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AN ULTRAFILTER COMPLETION OF A 
NEARNESS SPACE 

BY 

J O H N W. C A R L S O N 

ABSTRACT: An ultrafilter completion is constructed for a nearness 
space. It is shown to preserve the Tl separation axiom. Characteriz­
ing conditions are given for it to be topological or for its topology to 
be compact. It is shown to have the simple extension topology and 
for a given Hausdorff space a compatible nearness structure is found 
for which its ultrafilter completion is homeomorphic to the Katetov 
H-closed extension. 

One of the most unifying concepts to surface in topology in recent years is 
the concept of a nearness space provided by Herrlich [7], The categories of 
symmetric topological space, uniform spaces, proximity spaces, and contiguity 
spaces are all embedded in the category NEAR, of nearness spaces and 
nearness maps. 

Nearness spaces have had an impact on the study of extensions of a 
topological space: see for example [2], [3] and [12]. The study of topology from 
the categorical viewpoint has been enhanced by the advent of nearness spaces 
as demonstrated in [4], [8], [9] and [12]. 

Herrlich defines a nearness space to be complete if every maximal near 
collection has an adherence point. He constructs a completion for a nearness 
space in [7]. Two of the most powerful theorems to be developed in this arena 
deal directly with his completion. The first appears in [8], where Herrlich shows 
how the Smirnov compactification, the Samuel compactification, the Wallman 
compactification, the Cech-Stone compactification, and the Hewitt realcompac-
tification may be constructed as a nearness space completion of the original 
space equipped with certain specified compatible nearness structures. The 
second theorem appears in Bentley and Herrlich [3], where they show that 
every strict Tt extension, up to the usual equivalence, of a T1 topological space 
may be generated as a completion of the original space, equipped with a 
compatible concrete nearness structure. 

In order to characterize various topological properties of the underlying 
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topology of a nearness space it became apparent that it was quite useful to 
study the behavior of filters and ultrafllters that were also near collections. 
From this a second notion of completeness was developed; namely that every 
near ultrafilter had an adherent point. In [5] this was called B-complete. It 
seems appropriate now to call such a space ultrafilter complete; restating the 
result in [5] we have that the underlying topology of a nearness space is 
compact if and only if the nearness space is -ultrafilter complete and totally 
bounded. 

It is natural that one should attempt a completion of a nearness space with 
respect to this second notion of completeness. Attempting to mimic Herrlich's 
completion by using ultrafllters rather than clusters fails; one actually con­
structs a semi-nearness space instead of a nearness space, but this is another 
story. 

In this paper an ultrafilter completion for a nearness space is constructed. 
Various properties of this space are studied; it is shown that it preserves the T1 

separation axiom. Those nearness spaces whose ultrafilter completions are 
topological are characterized as well as those whose ultrafilter completion have 
a compact topology. For a Hausdorff topological space a compatible nearness 
structure is isolated such that its ultrafilter completion is homeomorphic to the 
Katëtov H-closed extension. 

2. Preliminaries 
Let X be a set; then &n(X) will denote the power set of 0>n~1 (X) for each 

natural number n and SP°(X) = X Let £ be a subset of 0>2(X) and M and & 
subsets of SP(X). Let si and £$ be subsets of X. Then the following notation is 
used: 

(1) "s£ is near" or £si means sieÇ; and "si is far" or £si means si££. 
(2) AÇB means {A,B}e£ 
(3) cl^A = {x €X:{{x}, A}e f} . 
(4) i v ^ - { A U B : A G i , B e 8 } . 
(5) si corefines ^ means that for each Aesi there exists a B G £ft such that 

B c A 

DEFINITION 2.1. Let X be a set and £c3>2(X). Then (X, £) is called a 
nearness space provided: 

(Nl) nM^<t> implies si G Ç. 
(N2) If sie£ and for each B e l there exists A G si with AC:C1€JB, then 

(N3) If siH and â8£€ then sl\j&t£. 
(N4) cfyesi implies tf£Ç. 

