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Abstract

Peer grading is an educational system in which students assess each other’s work. It is commonly applied
under Massive Open Online Course (MOOC) and offline classroom settings. With this system, instructors
receive a reduced grading workload, and students enhance their understanding of course materials by
grading others’ work. Peer grading data have a complex dependence structure, for which all the peer grades
may be dependent. This complex dependence structure is due to a network structure of peer grading,
where each student can be viewed as a vertex of the network, and each peer grade serves as an edge
connecting one student as a grader to another student as an examinee. This article introduces a latent
variable model framework for analyzing peer grading data and develops a fully Bayesian procedure for its
statistical inference. This framework has several advantages. First, when aggregating multiple peer grades,
the average score and other simple summary statistics fail to account for grader effects and, thus, can be
biased. The proposed approach produces more accurate model parameter estimates and, therefore, more
accurate aggregated grades by modeling the heterogeneous grading behavior with latent variables. Second,
the proposed method provides a way to assess each student’s performance as a grader, which may be used
to identify a pool of reliable graders or generate feedback to help students improve their grading. Third, our
model may further provide insights into the peer grading system by answering questions such as whether
a student who performs better in coursework also tends to be a more reliable grader. Finally, thanks to
the Bayesian approach, uncertainty quantification is straightforward when inferring the student-specific
latent variables as well as the structural parameters of the model. The proposed method is applied to two
real-world datasets.

Keywords: Bayesian modeling; cross-classified model; peer grading; rater model

1. Introduction

Peer grading, also known as peer assessment, is a system of formative assessment in education whereby
students assess and give feedback on one another’s work. It substantially reduces teachers’ burden
for grading and improves students’ understanding of the subject and critical thinking (Panadero &
Alqassab, 2019; Yin et al., 2022). Consequently, it is widely used in many educational settings, including
massive open online courses (MOOCs; Gamage et al., 2021), large university courses (Double et al.,
2020), and small classroom settings (Sanchez et al., 2017). In a peer grading system, each student’s
work is assigned, often randomly, among several other students who act as graders or raters. Due to the
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Figure 1. Network diagram representing the network structure of peer grading data.

Note: Each circle is a vertex of the network and represents a student. The arrows are the peer grades, which serve as edges connecting

two students; their direction indicates whether the student receives or gives the grade.

design of this system, peer grading data have a different structure from traditional rating data, which
also consists of students’ grades from graders. For traditional rating data, the students whose work is
evaluated cannot serve as graders, which leads to a relatively simple data structure. On the other hand,
peer grading data have a network structure where all the peer grades may be dependent. Each student
can be viewed as a network vertex, and each peer grade serves as an edge connecting two students—a
grader and an examinee (see Figure 1 for a visual illustration of such a network structure).

A simple peer grading system aggregates the peer grades using a straightforward method like the
mean or median to derive a final grade for each student’s work (Reily et al., 2009; Sajjadi et al., 2016).
This conventional method does not consider the heterogeneity among the graders. Some graders may
exhibit systematic biases and tend to assign higher or lower grades than their peers when assessing
the same work. Graders may also exhibit varying levels of reliability; while some maintain consistent
grading standards, others may give erratic grades that lack a consistent standard. Furthermore, when
the data involve multiple formative assessments for each student, a more accurate grade may be derived
by borrowing information across assessments. Finally, monitoring how students perform as graders is
often helpful, as it provides an opportunity to reward the best-performing graders and offer feedback
to help those who need improvement. Different methods have been developed to mitigate grader bias
and improve peer assessment reliability (see Alqassab et al., 2023 for a review). Depending on whether
instructors’ scores are needed in method training, they can be classified as supervised and unsupervised
learning methods. Supervised learning methods utilize instructors’ scores to train a function that maps
multiple peer grades to an aggregated grade that mimics the instructor’s score (Namanloo et al., 2022;
Xiao et al., 2020). For instance, Namanloo et al. (2022) proposed a graph convolutional network method
that uses peer grades and behaviors of peers to predict the respective instructors’ scores.

On the other hand, unsupervised learning methods try to find an aggregation rule based only on peer
grades without access to instructors’ scores. Unsupervised learning is typically performed by employing
latent-variable-based measurement models (e.g., Han, 2018; Piech et al., 2013; Xu et al., 2021), which
are closely related to models for traditional rating data in which each individual is either a student or a
grader. As explained in the sequel, they make an independence assumption that is also adopted in the
latent variable models for traditional rating data. However, as peer grading data have a complex network
structure, this independence assumption is likely oversimplified, leading to suboptimal performance.

Many latent variable models have been proposed for traditional rating data, including the facet
model (Linacre, 1989) and its extensions (Uto & Ueno, 2020; Uto, 2021), the hierarchical rater models
(Casabianca et al., 2016; DeCarlo et al., 2011; Molenaar et al., 2021; Nieto & Casabianca, 2019; Patz
et al., 2002), the rater bundle model (Wilson & Hoskens, 2001), and the generalized rater model (Wang
et al., 2014). These models introduce rater-specific parameters to model the rater effects in the data.
With many raters, these rater-specific parameters are treated as random effects (i.e., latent variables) and
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further assumed to be independent of the examinee-specific latent variables used to model examinee
performance. These assumptions are also made in the existing latent variable models for peer grading
data (Han, 2018; Piech et al., 2013; Xu et al., 2021). However, we note that the assumption about the
independence between the rater-specific latent variables and examinee-specific latent variables does not
hold for peer grading data, as the same students are both examinees and raters, and the characteristics of
the same student as a rater and those as an examinee are naturally correlated. Ignoring such dependence
can result in model misspecification and substantial information loss. To the best of our knowledge, no
rater model in the literature accounts for such a dependence structure.

We fill this gap by proposing an unsupervised latent variable model for peer grading data. The
proposed model jointly analyzes peer grades for multiple assessments and produces more accurate
aggregated grades. It models the student effects with correlated latent variables that capture a student’s
characteristics as an examinee and a grader, respectively. Unlike the existing latent variable models
for peer grading data, the proposed model captures the dependence in data brought by the network
structure of peer grades and the dual roles of each student as an examinee and a rater.

Due to the complex dependence structure under the proposed model, its marginal likelihood
involves a very high-dimensional integral with respect to all the student-specific latent variables that can
hardly be simplified. Thus, solving the maximum likelihood estimator is computationally infeasible, and
consequently, frequentist inference based on the marginal likelihood is a challenge. We develop a fully
Bayesian approach for drawing statistical inferences to overcome the computational challenge. With
this approach, uncertainty quantification is straightforward when inferring the student-specific latent
variables as well as the structural parameters of the model. However, its computation is still non-trivial
due to the presence of a large number of latent variables and a complex network structure. To solve this,
we use a No-U-Turn Hamiltonian Monte Carlo (HMC) sampler (Hoffman & Gelman, 2014), which
produces efficient approximate samples from the posterior distribution.

