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Abstract

Assume that for a measurable function / on (0, oo) there exist a positive auxiliary function a(t) and
some y e R such that <j>(x) = lim,^x(f(tx) - f(t))/a(t) = f' sy~lds, x > 0. Then / is said to be
of generalized regular variation. In order to control the asymptotic behaviour of certain estimators for
distributions in extreme value theory we are led to study regular variation of second order, that is, we
assume that lim,_>oo(/(fx) — f(t) — a(t)<t>(x))/a i(0 exists non-trivially with a second auxiliary function
a\(t). We study the possible limit functions in this limit relation (defining generalized regular variation
of second order) and their domains of attraction. Furthermore we give the corresponding relation for the
inverse function of a monotone / with the stated property. Finally, we present an Abel-Tauber theorem
relating these functions and their Laplace transforms.

1991 Mathematics subject classification (Amer. Math. Soc): 26A12,40E05.
Keywords and phrases: Regular variation, second order variation, limit functions, domain of attraction,
inverse functions, Laplace transform, Abelian theorem, Tauberian theorem.

1. Introduction

Throughout we consider measurable real-valued functions on (0, oo) which are
bounded on (0, a) for all a > 0. The class of regularly varying functions, that
is, eventually positive functions, satisfying

(1.1) lim exists and is positive for all x > 0,

plays an important role in the asymptotic analysis of various problems. It is well
known that (1.1) is equivalent to

(1.1') lim ^-— =xa, for x > 0, with some a e K (notation: / e R Va)
' fU)
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382 Laurens de Haan and Ulrich StadtmUller [2]

(consult, for example, any of the books [1,8,15]). The number a is called the index of
regular variation. In extreme value theory and associated statistics one is interested
in functions / ( • ) having the following property:

Assume that there exists some positive function a(-) such that

(1.2) lim f<<tX) ~ f(-t} exists for all x > 0.
t^oo a(t)

A distribution function F is in the domain of attraction of an extreme value distribution
if and only if (1.2) holds for the inverse function of (1/(1 — F(-))) with limit ^ 0.

The following results, connecting (1.2) with (1.1), respectively (1.1'), are well
known (see, for example, [8]).

PROPOSITION 1. If (1.2) holds, then we have

(i) The limit function in (1.2) is given by c0 f* sY'[ ds with some co,y e M.;

(ii) If CQ ^ 0, then the auxiliary function a(-) is regularly varying with index y;

that is a(-) € RVy.

REMARKS 1. (i) We write (xY - \)/y for f* sy~lds, even in case y — 0 where it
is log x.
(ii) The interesting case is when c0 ^ 0 and without loss of generality we may assume
c0 > 0 (otherwise consider — / ) . But then we may write for (1.2)

n n v f(tx) ~ f{t) xY~l f n
(1.2) lim = , f o r . v > 0 .

<->°° a(t) y

with a (possibly modif ied) auxi l iary function a(-) and some constant y e R .

F r o m [8, T h e o r e m 1.10] or [ 1 , sect ion 3.2] w e obtain

PROPOSITION 2. Suppose that f satisfies (1.2') with some auxiliary function

fl(-) > 0.

(i) Ify>0 then f is eventually positive and f e R VY, that is,

(1.3) l i m ^ ^ = x y , for x > 0.
'^°° fit)

(ii) Ify < 0, then l i m , ^ f(t) =: /(oo) exists and f(oo) - fit) e R VY, that is,

(1.4) lim —— =x\ for x > 0.
<^°c /(OO) - f(t)
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REMARKS 2. (i) Note that (1.3) respectively (1.4) imply (1.2') with a suitable choice
ofa(). Take, for example, a (t) = yf(t) incase (1.3) and a(t) = -y ( / (oo) - f(t))
incase (1.4).
(ii) A function /(•) satisfying (1.2') with y = 0 is said to be Tl-varying (at infinity)
and we write / 6 Fl. For further information about this function class consult, for
example, [8, sect. 1.2], or [1, chap. 3].