A nearness space is called a Nl-space provided: 
(N5) {x}£{y} implies x = y. 
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Given a nearness space (X, | ) , the operator cl€ is a closure operator on X 
Hence there exists a topology associated with each nearness space in a natural 
way. This topology is denoted by t(£). This topology is symmetric. (Recall that 
a topology is symmetric provided x e {y} implies y G {x}.) Conversely, given any 
symmetric topological space (X, t) there exists a compatible nearness structure 
£t given by £t = {M c 0>(X) : n^^<f>}. To say that a nearness structure £ is 
compatible with a topology t on a set X means that t = t(Ç). 

DEFINITION 2.2. Let (X, £) be a nearness space. 

(1) (X, £) is called topological provided £ # G £ implies DM^ <$>. 
(2) (X, | ) is called totally bounded provided si <= <3>(X) and ^ has the finite 

intersection property implies sieÇ. 
(3) (X, £) is called ultrafilter complete if each near ultrafllter converges. The 

following result, [5], is stated here and referred to later. 

THEOREM A. Let (X, £) be a nearness space. 

(1) The underlying topology is compact if and only if £ is ultrafilter complete 
and totally bounded. 

Let (Y, t) be a topological space and X=Y. t(X) will denote the subspace 
topology on X For each y G Y, set €y = {O H X : y G O G f}. Then {<?y : y G Y} is 
called the filter trace of y on X 

Let t(strict) be the topology on Y generated by the base {0*:Oe t(X)} 
where O* = {y G Y: O G ©y}. Let f(simple) be the topology on Y generated by 
the base {OU {y}: Oe€y, y G Y}. Then t (strict) and f (simple) are such that Y 
with either of these topologies is an extension of (X, t(X)), called a strict 
extension, or simple extension of X, respectively. Note that 

t (strict) < t < r (simple). 

Moreover; a topology s on Y with the same filter traces as f, forms an 
extension of (X, t(X)) if and only if it satisfies the above inequality. (See 
Banaschewski [1].) 

In a nearness space (X, f ), a nonempty collection of subsets of X is called an 
X-cluster if it is maximal in £ with respect to inclusion. The nearness space is 
called complete if every X-cluster has a non-empty adherence. 

Herrlich's completion of a nearness space was presented in [7]. A brief 
description of it appears in [3] which we provide here for the convenience of 
the reader. Let (X, | ) be a nearness space and let Y be the set of all X-clusters 
si with empty adherence. Set X* = X U Y . For each Ac=X, define cl A = 
{y G Y: A Gy}Ucl€A. A nearness structure £* is defined on X* as follows: 
38 G Ç* provided i = { A c X : there exists Be® with B a cl A} e £ (X*, f *) is a 
complete nearness space with cl€*X=X*. Also, for A<=X, cl€*A = clA. 

The following important theorem is due to Herrlich and Bentley [3]. 
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THEOREM B. For any Tx nearness space (X, £) the following conditions are 
equivalent: 

(1) £ is a nearness structure induced on X by a strict extension. 
(2) The completion (X*, £*) of (X, | ) is topological 
(3) Every non-empty X-near collection is contained in some X-cluster. 
A nearness space satisfying the above equivalent conditions is called concrete. 

If a nearness space is concrete then its completion is topological and 
consequently ultrafilter complete. This is not the case in general; for a 
complete nearness space is its own completion, and there exists nearness spaces 
that are complete but not ultrafilter complete (space X of Example 3 in [3]). 
Also, there exists nearness spaces that are ultrafilter complete but not complete 
(Example 2.5 in [5]). The ultrafilter completion constructed in this paper is 
quite distinct in general from the completion constructed by Herrlich; for 
example the underlying topology of the completion of a nearness space is a 
strict extension of the original space while the ultrafilter completion con­
structed here has the simple extension topology. 

3. An ultrafilter completion 
Let (X, £) be a nearness space. For any A c= X, Â will denote the closure of A 

in X, even when X is embedded in a larger space. For any ultrafilter & on X 
let: 

€(&) - {O : O e 9 and O is open in X}, 

« ( f ) = { A : Â e f } . 

