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Summary

Natural populations are structured spatially into local populations and genetically into diverse

‘genetic backgrounds’ defined by different combinations of selected alleles. If selection maintains

genetic backgrounds at constant frequency then neutral diversity is enhanced. By contrast, if

background frequencies fluctuate then diversity is reduced. Provided that the population size of

each background is large enough, these effects can be described by the structured coalescent

process. Almost all the extant results based on the coalescent deal with a single selected locus. Yet

we know that very large numbers of genes are under selection and that any substantial effects are

likely to be due to the cumulative effects of many loci. Here, we set up a general framework

for the extension of the coalescent to multilocus scenarios and we use it to study the simplest

model, where strong balancing selection acting on a set of n loci maintains 2n backgrounds at

constant frequencies and at linkage equilibrium. Analytical results show that the expected linked

neutral diversity increases exponentially with the number of selected loci and can become

extremely large. However, simulation results reveal that the structured coalescent approach breaks

down when the number of backgrounds approaches the population size, because of stochastic

fluctuations in background frequencies. A new method is needed to extend the structured

coalescent to cases with large numbers of backgrounds.

1. Introduction

The increasing wealth of information on DNA

sequence polymorphism that has accumulated during

the past two decades has stimulated a variety of

studies that describe the patterns of neutral DNA

diversity that are to be expected under different

evolutionary forces, and that use those patterns to

detect natural selection. Broadly, the effects of

selection on linked neutral variability depend on

parameters such as the population size (N ), the

neutral mutation rate (µ), the recombination rate

between the selected and the neutral loci (r) and, of

course, the strength of natural selection (s). The

general case is difficult, but a considerable amount of

progress has been made for strong selection (Ns(1)

using the structured coalescent, which follows back in

time the genealogies of sets of genes that can be in
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different locations or associated with different alleles

(cf. Hudson, 1990; Hey, 1991 ; Nordborg, 1997). A

powerful heuristic argument used in those studies is

that the effect of selection on linked neutral variability

is analogous to the effect of spatial subdivision. When

a population is subdivided into demes of constant

size, its effective population size is increased and

neutral variability can be larger than in a panmictic

population (Nagylaki, 1982). By contrast, if the sizes

of demes fluctuates, for example by an extinction-

recolonization process, population size decreases and

neutral variability is lost (Whitlock & Barton, 1997).

If one thinks in terms of the coalescent times, stable

subdivision increases them because it takes time to

move from one location to another in order to

coalesce. Fluctuations make times shorter because

lineages only tend to trace back to the limited number

of successful demes.

Natural populations are also structured into diverse

backgrounds (i.e. haplotypes) defined by different

combinations of selected alleles. Just as with spatial

subdivision, genetic structure influences neutral di-
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versity. Diversity at linked neutral loci is reduced if

background frequencies fluctuate more than expected

by drift either because selection eliminates deleteri-

ous variants (Charlesworth et al., 1993; Hudson

& Kaplan, 1994; Charlesworth, 1994; Hudson &

Kaplan, 1995) or because it forces the fixation of

advantageous alleles (Kaplan et al., 1989; Stephan et

al., 1992; Aquadro & Begun, 1993; Aquadro et al.,

1994; Barton, 1998). By contrast, if balancing selection

maintains genetic backgrounds at constant frequencies

then neutral diversity is enhanced (Strobeck, 1983;

Hudson & Kaplan, 1988; Kaplan et al., 1988; Hey,

1991 ; Nordborg, 1997).

The analogy with spatial subdivision, however, has

limitations. Genetic structure is more complex, and

harder to study, than its spatial analogue. Genomes

are formed by very large numbers of genes (e.g.C 3¬
10% in humans) upon which selection can act, and

substantial effects of neutral variability are only

expected through the accumulated effects of many

loci. Thus, the relevant backgrounds will be defined

by combinations of alleles from several (perhaps

many) different loci, possibly spanning large regions

of the genome. This implies that one needs to consider

genealogies that can be transferred between back-

grounds by complex recombination events, rather

than by simple migration. Owing to these difficulties,

almost all the theoretical results obtained up to now

deal with a single selected locus. Some multilocus

results have been produced for purifying selection,

where the exact multilocus coalescent can be ap-

proximated by a simpler version, allowing the con-

sideration of classes of backgrounds instead of the

backgrounds themselves. Genetic backgrounds are

classified according to the number of deleterious

mutations that they harbour. Backgrounds within a

class are considered equivalent, so one only needs to

follow lineages across classes and can ignore the exact

background they are associated with (Charlesworth et

al., 1993; Hudson & Kaplan, 1994; Charlesworth,

1994; Hudson & Kaplan, 1995). Other forms of

multilocus selection, such as balancing selection, do

not yield so easily to simplification and multilocus

results are only starting to emerge. For example, the

patterns of neutral sequence variation generated by

balancing selection acting upon two diallelic loci that

interact epistatically has been recently investigated by

Kelly and Wade (2000). Yet, the way in which

multilocus balancing selection may be affecting linked

neutral variability in a genome-wide scenario is still

poorly understood.