For statistics in extreme value theory, for example, to estimate the parameter y
in regularly varying tails of distribution functions (see, for example, [3, Lemma
2.2] and the subsection below) one uses an empirical version of (1.2'). In order to get
information about the speed of convergence of these estimators one needs among other
things second-order properties of the function / . This has been done in connection
with statistical problems for very special second-order behaviour (see, for example,
[3], Theorems 2.3 and 2.5, cf. Remarks 2.2 and 2.3 and the references therein). In
order to get our hands on the most general case, we may proceed as follows (see also
[4]).

Let be given a function /(•) with auxiliary function a(-) satisfying the asymptotic
relation (1.2'). Now assume furthermore that there exists some positive function A(-)
with linif-Kx, A{t) = 9, such that

I ̂  ^ - X
(1.5) lim I ^ ^ - X 1 /A(t) exists non-trivially on (0, oo).

'-oo I a(t) y J /

What we mean by 'non-trivially' will be explained shortly. Clearly the function A(t)
describes the rate of convergence in (1.2'). Denoting at(t) := a(t)A(t) = o(a(t)),
t -> oo, we write

n to u< A r f{tx)-f(t)-a(t)(Xy~\)/y
(1.6) n(x) = lim , x > 0.

'->• oc O\{t)

We want to find the possible limit functions H in (1.6) and the choices of the auxiliary
functions ai(-) which may occur in (1.6). Note that by adding c -a^t) Xoa{t) in (1.6)
we get the same relation with a new function a(.) and a new limit function H(.) and
we have

xy — 1
(1.7) a ( r ) ~ 5 ( 0 , t -> oo and //(*) = H(x)-c y

This means that we can always add a multiple of (xY — \)/y to the function H(x).
So H(x) is determined up to a multiple of (xy — \)/y only. Observe that replacing
a(-) by a(-) does not change (1.2'). Hence a non-trivial limit in (1.5) is a function H
which is not a multiple of (xY — \)/y\ in particular, H is not identically zero.
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Applications of second order variation Second order variation plays an import-
ant role in extreme value theory. For a simple example consider i.i.d. random variables
X\, X2, • • . from some distribution function F and suppose that 1 — F e RV_P for
some p > 0. A well-known estimator for y := l/p is given by

1 *"'1
Yn := T ^2 lQg X(n-j.n) ~ log X(n_M)

* 7=0

where k < n and {X(yin)} denotes the «th order statistics of Xx,..., Xn. It is well
known (cf. [2, Theorem 4.1]) that for such a distribution F we have that

(1.8) Vk(l — yn/yn) is asymptotically normal,

provided that k = k(n) -*• oo, k{n)/n -*• 0 (n -*• oo) and yn is defined by

/»OO

yn:=- logsdF(s)
* Ju(n/k)

where the function U is the inverse of 1/(1 — F). Now note that under the stated
conditions lim,,-^ yn = y. If one wants a confidence interval for y based on yn, one
needs the asymptotic normality of \fk{\ — yn/y)- This follows from (1.8) provided

(1.9) lim Vk(yn -y) = 0.

Here the second-order condition comes in, as we shall show. We can write

Hence

dv

Vk(yn ~Y) = j ^ {log U (~v) - log U(\)-Y log v j ^ .

The integral converges to zero if

lim Vitjlog£7(71/)-log 1 / ( 7 ) - y logu] = 0

uniformly for v > 1. This condition imposes a restriction both on U and on the
sequence k(n). In order to separate out the two conditions we assume that there exists
a positive function A such that

(1.10) lim Wi<*)W)Yi°** = : H{x)
' - > • < » A(t)
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exists for x > 0 and that the sequence k(n) satisfies lim,,_).oo y/k(n)A{n/k(n)) = 0.
Then (1.9) follows. Note that (1.10) is a special instance of (1.6).