Besides the traditional rater models, the proposed framework is closely related to cross-classified
random effects models (Goldstein, 1994; Rasbash & Goldstein, 1994; Raudenbush, 1993), an extension
of standard multilevel models for non-hierarchical data that have cross-classified structures. These
models have received wide applications for evaluating measurement reliability, including in general-
izability theory (Brennan, 2001, 2010). Our data involve three crossed factors—the examinees, the
graders, and the assessments—and the proposed model decomposes each peer grade based on these
three factors. However, our model allows the latent variables (i.e., random effects) associated with
the crossed factors (examinees and raters) to be correlated to account for the special design of peer
grading. In contrast, a standard cross-classified random effects model assumes the random effects
associated with different crossed factors to be independent. Introducing such dependence among the
latent variables substantially increases the complexity of the model and its inferences. Our model also
has close connections with several latent variable models concerning dyadic data, including social
relations models (e.g., Kenny & La Voie, 1984; Nestler, 2016; Nestler et al., 2017; Nestler et al., 2020;
Warner et al., 1979) and the dyadic item response theory (IRT) model (Gin et al., 2020), where the dyadic
IRT model extends the social relations models by incorporating an IRT measurement model. Peer
grading data can be viewed as a special type of dyadic data, where each dyad involves an examinee and a
grader, and the dyads are formed by random assignment. However, our model differs substantially from
the existing social relations models in how latent variables are modeled and interpreted. The traditional
social relations models focus on inferring the causes and consequences of interpersonal perceptions and
judgments. In contrast, the current analysis focuses on measuring latent traits concerned with applying
peer grading (e.g., examinee performance and rater reliability). As a result, the existing social relations
models are unsuitable for the current application.

The rest of the article is organized as follows. Section 2 proposes a latent variable model framework
for peer grading data, within which specific models are discussed. Two real data applications are given
in Section 3. Section 4 discusses advantages, limitations, and future directions. The appendix includes
extensions of the proposed model, technical details, and additional simulated examples. The Online
Supplementary Material include further results from simulation studies and real data analysis.
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2. Proposed model

2.1. Problem setup
Consider N students who receive T assessments. Each student i’s work on assessment t is randomly
assigned to a small subset of other students to grade their work. We denote this subset as Sit , which is
a subset of {1, . . . ,i− 1,i+ 1, . . . ,N}. Each grader g ∈ Sit gives this work a grade Yigt , following certain
scoring rubrics. For simplicity, we consider the case when Yigt is continuous. It is common, but not
required, for the number of graders ∣Sit ∣ to be the same for all students and assessments. An aggregated
score is then computed as a measure of student i’s performance on the tth assessment, often by taking
the mean or the median of the peer grades Yigt,g ∈ Sit . We note that a simple aggregation rule, such as
the mean and the median of the peer grades, fails to account for the grader effect and, thus, may not be
accurate enough.

2.2. Proposed model
2.2.1. Modeling peer grade Yigt
We assume the following decomposition for the peer grade Yigt :

Yigt = θit +τigt −δt, i = 1, . . . ,N, t = 1, . . . ,T, g ∈ Sit. (1)

Here, δt captures the difficulty level of assessment t. A larger value of δt corresponds to a more difficult
assessment. In addition, θit represents student i’s true score for assessment t, and τigt is an error attributed
to the grader. We assume θit , τigt and δt to be independent.

2.2.2. Modeling true score θit
For each student i, we assume that their true scores for different assessments θit, t = 1, . . . ,T, are
independent and identically distributed (i.i.d.), following a normal distribution

θit ∼N(αi,η2
i ), (2)

where the mean and variance are student-specific latent variables. The latent variable αi captures
the student’s average performance over the assessments, and the latent variable η2

i measures their
performance consistency (i.e., the extent to which students’ proficiency varies across assessments). This
model assumes the true scores fluctuate randomly around the average score αi without a trend. This
assumption can be relaxed if we are interested in assessing students’ growth over time (see Appendix B
to relax this assumption).

2.2.3. Modeling grader effect τigt
Each student g grades multiple assessments from multiple students. We let Hg = {(i,t) ∶ g ∈ Sit,
t = 1, . . . ,T} be all the work student g grades. For each student g, we assume that τigt , for all (i,t) ∈Hg , are
i.i.d., following a normal distribution N(βg,ϕ2

g), where the mean and variance are student-specific latent
variables. The latent variable βg may be interpreted as the bias of student g as a grader. For two students
g and g′ satisfying βg > βg′ , student g will give a higher grade on average than student g′ when grading
the same work. We say grader g is unbiased when βg = 0. Moreover, the latent variable ϕ2

g measures the
grader’s reliability. A smaller value of ϕ2

g implies that the grader provides consistent grades to similar
quality assessments, while a larger value suggests the opposite. In other words, when grading multiple
pieces of work with the same true score and assessment difficulty (so that, ideally, they should receive
the same grade), a grader with a small ϕ2

g tends to give similar grades, and thus, the grades are more
reliable. In contrast, a grader with a large ϕ2

g tends to give noisy grades that lack consistency. We remark
that the grader effects τigt , t = 1, . . . ,T, are assumed to be i.i.d. in the current setting, which means the
grading quality remains the same across assignments.
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Figure 2. Path diagram representing the network structure of peer grading data.

Note: The latent variables of four independent students are represented as an example. Students’ grades, reported in the squared box,

refer to two assessments, as the subscripts indicated. The curve double-arrows stand for correlation; the straight (solid and dotted)

lines represent the effect of the respective latent variable. For the sake of readability, we prefer to adopt the solid lines for the effect of

variables referring to the role of the examinee (i.e., α,η2), whereas the dotted lines refer to the effect of the latent variables associated

with the role of grader (i.e., β,ϕ2).

2.2.4. Joint modeling of student-specific latent variables
The model specification above introduces four latent variables, namely αi, βi, η2

i , and ϕ2
i , for each

student i. These variables allow us to account for the relationship between a student’s performance data
and grading data as an examinee and a grader. By allowing for dependence between these variables,
we can share information and make more informed evaluations of their performance. We assume
that (αi,βi,η2

i ,ϕ2
i ), where i = 1, . . . ,N are i.i.d.; we also assume that (αi,βi, log(η2

i ), log(ϕ2
i )) follows

a multivariate normal distribution N (μ,Σ), where μ = (μ1, . . . ,μ4)⊺ and Σ = (σmn)4×4. To ensure
parameter identifiability, we set μ1 = μ2 = 0 so that the average score of each assessment (averaged across
students and graders) is completely captured by the difficulty parameter δt . There are no constraints on
μ3 and μ4.

2.2.5. Remarks
Figure 2 shows an illustrative path diagram for the proposed model under a simplified setting with N = 4
students and T = 2 assessments. Compared with many traditional latent variable models, the current
path diagram shows a network structure where the latent variables of different individuals interact with
each other. This phenomenon is due to the network structure of peer grading data, where each grade
involves two students- one as the examinee and the other as the grader.

The proposed model is useful in different ways. First, the model provides a measurement model for
the true score of each student i’s assessment t. By inferring each latent variable, θit , whose technical
details will be discussed in Section 2.3, the grader and assessment effects will be adjusted. Thus, a more
accurate aggregated score may be obtained. Second, it allows us to further assess each student’s overall
performance and consistency as an examinee by inferring αi and η2

i . Third, the model also provides
a measurement model for the characteristics of each student as a grader. Specifically, the bias and
reliability of each grader can be assessed by inferring βi and ϕ2

i . Such results can be used to reward the
best-performing graders and offer feedback to help those who need improvement. Finally, the statistical
inference of the structural parameters in Σ allows us to address substantive questions, such as whether
a student who performs better in the coursework tends to be a more reliable grader.
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2.3. Bayesian inference
We adopt a fully Bayesian procedure for drawing statistical inference under the proposed model.

