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CONSTRAINED APPROXIMATION IN SOBOLEV SPACES

Y. K. HU, K. A. KOPOTUN AND X. M. YU

ABSTRACT. Positive, copositive, onesided and intertwining (co-onesided) polyno-
mial and spline approximations of functions f € W,‘;[—l. 1] are considered. Both
uniform and pointwise estimates, which are exact in some sense, are obtained.

1. Introduction and main results. We start by recalling some of the notations
and definitions used throughout this paper. Let C[a, b] and C¥[a, b] be, respectively,
the sets of al continuous and k-times continuously differentiable functions on [a, b],
and let Ly[a, b], 0 < p < oo, be the set of measurable functions on [a, b] such that
[IfllLyfab < oo, where

b 1
I llann 2= { [ 10O ox} .
Throughout this paper L ,,[a, b] is understood as C[a, b] with the usual uniform norm,
to simplify the notation. We also denote by W'g[a. b], p > 1, the set of al functionsf on
[a. b] such that f&~Y are absolutely continuous and f® € L, and by P, the set of all
polynomials of degree < n. The mrth symmetric difference of f is given by

A x. [, b]) = { gi”io (ME)™if(x— T +ih), gtéeﬂrcw’l%;e [a.b],

Then the m-th (usual) modulus of smoothnessof f € L p[a. b] is defined by
W"(f.t.[a b])p := sup [|AF(F. - [a. D]l an-
o<h<t

We will also use the so-called 7-modulus, an averaged modulus of smoothness, defined
for al bounded measurable functions on [a, b] by

™t [a, b])p = ||, - Bl fab)s
where
J(E,x 1) = sup{|AR(F.Y)| cyEmh/2 e [x—mt/2,x+mt/2] N[a, b]}

isthem-thlocal modulus of smoothnessof f. (We set7™(f, t, [a, b]), := oo if thefunction
f is unbounded.) From the definition one can easily see that

(1.1) (.t 8 b])s = WM.t [ b])oo .
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The following relationship between the w- and -moduli holds for any f € Wé[a, b] and
1 < p < oo (Sendov and Popov, [29, Theorem 1.5])

(1.2) ™(f,t, [ b])p < Cutw™ (. t,[a,b])p, t>0.

If theinterval [—1, 1] isusedin any of the above notations, it will be omitted for the sake
of simplicity, for example,

Ifllp = [Ifll-ry. @™(F. Op = WM 1 [=1.1])p.

The moduli w and 7 measure the smoothness of f over the interval uniformly. It iswell
known that polynomials approximate better near the endpoints of the interval than in
the middle, and this leads to either pointwise estimates (if p = o), or the introduction
of “non-uniform” moduli of smoothness. The pointwise estimates for constrained ap-
proximation that we obtain in this paper are given in terms of wm(f.An(x))oo, where
An(X) == n71Y/1 — x2+n~2, The* non-uniform” modulusthat we useisthe m-th Ditzian-
Totik modulus of smoothness, defined for f € Ly[—1. 1] by

wi(f. p = sup |AR (. - [=1. 1D ]p.
o<h<t

with p(X) := v/1— x2. We have
WT(E D < W(F,Dp < TM(FL B < 250™(F ), L<P< o0

and .
WO )y SWN(FL ) < 28WM(F )0, O<p<L

Let Ys := {y1...., Vs | Yo = —1<y1 <Y< - <Ys<1=ys1},s>0. We
denote by A°(Ys) the set of all functions f such that (—1)5¥f(x) > 0 for X € [Yi. Yie1],
k=0....,s ie, those that have 0 < s < oo sign changes at the points in Ys and
are nonnegative near 1. In particular, A° := A%(Y,) denotes the set of all nonnegative
functions on [—1., 1]. Functions f and g which belong to the same class A°(Ys) are said
to be copositive.