Here, we start by setting up a general analytical

method that extends the structured coalescent to any

situation where selection is strong enough (i.e. Ns is

large enough) for background frequencies to be

constant. Then we apply the method to a model in

which a neutral locus is linked to a set of selected loci

where diallelic polymorphisms are maintained at

equilibrium by strong balancing selection. We choose

this model because of its simplicity. Frequencies can

considered to be stable and no mutation in the

selected loci needs to be taken into account. We study

variability by focusing on a pairwise measure: the

average probability of identity in state between two

randomly chosen alleles. By doing so, we are studying

the distribution of pairwise coalescent times, of which

identities are the Laplace transform (Hudson, 1990).

Afterwards, we check the validity of the analytical

approach by simulations. We aim to answer the

question of how much neutral DNA sequence vari-

ability can be inflated by balancing selection at many

linked loci.

2. Results

(i) Framework

In a random-mating diploid population of fixed size

N, the probability that two genes are identical by

descent (F ) from the previous generation is 1}(2N ).

The identity by descent of two alleles in the next

generation is :

F «¯
1

2N
­

E

F

1®
1

2N

G

H

F¯F­
1®F

2N
. (1)

This well-known result can be easily extended to the

multilocus case following the approach of Maruyama

(1972; generalized by Nagylaki, 1982) for a spatially

structured population and adapting it to genetical

structure. Suppose that genetic variation at many loci

defines a set of genetic backgrounds, labelled i. The

elements of the backward matrix, Γ
ij
, give the chance

that a gene that is presently in background i was

in background j in the previous generation. The

probability of i.b.d. in a given generation between a

gene in background i and a gene in background j is

given by F
ij
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where δ
kl

¯1, δ
kl

¯ 0 if k1 l and N
k
is the population

size of background k. The recursions for the identity

in allelic state, f, are :

f !
ij
¯ z#3

k

3
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δ
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, (3)

where z¯1®µ (µ is the mutation rate) and f can be

regarded as the generating function or the Laplace

Transform for the distribution of coalescence times

(Hudson, 1990).

These recursions can be simplified by changing the

co-ordinates so as to diagonalize Γ. Let the eigenvalues
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of Γ be λα ; the matrix of left eigenvectors is ναi
, and

the matrix of right eigenvectors is η
iα
. The leading

eigenvalue is λ
"
¯1, with η

i"
independent of i, and

corresponds to complete mixing. ν
"i

gives the ultimate

contribution that a gene currently in background i will

make to future generations.

Following Nagylaki (1982), we can define

f
ij
¯3

α
3
β

η
iα

η
jβ

fαβ and fαβ ¯3
j

3
k

ναj
νβk

f
jk
, (4)

where

3
i

ναi
η
iβ

¯ δαβ and 3
α

η
iα
ναj

¯ δ
ij
. (5)

Thus, in the new coordinate system, Equation (3) :

f !αβ ¯ z#λαλβ

E

F

fαβ­3
k

ναk
νβk

(1®f
kk

)

2N
k

G

H

. (6)

Hence, at equilibrium, assuming that the background

frequencies remain constant over time:

fαβ ¯3
k

z#λα λβ ναk
νβk

(1®f
kk

)

2N
k
(1®z#λα λβ )

. (7)

This gives a simple formula for the full set of identities,

fαβ, in terms of the diagonal elements, f
kk

.

(ii) Simple examples: one and two selected loci

Let us start with the simplest example: a single

selected locus. Suppose that two genetic backgrounds

are defined by the segregation of two alleles at a single

locus (P, Q), at frequencies p and q at a given

generation. Selection (or drift) then alters the fre-

quencies to p«, q« at the next generation. A linked

neutral locus is associated with one or other of these

backgrounds; the recombination rate is r.

The forward transition matrix is M ; element M
ij

gives the chance that a gene now in background i will

r1 r2

Fig. 1. The neutral locus (gray) lies at the left of the set
of selected loci (black).

be in background j in the next generation. It is

obtained as the product of two matrices ; the first

accounting for the change in background frequency

under selection or drift ; the second, for recombination

in a pool with allele frequencies p« and q«.

M¯

E

F

(1®rq«)p«
p

rq«p«
p

rq«p«
q

q«(1®rp«)
q

G

H

¯
E

F

1®rq « rq «
rp « 1®rp «

G

H

. (8)

The elements in the background matrix Γ
kl

give the

chance that a gene that is presently in background k

was in background l in the previous generation. It can

be obtained by applying Bayes’ rule and normalizing.