LEMMA 3.1. Let (X, £) be a nearness space. Let 5F and %t be free ultrafilters of 
X. Then &m = 0(X) if and only if <8(&) = <ê(X). 

The following lemma provides a general method for extending certain types 
of nearness structures to a larger space; we use this technique to construct an 
ultrafilter completion. 

LEMMA 3.2. Let X be a subspace of a symmetric space Z and £ a compatible 
nearness structure on X such that ifsdcz <3>(X) and H clz M^ 4> then sieÇ. Set 

T)={,s#c:0>(Z): nclzsiï<t> or {A O X : A es£}e £}. 

Then: 
(1) r\ is a compatible nearness structure on Z that extends £, and 
(2) If (Y, 8) is a nearness space and f:Z-*Y is a continuous mapping such 

that ( / | X):(X, £)—»(Y, 8) is a nearness map then f:(Z, TJ)—»(Y, 8) is a near­
ness map. 

Proof. (1). (Nl) and (N4) are obvious and (N3) follows from easy calcula­
tions. Let AczZ. Claim: c l^A^c lzA. Easily clzAcicl^A. Let tecl^A. Then 
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{{t}, A}G 7}. Either clz{t}Dc\zA^ <£; in which case tec\zA since A is symmet­
ric, or {{t}PiX, A HX}e£ in which case f Gcl x ( A H X ) c c l z A. Thus cl zA = 

To see that (N2) holds let sier\ and for each B e i there exists Aesi such 
that Aczcl^B. If nc\zM^<t) then DclzS8= f i c l ^ ^ and thus SSGTJ. On 
the other hand, suppose {AHX:Aesi}eÇ. Since £ is a nearness structure on 
X it follows that {clzB PiX: B e 2ft}G £ Thus {clx (B PiX) : B G $ } G | and thus 
{BnX:BeSb}el Hence $ G T ] . 

Easily £ = $P(X)C)r) and hence 17 extends £. 
(2). Let ^ G T J . If r)c\zM^<t) then nc\Tf(si)^ <f> since / is continuous and 

thus f(si)e8. Otherwise; {AHX:Aesi}eÇ and {(/| X)(A fïX): A G ^ } G Ô 
since f\X is a nearness map. For A e i ; ( / | X)(A HX) = f(A f l X ) c / ( A ) . 
Therefore /(<s$) G Ô and / is a nearness map. 

DEFINITION 3.1. Let (X, £) be a nearness space and Y = {(?(cF) : ^ a free near 
ultrafilter on X}. Set X' = XUY. Let f' be the simple extension topology on X' 
generated by the trace filters 6(3F) for €{&?) in Y and the open neighborhood 
filters for points in X. 

LEMMA 3.3. Let (X, £) be a nearness space. Then: 
(1) (X', f') is a symmetric topological space. 
(2) Let A c X', rfcen clx,A = cl x(A f lX)U{C(f) : A n X e »(#)}. 
(3) If si c 0>(X) and Pi c l x ^ 4> then ^ G £ 

Proof. (1). X is symmetric and open in X'. If 0(3?) and 0(«) belong to Y 
and 0 ( ^ ) ^ 0 ( « ) then 0 ( ^ ) £ c l x , (<?(»)). Let <5(^)G Y and xeX. Since X is 
open in X', x^clx>((?(^)). Since 9* is a free ultrafilter there exists an open set 
O containing x such that 0£3F. Since X is symmetric, clx{x}<=0. Now 
X-c\x{x}e& and hence €{&)£c\x\x). Thus X' is symmetric. 

The proofs of (2) and (3) are straightforward and thus omitted. 

DEFINITION 3.2. Let (X, £) be a nearness space and (X', f) be as defined in 
Definition 3.1. Let £' be the nearness structure that extends £ as constructed in 
Lemma 3.2. 

THEOREM 3.4. Let (X, £) be a nearness space. Then (X', £') is an ultrafilter 
completion of (X, £). 

Proof. By Lemmas 3.2 and 3.3, we have that (X , £') is a nearness space and 
f ' n ^ ( X ) = | . Easily X is dense in X'; and X is open in X' since X' has the 
simple extension topology. We now show that (X, £') is ultrafilter complete. 