2.3.1. Prior specification
We first specify the prior for the assessment difficulty parameters δ1, . . . ,δT . When T is large, we can
get reliable estimates of the assessments’ population parameters (e.g., the mean and the variance, Cao &
Stokes, 2008; De Boeck, 2008; Fox & Glas, 2001; Gelman, 2006). In such cases, we can use a hierarchical
prior specification and assume that δ1, . . . ,δT are i.i.d. following a specific prior distribution (e.g., a
normal distribution) with some hyper-parameters. Then, we set a hyper-prior distribution for the
hyper-parameters. When T is small, it is not reasonable to assume to observe a representative sample
of assessments, and the estimates at the population level might be very unreliable (De Boeck, 2008).
Therefore, we let each δt have a weakly informative prior distribution of N(0,25). However, tailored
considerations must be made depending on the specific dataset, and different prior specifications might
be specified (Gelman et al., 2013).

We specify a prior for the parameters μ and Σ in the joint distribution for the student-specific latent
variables. Recall that μ1 and μ2 are constrained to zero, so no prior is required. As for μ3 and μ4, they
are assumed to be independent, and each follows a weakly informative normal prior N(0,25). Finally,
for the covariance matrix Σ, we reparameterize it as

Σ = SΩS,

where S = diag(√σ11, . . . ,
√

σ44) is a 4 × 4 diagonal matrix with diagonal entries the standard
deviations of (αi,βi, log(η2

i ), log(ϕ2
i )), and Ω = (ωij)4×4 = S−1ΣS−1 is the correlation matrix of

(αi,βi, log(η2
i ), log(ϕ2

i )). The prior distribution on Σ is imposed through the priors on S and Ω. For S, we
assume

√
σ11, . . . ,

√
σ44 to be i.i.d., each following a half-Cauchy distribution with location 0 and scale 5.

For the correlation matrix Ω, we assume a Lewandowski–Kurowicka–Joe (LKJ) prior distribution with
shape parameter 1 (Lewandowski et al., 2009) that corresponds to the uniform distribution over the
space of all correlation matrices.

2.3.2. Model comparison
Several reduced models can be derived under the proposed framework as special cases. For instance,
a reduced model may be obtained by constraining η2

1 = ⋯ = η2
N = η2, that is, students’ performance

consistency as examinee is constant across individuals. Another reduced model may be derived by
constraining ϕ2

1 = ⋯ = ϕ2
N = ϕ2. An even more simplified model can be obtained by imposing both sets

of constraints. Given a dataset, Bayesian model comparison methods may be used to find the best-
performing model among the full and the reduced models and, thus, provide insights into the peer
grading system and yield more accurate aggregated grades.

We consider a Bayesian leave-one-out (LOO) cross-validation procedure for model comparison,
which concerns the model’s prediction performance. For a given dataset and a given model, this
procedure computes the expected log point-wise predictive density (elpd; Vehtari et al., 2017) to
measure the overall accuracy in predicting each data point (i.e., peer grade) based on the rest of the
data. More precisely, we define the Bayesian LOO estimate of out-of-sample predictive fit as

elpdloo =
T
∑
t=1

N
∑
i=1
∑
g∈Sit

logp(Yigt ∣Y−igt),

where Y−igt denotes all the observed peer grades except for Yigt , and p(Yigt ∣Y−igt)denotes the conditional
probability mass function of Yigt given Y−igt under the fitted Bayesian model. A model with a higher
value of elpdloo is regarded to have better prediction power and, thus, is preferred. In Section 3, we also
report the Watanabe–Akaike information criterion (WAIC), which corrects the expected log point-wise
predictive density by adding a penalty term for the effective number of parameters (Vehtari et al., 2017).
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2.3.4. Computation
As illustrated in Figure 2, the proposed model involves a latent space with dimension 4N and a
complex dependence structure between the observed data and the latent variables. This complex
model structure makes its statistical inference computationally a challenge. We use a Markov Chain
Monte Carlo (MCMC) algorithm for statistical inference. More specifically, we adopt the No-U-Turn
HMC sampler (Hoffman & Gelman, 2014), a computationally efficient MCMC sampler, and implement
it under the Stan programming language. Compared with classical MCMC samplers, such as the
Gibbs and Metropolis–Hastings samplers, the No-U-Turn HMC sampler uses geometric properties
of the target distribution to propose posterior samples. It thus converges faster to high-dimensional
target distributions (Hoffman & Gelman, 2014). Further computational details are given in the
appendix.

Regarding the implementation, we use the CmdStan interface (Stan Development Team, 2023) for
posterior sampling, which is a command-line interface to Stan that is considerably more efficient than
using R as the interface. For all the models, four HMC chains are run in parallel for 2,000 iterations,
of which the first 1,000 iterations were specified as the burn-in period. We use the rstan R package
to analyze the resulting posterior samples, more specifically, it enables us to merge the MCMCs,
compute the summary statistics of the posteriors and check the MCMC mixing and convergence.
Moreover, the R package loo (Vehtari et al., 2017) and Bayesplot (Gabry et al., 2019) are used
separately for model comparisons and to plot the results, respectively. The computation code used in
our analysis, the computational time, and other details on model diagnostics are publically available
online.1

2.4. A related model
One of the most well-known approaches to latent variable modeling of peer grading data was proposed
by Piech et al. (2013). They present three models of increasing complexity, in which the observed score
is assumed to be a function of two independent variables: the student’s ability (also known as the true
score) and the effect of the grader (often considered the error part). This type of decomposition is
very common in rater effects models (Gwet, 2008; Martinková et al., 2023) and is also assumed in
our framework. For comparison purposes, we briefly discuss their more complex model, which is also
considered in Section 3 and compared with the one we present in Section 2.2. The notation we adopt
in presenting their model is consistent with our framework. They assume that the observed score Yig is
normally distributed with the mean parameter given by the sum of the true score θi and the grader bias
βg , and the precision parameter being a linear function of the true score of student g:

Yig ∼N(θi+βg,
1

γ0+γ1θg
) .

The model assumes that the true scores of students, denoted by θi, are independently and identically
normally distributed, θi ∼N(μ0,1/γ2), i = 1, . . . ,N. In addition, the model assumes that graders’ biases
denoted by βg , are i.i.d. normally distributed, βg ∼N(0,1/γ3), g = 1, . . . ,N.

While this model relates to the proposed method, the two have several differences. For example, the
model proposed by the authors does not account for the difficulty level of the assignment. Even if they
propose to use normalized grades (z-scores) to remove any assignment effects, it may still be useful to
estimate the difficulty level of the assignment. Furthermore, the model assumes that the parameters θi
and βi, which are the same student indexes, are independent. It also imposes a strict constraint on the
precision parameter of the observed score. Specifically, it does not allow the precision to vary given
the same value of θg , and it assumes that the precision is independent of the grader bias βg . Finally,
the model does not account for the temporal dependency in the presence of multiple assessments. This

1Our code is available through the link: https://osf.io/v3ucw/?view_only=aad3bc91cbda43cc9e6c490409323839.
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Figure 3. Path diagram representing the network structure of peer grading data for a single assessment.