If one considers domains of attraction of all the extreme value distributions {G Y} Y e R
and not just the case y > 0 as above, one is led to the full generality of (1.6) (cf.
Dekkers and de Haan [3]).

Another use of second-order conditions in extreme value theory involves finding
the optimal choice of the sequence k(n) mentioned above, in order to make E(yn — y)2

minimal (cf. Hall [12] and Dekkers and de Haan [4]).
Finally, second-order conditions are used to establish a rate of convergence of the

distribution of sample maxima towards an extreme-value distribution (Smith [16], De
Haan and Resnick [11]). Further results about second-order conditions can be found
in [5, 9, 14].

In Section 2 we shall characterize the limit functions //(•) and their domain of
attraction. In Section 3 we consider the corresponding relations for the inverse
function of a monotone function / . Finally (in Section 4) we discuss how (1.6) is
reflected in the asymptotic behaviour of the Laplace transform of / .

2. Limit functions and domain of attraction

The limit functions H are characterized in the following result.

THEOREM 1. Let be given a function f. Suppose that there exist y e IR and positive
auxiliary functions a(-) and ai(-) such that the limit in (1.6) exists for all x > 0. If
H is not a multiple of (xY — \)/y, then there exist constants cuc2 e R and some
parameter a < 0 such that:

= d I sy~l I ua-lduds + c2 I sa+y-lds, x > 0.

Moreover for x > C

(2.1)

(2.2) l im ""' ~K"" ' "K" = c , — -
i^oc t-Yax{t) a

and

. ax{tx)
m = x +Y(2.3) hm = x

'-•oo di(t)
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PROOF. Consider for x, y > 0 the identity

-Y \ f(txy) - fit) - a(t)«xyy - l)/y f(tx) - fit) - a(t)(xY -

0i (0
f(txy) - f(tx) - a{tx)(yv - \)/y {txYYax (tx)

yY - 1 (tx)-ya(tx) - t~Ya(t)

y

Letting t —>• oo on both sides we obtain by (1.5) and (1.6)

x-*[H(xy) - H(x)}

(2.4)

= lim { H(y)(l + o( l ))v '" ' """" +
1
J

By assumption, there exist yx,y2 G IR such that (H(yx), {y\ — \)/y) and (H(y2),
(̂ 2 — l)/y) are linearly independent; hence with X. = (yY — l)/(y2 — 1) we obtain
that H(yx) — XH(y2) ^ 0. Now we subtract X times (2.4) at argument y = y2 from
(2.4) with argument y = yx and we find, denoting by

fix, yu y2) := x~Y liHixyx) - H(x)) - ^ - j - (H(x y2) - H(x))\ ,

that

{ itxyyi
(//(vi) — XHiy2))H + o(l))

t~yaxit)

From this, we conclude that \im,^OQitx)~yaxitx)/it~yax(t)) —: qix) exists for all
x > 0. It is easy to see that either qix) is zero for all x > 0, or positive for
all x > 0. The existence of this limit, together with relation (2.4), implies that
Yun,^ooiitx)-yaitx)-rYait))/irYaxit)) also exists for all x > 0. Hence we obtain
(2.2). If qix) = 0, the constant cx in (2.2) must be zero and it is easy to see that then
Hi) is constant. Hence cx ^ 0, and qix) is positive and thus (2.3) holds with some
a e R. By the arguments in (1.7) we can now assume again that cx ^ 0. Then we must
have a < 0, since for a > 0 we would have lim,_ooa(/x)/a(0 = xa+y according
to Proposition 2; but this is incompatible with Proposition l(ii) applied to / , which
states that lim,^ooaitx)/ait) = xy.

As a result, we obtain the following functional equation for H:

yY _ I xa _ I

(2.6) Hix-y) = Hiy)xa+y + Hix) + cxx
y , for;t,;y>0.