Copositive approximation is the approximation of functions f from A°(Ys) class by
polynomials and splines that are copositive with f. For f € Lp[—1, 1] let

En()p = inf, [If —Pallp
denote the degree of unconstrained approximation, and let

©) = i —
En(f. Yo)p 1= Pnep'nr%on(Ys)”f Pallp

be the degree of copositive polynomial approximation of f. (In particular, EQ(f), :=
EQ(f. Yo)p := infp,cp,qno [|f — Pnl|p is the degree of positive approximation.)
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The best onesided approximation of f by means of algebraic polynomialsP,, € P, in
L p-metric is given by

En(f)p == inf{||P— Q| P,Q € Phand P(x) > f(x) > Q(x), —1 < x < 1}.

A natural extension of (co)positive and onesided approximations is the concept of so-
called intertwining (or co-onesided) approximation.

DEFINITION . For the set Y5 := {y1...., Vs [ Yo = —1<y1 <y < - <y <
1 =: ys1} the best intertwining polynomial approximation of a functionf € L[—1.1]
isgiven by

En(f. Yo)p := inf{||P — Q||p;P.Q € Pn, P — f € A%(Ys) and f — Q € A(Y)}.

Wecall {P, Q} anintertwining pair of polynomialsfor f withrespectto Ysif P—f.f —Q €
A%(Ys).

Clearly, in the case s = 0 the above definition becomes the definition of the best
onesided polynomial approximation: En(f, Yo)p = En(f)p.

We have the following relationships among the above quantities:

e Iff(X) > 0,x € [1, 1], then EQ(f), < En(f)p.

o If f € A%(Ys), then EO(f, Yo)p < En(f. Yo)p.

1.1. Positive and onesided approximations. First of all, if p = oo (i.e., in the uniform
metric) the uniform estimates for positive and onesided approximations are not of much
interest since

(1.3) En(f)oo < En(f)oo < 2En(f)n

forany f € C[—1,1], and

(14 En(f)oo < EP(F)oo < 2En(f)o

forf € C[—1.1] NA°.

At the sametime, if 1 < p < oo, then the situation is quite different. It was shown
by Stojanova[31] (see aso Hristov and Ivanov [9], [10], and [11]) that for any bounded
and measurable functionon[—1, 1], and m € N,

(1.5) En(f)p < C(Myr™(f.n 1), 1< p< oo.

In fact, the estimates obtained in [31] were given in terms of rm(f.An(x))p, which is

smaller than 7™(f, n~1),, and which is, in a sense, “the right” quantity for estimation of
degree of onesided approximation.

We aso remark that 7 is the “correct” modulus in (1.5) (i.e., it can not be replaced
by w or w,), since the estimate Eq(f), < C||f||,, certainly, can not be correct for all
f € Lp[—1.1], p < oo. To see this it is sufficient to consider the function f such that
f(0) =1andf(x) =0, x # 0. Then ||f||, = 0 and En(f), > O.
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An immediate consequence of (1.5) and (1.2) isthe fact that if f Wg[—l. 1], then
En(f)p < C(MN ™. n7Y),, 1< p< oo
Moreover, it was shown in [31] that for any f € W3[—1.1]
(1.6) En(f)p < CnYEn1(f')p. 1< p<oo.

(Though, the estimate (1.6) was not explicitly stated in[31], it immediately follows from
the proof of Corollary 1 in that paper.)

As for positive approximation, it was shown in [13] (see also Ivanov [17]) that for
anyf € Lp[-1,1]NA°and0 < p < oo

EQ(f), < Cw,(f,n ).

At the same time, for every n € N, 0 < p < oo and A > 0 there exists a function
f € Lp[—1, 1] N A° such that

EQ()p > AWA(f, 1)p.

Inthis paper we show, in particular, that pointwise estimatesin terms of w™(f. An(x))__
are true for onesided (and, therefore, for positive) approximation in C[—1, 1], thus, in a
sense, completing the investigation of these types of approximation. (Of course, some
improvements are possible if measures of smoothness different from those considered
here are used.)