Let &' be a near ultrafilter on X'. Then ^ ' e £ \ Suppose n c l x ^ ' = <k then 
f - { F n X : F e f ' } e è and fW=<£. Since ^ e £ <\>i^. Let F f l X e f and 
G n X € ^ where F and G belong to 9?\ then F f l G e f and thus 
( F n X ) n ( G n X ) = ( F n G ) n X e f . Suppose X = > A ^ ( F H X ) for some Fe 
&'. Then A U C X ' - X ^ F G ^ ' and hence Ae&. Suppose A U B G S ^ then 
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A U B ^ X H F for some Fe&'. Let A ' = ( X ' - X ) U A and B ' = ( X ' - X ) U B . 
Then A ' U B ' ^ F e f ' and since 5F' is an ultrafilter either A ' or B' belongs to 
SF', thus either A or B belongs to 3*. Hence £F is a noncon ver gent near ultrafilter 
on X and thus 6(!F)eX'. Let O' be an open set in X' containing 0(&). Then 
there exists Oe6(&) with O U T O } c O ' Now Oe& and there exists 
F e f such that 0 = F'C\X. Let Q = F n O ' and P = F'-0'. Then F = 
P U Q e f . Since SF' is an ultrafilter either P or Q belongs to 3F'. Suppose 
Pe&'. Then PPiXeSF and thus X - O e F which is impossible. Hence Q = 
F ' f l O ' e y . Thus O'G y and 9' converges to 0(9) and we have a contradic­
tion. Therefore, (X', £') is ultrafilter complete. 

4. Properties of X' 
(X', £') will always denote the ultrafilter completion of the nearness space 

(X, £) constructed in the previous section. A nearness space that is a subspace 
of a topological nearness space is called subtopological. In Bentley and 
Herrlich [3] it is shown that a nearness space is subtopological if and only if 
each near collection is contained in a near grill. They also show that the 
completion (X*, £*) of a nearness space is topological if and only if each near 
collection is contained in a maximal near collection. (See Section 2, Theorem 
B.) The following theorem characterizes the nearness spaces whose ultrafilter 
completion (X', £') is topological. 

THEOREM 4.1. Let (X, | ) be a nearness space. The following are equivalent. 
(1). (X ' , f ) is topological. 
(2). For each sietj there exists a near ultrafilter 3? such that sicz (g(3F). 

Proof. (Note: (2) does not require the ultrafilter 9 to be free; also each <§(&) 
is a special type of grill.) (1) implies (2). Let si e Ç. Then si e £' and n clx>sij^ </> 
since (X', £') is topological. Then either there exists an xeX with xeÂ for 
each Aesi, in which case ^ X = { F C X : X G F } is a near ultrafilter and sic: 
S(^ x ) ; or there exists 0(&)eX' with A e « ( f ) for each Aesi. Thus si a 
^iSF). (2) implies (1). Let si e £', then either nclx '<s$^ </>, in which case we are 
through, or si = {A H X : A e si{e Ç. Then there exists a near ultrafilter f o n X 
with s&c: ^(SF). If 9 has a nonempty adherence then there exists a n x e X with 
X G F for each Fe£F. Then xeclx>(A) for each A e si. If on the other hand 
adh^=c/>, then (9(3*0 e X ' and since A n X e < S ( ^ ) for each A e r f w e have 
(9(3*0 ecl x , (A) for each Aesi. Hence (X\ £') is topological. 

THEOREM 4.2. Let (X, £) be a nearness space. The following are equivalent. 
(1) The underlying topology of (X', £') is compact. 
(2) (X', I') is totally bounded. 
(3) (X, £) is totally bounded and X' — X is finite. 

Proof. By theorem A, and the fact that (X', £') is ultrafilter complete it 
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follows that (1) and (2) are equivalent. (2) implies (3). Each set S^X'-X is 
closed in X'. If X ' - X is infinite, then there exists a infinite sequence {(7(^)} of 
distinct elements in X' - X. Let Ak = {€(&t) : i > fc} and si = {Ak : fc e N}. Then 
r\c\X"9& = <i> and M^g. But sd has the finite intersection property; which is 
impossible since (X', £') is totally bounded. Hence X ' - X must be finite. (X, £) 
is totally bounded since this property is preserved by nearness subspaces. 