V a
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A simple calculation verifies that

= c, I sy~l f u"-lduds

is a special solution of (2.6). Obviously, the function G(x) = H(x) — H\(x) satisfies
the homogeneous equation

(2.7) G(xy) = G(x) + G(y)xa+y, foix, v > 0.

If a + y = 0, this is Cauchy's equation, having the only solution G{x) = c( logjc in
the class of measurable functions. If a + y ^ 0, by symmetry we obtain:

(2.7) G{xy) = G{y) + G{x)ya+y

and hence G{x){\ - ya+y) = G(y)(l - xa+y), for x, v > 0, which implies that with
some c2 € R, G(x) = c2(x

a+y - I)/(a + y), yielding the desired result.

REMARKS 3. (i) Observe that by the results above, the function .A(-), describing the
rate of convergence in (1.2), satisfies

(2.8) lim A(tx)/A(t) =xa, x > 0, for some a < 0.
t-*oo

So if a < 0 we have an algebraic speed of convergence in (1.2). In case a = 0 it is
much slower, for example, logarithmic.

(ii) From (2.1) we see that H(x) can be written as

(2.9) H(x) =

-xy log x + (c2 - CI/Y)^-^, if a = 0, y ± 0,
Y Y

y+a 1
Y

xy+a - 1 c, xy - 1
i f a<0 ,

a / a + y a y
( — +c2)logA; , ifa<0, a + y = 0.
\a I ay

Note that the last term in each case is a multiple of (xy — l)/y; hence we must have
c, # -ac2.

Theorem 1 is the second-order analogue of Proposition 1. Next we shall give a
result which corresponds to Proposition 2. That is, we ask which functions / do
satisfy (1.6) with a limit function H having certain parameters a, y. For a = y = 0
the conditions have been given by Omey and Willekens [13]. Note that by ±h e RVS

or h e ±RVS we mean h e RV$ or —h e RVS; similarly for ±h eUorh e ±U.
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THEOREM 2. Suppose that the function f satisfies the conditions of Theorem 1, that

there exist positive auxiliary functions at(-), a(-) and some

constants y, C\, c2 £ K with cx ^ —ac2 such that for x > 0

is,

-f(t)-a(t)(xy-\)/y)/ax(t)

^= C\ I. S I, II ClM (IS ~\~ Co I, S CIS.
1 J 1 J I *" J 1

Then (2.10) is equivalent

(i) in case a = y = 0 to: ± / ( O is second-order Tl-varying (see [13]);
(ii) in case a = 0, / ^ 0 ?o: ±t~y f(t) e FI w/iere

- /«). r < 0;
(iii) incasea < Ofo: there exists some constant c such that ±{ f {t)+c{tY — \)/y)

satisfies (1.2') w/f/i y replaced by a + y.

REMARKS 4. (i) It follows from the representations of the theorem that (2.10) holds
locally uniformly in (0, oo) by the properties of the function classes to which the / ' s
belong in the different cases (see, for example, [1, 8, 15]). The representations also
lead to Potter bounds for relation (2.10) (cf. [1, Theorem 1.5.6] and [8, Propositions
1.7.5 and 1.19.4]).

(ii) Relation (2.10) implies that in all cases ax(t) = o(a(t)), as / -> oo.
(iii) Note that in most cases the existence of a second-order relation makes the first

order relation simpler; for example, in case a < 0 and a + y = 0 one has f(t)~c3t
y,

as t —> oo.

PROOF OF THEOREM 2. The case y = a = 0 is discussed in [13] so we restrict
ourselves to the other cases.

(ii) Assume (2.10). By Theorem 1 the function a(t) satisfies (2.2), that is, for x > 0
we have

a(t) -_xy = a(tx) - ax(t)cxx
Y logx + o(ax(t)), t ->• oo.