THEOREM 1 (ONESIDED APPROXIMATION). Let f € C[—1.1] and m € N . Then for
every n > m — 1 there exist polynomials P,Q € P, such that P(x) > f(X) > Q(x),
—-1<x<1, and
1.7) P — Q)| < C(m)u(f. An()) .

COROLLARY 2 (POSITIVE APPROXIMATION). Let m € N and f € C[—1. 1] be such
that f(xX) > 0, —1 < x < 1. Thenfor everyn > m— 1 there exist a polynomial P € P,,
P(x) > 0, —1 < x < 1 satisfying
(1.8) [f() — PRI < CM)w™(f, An(¥)) .

While preparing this paper for publication, the authors learned that Corollary 2 was
also recently proved by G. Dzyubenko [8].

The above results can be summarized as follows.

Onesided approximation
p=o0
3 Pn, Qn: Pn(X) > f(X) > Qn(x), such that
FEC P9 = Q)| < Cu(F, An(X)__ Theorem 1
1<p<oo
= mef -1 Stojanova[31], see aso
Fely E”(]:)p = G Hri]stov an([JI I\}anov [10]
En(f)p £ ClIf||p obvious
fewl En(f)p < CnEn1(f')p Stojanoval[31]
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Positive approximation
p=o0
3Py, Pn(X) > 0, such that Corollary 2,
fecC [f() — Pa()| < C™(f,8n()) seeals?)r{)zyubenko (8]
1<p<

EQ(f), < CrM(f,n 1), Stojanova[31]

felp EQ(f)p < Cw,(f.n™ ), [13], seealso Ivanov [17]
EQ(f)p £ CA(f, 1)y [13]

few; EQ(f)p, < Cn1En_1(f')p Stojanova[31]

1.2. Copositive and intertwining approximations. Copositive approximation was ex-
tensively studied in recent years. A number of results were obtained (see[8], [12], [13],
[14], [15], [16], [20], [24], [25], [26], [28], [32], [33], [34], for example). Recently,
Kopotun [20] showed that if f € C[—1, 1] N A%(Ys), then

(1.9 ED(f. Yoo < CYeu2(f.n N5, n>2.

(SeeHu and Yu [16], Hu, Leviatan and Yu [14, 15] for weaker but earlier results.) This
isthe best possible estimate in the sensethat w? in (1.9) can not be replaced by «* (Zhou
[33]). If f is continuously differentiable, Hu, Leviatan and Yu [15] gave an estimate in
terms of higher order modulusof f/, i.e., for any functionf € C1[—1, 1] N A%(Ys)

(1.10) EQ(f. Yo)oo < Con2™(F’.n" Y. n>Cy.

wheretheconstants C; and C, depend only onmand Y. Infact, using aslight modification
of the proof in [15], one can show that ™ in (1.10) can be replaced by w?. In this paper
we use a different method to show that, and also obtain pointwise estimates improving
(1.10) (see Corollary 6).

Asforf € LpNA°(Ys), theauthors[12, 13] have shown that the copositive approxima-
tion is quite different from other kinds of constrained approximation such as monotone
or convex approximation, with which we have seen similarities between approximations
in L, and in C. For example, DeVore, Hu and Leviatan [3] recently proved that the
degree of convex polynomial approximationin Ly, 0 < p < oo, has order w3 (f.n™1),,
which is anatural extension of Kopotun’sresult in [19] for the space C. By contrast, if
0 < p < 00, the degree of copositive polynomial approximation is merely given by (see
[13])

