria might have already
happened involving the loss of some species, such as Ruminococcus
callidus, Butyrivibrio crossotus, and T. succinifaciens; and the
increase in the number of Bacteroides and Prevotella SGBs116; the
direction and changes of the different functional groups in the gut
microbiota ecosystem may still remain far from being fully
understood.

Growing evidence suggests that recent lifestyle changes, most
notably the high-fat, high-sugar “Western” diet, have affected the
genetic makeup and metabolic processes of the human gut
microbiome.117 It is currently believed that such diet-induced
changes to the microbial populations in the gut are responsible for
the escalating epidemics of chronic illness in the developed world,
including obesity117,118 and inflammatory bowel disease.119 Under
these considerations, there are calls to restore the composition,
structure, and functioning of the ancestral gut microbiota
ecosystem using the concept of “rewilding” (4). Although there
are successful examples of rewilding such as the widely celebrated
reintroduction of gray wolves (Canis lupus) to Yellowstone
National Park; appropriate applications of rewilding remain under
debate. For example, Carmody and co-workers120 have raised
questions about how this could be implemented, considering for
example that high microbial plasticity may underpin an
industrialized gut microbiota that is reasonably well adapted to
its environment, even if it is then less well paired with the host.
They proposed that there may be some sort of “third body
problem” for the human microbiota environment giving place to
an unsolvable puzzle for human health. We think that our
Ecosystem Antifragility framework29 and the evidence found here,
solve this problem. Taking all into account, using a complex system
approach showed that the arrow of health points in the direction of
critical/antifragile (more complex) gut microbiota, and that arrow
is aligned with non-industrialized lifestyles.

As suggested by Sonnenburg and Sonneburg36 it seems that to
fully understand how gut microbiota modulates human health it is
necessary to incorporate an ecological perspective to identify gut
microbiota ecosystem services. In this way, assessing the impact of
an urban industrialized lifestyle on these services might depend on
the specifics of numerous factors and could require isolating and
archiving bacterial strains that are sensitive to this kind of external
perturbations, and conducting specific studies for them.
Nevertheless, this traditional approach to ecology based on
ecosystem integrity is limited because it has an underlying model
for ecosystem health (EH) as a function of the ecosystem state
measured as integrity or EH= f(state). But as we have been
arguing, we also need to think of the dynamics and how the system
responds to perturbation; so for us, it is clear that we need a much
wider model of health given by EH= f(state, dynamics, response to
perturbations) than the one is given by EH= f(integrity, criticality,
antifragility) in terms of assessment.29

Fig. 6 shows a conceptual diagram showing the potential effect
of path dependence77,121 that combined with different lifestyles
restrict the space of possible network structures and type of
response to perturbation. Due to path dependence including
lifestyle, gut microbiota ecosystems may turn fragile if they lose
complexity under perturbation; robust if it is essentially insensible
to it; or antifragile if it benefits from it as has been observed for
example in molecular ecological networks in grassland soil
microbial communities.122

We consider that this change of framework is not only
interesting from the theoretical perspective to understand for
example longevity123 but it has also been shown that using its
principles of an antifragility perspective may improve clinical
practices in oncological drug administration.124
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