Substitution of this into (2.10) leads to

] = {*—)
This relation is discussed in Proposition 2 and we obtain, for y > 0,

(2.12) f(t)-y-1a(t) = y-2(c2Y-Ci)al(t) + o(al(t)), t - • oo.
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Observe that this is also true in case c2y — c\ = 0 by [1, Theorem 3.6.1] or [15,
Theorem 2.11]. Furthermore using (2.2) and [8, Theorem 1.17], we know that there
exists some a2(t) ~ a\(t), t —> oo, such that

t~ya{t) = Clr
ya2(t) + Clj s-r-la2(s) ds,

and all together we end with

rrf(t) =

/ '

= ca3(t)r
y

/ •

with a suitable function <23(/) satisfying t ya3it) € RV0, a^t) ~ a2(t),t - • oo, and
so we obtain by [8, Theorem 1.17] that ±t~y f(t) e U depending on the sign of cr.

Conversely, if, for example, t~r fit) e FI, we have, with auxiliary function a(t) =
t~yfit) - t~x /J s~y fis) ds, (see Thm 1.17 in [8]),

(kt)-yf(kt)-k-yf(k)
: > log/, k - • oo,

which is equivalent to

fM-m-ym-r-iyy^ ^ ^
ky aik)

which clearly is (2.10). The proof for the case y < 0 is similar.
(iii) By Proposition 2, relation (2.2) implies that t~ya(t) ->• c (say), and therefore

~t~ycxax{t)/a ~ c - /~Ka(/), ' -> oo. So we may choose axit) = {—atY/c{)
(c - r~ya(r)). Substitution of ait) = cxaxit)/a + cty into (2.10) yields for x > 0:

(/('*) ~ (c/y){(tx)y - 1}) - (f(t) - (c/y){ty - 1}) /c, ^ x"+y - 1
— = I h c21

a\{t) \a / a + y

r ( /( '*) (c/y){(tx) 1}) (f(t) (c/y){t 1}) /c ,
nm — = I h c2

The inverse conclusion follows similarly as above by an easy calculation.

REMARKS 5. Considering instead of (1.5) the simple second-order relations

(2.13a) lim I ̂ ^- - xy I /A{t) = H{x), x > 0, in case y > 0,
' 0 I fit) J /' -0 0

(1.5) lim I ^ ^ - log* I /'Ait) = Hix), x > 0, in case y = 0,
'^oo [ a{t) \ I

(2.13b) lim j / ( 0 0 ) ~ ^ ^ - JC'' 1 /A(0 = //(*), * > 0, in case y < 0,
'^oo I /(OO) - /(f) J /
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(where the functions H(x) denote different functions in the different cases) we get
back the cases a — 0; or or < 0 and a + y > 0; or a < 0 and y < 0; but not the cases
a < 0 and y = 0; or a < 0 and y = —a; or a < 0, a + y < 0 but y > 0.

3. Inverse functions

Next we consider the special case where / is non-decreasing and give equivalent
conditions in terms of </> := /*" (the inverse function of / ) . This is relevant for
extreme-value statistics again, where (2.10) is a condition in terms of the quantile
function (so the inverse of a probability distribution) and one wants to have conditions
in terms of the distribution function itself.

THEOREM 3. Suppose that f is non-decreasing andty is its right-continuous inverse
function. Then (1.6) is equivalent to:

4>(t+x-a(<Kt))

(3.1) lim ^
t/f(oo)

locally uniformly for x e (-l/max(0, y), l/max(—y, 0)).

REMARKS 6. (a) The result is also true for the left continuous inverse of / .
(b) In case y = 0 we define (1 + yx)i/Y = ex.
(c) For specific parameters we can give more specific statements, such as, for ex-

ample,:

(i) a = 0, y > 0; then ±rl/y<l>(t) e II;
(ii) a = 0, y < 0; then ±ri/y(/)(f(oo) - rx) e U;

(iii) a < 0, y = 0; then
x) - c)/(e-c'<p(t) -c) = ea\ x e R.