Note: The latent variables of three independent students are represented as an example. The box indicates the students’ grades for

a single assessment. The double arrows represent correlation, while the straight (solid and dotted) lines represent the effect of the

respective latent variable. The meaning of the arrows is consistent with those of Figure 2. The solid line represents the effect of the

latent variable related to the role of the examinee (i.e., θ). The dotted lines refer to the effect of the latent variables associated with

the grader role (i.e., β,ϕ2).

model, denoted in Section 3 as PM (i.e., Piech’s Model), is compared against the proposed one using
real data from multiple and single assessment contexts.

2.5. Reduced model for a single assessment
Some peer grading data only involve a single assessment, as the case for one of our real data examples
in Section 3. The proposed model can still be applied in that situation, but certain constraints must
be imposed for model identification. Details of the Bayesian inference for this model are given in the
appendix.

2.5.1. Modeling peer grade Yig
With only one assessment, the notation for peer grade simplifies to Yig = Yig1, and its decomposition
simplifies to

Yig = θi+τig −δ, i = 1, . . . ,N, g ∈ Si, (3)

where the subscript t is removed from all the notations in (1), and the interpretation of the variables
remains the same. Due to the lack of multiple assessments, the examinee parameters αi and η2

i in the
main model, Equation (2), can no longer be identified and, thus, are not introduced here.

2.5.2. Modeling grader effect τig
Each student g grades the assessment of multiple peers. Let Hg = {i ∶ g ∈ Si} be the peers whose work is
graded by student g. It is assumed that τig , i ∈ Hg , are i.i.d., following a normal distribution N(βg,ϕ2

g).
The interpretation of these parameters is the same as in the primary model (see Section 2.2).

2.5.3. Joint modeling of student specific latent variables
The reduced model involves three student-specific latent variables (θi,βi,ϕ2

i ). Similar to the main model,
we assume that (θi,βi, log(ϕ2

i )), i = 1, . . . ,N, are i.i.d., each following a multivariate normal distribution
N (μ,Σ), where μ = (μ1,μ2,μ3)⊺ and Σ = (σij)3×3. Similar to the main model, we constrain μ1 = μ2 = 0,
while keep μ3 freely estimated. Figure 3 gives an illustrative path diagram for this reduced model with
N = 3 students.
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3. Real data examples

Two real-world applications referring to single- and multiple-assessments settings are considered here.
Various models are compared for each dataset, and the one that exhibits the best predictive performance
is used for inference.

3.1. Multiple-assessments setting
The peer grading data are from Zong et al. (2021). In this data, 274 American undergraduate students
taking a Biology course completed four double-blind peer gradings throughout the course (N = 274,
T = 4). The assessments had a similar format, and the online peer reviewing system managed the
submission and peer grading procedures SWoRD/Peerceptiv (Patchan et al., 2016). Students’ mean
age was 20, and 59% were female. Students’ ethnicity was quite heterogeneous, 69% were Asian, 2%
Black, 14% Latinx, and 15% White. On average, each work was graded by a random set of five other
students. Zong et al. (2021) produced the peer grading score as the average across different rubrics. As a
result, gradings are on a 1–7 continuous scale. The minimum and the maximum observed values were,
respectively, 1 and 7. The mean and the median grades were 5.414 and 5.500, respectively, which suggest
that data are slightly negatively skewed. To implement the main model, only students who completed at
least three assessments were included in the analysis, which resulted in a sample size of 212 students.

3.1.1. Model comparison
Four different models of increased complexity are fitted and compared. In the first model (M1), we
only accounted for one student-specific latent variable: the ability and the assessment difficulty level.
This model did not consider the effects of graders, such as their systematic biases and reliability levels.
Additionally, M1 assumed that the student’s ability was equal across all assessments. This is the more
constrained model. In the second model (M2), we relax our assumptions and consider the graders’
effects, such as their systematic bias and reliability levels. To do this, we use a three-dimensional
multivariate normal distribution to jointly model the student-specific latent variables, including θi,
βi and ϕ2

i , i = 1, . . . ,N. It is worth noting that fitting M2 is like fitting the reduced model for a single
assessment separately (see Section 2.5), except that students are assumed to have the same ability level
across assessments, that is, θit = θi, i = 1, . . . ,N. In the third model (M3), we relax this assumption
and allow for variations in students’ abilities across assessments by introducing a fourth student-
specific latent variable, η2

i , i = 1, . . . ,N. Under this model, examinee- and grader-specific latent variables,
respectively, (θi,η2

i ) and (βi,ϕ2
i ) are assumed to be independent. This assumption is relaxed in the fourth

model (M4) in which the latent variables θi,βi, log(η2
i ), log(ϕ2

i ), i= 1, . . . ,N, are allowed to be correlated.
M4 is the main model introduced in Section 2.2. We also compare these models with the one proposed
by Piech et al. (2013) and detailed in Section 2.4. Under this multiple-assessments setting, we let the
difficulty parameter vary across assessments for comparison purposes.

Model comparison is based on the predictive performance criteria discussed in Section 2.3. The
models are fitted using the prior specifications and posterior procedure discussed in Section 2.3. Grades
are on a continuous 1–7 scale, with the midpoint considered the average assessment difficulty. Therefore,
we have set the prior distribution for δ1, . . . ,δ4

iid∼ N(4,25). The students are then given an estimate of
the true score for each work and a reliability estimate as a grader.

3.1.2. Results from the selected model
Upon graphical inspection of the MCMCs, no mixing or convergence issues were detected, as indicated
by R̂ values being less than 1.01. The Number of Effective Sample Size was above the cut-off N̂eff > 0.10
for all the structural parameters (Gelman et al., 2013). The average computational time per chain varies
from 64.445 to 1,594.02 s (seconds), respectively, recorded for models M1 and M4. Further details on
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Table 1. Multiple-assessments example: Four model specifications are com-

pared using a leave-one-out cross-validation approach

Model elpdloo SE Δelpdloo SEΔ WAIC

M4 −3,751.8 49.9 – – 7,358.18

M3 −3,770.0 49.3 −18.2 8.5 7,382.30

PM −3,937.7 52.0 −185.9 24.7 7,819.19

M2 −3,939.4 54.1 −187.6 24.8 7,820.01

M1 −4,470.7 54.2 −718.9 47.1 8,939.57

Note: The expected log point-wise density value (elpdloo ) and its respective standard error
(SE) are reported. The models are given in descending order based on their elpdloo values.
Δelpdloo gives the pairwise comparisons between each model and the model with the
largest elpdloo (M4), and SEΔ is the standard error of the difference. The Watanabe–Akaike
information criterion (WAIC) is given in the last column for each model.

model diagnostics (e.g., trace plot, R̂, N̂eff , convergence diagnostic plots), as well as computational time,
can be found in Supplementary Material.2

Table 1 gives the value of the LOO expected log point-wise density elpdloo and the relative standard
error for each model fitted, including the pairwise difference in terms of elpdloo between M4 and each
of the other models; in the last column we also report the WAIC (Gelman et al., 2013). The procedure
for model comparison showed that M4 provides the best predictive performance. The slightly better
performance of M4 over M3 in terms of these criteria supports our assumption of the examinee- and
grader-specific latent variables being correlated.

Table 2 shows that the difficulty levels of the assessments are increasing throughout the course. The
95% quantile-based credible intervals of the assessment difficulty parameters are moderately narrow,
indicating a low level of uncertainty for these parameters.