In the single locus case, it is

Γ¯
E

F

1®rq « rq «
rp « 1®rp «

G

H

. (9)

Note that the forward and the backward matrices

are identical because selection or drift do not

move alleles between backgrounds (i.e. they are not

transitions).

The eigenvectors and eigenvalues have very simple

forms

λ¯ (1, 1®r) (10)

ν¯
E

F

q« p«
1 ®1

G

H

(11)

η¯
E

F

1 p«
1 ®q«

G

H

. (12)

Consider now the case of two selected loci, each

segregating for two alleles P and Q with frequencies p
i

and q
i
. In this case, there are four possible back-

grounds: P
"
P
#
, P

"
Q

#
, Q

"
P
#

and Q
"
Q

#
. We define the

four background frequencies as b
"
, b

#
, b

$
and b

%
in one

generation and b!

"
, b!

#
, b!

$
and b!

%
in the next. Assume a

linear map n®1®2 (where n stands for ‘neutral ’) as

depicted in Fig. 1 and no interference.

In this case, the backward transition matrix is (we

drop all the prime symbols)

https://doi.org/10.1017/S0016672301005493 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301005493


N. H. Barton and A. Na�arro 132
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where r
"

and r
#

are according to Fig. 1 and where

r-
i
¯1®r

i
.

Although the approach we use here is entirely

general and can be applied to diverse multilocus

scenarios, calculations become easier when it is

assumed that there is no linkage disequilibrium

between selected loci, so the frequency of each

background is just the product of allelic frequencies.

In this case, the matrix can be greatly simplified.
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Then, its eigenvectors and eigenvalues are
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where r
"

and r
#

are according to Fig. 1 and where

r-
i
¯1®r-

i
.

The eigenvectors are products of contributions

from each locus. The first left eigenvector (first row of

ν) corresponds to the steady state, where each

background contributes in proportion to its fre-

quency; in the long term, there is the same expected

marker frequency in each background (first column of

η). The second eigenvalue corresponds to linkage

disequilibrium of the neutral marker with just the first

locus, which breaks down at rate (1®r
"
). The third

eigenvalue corresponds to linkage disequilibrium with

just the second locus, which breaks down at a rate

equal to the chance that there will be no recombination

of the neutral marker with the second locus, i.e.

(1®r
"
) (1®r

#
)­r

"
r
#
. The fourth eigenvalue expresses

three-way disequilibrium. A different transition matrix

is obtained when the neutral marker lies between the

two selected loci (map 1-n-2). Its eigenvectors,

however, are identical to the ones in (16) and (17);

only the eigenvalues differ :

λ¯ (1, ra
"
, ra

#
, ra

"
ra
#
). (18)

Assuming constant background frequencies, one

can easily plug eigenvalues and eigenvectors into (7)

to obtain the equilibrium identities.
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(iii) Many loci

The previous examples extend to many loci in a

straightforward way by means of the multilocus

machinery developed by Barton and Turelli (1991)

and the principal components approach of Bennet

(1954; see Dawson, 2000 for an insightful update and

extension). The eigenvectors of the transition matrix

are products across loci, which correspond to the

steady decay of various higher-order linkage disequi-

libria. They have a simple form because of the key

assumption that the backgrounds are in linkage

equilibrium. Therefore, only the disequilibria of the

marker with each set of selected loci, which decay

geometrically (Bennet, 1954; Barton & Turelli, 1991 ;

Dawson, 2000), need to be tracked. If the backgrounds

were in linkage disequilibrium then the eigenvectors

would be extremely complicated functions of recom-

bination rates.

(iv) Defining eigen�alues

We first define the multilocus eigenvectors and find

the eigenvalues in terms of the recombination rates.

This requires no assumptions about the map. How-

ever, with equally spaced loci on a linear map and no

interference, the eigenvalues simplify. We then find

the identities to leading order in "
N
, and give a

recursion for the higher-order terms.

It is convenient to describe the backgrounds by a

vector X, with values X
i
¯ 0 or 1 for alleles P or Q.

The eigenvectors correspond to linkage disequilibria

between sets of loci U (set (2,4,9), for example,

includes loci 2, 4 and 9). We write the eigenvectors as

functions of X, ν
U
(X), η

U
(X). Let S

i
¯ 2X

i
®1, so that

S
i
¯³1. Let g

i
¯ (1®X

i
)­S

i
p
i
(so that g

i
¯ q

i
or p

i
) ;

g-
i
¯X

i
®S

i
p
i
(so that g-

i
¯ p

i
or q

i
). Let δ

i
(X, Y)¯1 if

X
i
¯Y

i
, 0 otherwise. We will use the convention that

S
U

¯0
i `U

S
i
, etc. The complete set of loci is L. Thus,

the frequency of the gamete containing the set of loci

U is g
U
.