(1.12) EO(f, Yo)p < Cw,(f.n7 1),

which is significantly lower than (1.9). We will show in this paper that w, in (1.11) is
the best possiblein the sensethat it can not be replaced even by W?(f, 1), (see also Zhou
[34], where a similar result was proved for 1 < p < 00), and that an analogue of this
holds true for splines. (As was shown in [13] and mentioned above, this is aso the case
for positive approximation.)
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Also, we extend our investigation of copositive approximation to the Sobolev spaces
W5, p > 1, and consider intertwining approximation in W¥ as well, obtaining the
estimates which are exact in the sense of the orders of moduli of smoothness. We prove
that if f € Wg, then the degree of intertwining (and, hence, copositive) polynomial
approximation has the order n‘zw’;‘(f " n~1), for any positive integer m. If f is merely
in W, then it deterioratesto n~*7™(f’, n~1),, which is the best in the sense that one can
not replace n~2M(f’. 1), even by ||f’||,. At the same time, the degree of copositive
approximation does not deteriorate that bad. In particular, the estimate EQ(f, Ys), <
Cn~2w2(f’. n™1), holdstrue. (This estimate is exact in the sensethat n~1w? (f/, n™1), can
not be replaced by w3(f’. 1),.) Analogues of these again are true for splines.

The investigation of constrained approximation in Ly, 0 < p < 1 quasi-norm is
not our goal in this paper. (We prove some of our results in the case p < 1 as well.
However, it is done only if the proof is similar to that for p > 1, and no extra effort
or discussions are required.) It is known that for unconstrained approximation the usual
Jackson type estimates, involving the first derivatives of functions, are no longer valid if
p < 1 (see Kopotun [21], for example). However, it does not guarantee that the sameis
true in constrained case, since the functions satisfying some shape preserving constraint
form a proper subset of W,'f,. In fact, it was shown in [21] that for convex polynomial
approximation one can get estimates which are not true in the general (unconstrained)
case. At the same time, the restriction f € A°(Yy), for example, is not as “strong”
asf € A? (i.e, f is convex), and does not eliminate those functions f which “bring
anomalous properties” into L, for p < 1. (See [21] for further discussions. We only
mention that the proof of Theorem 3 of [21] can be used to show that for every A > 0,
B>0,0<p<1neN andasetYs, there existsafunction f € AC[—1. 1] NA°(Ys)
such that EQ(f. Ys)p > AnB||f/|,..)

We now state our results on copositive and intertwining approximations, and begin
with a theorem on splines. We give local estimates in the theorems because they are
stronger than the corresponding global estimates (al so, thisistheform neededin the proof
of theorems on polynomial approximation). The global estimates follow immediately
from the inequality (which can be shown directly from the definition of the -modulus)

(1.12) SO LR < k(L.

where Ul; = I, and each x in the interval | is contained in at most k subintervals I;.
Moreover, if f is smooth, and the partition | = Ul; is (close to) the one formed by zeros
of Chebyshev’s polynomial cos(narccosx), then the globa estimates can be further
improved since

(L13) oML L[ 1D)h < CY[PO™HE (] 1)f < CnPW T, nT B,
i i

LetTh:={z0,....20 | " 1:=20 <z < -+ <21 < % :=1},n > 1, beagiven

knot sequenceon [—1,1],andsetz := —1,i < 0,andz :=1,i >n.Fori=—1,...,n,
let J; ;= [Z, Z+1]. With this notation we have
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THEOREM 3 (INTERTWINING SPLINE APPROXIMATION, 1 < p < 00). Let f €
—LiL, LS P =00 ¥s = Y,--.lYs o = — 1 2 s
Wi-1.1,1<p < Ys = {y Vs | Yo = 1<y <Yy < <ys <
1=:ys1},5>0,andletr > 2 beaninteger. Let T, be a given knot sequence such that
there are at least 4(r — 1)? knots in each openinterval (¥, Yj+1),j =1,...,s— 1 Then

there exists an intertwining pair of splines {S S} of order r on the knot sequence Th, (i.e.,
SSeC?[-1,1] andS—f,f — Se A%(Ys)) suchthatfori =0,..., n—1

(1.14) IS= Sl < CIHFHE 3] e,

where Cisa constant dependingonr and the maximumratio p := maxt |Ji.4| /|Ji, and
Jiisaninterval such that J; c J; C [zi_G(r_l)z.zHG(r_l)z] Conseguently, if in addition
f € W§, then B

(1.15) IS— SllLy@) < ClHP (" [Jil. J)p-

We establish our results on polynomial approximation by proving that errors of
constrained polynomial approximantsare noworsethanthoseof their spline counterparts.
More precisely, the following theorem plays amain role in this paper.