(3) implies (2). Let S?c0>(X') and $f£Ç. Then nclx^=<f> and 
{SC)X:SeSf}£Ç. Let X ' - X = { 0 ( y 1 ) , . . . , <?(^n)}. Then there exists AkeSf 
with 0(&k) i clx,(Ak) for 1 < fe < n. Set M = {Ak : 1 < fc < n}. Since £ is totally 
bounded there exists a finite subcollection, say 35 ={£* : 1 < j < m } of if such 
that n { B i n X : l < i < m } = < Ê . Then cê = siU3ft is a finite subcollection of SP 
with empty intersection. Hence (X', £') is totally bounded. 

THEOREM 4.3. Lef (X, £) be a nearness space. If X is Tx then X' is TV 

Proof. Let x e X , then clx,{x} = {x}U{0(#):{x}e # } = {*}. Let e ( f ) e X ' . 
Then c\x,{6(&)} = {€(&)}. Hence X' is Tx. 

The following example shows that there exists Hausdorff nearness spaces for 
which no ultrafilter completion, however constructed, is Hausforff. (A Haus­
dorff nearness space is a nearness space for which the underlying topology is 
Hausdorff.) 

Let (X, t) be a symmetric topological space with 3F and Ht free ultrafilters on 
X Set 

f(y, Ht) = {sdcz g>(X): C\sâ± <t> or Ma & or Ma Ht}. 

Then £(^, Ht) is a compatible nearness structure; a special case of a nearness 
structure generated by a class of ultrafilters. 

Let (X, t) be a Hausdorff topological space with SF and Ht free ultrafilters on 
X Suppose (X, | ( ^ , 3if)) is a Hausdorff ultrafilter completion for (X, £(^, 3i?)). 
Now there are two cases; either SF and Ht converge to distinct points in X in 
which case they contain disjoint open sets, or they converge to the same point 
in which case &U2teÇ(&,2t). But this can happen only if &a<g(Ht) or 
Ht a <&(&). Hence in order to show that there exists a Hausdorff nearness space 
that does not have a Hausdorff ultrafilter completion it suffices to find a 
Hausdorff topological space (X, 0 containing two free ultrafilters 3* and Ht such 
that: 

(1) Every open set in SF meets every open set in Ht; and 
(2) There exists Fe& such that Fi Ht; and 
(3) There exists He Ht such that Hi&. 

This is accomplished in the following example. 

EXAMPLE 4.1. Let R denote the set of real numbers. The collection of all the 
usual open sets on the reals together with all sets whose complements are 
countable forms a subbase for a topology t. Then O e t if and only if O = Q - C 
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where Q is open in the usual topology and C is countable. Let a and b be 
elements of JR with b > 0 ; set Sb(a) = (a-b, a + b). Set 

S - U { S i r / n ( n ) : n > 5 } and T = { n ± - : n > 5 J . 

Let Ir denote the set of irrational numbers. Let 3F by any ultrafllter containing 
the collection: 

{(o,oo):aGjR}u{T,Ir}. 

Let O be any open set in 3 .̂ Then O H S#</>. Let <?*(^) denote the collection 
of all the usual open sets in $\ Then each of these sets meets Q, the set of 
rational numbers. Let 'M be any ultrafllter on JR containing the collection: 

(5*(3É)U{S, Q}. 

We now show that the three statements immediately preceding this example 
hold. 

(1) Let O <E & and Pe X with O and F open sets. Now 0 = 01-C1 where 
01 is open in the usual topology and C1 is countable. Then Oxedf£. Now 
PH01^4> and P= 02~C2 where 0 2 is open in the usual topology and C2 is 
countable. Now Ox Pi 0 2 is a nonempty open set in the usual topology on R. 
Hence Ox Pi 0 2 is not countable and therefore O Pi F is nonempty. 