The eigenvectors are

ν
U

¯S
U
g
LcU

η
U

¯S
U
ga
U
. (19)

Each of the terms in (19) is a function of the genotype

X. To show that these eigenvectors are orthogonal,

one only has to sum their product over X

3
X

ν
U
η
V
¯3

X

S
U
S

V
g
LcU

ga
V
¯ δ

U,V
. (20)

Because each of the elements in (5) is a product across

loci, this sum can be simplified by separating it into

terms corresponding to the four kinds of loci : those in

U and V, in U but not V, in V but not U, and in

neither. These contribute g-
i
;S

i
;S

i
g
i
g-
i
; g

i
, respectively.

Because the second and third terms sum to zero, and

the first and last terms sum to 1, we have δ
U,V

, as

required.

(v) The effect of recombination of the identities

Now, consider the effect of recombination. Let the

chance that the marker remains associated with the set

S be r
S
. Thus r! ¯1 (where ! stands for the empty set),

and for a single selected locus i and recombination

rate c, r²i´
¯1®c, (we use c rather than r to avoid

confusion). Assuming a linear map and n equally

spaced loci, with no interference, the chance of

generating k junctions is ck(1®c)n−k. This leads to an

expression for r
S
. The transition matrix which gives

the numbers that move from background X to Y is

Γ(X, Y)¯3
S

r
S
δ
S
(X, Y)g

LcS
(Y). (21)

Multiplying by ν
U
(X), ν

V
(Y) shows that these are

indeed eigenvectors of Γ, and that the corresponding

eigenvalues are just r
V
.

(vi) The leading term in 1}N

We can find the leading term to O("
N
) by setting f

kk
to

zero in (7). This leads to

f *

U,V
¯

z#λ
U
λ
V
δ
U,V

2Np
U
q
U
(1®z#r #

U
)
­O

E

F

1

N#

G

H

, (22)

where f *

U,V
is a linear transformation of the identity

f (X, Y) between genes chosen from backgrounds X, Y.

It corresponds to the covariance between random

fluctuations in linkage disequilibria, just as f for a

single locus corresponds to the variance in allelic

frequencies. (22) shows that fluctuations in disequi-

libria involving different sets of loci are indepen-

dent (δ
U,V

), and their variance depends on the

probability of remaining associated with that set (r
U
).

Notice that the average identity between randomly

chosen genes is f!,!
¯ z#}(2N(1®z#)), which is just the

same as for an unstructured population. This seems to

contradict the decrease in identity which one expects

for markers linked to a balanced polymorphism.

However, it can be shown that this decrease is of order

1}N # and so does not appear in (22).

(vii) The full solution: transforming the identity

within backgrounds

To get the full solution (valid for smaller N), one

needs to solve a matrix equation for the vector f (X, X ),

which is the diagonal element of the full matrix of

pairwise identities. It is easier to solve by transforming

to f
U

¯3XνU
(X) f (X, X ). Note that this is not the

same as f
U,U

, given by (22).
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Table 1. The eight classes of terms of the matrices H and H* (25). Each matrix is the product of some of

these terms according to the presence (1) or absence (0) of loci in the sets W, U, V or Z, U, V

H
W,U,V

H*

Z,U,V

Presence}Absence Term Presence}Absence Term

W U V Z U V
0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 pq 0 1 1 1}(pq )
1 0 0 0 1 0 0 0
1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 (q®p ) 1 1 1 (q®p )}(pq )

Applying this transformation to (7), and after some

tedious algebra, we have

f
U,V

¯
1

2N
3
W

z#r
U
r
V
H *

W,U,V

(1®z#r
U
r
V
)

(δ
W,!

®f
W
) (23)

and

f
W

¯ 3
U,V

H
W,U,V

f
U,V

, (24)

where

H
W,U,V

¯3
X

ν
W
η
U
η
V
, H *

Z,U,V
¯3

X

η
Z
ν
U
ν
V

g
L

(25)

Note that (1®f
X,X

) transforms to (δ
Z,!

®f
Z
). The

matrices H, H* can be found by separating the sums

over X into contributions from the eight classes of loci

that are defined by belonging or not to the three sets

U,V and W. The matrix is the product of contributions

(Table 1). The driving term involves 3
Z
δ
Z,!

H *

Z,U,V
¯

H *
!,U,V

¯ δ
U,V

}(p
U
q
U
). The remaining sum involves

H
W,U,U

¯ [(q®p)}pq]
W

for all U that contain W, and

zero otherwise. The driving term (which is just the

transform of (22)) is therefore

f *

W
¯

E

F

1

2N

G

H

E

F

q®p

pq

G

H W

Λ
W,W

, (26)

where

Λ
W,W

¯3
V

1

(1®z#r #
WV

)
. (27)

As we can see (23), the full solution is rather complex,

and obtaining numerical values for more than, say,

five loci becomes excruciatingly slow.However, several

simplifications can be made.