THEOREM 4. Let Ys := {y1,...,¥s | Yo == =1 <y1 < -+ < Vs < 1=i Vel
s>0me N U{0},u >2m+30,0 < p < oo, and let Sx) be a spline of an
odd order r (r = 2m+ 1) on the knot sequence {x; = COSI%}jeJ(YS), where n > C(Y)
is such that there are at least 4 knots x; in each interval (y;,yi+1), i = 0,..., s, and
J(Ys) ={1,....n}\{j.j — 1| x <V < x-_1for somel <i <s}. Thenthereexistsan

intertwining pair of polynomials {P1, P2} C P, for Swith respect to Ys such that

n—-1
(1.16) [P1—Pa|[p < Cr, .9 3 Era(S 1 Uljna)p.  if0<p < oo,
=1

and
(1.17)

-1 | "
P — o] < 0.9 5 Ers(S y Ul L) o itp= o
=1 X — x| + [1j]

Wherte = [Xj. Xj_l] and En(f. [a, b])p = infpnepn ||f — Pn”Lp[a.b]-

REMARK. We emphasize that Theorem 4 is not true in general for a spline Son the
knot sequence {x; }J-";ll (i.e., if theknots x; which are“too close” toy;’s are not removed).

For example, if m=0,s=1,niseven,y; =0, and S(X) = é gt;\(e?w?se then, clearly,

no polynomial P(x) satisfies P(X) < §(x) = 0for x < 0, and P(x) > S(x) =1 forx > 0.
(In other words, an intertwining pair of polynomials for Swith respect to {y;} simply
does not exist in this case.)

As shown in Section 3 the following results are almost straightforward consequences
of the above theorem and direct estimates for constrained spline approximation.
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THEOREM 5 (INTERTWINING POLYNOMIAL APPROXIMATION IN C1[—1,1]). Letf €
CH-11,meN,andYs:={y1,....¥s [ Yo = —1<y1 <y <+ <Ys < 1=Iysua},
s> 0. Then
(1.18) En(f. Yo)oo < C(M 9N WD . 0 1. n > C(Ye).

Also, there exists an intertwining pair of polynomials {P,, Q,} C P, such that

(1.19) Pa(¥) — Qu(¥)| < C(M. )8 ()™ (f".8n(¥) . N> C(Yy).

oo’
COROLLARY 6 (COPOSITIVE POLYNOMIAL APPROXIMATION IN C1[—1,1]). Letf €

CHU-1.1NA%Ys), Yo = {1, ... ¥s | Yo = —1<y1 < Yo < <Y < 1= ysr1lh,
s>0,andmé& N . Then

(1.20) ED(f. Yo)oo < CM N 1N(F .0 N 1> C(Ye).
Also, there exists a polynomial P,, € P, N A%(Ys) such that

(1.21) [F() — Pa(¥)] < C(M, 9)An ()™ (f', An(X)) n> C(Ys).

Thefollowing result does not hold for intertwining approximation (see Theorem 13),
and, therefore, copositive case is considered separately.

THEOREM 7 (COPOSITIVE POLYNOMIAL APPROXIMATION IN C[—1, 1]). Let f €
Cl-L 21 NA%Ye), Ys = {Y1, - u¥s [ Yo = —1<y1 < Y2 < - <Ys < 1= ysu1l,
s> 0. Then thereis a polynomial P,, € Py, copositivewith f, such that

(1.22) () — Pa()| < C(OP(f.Bn(x)) . n>C(Yy).

N
o0’

Now, we state the results on approximation of functionsin Lp[—1,1], 1 < p < o0
norm.