The posterior means for the latent variable variances are μ̂3 = −1.27 with a 95% credible interval
of (−1.46, − 1.07) and μ̂4 = −0.46 with a 95% credible interval of (−0.51, − 0.41). This implies that,
on average, the variance of the student’s ability is smaller than the error variance of the grades they
give. In other words, they are more consistent as an examinee than a grader. This seems reasonable,
considering that they are not grader experts. Note that these parameters are expressed on a logarithmic
scale, meaning that the average variance of the students’ proficiency across different assessments is
exp(μ̂3) = 0.28, and, on average, their reliability parameter is exp(μ̂4) = 0.63.

Students are moderately homogeneous regarding their mean abilities, as suggested by σ̂1 = 0.23. In
contrast, they are more variable in their systematic bias, σ̂2 = 0.35. In other words, they are, on average,
more similar as examinees than as graders. Moreover, students are widely different concerning their
consistency across assessments, σ̂3 = 0.66. Finally, they have slightly less variability concerning the
reliability parameters as indicated by σ̂4 = 0.32.

Regarding the dependencies among the latent variables, higher values of students’ proficiency are
associated with higher consistency values. Indeed, there is evidence of a strong correlation between the
first and the second student-specific latent variable, respectively, αi and log(η2

i ), as suggested by ω̂13 =
−0.86 and the 95% credible interval of and (−0.99, − 0.76). In addition, higher mean bias values are
associated with higher reliability levels. This is evidenced by ω̂24 = −0.74 and the 95% credible interval
of (−0.86, − 0.62). The estimates of the other correlation parameters do not provide clear evidence
about any other dependencies. The grader’s effect explains, on average, 26.1% of the grading variance,
conditioning on the assessment difficulties.

At the student-specific level, a score estimate and a 95% quantile-based credible interval may be
provided for each assessment to measure the uncertainty. For students’ scores, the posterior mean of

2Available through the link https://osf.io/v3ucw/?view_only=aad3bc91cbda43cc9e6c490409323839.

https://doi.org/10.1017/psy.2025.10021 Published online by Cambridge University Press

https://osf.io/v3ucw/?view_only=aad3bc91cbda43cc9e6c490409323839
https://doi.org/10.1017/psy.2025.10021


Psychometrika 11

Table 2. Multiple-assessments example: Model M4 estimated structural

parameters

Parameter Post. Mean 95% CI

Assessments δ1 −6.31 (−6.40, −6.22)

δ2 −5.39 (−5.47, −5.30)

δ3 −5.36 (−5.44, −5.28)

δ4 −4.96 (−5.05, −4.88)

Students μ3 −1.27 (−1.46, −1.07)

μ4 −0.46 (−0.51, −0.41)

σ1 0.23 (0.18,0.29)

σ2 0.35 (0.31,0.40)

σ3 0.66 (0.49,0.84)

σ4 0.32 (0.28,0.37)

ω12 −0.10 (−0.31,0.11)

ω13 −0.86 (−0.99, −0.76)

ω14 0.17 (−0.05,0.40)

ω23 −0.07 (−0.32,0.17)

ω24 −0.74 (−0.86, −0.62)

ω34 0.12 (−0.15,0.38)

Note: The posterior mean (Post. Mean) and the 95% quantile-based credible interval
(CI) are reported for each parameter. The parameter δt represents the difficulty level
of the assessment t; μ3 and μ4 are the location parameters of the third and the
fourth latent variable, respectively; σ1, . . . ,σ4 are the standard deviations of the latent
variables; ωmn is the correlation parameter between the latent variables m and n.

θ̂it − δ̂t can be used as a point estimate. Additionally, the posterior distributions for both the average
bias and the reliability of each grader can be useful in assessing their grading behavior. If a grader is
accurate and reliable, their βi and η2

i values should be close to zero. Conversely, values far from zero
indicate biased and unreliable grading behavior. Both parameters are provided with a 95% quantile-
based credible interval. For illustrative purposes, the posterior estimates of the true score θ̂11 − δ̂1, the
mean bias β1 and the reliability ϕ1 of student i = 1 are reported in Figure 4. On the examinee side, the
posterior estimates of the true score suggest that for the first assessment t = 1, the proficiency level of
this student is slightly larger than the average. On the grader side, based on the posterior estimates of β1
and ϕ2

1, this student is more severe and moderately less reliable than the average (note that μ2 = 0 and the
posterior mean of μ4 is −0.46 on the log scale). Additional results about the posterior mean estimates of
the student-specific latent variables, including their density plots, pairwise scatter plots, and Pearson
correlations between latent variables, are presented in Supplementary Material. According to these
results, the posterior mean estimates seem well-behaved, based on which the multivariate normality
assumption of the latent variables does not seem to be severely violated.

3.2. Single assessment setting
The data used for the cross-sectional analysis were obtained from an applied economics undergraduate
course at the University of Oviedo, as reported by Luaces et al., (2018). The sample consisted of 108
students who participated in a double-blind individual peer assessment on an online platform provided
by the university. Each coursework was an open-response assessment rated by ten students according
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Figure 4. Multiple-assessments example: Posterior distribution of the true score of the first assessment (a), mean bias (b), and

reliability (c) of student i = 1.

Note: The black dotted lines indicate the 95% quantile-based credible interval and the posterior mean of each estimated parameter.

to different rubrics on Likert scales of various lengths. For the present analysis, we consider the sum of
the ratings given on these other aspects as the final grade. The observed grades ranged from 0 to 12,
with a mean of 7.526 and a median of 8.000. Further information on the grading procedure might be
found in Luaces et al. (2018).

3.2.1. Model comparison
Four models are fitted and compared. Three are nested models, and the fourth is the model provided by
Piech et al. (2013) and discussed in Section 2.4. In the first model (M1), we specify one single student-
specific latent variable: the student ability and the assessment difficulty parameter. This model did not
consider the effects of graders, such as their systematic biases and reliability levels. In other words,
graders’ mean bias is fixed to zero, and they are assumed to be equally reliable. This model is the same as
the (M1) model detailed in Section 3.1, but only with one assessment. In the second model (M2), we let
the graders’ mean biases be freely estimated. Moreover, we let this second student-specific latent variable
correlate with the first one. Indeed, they are assumed to be i.i.d. across students, following a bivariate
normal distribution. In the third model (M3), we relax the assumption of equal reliability across different
graders. However, the latent ability θi is assumed to be independent of the other features of the student as
a grader (i.e., βi and ϕ2

i ), for i = 1, . . . ,N. This independence assumption is relaxed in the fourth model
(M4) and we allow them to be correlated. M4 is the model presented in Section 2.5. The models are
fitted using the prior specifications and the posterior procedure discussed in Section 2.3. As with the
multiple-assessments example, the prior distribution for the difficulty parameters is set to N(5.5,25).
The students are then given an estimate of the true score for each assessment and a reliability estimate
as a grader.
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Table 3. Single assessment example: Four model specifications are compared

using a leave-one-out cross-validation approach

Model elpdloo SE Δelpdloo SEΔ WAIC

M4 −1,712.6 25.8 0.0 0.0 3,410.29

M3 −1,712.9 25.5 −0.3 0.7 3,410.76

M2 −2,271.2 22.4 −558.7 19.9 4,535.97

M1 −2,271.2 22.3 −558.7 19.8 4,536.05

PM −2,283.9 22.8 −571.4 20.8 4,557.39

Note: The expected log point-wise density value (elpdloo ) and its respective standard error
(SE) are reported. The models are given in descending order based on their elpdloo values.
Δelpdloo gives the pairwise comparisons between each model and the model with the
largest elpdloo (M4), and SEΔ is the standard error of the difference. The Watanabe–Akaike
information criterion (WAIC) is given in the last column for each model.