(viii) Simplifying Λ for particular models of

recombination

The Λ
U,V

terms simplify for particular models of

recombination. Consider Λ!,!
. For a linear map with

at most one crossover per generation (i.e. total

interference), we have r
U

¯1®kc, where k is the

distance spanned by U (if the marker is embedded

within it) or the distance from the marker to the

furthest locus if the marker is outside U. Suppose

there are n
+

loci to the right and n
−

to the left ; the

marker is αc from the right-hand locus and (1®α)c

from the left-hand locus.

Λ!,!
¯

1

1®z#
­ 3

n+−"

j=!

2j

1®z#(1®(α­j )c )#

­ 3
n−−"

j=!

2j

1®z#(1®(1®α­j )c )#

­ 3
n++n−−"

j="

2j−"(n
+
­n

−
®j )

1®z #(1®jc )#
(28)

where j is the number of junctions. We have used

the fact that there are 2j sets which have all the loci to

the left of the neutral locus, and the leftmost locus

( j­α)c away; and there are 2j−"(n
+
­n

−
®j) sets

which span a distance jc and which include the neutral

locus.

(ix) The a�erage identity

Because the actual background to which a neutral

allele is linked is likely to be unknown, we focus on the

average identity between gametes chosen at random

from the whole population, f!,!
. From (23), this is

f!,!
¯

z #(1®f! )

2N (1®z#)
. (29)

The coefficient f! is the average identity between

randomly chosen genes within the same background.

It increases with tighter linkage.

(x) An explicit solution for equal allele frequencies

Suppose that we have slow change (µ, r, N−"'1). Let

r
U

¯1®ρ
U
, z¯1®µ. In this case, (23) becomes

f
U,V

¯3
Z

H *

Z,U,V

(4Nµ­2Nρ
U
­2Nρ

V
)
(δ

Z,!
®f

Z
). (30)
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Assuming a linear map, the recombination rates ρ
U

are just the total recombination rates between the

limits of the sets (including the marker). Overall, we

have a set of linear equations in the f
Z

f
W

¯ 3
U,V

3
Z

H
W,U,V

H *

Z,U,V

(4Nµ­2Nρ
U
­2Nρ

V
)
(δ

Z,!
®f

Z
). (31)

In particular, the average identity between randomly

chosen gametes is

f!,!
¯

(1®f!)

4Nµ
, (32)

where

f! ¯ 3
U,V

3
Z

H!,U,V
H *

Z,U,V

(4Nµ­2Nρ
U
­2Nρ

U
ρ
V
)
(δ

Z,!
®f

Z
). (33)

The array H!,U,V
only has contributions p

U
q
U

from

U¯V, and from ZXU:

f! ¯3
U

1

(4Nµ­4Nρ
U
)

E

F

1® 3
ZXU

(q®p)
Z
f
Z

G

H

. (34)

Further simplification is achieved by assuming that

some form of symmetrical balancing selection main-

tains equal and even frequencies at all the selected loci

(p
i
¯ q

i
¯ "

#
). Then, f! can be easily expressed as

f! ¯1®
1

1­3
U

1

(4Nµ­4Nρ
U
)

. (35)

Recall that U stands for all the possible sets of loci

and ρ
U

is the total recombination between the limits of

each set. These results could be extended to arbitrary

linear maps, because all that matters is the chance of

a recombination event that dissociates the marker

from some set of loci.

Some values predicted using (35) and (32) are

plotted in Fig. 2. The predicted identity decreases (i.e.

diversity increases) steadily with the number of

backgrounds. In fact, as the number of backgrounds

becomes large, the identity becomes absurdly small.

Examining (35), one can see an obvious reason for the

increase in variability predicted by the structured

coalescent : the second term in the denominator is a

sum across all possible sets of loci that involves C 2n

summands and, therefore, can become an enormous

quantity. In fact, with a large number of loci, the

number of summands may become so big that

mutation rates can become almost irrelevant. (32) and

(35) predict that, as the number of backgrounds

increases, f! U 1 and f!,!
U 0 independently of mutation

rates, because the backgrounds will eventually diverge,

even for very low mutation. But, of course, as the

number of backgrounds approaches population size

(N ), it is impossible to maintain all of them in the

population. For example, if we consider 10 selected

1
0·9
0·8
0·7
0·6
0·5
0·4
0·3
0·2
0·1

0
0 5 10 15 20

N = 10000
N = 1000
N = 100

(a)