THEOREM 8 (INTERTWINING POLYNOMIAL APPROXIMATION, 1 < p < o0). Letf €
Wi-1.1,1<p<oo,meN,andYs:={y,....¥s [ Yo = =1<y1<y2 <--- <
Vs < 1=:VYs1}, s> 0. Then

(1.23) En(f, Yo)p < Cm N2, n 1), n > C(Ye).
Moreover, if f isalsoin WZ[—1. 1], then
(1.24) En(f. Yo)p < Cm.9)n 2™ (. n7Yp, 0> C(Ye).

COROLLARY 9 (COPOSITIVE POLYNOMIAL APPROXIMATION, 1 < p < o0). Letf €
W,%[—l. 1] NA°(Ys), 1 < p < oo. Then

(1.25) EOf, Yo)p < CM 9N~ n7Y), n > C(Ye).
Moreover, if f isalsoin W3[—1. 1], then

(1.26) EQF, Yo)p < Cm on 2T 1(f".n 1), n > C(Y).
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Again, the following estimates are true for copositive approximation and false in the
intertwining case.

THEOREM 10 (COPOSITIVE POLYNOMIAL APPROXIMATION, 1 < p < 00). Letf €
Lp[—1. 1] NA°(Ys), 1 < p < 00. Then

(1.27) EQ(f, Yo)p < CO(F,n Yy, n > C(Ye).
Moreover, if f € W[—1, 1], then
(1.28) EQ(F. Yo)p < CON W2 (F'. 0 Dp. 1> C(Ye).

Asmentioned earlier, (1.28) isthe best onecan get for f < Wé. We back this assertion
by proving the following counterexample.

THEOREM 11. For everyn € N, 0 < p < 00,0 < ¢ < 1and A > 0, there
exists a monotone increasing function f € C*°[—1, 1] with f(0) = 0 such that for every
polynomial P, € P, with P,(0) = 0and P,(x) > Ofor x € [0, €], thefollowing inequality
holds:

(1.29) If = Palle o1 > Aw®(. 1)p.

It also follows from Theorem 11 that the estimate
If — Sillp < Cou2(F'. ).

where 6 is the mesh size of the knot sequence Ty, is the best possible for copositive
spline approximation in the L, metric. Also, (1.29) and (1.2) imply that 72 in (1.27) can
not be replaced by 74.

In the second counterexample, we show that (1.11) and its spline analogue proved in
[12, 13] are best possible.

THEOREM 12. For everyn € N, 0 < p < 00,0 < ¢ < 1 and A > 0, there exists
a function f € C>°[—1, 1] satisfying xf(x) > 0, x € [—1, 1], and such that for every
polynomial P, € P, with P,(0) > 0, the following inequality holds:

(1.30) If = PallLyfos > Aw?(F. Dp.

The following theorem shows that the estimates in terms of w(f. 1), or 7(f, 1), are
impossible for intertwining approximation. (Note, that w(f. 1), < C||f||, and 7(f. 1), <
ClI’llp-)

THEOREM 13. For everyn € N, 0 < p < 00,0 < ¢ < 1 and A > 0, there
exists a monotoneincreasing function f € C*[—1, 1] with f(0) = 0 such that for every
polynomial P, € P, with P,(0) = 0and Pr(x) > f(x), 0 < x < ¢, thefollowing inequality

holds:

(1.31) If = Pallegioq > AllfllLy-v-

Under the same conditions except that 0 < p < oo, there also exists such a function f
that

(1.32) If = Pallepo > Al L1y
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Finally, we summarize all the results discussed in this section in the form of the

following two tables.