Table 4. Single assessment example: Model M4 estimated structural

parameters

Parameter Post. Mean 95% CI

Assessment δ −7.19 (−7.33, −7.07)

Students μ3 0.10 (0.05,0.15)

σ1 0.54 (0.43,0.65)

σ2 0.53 (0.42,0.65)

σ3 0.15 (0.03,0.24)

ω12 −0.06 (−0.31,0.18)

ω13 0.29 (−0.08,0.66)

ω23 −0.52 (−0.87, −0.15)

Note: The posterior mean (Post. Mean) and the 95% quantile-based credible interval
(CI) are reported for each parameter. The parameter δ represents the difficulty level
of the assessment; μ3 is the location parameter of the third latent variable; σ1, . . . ,σ3

are the standard deviations of the latent variables; ωmn is the correlation parameter
between the latent variables m and n.

3.2.2. Results for the selected model
As with the multiple-assessments example, no mixing or convergence issues were detected, as indicated
by R̂ values less than 1.01. The average computational time per chain ranges from 2.7 to 44.772 s,
respectively, recorded from Models M1 and M4. Further details on Model diagnostics (e.g., trace plot,
R̂), as well as computational time, can be found in the Appendix and an online repository.3

Table 3 indicates that model M4 has the best predictive performance, though its advantage over M3
is very small. μ̂3 = 0.10 gives the mean graders’ reliability level (i.e., the posterior mean of ηi), and there is
considerable variability among them as indicated by σ3. Indeed, the estimates of σ3 on a log scale imply
a posterior standard deviation of ηi larger than one on the original rating scale.

Students are very similar in their latent ability, as suggested by the small values of the posterior
standard deviation of their abilities, that is, σ1 (see Table 4). The same extent of variability is estimated
concerning their mean biases σ2. This implies that students are pretty homogeneous regarding pro-
ficiency in doing the assessment and severity in grading their peers. The 95% CI for the correlation
parameters ω1 and ω2 do not suggest a clear relation between the respective latent variables. A positive
correlation between graders’ bias and their reliability is highlighted by the estimate of ω23. Nonetheless,

3Available through the link: https://osf.io/v3ucw/?view_only=aad3bc91cbda43cc9e6c490409323839.
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Figure 5. Single assessment example: Posterior distribution of the true score (a), mean bias (b), reliability (c) of student i = 1.

Note: The black dotted lines indicate the 95% quantile-based credible interval and the posterior mean of each estimated parameter.

the relative credible interval is quite large, implying uncertainty about the correlation size. Grader’s
effects explain, on average, the 16.3% of the grading variance.

Each student might receive a true score estimate at the individual level. The posterior mean of θ̂i− δ̂
might be used as a point estimate for students’ true scores. Moreover, the posterior distributions of both
the mean bias and the reliability of each grader might be helpful information to assess their grading
behavior. As an illustration, the posterior estimates of the true score θ̂11 − δ̂, the mean bias β̂1 and the
reliability ϕ̂1 of student i = 1 are reported in Figure 5. On the examinee side, the true score’s posterior
estimates suggest that this student’s proficiency level is slightly larger than the average. On the grader
side, the posterior estimates of β1 and ϕ2

1 suggest that this student is moderately more severe than the
average in terms of mean bias but average in terms of reliability level (note that μ2 = 0 and the posterior
mean of μ3 is 0.10 on the log scale).

4. Discussions

This article presents a new modeling framework for peer grading data, which introduces latent variables
to capture the dependencies in the data from the network structure of peer grades and the dual role of
each student as an examinee and a grader. The statistical inference uses a Bayesian method, and an
algorithm based on the No-U-Turn HMC sampler was developed. The proposed model was applied to
two real-world peer grading datasets, one with a single assessment and the other with four. The results
showed that the proposed model had superior prediction performance in real-world applications and
that the MCMC did not suffer from mixing or convergence issues.
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The current work also has some limitations. First, the peer grades in the applications in Section 3
are bounded, which may cause ceiling and floor effects, as the variability of student performance is no
longer measurable when they receive a very high or low score. However, the proposed model is based
on several normal assumptions, which fail to capture such phenomena. To model bounded grades, we
may add a nonlinear transformation to the right-hand side of (1) to ensure Yig to be bounded.

Second, it is not easy to verify the assumptions about the latent variables in our model and further
validate their interpretation as we cannot observe the latent variables. Specifically, the multivariate
normality assumption about the student-specific latent variables may be quite strong for many real-
world settings. As pointed out by Ma & Genton (2010), severe violation of this assumption can lead
to substantially biased estimates. Nevertheless, our sensitivity analysis in the Supplementary Material
shows that the model estimates are still reasonably accurate under mild deviations from the normality
assumption. Without additional information, it is hard to disentangle different assumptions about the
latent variables and verify them separately. We can only check whether the model-implied distribution
for the observed data fits its empirical distribution (e.g., using Bayesian LOO and WAIC) and use it to
compare different models. Using this approach, we can only tell that the assumptions of one model are
more sensible than those of the other. To further verify our model’s assumptions, we may collect data
with both peer and instructor grades. The instructor’s grades may be used as the underlying truth to
check some specific assumptions in our model.

The current work can be further extended in several directions. First, in formative assessment
settings, people are often interested in the growth of students over multiple assessments during a course.
Therefore, extending the proposed model to a longitudinal setting and developing a latent growth curve
model for peer grading may be helpful. To explore this direction, we have considered a simple extension
of the proposed model and performed a small simulation study in Appendix B. This model assumes the
true score θit to follow a latent growth curve model. While this model performed well in the simulation,
it may be oversimplified for real-world settings. In practice, student characteristics as a rater and the
difficulty levels of the assessments may also change over time. Simultaneously modeling all these changes
may result in model identification issues. We leave this problem for future investigation.

Second, additional context information, such as student- and classroom-related factors, is often
available in formative assessment settings. Such information is useful in explaining and predicting
each student’s performance both as an examinee and a rater. In this regard, we believe extending the
framework of explanatory item response models (Kim & Wilson, 2020; Wilson & De Boeck, 2004) to
the current setting to include context information as covariates is useful.

Third, the reliability of the peer grading system based on the proposed model is worth investigating.
This may be done by adapting the generalizability theory (Brennan, 2001, 2010), originally established
under the traditional cross-classified random effects models, to the current model. With the new
generalizability theory, we may evaluate the reliability of the system from different perspectives (e.g.,
examinees, raters, and assessments). Moreover, while the average reliability level of graders might affect
the accuracy of the score estimates, a larger number of graders per student’s assignment might mitigate
this effect and improve their accuracy (see the Supplementary Material for additional simulation results
about these aspects).