(2) Te& and f = T and TDS = <t>. Hence f*E 3if. 
(3) QeW and Q is closed. Now QPlIr=<£ and hence Qi&. 
On the surface it seems slightly unsatisfactory that there exists Hausdorff 

nearness spaces with no Hausdorff ultrafllter completion. Yet, if two ultrafilters 
are sufficiently tangled together in the sense that their open sets meet and yet 
essentially different in the sense that each contains a closed set not contained in 
the other, then an ultrafllter completion of such a space reflects this situation 
by allowing the two filters to converge to distinct points but these points are 
tangled together in the sense that they can not be separated with open sets. 

A slight modification of the ultrafllter completion constructed in this paper 
yields a Hausdorff ultrafllter completion for a special class of nearness spaces. 
In a nearness space (X, £), 6(%C) will be called minimal if it is minimal in the 
collection of all C(^) , for ^ a free near ultrafllter. 3F and 3^ are said to have the 
open intersection property if each open set in 9s meets every open set in 3C. 

THEOREM 4.6. Let (X, £) be a Hausdorff nearness space satisfying the 
following: 

(1) For each near ultrafllter 3* there exists a near ultrafllter M for which €(df£) is 
minimal and 0(9?) •=>€(%). 

(2) If Si?! and df€2 are two near ultrafilters for which 0(3^) and 6{dft2) are 
distinct and minimal then Wx and $?2 do not have the open intersection property. 
Then there exists a Hausdorff ultrafllter completion (X, | ) for (X, £). 
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Proof. The construction is identical to that for (X', £') except we set 

Y = {0(50 : ^ is a free near ultrafilter and G(2F) is minimal}. 

The proof is essentially identical to the proof of Theorem 3.4 with only a slight 
modification which is handled by hypothesis (1). Hypothesis (2) guarantees that 
(X, | ) is Hausdorff. 

Easily more can be said about constructing Hausdorff ultrafilter completions 
but we terminate our discussion of this topic with the following theorem. 

Let (X, t) be a Hausdorff topological space. Let M be the collection of all 
free open ultrafilters on X. Set Y=XUM. Let KX be the set Y with the 
topology generated by the base {U: Ue f}U{{9W}U U: Me M and UeM}. 
Then KX is called the Katêtov H-closed extension of (X, t), [11]. 

THEOREM 4.5. Let (X, t) be a Hausdorff topological space. Set 4 = 
{si c 0>(X) : fl ^ T ^ <£ or there exists a free open ultrafilter M with AC\0^ <f> for 
each Aesd and O e M}. Let X' denote the underlying topological space of the 
ultrafilter completion (X', ££)• Then X' is homeomorphic to the Katetov H-closed 
extension KX. 

Proof. The proof follows easily from the fact that the free open ultrafilters 
are precisely the C(&) for the free near ultrafilters in £h. 

5. Ultrafilter complete is almost reflective in NEAR 

THEOREM 5.1. Let (X, £) be a nearness space and (Y,n) an ultrafilter com­
plete nearness space. If f:(X, £)-~*(Y, v) is a nearness map then there exists a 
nearness map f:(X', £)-^>(Y, rj) such that f\X = f. 

Proof. Let 9 be a free near ultrafilter in (X, £). Then f{3^) is a near ultrafilter 
in ( Y, 7]) and hence converges to some y e Y. Choosing one such limit for each 
6(&)eX' — X provides an extension / of / that is continuous. / is a nearness 
map by Lemma 3.2. 

If the mapping / in the above theorem were unique then the ultrafilter 
complete nearness spaces and nearness maps would form a reflective subcateg­
ory in NEAR. Apparently this weaker concept of reflective subcategory has 
not been developed. The following corollary shows that a nearness map 
between nearness spaces can be lifted to their ultrafilter completions. 

COROLLARY 5.2. Let (X, £) and (Y,iq) be nearness spaces and / : (X, |)—> 
( Y, T)) a nearness map. Then there exists a nearness map f such that the 
following diagram commutes. 

(X,€)MY, ri) 
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