(b)

f

1
0·9
0·8
0·7
0·6
0·5
0·4
0·3
0·2
0·1

0
0 5 10 15 20

N = 10000
N = 1000
N = 100

f

Number of selected loci

Fig. 2. Theoretically expected identities between two
randomly chosen gametes for three different population
sizes. All the loci (both selected and neutral) are evenly
spaced and the neutral locus lies at an extreme of the
map (Fig. 1). Selection maintains even frequencies at all
the selected loci. µ¯1±25¬10−%. (a) r¯10−&. (b) r¯10−$.

loci, the number of possible backgrounds is 1024, and

a population of, say, size 100 is clearly unable to

sustain such a level of subdivision. Although alleles

are maintained, some of the backgrounds they define

must be absent, rendering the population far less

structured than our analytical results assume. The

number of backgrounds grows exponentially with the

number of loci. For example, 20 loci produce C10'

possible backgrounds, and 24 loci C1.7¬10(, so any

population is bound to lose selected polymorphism if

the number of loci is large. In the following, we use

simulations to check that the structured coalescent

breaks down for quite small numbers of loci even

when N is large.

(xi) Simulations

The coalescent approach developed above relies on

two related assumptions: that every background is

abundant ; and that its frequency is both known and

constant. These assumptions will, in principle, be

valid for strong and constant selection (i.e. Ns large

and s constant) but, when many selected loci are

considered, the equations predict an unrealistically

large hitchhiking effect (Fig. 2), with identity dropping

almost to zero. To find out why and under which

parameter values the theory breaks down, we simu-

lated a multilocus system. Details of the simulation
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1
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0 0·2 0·4 0·6 0·8 1

h (heterozygosity)

w

Fig. 3. Some instances of the fitness function. To make
values comparable, we divide by 1­α. Continuous lines
α¯1 ; dashed lines α¯10. Straight lines k¯1 (additive
fitness) ; concave lines k¯10 (positive epistasis) ; convex
lines k¯ 0±1 (negative epistasis).

system can be found in a companion paper (Navarro

& Barton, 2002). Its basics are as follows: the program

performs forward simulations of a life cycle with

selection and recombination for a population of size

N. As in the previous section, we consider a number of

selected loci, each segregating for two alleles, and a

neutral locus lying alongside them. Selected loci are

assumed to be spaced at equal intervals along the

genetic map, and the recombination between any two

adjacent loci is r. The mutation rate at the neutral

locus is µ. All the selected loci have heterozygote

advantage and selection is symmetrical at each locus.

Simulation values throughout this article were ob-

tained by running the population to drift-selection

equilibrium and calculating identities between ran-

domly chosen gametes ( f ) in the last generation. Every

f value plotted in the graphs is the average of 10 runs.

The coalescent approach presented is entirely

general and does not assume any specific multilocus

fitness regime. Making some assumptions, we have

used it to study a polymorphic equilibrium where

selection tries to maintain all the possible 2n back-

grounds at constant frequencies and without linkage

disequilibrium among selected loci. Such an equi-

librium can be reproduced under the n-locus sym-

metric viability model with negative epistasis (Karlin

& Avni, 1981 ; Christiansen, 1987, 1988, 1990; Barton

& Shpak, 2000). This is the model we used in our

simulations. For simplicity, we assumed that all loci

contribute equally to fitness and that selection acts

only on the proportion of heterozygosity of an

individual. The fitness of an individual was given by

w (α, h, k)¯1­αhk, where h is the proportion of

heterozygous loci in a given individual (0% h%1)

and α is the strength of selection. Epistasis enters the

function by means of k, a parameter that allows for

different selective regimes (Fig. 3). If k!1, there is

negative epistasis, so selection favours decreased

variance in heterozygosity and, at equilibrium, all

possible backgrounds are present in the population

0·18

0·12

0·06

0
1 2 3 4 5 6 7 8 9

Simulated
Neutral
Predicted

(a)

f

0·8

0·6

0·4

0 1 2 3 4 5 6 7 8 9

Simulated

Neutral
Predicted

(b)

f

0·2

Simulated

Neutral
Predicted

0·4

f

0·3

0·2

0·1

0

0·5

0·6

0·7

0·8

0·9

1

1 2 3 4 5 6 7 8 9

Number of selected loci

(c)

Fig. 4. Identities (³SE) at a neutral locus with an
increasing number of selected loci. All the loci (both
selected and neutral) are evenly spaced. The neutral locus
lies at an extreme of the map (Fig. 1). µ¯1±25¬10−%,
r¯10−&, α¯1 and k¯ 0±1. (a) N¯10%. (b) N¯10$.
(c) N¯10#.