Fourth, many real-world peer grading systems involve ordinal peer grades. The proposed model
may be extended to ordinal data by replacing the linear model (1) with a generalized linear model. One
possible formulation is given in Appendix D, which still mimics the proposed model but replaces (1)
with a partial credit model form (Masters, 1982). Alternative models also may be available, such as one
based on the graded response model (Samejima, 1969). The suitability of these models for peer grading
remains to be studied through a theoretical investigation and numerical studies based on simulated and
real data. We leave it for future investigation.

Finally, it should be noted that although the Bayesian approach allows for statistical inferences, it
can be time-consuming to compute. The high computational cost is due to the proposed model’s high
dimensionality, which depends on the number of students and assessments. To make the proposed
method scalable for large-scale applications, like MOOC data, advanced computational methods for
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Bayesian inference, such as stochastic gradient MCMC algorithms, should be explored (Nemeth &
Fearnhead, 2021).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2025.10021.
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Appendix

A. Computational details

To resolve the convergence issue and make the MCMC mix well, we used a non-centred reparametrization for the multivariate
normal distribution (Betancourt & Girolami, 2015; Gelman et al., 2013; Papaspiliopoulos et al., 2007). We express the
distribution of the vector of student-specific latent variables through an affine transformation, such that

(αi,βi, log(η2
i ), log(ϕ2

i )) = μ+S(Lγi) .

Here, L is the Cholesky factor of the correlation matrix Ω = LL′ and S is the diagonal matrix of the standard deviation of
the latent variables, S = diag(σj), j = 1, . . . ,4; note that Σ = SΩS. The element of the four-dimensional vector γi ∈ R

4 are i.i.d.
following a standard normal distribution, γi,1, . . . ,γi,4

iid∼ N(0,1), i = 1, . . . ,N. Notice that, as stated above, μ1 = μ2 = 0 for
identifiability purposes.

Under this inference procedure, each parameter and student-specific latent variables might be provided with a posterior
point estimate, for example, the posterior mean, and an interval estimate, for example, a 95% quantile-based credible interval.
The latter might be seen as an uncertainty measure of the estimated parameter; broader intervals suggest more uncertainty
about the values of the parameters, whereas narrower intervals reflect less uncertainty about their values.

B. Extension to latent growth curve model

B.1. Model specification
When sufficient assessments are given over time, evaluating students’ growth during that period may be interesting. This can be
done using Latent Growth Curve (LGC) modeling (Bollen & Curran, 2006). For example, a linear latent curve unconditional
model can expand the structural model (2) for true score θit by assuming

θit ∼N(αi0 +λtαi1,η2
i ), (B.1)

where αi0, αi1, and η2
i are student-specific latent variables, and λt , t = 1, . . . ,T are a pre-specified coding of time. The linear

function αi0+λtαi1 can be interpreted as the latent trajectory of student i. The coding of time can be chosen based on the time
when the assessments are given. In the special case when the assessments are given at equally spaced intervals, we can set λt =
t−1,t = 1,2, . . . ,T. We keep the model for τigt unchanged. The student-specific latent variables now include (αi0,αi1,βi,η2

i ,ϕ2
i ).

In line with our assumptions in the main model, we assume that (αi0,αi1,βi, log(η2
i ), log(ϕ2

i )), i = 1, . . . ,N are i.i.d., and follow
a multivariate normal distribution.

This model can be further extended to capture nonlinear trajectories. For example, a quadratic latent curve model may be
assumed for θit by assuming

θit ∼N(αi0 +λtαi1 +λ2
t αi2,η2

i ), (B.2)

where αi0, αi1, αi2, and η2
i are student-specific latent variables, and λt , t = 1, . . . ,T are still a pre-specified coding of time. The

random second-order coefficient αi2 is the rate of change in the linear component along time and represents the acceleration in
growth for student i’ ability (Biesanz et al., 2004; Bollen & Curran, 2006). The joint model for student-specific latent variables
can be extended accordingly.

The prior specifications discussed in Section 2 for the unknown parameters, δ1, . . . ,δT and μ,Σ, might be consistently
adopted for the current model. The same procedures and reparametrization used for the posterior computation introduced
above might be freely applied here for the multivariate normal distribution. The Bayesian model comparison procedure
discussed in Section 2 might be used to compare the models under the main and LGC frameworks. As for the previous
models, each parameter and student-specific latent variables might be provided with a posterior point estimate, for example,
the posterior mean, and an interval estimate, for example, a 95% quantile-based credible interval. Indeed, it might be seen as
an uncertainty measure of the relative estimated parameter.
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Figure B1. Estimated linear latent growth of a random sample of four students.

Note: The red and the black dotted lines are the true linear growth and the estimated one, respectively; the red bands are the 95%

credible intervals of this trend.

B.2. A simulation under the LGC model
Homoscedastic LGC models typically require at least three time-points per individual (e.g., Curran et al., 2010), whereas,
our proposal concerns a heteroscedastic setting that allows some variance terms to be individual-specific and implies a larger
number of parameters. Given the relatively small number of assignments per student (at most four) and the rather small sample
size N = 212, the LGC model might not be suitable for the real data analyzed in Section 3.1. We provide a simulated example
based on the above LGC model an illustrative example.

B.2.1. Data generation
We generated a dataset from the linear LGC model in which a sample of N = 100 students are assigned T = 6 assessments.
For each assessment, each student’s work is graded by a random subset of other ∣Sit ∣ = 3 students. The following values
are fixed for the structural parameters of the model: μδ = 0, σδ = 1, μ = 0, Ω = I is a five-dimensional identity matrix,
S = diag(1,0.1,1,0.2,0.2), see Table C2.

B.2.2. Estimated parameters
All the considerations on the prior and computational aspects discussed in the main text are consistently followed here. The
graphical inspection of the MCMCs does not suggest any mixing or convergence issues, which is consistent with the low values
of R̂ < 1.01. The average computational time per chain recorded is 5,293.08 s.4

The estimates of the structural parameters are reported in Table C2. All the true values are included in the 95% credible
intervals, even though these posterior intervals are considerably large. This uncertainty might be due to the small sample size
N = 100. The only exception is the correlation parameter ω34, whose 95% credible interval does not include the true value (even
if it is the difference between the upper bound of the interval and the true value is practically negligible). More replications
might shed light on these aspects.

Under this model, along with the estimates of the true grade and the grader’s effects (i.e., the mean bias and the reliability),
each student might be provided with the estimate of his/her latent linear growth trend. For illustrative purposes, we plot the
estimated growth of four students in Figure B1. Note that the 95% credible intervals of the student-specific trend α0i+α1i(t−1)

4More details on computational time and model diagnostics are available through the link:
https://osf.io/v3ucw/?view_only=aad3bc91cbda43cc9e6c490409323839.
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Table C2. Estimated structural parameters

Parameter True value Post. Mean 95% CI

Assessments μδ 0.00 0.05 (−3.72,3.80)

σδ 2.00 3.59 (1.95,6.35)

δ1 2.52 2.48 (2.18,2.78)

δ2 −1.72 −1.74 (−3.04, −0.40)

δ3 −1.01 −0.95 (−3.53,1.67)

δ4 1.39 1.01 (−2.84,4.90)

δ5 −3.45 −3.55 (−8.69,1.65)

δ6 3.30 3.27 (−3.15,9.75)

Students μ2 0.00 −0.05 (−1.32,1.26)

μ4 0.00 −0.01 (−0.09,0.06)

μ5 0.00 0.01 (−0.03,0.05)

σ1 1.00 1.02 (0.85,1.20)