PROOF. Since by Remark 4(i) relation (2.10) holds locally uniformly we can replace
x by x{t) = 1 + eai(t)/a(t) in (2.10) and get:

, , ,« , . f(t + teax{t)/a(t))-f«)-a(t){{\+eax(t)/a(tW-\)/y
(3.2) hm — = 0,

{t)

hence

H m f(t + teai{t)/a{t))-f{t)
ai(t)/a(t)
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Applying this for e > 0 and £ < 0 and using /(</>(/)-) < t < f(<p(t)+) we obtain
= 0. This and (2.10) imply that

.. fMQx) - t - amMxr - V/Y „, vhm XN = n(x).
(0(O)

Now F,(x) := (f{<t>{t)x) - t)/a(<p(t)), x > 0, f > 0 is a family (with respect to
t) of non-decreasing functions; furthermore, (xY — l)/y has a positive continuous
derivative, the function //(•) is continuous and the function a}(<p(t))/a(<j)(t)) ->
0, f —>• oo. Therefore we can apply an obvious generalisation of 'Vervaat's Lemma'
(see [17, Lemma 1]) to deduce (3.1). The converse implication is similar.

EXAMPLE. Let <!>(?) = (2n)~1/2 f e~y2/2 = dy be the standard normal probabil-
ity distribution function and take <p(t) := 1/(1 - 4>(0). Since

1 - <D(0 = (2n)~i/2e-'2/2 (l/r - 1/f3 + o(l/f3))

we find

for all real x, locally uniformly. We can apply Theorem 3 and find for / , the inverse
function of <p:

lim (f(t)f [f(tx) - f(t) - (log*)//(0} = -(log*)2/2 - log*, for x > 0.
t-*oo

Hence, since /(?) ~ y/2 log t (t ->• oo) and

^ l o g f | / (?) — y21ogr -loglogf -Iog47rj - • 0 (t -> oo),

(see [10]), we find that for x > 0

(2 log? -log log t - log Anyi2) 2

Note that f(t) is the quantile function of <t> at argument (1 - l/t).

4. Second-order variation and Laplace transforms

We now consider the Laplace transforms of functions satisfying (1.6). Without loss
of generality we assume / € L[0, 1]. Consider:

- [ e~x/sf(x)dx, s >0.
s Jo
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Observe that, for any function satisfying (1.6), the abscissa of convergence is zero. We
want to characterize second-order regular variation with the help of Laplace transforms
for the case a + y > — 1. Laplace transforms can be used for estimating the index
of regular variation of the tail-function in a distribution with regularly varying tails.
See, for example, the results in [6].

We begin with a first order result which is a mild extension of Karamata's Theorem
on regular variation and Laplace transforms.

LEMMA 1. The following implications are true for an index y > — 1 :

(i) / / / satisfies the relation (1.2') them f satisfies (1.2').
(ii) If f is non-decreasing and f satisfies (1.2'), then f satisfies (1.2').

(iii) / satisfying (1.2') implies

lim —
<^°° f(0 - t~l / ' f(s)ds JO

PROOF. We define the auxiliary function

g(t) = tf(t) — I f(s)ds (= / sdf(s) if for example / is non-decreasing).
Jo ^ Jo '

Then (cf. [8, proof of Theorem 1.17]) g € RVy+l if and only if / satisfies (1.2'). It is
easy to see that for the Laplace transforms the following relation holds:

f . ds

From this relation one checks that g e RVy+x if and only if / satisfies (1.2'). Finally,
if / is nondecreasing, this is true for g, f and g as well.

(i) Using the Abelian part of Karamata's Theorem (see, for example, [1, Thm.
1.7.6]) and the remarks above we obtain: if / satisfies (1.2') with index y, then
g e RVY+\ and hence g e RVY+U which in turn implies / satisfies (1.2').

(ii) If / satisfies (1.2') with auxiliary function a(t) then g e RVY+1. Since / non-
decreasing implies g is non-decreasing, we find, by the Tauberian part of Karamata's
Theorem, that g € R VY+X. The preliminary remarks of the proof now yield (ii).