with no linkage disequilibrium (Christiansen, 1987,

1988). If k"1, there is positive epistasis, so selection

favours increased variance in heterozygosity. In this

case, the equilibrium population has maximum linkage

disequilibrium and, when linkage is complete, it is

formed by two complementary backgrounds. If k¯1,

fitness is additive and selection only affects mean

heterozygosity (i.e. individual loci), ignoring the
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Fig. 5. Identities at a neutral locus with an increasing
number of selected loci and different degrees of negative
epistasis. Loci distribution and parameters as in Fig. 4
with N¯10$.

variance in heterozygosity and thus ignoring linkage

disequilibrium. Detailed results on neutral variability

under these different fitness schemes can be found in

Navarro & Barton (2002). Here, we only concern

ourselves with the case of negative epistasis because it

allows straightforward comparisons with the analy-

tical coalescent approach.

Fig. 4 shows predicted and simulated changes in the

value of identity as the number of selected loci

increases, for different population sizes. For multi-

locus systems with strong negative epistasis and few

selected loci, the analytical predictions hold quite well

when compared with the simulations. With few loci,

selection is successfully forcing all the possible

backgrounds to be present at even and constant

frequencies. The population is as subdivided as the

theory assumes and neutral variability increases

proportionally to the level of subdivision. As expected,

when the number of loci in the system becomes too

large, the analytical and simulation results start to

diverge. Of course, the larger the population size, the

more selected loci are needed for theoretically pre-

dicted identities to diverge from simulations. Fig. 5

shows another factor affecting the divergence of

simulations form analytical results : the strength of

epistasis in the system. The closer the fitness scheme is

to additivity, the more important is the divergence. As

we discuss below, the cause of this divergence is that,

when the number of loci is large and}or epistasis is

zero or positive, the population is not as subdivided as

the theory assumes because fewer genetic backgrounds

are maintained.

3. Discussion

There is a substantial body of theory on the effects

that balancing selection acting on a single selected

diallelic locus is expected to have on linked neutral

variability (Strobeck, 1983; Hudson & Kaplan, 1988;

Kaplan et al., 1988; Hudson 1990; Nordborg 1997). It

has been shown that the neutral variants linked to a

given selected allele (background) constitute a different

‘subpopulation’ and that differentiation between

subpopulations increases the predicted sequence vari-

ability (Hudson & Kaplan, 1988). Recently, Kelly and

Wade (2000) extended this single-locus theory to a

two-locus scenario and studied neutral sequence

variation linked to a pair of balanced polymorphisms

held in strong linkage disequilibrium by epistatic

selection. Their main result is that neutral variability

can be increased across the intervening region for a

longer distance than expected with a single selected

locus. As we detail elsewhere (Navarro & Barton,

2002), this two-locus selective scenario is a special case

of the fitness model studied here (specifically, it is

equivalent to symmetric overdominance with positive

epistasis, i.e., k"1 in our fitness function).

Here, we have developed a general method to apply

coalescent theory to multilocus scenarios. We have

used the method to extend the existing theory to

consider an arbitrary number of loci under balancing

selection. The extension seems to work fairly well for

small number of loci but, when the number of loci

becomes too big, an absurdly large effect is predicted

(Fig. 2). To perform a preliminary exploration of the

causes of this behavior, we have simulated the effects

on neutral variability of multilocus balancing selection

with negative epistasis. We find that such selection has

the potential to enhance neutral variability far beyond

the predictions for a single selected locus, because it

allows many backgrounds to be maintained in the

population. There is, however, a limit to that increase.

Simulations show that variability stops increasing and

seems to stabilize about a certain value, independent

of the addition of more selected loci. An obvious

explanation is that, even with extremely strong

selection, the population size imposes a logical limit to

the number of backgrounds that can coexist. However,

this can hardly explain the results in Figs 4 and 5. A

close examination of these figures shows that simu-

lations diverge from the coalescent predictions even

when the number of backgrounds is relatively small

compared with population size. (e.g. in Fig. 4a,

divergence starts with 64 backgrounds for N¯10%).

Stochastic fluctuations in background frequencies are

crucial for this divergence.

The increase of variability produced by multilocus

balancing selection is opposed by drift. With stable

background frequencies, drift acts independently

within each subpopulation of size N}2n. This effect is

taken into account by our analytical model. When the

number of backgrounds is large enough, another

source of drift becomes important. The number of

backgrounds grows exponentially with the number of

loci and, although selection may still be very strong on

each individual locus and allele frequencies are close
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Fig. 6. Stochastic fluctuations of the frequencies of the 16
genetic backgrounds defined by four diallelic loci in a
population of size N¯10$. Each line stands for the
frequency of a background. Backgrounds had even
frequencies at the first generation. Selected loci are evenly
spaced r¯10−&, α¯1, k¯ 0±1.