I ntertwining approximation
p=o00
feC En(f. Yo)oo £ ClIf[|oo Theorem 13
En(f, Yo)oo < Cn7LM(f’. n71),, Theorem 5
Janintertwining pair {Pn, Qn} for f satisfying
1
FEC T 1Pa — Q)] < AN (. 80()) Theorem 3
1<p<oo
fely En(f. Yo)p Z ClIf [l Theorem 13
= Theorem 13 and
En(f. Ys)p é CT(f. 1)p |na]_ (1.2)
f ews En(f, Yo)p Z ClIf'|lp Theorem 13
En(f. Ys)p < Cn~1r™(f',n7Y), Theorem 8
fews En(f. Yo)p < Cn2uM(f”. 1), Theorem 8
Copositive approximation
p=o00
EQ(f. Yo)oo < Cu(f.n"1)s K opotun [20]
3 Py, copositive with f, such that
fecC () — Pa()] < Cu(f. Bn(X)) Theorem 7
EO(f, Yo)oo £ CuA(f.n 1) Zhou [34]

EQO(f, Yo)oo < CnLu(f’,n7),,

Corollary 6, see also
Hu, Leviatan and Yu [15]

3Py, copositivewith f, such that

Corollary 6

fect [f(X) — Pa(¥)] < CAn(X)wm(f’.An(X))oo see al'so Dzyubenko [8]
1<p<oo
EO(f, Ys)p < C3(f.n7 1), Theorem 10
EO(f, Yo)p < Cw,(f,n 1), [13]
felp EO(f. Yo)p £ Cu2(F. D ek a [34]
ED(f. Ys)p £ Cr(f. 1)y ;r?;? rr&? :(LZI].-.Z)
EQ(f. Yo)p < Cnlu2(f/.n71), Theorem 10
f e W EO(f, Ys)p < Cn~1r™(f/, n71), Corollary 9
EO(f, Yo)p £ Cui(f'. 1), Theorem 11
f e Wj3 EQ(f, Yo)p < Cn20(f”.n7 1), Corollary 9
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The rest of this paper is organized as follows. The affirmative results for splines,
including the proof of Theorem 3, are given in Section 2, and those for polynomialsin
Section 3. Thelast section is devoted to proving Theorems 11-13.

2. Constrained spline approximation.
2.1. Intertwining spline approximation.

PROOF oF THEOREM 3. We only consider the case for 1 < p < oo. The proof for
p = oo is amost identical. We use some idea in the proof of [16, Theorem 3]. Let
d=2(r—1%m:=[(n+d—1)/d andz := z5. Note that z = —1 for i < 0 and
z = 1fori > m. Wefirst construct overlapping polynomial pieces of degree < r on
the coarser partition T, := {z},. We call the interval |; := [Z,Z+1] contaminated if
7 <YY; < z+ for some point y; € Ys. By assumption, there exists exactly oney; in each
of the contaminated intervals Iy, j = 1, ..., s, and thereis at |east one non-contaminated
interval between Iy and Iy, , that is,

2.1 m<m+2<ms, j=1..., s—1

For convenience we also denote mp := —1, and mg,q := m. Note that there are no yi’s
between Iy and Iy, j =0,....s. B

_ Ifmy =m + 2 (i.e, if there is only one non-contaminated interval between I, and
Im.,) then the following construction is not needed, and the next two paragraphs can be
skipped.

In the case m+1 > m + 2, by Whitney’s Theorem for onesided polynomial approx-
imation (see Theorem 2.6 of [12], but most of the credit goes to V. H. Hristov and
K. G. lvanov), on each of theintervals[z, z.o], i = my +1,....m.1 — 2, there exist two
polynomials P; and Q; of degree < r such that

(2.2) Pi(x) > f(x) > Qi(x). VX € [z.2+]
IPi — QillL,zz.0 < Cr' (f. ], [Z, Z+2])p.
We definep; and g; on [Z, Zi+2] by pi ;= Py and g := Q if (—1)¥7 > 0, and p; := Q;

andq; := Py if (~1)>7 < 0. Hence, (1) (pi(x) — f(x)) > 0, (—=1)* (i) —f(x)) <O,
and

23) P —alloEza = [P = Qlluzz. ~ ~
Cr' (. li]- [Z. Zw2))p < CIilT (. 1i]. [Z, Z+2])ps

IN

where, in the last step, we have used the inequality (see[29])
(. )p < Crtr™ 1(f'.Y)p. t>0.