σ2 0.01 0.07 (0.01,0.15)

σ3 1.00 1.03 (0.91,1.17)

σ4 0.20 0.17 (0.05,0.28)

σ5 0.20 0.19 (0.16,0.23)

ω12 0.00 0.11 (−0.43,0.66)

ω13 0.00 0.11 (−0.09,0.31)

ω14 0.00 −0.13 (−0.53,0.30)

ω15 0.00 0.10 (−0.13,0.33)

ω23 0.00 −0.30 (−0.76,0.21)

ω24 0.00 0.13 (−0.49,0.69)

ω25 0.00 0.03 (−0.50,0.54)

ω34 0.00 −0.40 (−0.74, −0.03)

ω35 0.00 0.13 (−0.07,0.34)

ω45 0.00 0.33 (−0.10,0.70)

Note: The true value, the posterior mean (Post. Mean) and the 95% quantile-based credible interval (CI)
are reported for each parameter. The parameter δ is the difficulty level of the assessment; μ2,μ4, and μ5

are the location parameters of the second, the fourth and the fifth latent variable, respectively; σ1, . . . ,σ5

are the standard deviations of the latent variables; ωmn is the correlation parameter between the latent
variables m and n.

are proportional to the values of t. This is because the 0.05 and the 0.95 quantiles of the posterior of α1i are multiplied by this
covariate.

C. Prior sensitivity analysis

We performed a prior sensitivity analysis to investigate the impact of the prior on final model estimates (Gelman et al., 2013).
As discussed by Gelman (2006), inferences might be very sensitive to the choice of the prior distribution for hierarchical
variance parameters, and valuable information might come from tailored stimulative studies. As a preliminary analysis, we
fit the main model on different generated datasets comparable to the real dataset analyzed in Section 3.1. For each dataset,
we alternatively fit the main model under three prior specifications, resulting in three different scenarios. We compare the
respective estimates through the root mean square error (RMSE) and the mean absolute error (MAE).
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Figure C2. Priors placed under different scenarios on σ1, . . . ,σ4,μ3,μ4.

Note: The blue, orange, and green solid lines indicate, respectively, the half-Cauchy, the inverse-gamma and the exponential priors.

Table C3. Root mean square error (RMSE) and mean absolute error (MAE)

related to students’ true scores and structural parameters under different

scenarios across 10 independent datasets

Parameter Scenarios

1 2 3

RMSE MAE RMSE MAE RMSE MAE

δ1 0.243 0.195 0.244 0.196 0.244 0.196

δ2 0.182 0.138 0.182 0.137 0.183 0.138

δ3 0.159 0.138 0.161 0.142 0.159 0.138

δ4 0.131 0.095 0.131 0.096 0.131 0.095

μ3 0.045 0.037 0.048 0.037 0.046 0.038

μ4 0.036 0.029 0.037 0.029 0.036 0.029

σ1 0.068 0.061 0.070 0.062 0.069 0.061

σ2 0.100 0.087 0.097 0.082 0.099 0.085

σ3 0.081 0.069 0.117 0.109 0.083 0.069

σ4 0.065 0.045 0.080 0.058 0.067 0.046

ω12 0.135 0.108 0.133 0.106 0.131 0.106

ω13 0.038 0.029 0.025 0.019 0.036 0.028

ω14 0.043 0.037 0.039 0.033 0.042 0.037

ω23 0.029 0.016 0.022 0.011 0.028 0.015

ω24 0.044 0.033 0.041 0.030 0.044 0.033

ω34 0.005 0.003 0.003 0.002 0.004 0.003

True score 0.591 0.349 0.591 0.349 0.591 0.349

C.1. Data generation
We generated R = 10 independent datasets from the main model in which a sample of N = 100 students are assigned T = 4
assessments. Each student’s work is graded by a random subset of other ∣Sit ∣ = 3 students for each assessment. The following
values are fixed for the structural parameters of the model: μδ = 0, σδ = 1, μ = 0, Ω = I is a four-dimensional identity matrix,
S = diag(1,1,0.2,0.2).
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C.2. Scenarios and priors
We place three different priors on the scale parameters σ1, . . . ,σ4 and on the means μ3,μ4. Under the first scenario, they
are assigned a half-Cauchy as recommended by Gelman et al. (2013), σ1, . . . ,σ4

iid∼ half −Cauchy(0,5) and μ3,μ4
iid∼ half −

Cauchy(0,5). This class of priors are referred to as “weekly informative” by Gelman (2006) because of the gentle slope of their
tails, which can let the data dominate the posterior if the likelihood is strong in that region. In the second scenario, we place
an inverse-gamma on those parameters, σ1, . . . ,σ4

iid∼ InvGamma(0.5,0.5) and μ3,μ4
iid∼ InvGamma(0.5,0.5). Under the third

scenario, they are assigned an exponential prior, σ1, . . . ,σ4
iid∼ exp(0.5) and μ3,μ4

iid∼ exp(0.5). As shown by Figure C2, the
probability density is more spread and diffused under the first scenario as a result of the half-Cauchy prior specification.

C.3. Results
Inferences are the same across different scenarios, suggesting a robustness of the model to different prior specifications for the
scale parameters. Table C3 gives the RMSE and the MAE for the structural parameters and the true scores (i.e., θit −δt). The
RMSE and the MAE of the estimates of the true scores are, on average, 0.59 and 0.34 under all the scenarios. The RMSE and
the MAE of the aggregated score using the mean to derive the final grade for each student’s work (Reily et al., 2009; Sajjadi
et al., 2016) are, respectively, 2.46 and 1.98. This suggests that our proposal might consistently mitigate graders’ systematic bias
and unreliability.

D. An extension to ordinal peer grades

The models in this article are for continuous grades, while grades in many peer grading systems are on an ordinal scale. In
what follows, we discuss how the proposed model may be extended to ordinal grades. We consider a formulation based on the
partial credit model (Masters, 1982) under the same setting as our main model in Section 2.2 except for the ordinal grades.
More specifically, suppose that Yigt ∈ {1, . . . ,K}. For each k = 2, . . . ,K, we assume that

P(Yigt = k∣θit,βg,ϕg > 0,δt,Yigt ∈ {k−1,k}) =
exp((θit +βg −δt,k−1)/ϕg)

1+ exp((θit +βg −δt,k−1)/ϕg)
, (D.1)

where δt = (δt1, . . . ,δt,K−1)⊺ contains the item-specific parameters and the rest of the variables can be interpreted similarly as
in Section 2.2. More specifically, θit may be interpreted as student i’s true score for assessment t. The larger the value of θit , the
more likely it is that Yigt takes a value in a higher category. The variable βg can still be interpreted as rater g’s bias, as raters with a
larger βg value tend to give a higher grade on average. In addition, ϕg still indicates rater g’s reliability. When ϕg goes to infinity
and the rest of the parameters remain fixed, the probability in (D.1) will converge to 0.5, and thus, the probability of Yigt = k
will converge to 1/K, for each category k, regardless what the true score θit is. In other words, the grade Yigt becomes a purely
random guess. On the other hand, when ϕg goes to zero, the distribution of Yigt will concentrate on one of the categories.

Similar to the model in Section 2.2, we can assume θit to follow (2) and further set priors for the student-specific latent
variables, as well as the rest of the model parameters. Bayesian inference can then be performed.
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