(iii) This statement follows directly from [8, Theorems 1.20 and 1.8].

LEMMA 2. Suppose that f satisfies (1.2') with y = 0 and is bounded on (0, a) for
any a > 0. Assume that k : (0, 1) —>• K is measurable and that for some e > 0 we
have t~sk(t) is integrable on (0, 1). Then

lim f k(s)f("tS)~ ^ ( f ) ds = f k(s)logsds.
'^°°Jo a(t) Jo
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PROOF. The assumption on k implies (cf. [1, Lemma 4.1.1]) that there existse > 0
such that

Jo
k(s)ds = O(te) for?\0.

The rest of the proof is similar to that of [8, Theorem 1.20].

Now we are able to state the main result in this section.

THEOREM 4. (a) (Abelian part) Assume that f satisfies (2.10) with y e 0& and
auxiliary functions a (t) e RVY,a\(t) e RVa+Y with parameters y > — 1 and a
such that a + y > — 1. Then the following relations hold:

(4.1) hm = F(a + y + l) • H{x), for x > 0
<—<*> at(t)

and

(4.2) lim

(In case y — 0 : := F"(l) = —y0, where y0 is Euler's constant I
Y )

(b) (Tauberian part) Let be given some functions a{t),a\{t) such that the limit in
(4.1) exists for all x > 0 with y > — 1 and H is not a multiple of (xy — \)/y.
Then a\{t) satisfies (2.3) with some a such that a + y > — 1 and a(t) satisfies
(2.2). Then f is second-order regularly varying provided that the function

(i) / o exp is convex in case a = y = 0;
(ii) t~yf(t) is non-decreasing if a = 0 and y ^ 0 ( / is defined as in

Theorem 2);
(iii) / ( / ) + c(ty — \)/y is non-decreasing if a < 0 (the constant c is given

by the representation in Theorem 2).

REMARKS 7. (i) Various parts of the Theorem are closely related to previous results,
for example compare [7] for the case a = 0, y > 0 and compare [13] for the case
a = y = 0.

(ii) Other integral transforms, rather than Laplace transforms, in particular those
with non-negative kernels and suitable behaviour at oo and 0, can be considered as
well. For example for case a + y < — 1, one may use integral transforms based on the
kernel k(v) = e~vvp, p > 0 such that p + a + y > — 1, in order to avoid problems
atO.
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(iii) The Tauberian condition in part (b) on / (monotonicity) may be weakened
to one or two sided oscillation conditions as discussed for example in [1, Theorem
4.11.1].

(iv) One obtains in (4.2) (with C\, c2 as in (2.10) and F"(l) = — y0, where y0 =
0.577 . . . is Euler's constant)

if a < 0, y > 0, a + y > — 1;

//(D=

/c \ r(«+
I V c2)
\a / a

+ y ay
l

he,

a a

if a = 0, y>-lbuty ^ 0;

if a e (-1,0), y = 0;

yr'2(l)+c2r'(l),

PROOF OF THEOREM 4. For the case a = y = 0 we refer to [13, Theorem 3.2].
Note that their Tauberian condition is satisfied if / o exp is convex. Furthermore the
case y > 0, a = 0 is given in Theorem 1 in the paper of Geluk [7] under somewhat
stronger conditions. The case a < 0 is a straightforward application of Lemma 1
(remember Theorem 2). So we only need to consider the case a = 0, y / 0, where
keeping Theorem 2 in mind: (a) follows directly from [8, Theorem 1.20] and Lemma
2. In the present application the kernel function is k{t) = tYe~'; (b) follows directly
from [8, Theorem 2.35], applied with the kernel k(t) = tye~'.

REMARK 8. In the paper [13] a Mercerian result is given for case a = y = 0. (This
is an implication from (4.2) to (2.10) under certain conditions.) Similar results could
be given here in the other cases as well.
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