to deterministic expectations, selection quickly be-

comes very weak on each individual background. In

such circumstances, drift is not only caused by random

sampling within each background but is also asso-

ciated with stochastic fluctuations in background

frequencies (Fig. 6). These fluctuations are not

considered in the analytical model, in which fre-

quencies were assumed to be constant. To put things in

another way: the fluctuations violate the assumption

of no linkage disequilibrium between selected loci

because they generate random associations among

them. These random associations render the popu-

lation less structured than assumed by the coalescent

approach, so that the increase in neutral variability is

smaller than predicted. Moreover, if fluctuations are

very strong, some backgrounds will be eliminated by

drift and the neutral variability associated with them

will be swept away. Backgrounds can eventually be

recovered by recombination (Fig. 6), whereas the

neutral variability lost with them can only be replaced

by mutation.

The exact multilocus coalescent will be a useful tool

to study balancing selection systems provided that the

number of relevant backgrounds is not very large and

their frequencies are constant. It will be useful to

study relatively simple multilocus systems in species

with small effective population size, such as humans,

but more complex systems could be studies by this

approach in species with larger population size, such

as Drosophila. Of course, some knowledge is needed

about which loci are the targets of selection in order to

know how many backgrounds can potentially be

present in the population. One of the advantages of

the coalescent approach is that the exact kind of

selection acting upon the system is not important. It

does not matter if genetic backgrounds are maintained

by, for example, some form of overdominance (as

assumed here) or by frequency-dependent selection, as

long as their frequencies are kept constant. If this is

not the case, some way to account for perturbations

in background frequencies must be introduced. In

principle, one could consider genealogies conditioning

on the random series of background frequencies and

then average over these sequences. This has been done

to study the earlier phases of selective sweeps, where

fluctuations in the frequency of the favoured allele are

important (Barton, 1998). Applying the same strategy

to multilocus balancing selection is difficult for several

reasons. First, the strength of perturbations does

depend on the form of selection in the system, which

in our case includes epistasis and is therefore far more

complex than simple positive selection. Second, a

proper analysis must take simultaneously into account

fluctuations in all the backgrounds, which means

taking into account the whole population all time,

rather than only the favoured allele for just a few

generations. Finally, in the case of selective sweeps,

one can make the simplifying assumption that the

favoured allele is destined for fixation, whereas, in the

case of multilocus balancing selection, one must

account for the loss and recovery of backgrounds by

drift and recombination. The case for the application

of our extension of the structured coalescent to the

study of multilocus balancing selection is made worse

by removing some of the simplifying assumptions that

underlie our model. First, our analytical model

assumes that the selection–drift equilibrium has been

reached, but Kelly and Wade (2000) show that the

patterns of variability expected during the approach

to equilibrium in a two-locus model are quite different

than the ones expected at equilibrium. In a multilocus

scenario, equilibrium takes much longer to achieve, so

the relevance of equilibrium variability predictions is

doubtful. Second, although the analytical approach

developed here is completely general, our application

of it to balancing selection focused on symmetric

overdominance acting on several equally spaced,

diallelic loci that contributed equally to fitness. The

stochastic fluctuations in background frequencies that

affect the validity of the coalescent will be even more

difficult to account for in more realistic systems in

which fitness is not symmetric ; selection acts with

different strength in different loci and the interactions

between loci are not governed by exactly the same

kind of epistasis.

An alternative is not to use the exact structured

coalescent, but an approximation. This has been

successfully done in the case of purifying selection. In

that case, the coalescent is structured into different

classes of backgrounds with different numbers of

deleterious mutations rather than into different indi-

vidual backgrounds. This approach is based on two

approximations : first, that all the backgrounds har-

bouring a given number of mutations are selectively

equivalent ; and, second, that the fitness of a gamete
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depends only on the mutations it carries, so that one

does not need to consider zygotes (Charlesworth et

al., 1993; Hudson & Kaplan, 1994; Charlesworth,

1994; Hudson & Kaplan, 1995). Unfortunately,

neither of these approximations is valid under bal-

ancing selection. There is no similar way to classify

different backgrounds into equivalent classes because

heterozygosity and linkage disequilibrium are crucial.

The fitness of a given gamete depends on the zygotes

it will form and, therefore, on the other gametes in the

population.

It seems clear that, in the case of balancing selection,

the study of multilocus genealogies must take into

account stochastic fluctuations on each of the possible

genetic backgrounds. This can be done by our forward

simulations, which we have used extensively to study

the effects of balancing selection on several measures

of neutral variability (Navarro & Barton, 2002).

We thank B. Charlesworth, D. Charlesworth and F.
Depaulis for valuable discussion and criticism. We are also
grateful to an anonymous reviewer, who pointed out an
imprecision in the original manuscript. This work was
supported by the BBSRC.
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