We should emphasize that when we speak of a polynomial on an interval, we mean the
restriction of the polynomial to the interval, henceit is considered undefined outside.
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Near each point y;, we construct local polynomials differently. More precisely, we
approxmatef’ ON[Zn-1,Zm+2],j = 1.... s, from above and below by two polynomials
Pm and Qm of degree<r — 1. Then

2.4) Pry() > /(%) > Qu(¥), VX € [Zm—1, Zm+2]
[P = Oz, 12y = & i [ 2yl

Define fm := Pm and §m = Qm if (—1)57 > 0, and i = Qm and §m = P
otherwise. It is easy to check that

Py (X) = /ijr)m(t)dwf(w)

and §
Oy (X) = /y Gy (8) 0t + £ ()

satisfy the inequalities
(=% (pm () — F(9) sgn(x — ;) > O,

(—1*7 (gm () — F(9) sgn(x —y;) < 0.
and

@5) Ipm —dnllp = | (Pn® —~Qn©) o] <[ (P~ Qn (o) o,

< Cliny|[[Pry = Qmllp < Cllm |7 (" lIm |- [Zmy—1. Zoy 2]

where all norms are taken over [zy 1. Zn+2].

Having constructed the overlapping local polynomialswhich are “intertwining” with
f and havethe right approximation order, we now blend them for smooth spline approx-
imants S and S on the original knot sequence T, with the same properties. If both 1,y
and |; are non-contaminated and i < m, then pi_; and p; overlap on I;, which contains
d — linterior knots from Tn. By Beatson's Lemma (see Lemma 3.2 of [2]), there exists
aspline S of order r on I; on these knots that connectswith pi-1andpiinaC™ 2 manner
atz = zg and Z+1 = zy;+1), respectively. Moreover, the graph of S lies between those
of pi_1 and p;, and, hence, sgn(pi—1(x) — (%)) = sgn(pi(¥) — F(x)) = sgn(S(X) — F(¥)),
X € |j.

Similarly, considering the overlapping polynomials g1 and g;, we construct aspline
S satisfying sgn(gi—1(9) — f(x)) = sgn(ai(x) — f()) = sgn(S(¥) — f(x)), x € I;.. Also,

JIS=sP<2([lps—aaP+ [Ip—al?).
By (2.3) and a property of the --modulus, this gives

(26) IS =Sl < C (. (] [Z-1. Zual)p < Cllile" M (1] [Z-1. Zs2])p-
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The blending of overlapping polynomial pieces involving contaminated intervals can
be done in the same way. The spline pieces § and § thus produced also satisfy the
estimate above with a slightly larger interval in place of [z_1.Z+»] on the right-hand
side, ([z-2, z+3] at worst), which will make no difference in the rest of the proof.

We definethefinal splmeSon each |; asfollows: if thereis only onelocal polynomial
pi over |;, set Sto this polynomial; if there are two polynomials overlapping on I;, then
there must be a blending local spline S set Sto S It is clear from its construction that

S—f € A%Y,) on the whole interval [—1,1], and S € C'~2. Similarly, we construct
Se C'2suchthat f —S e A%(Ys). Now, recall that all neighboringintervals|; := [z. Z+4]

in the original partition Ty, are comparable in size and each interval I; = [z, Zy5+1)]
contains no more than d such intervals. Therefore, (1.14) follows directly from (2.3) and
(2.6). Now (1.15) isadirect consequenceof (1.14) and (1.2). ]

The above proof also yields the following result on onesided spline approximation.

LEMMA 14. Letf € Lp[—1,1],1 < p < oo, and letr > 2 be an integer. Then there
exist spllnesSn and S, of order r onthe knot sequence T, suchthat S,(x) > f(X) > S(X),
xe[-1,1],andfori=1,..., n—1

2.7) 150 — Shlle,@y < CF (. (3 Ji)ps

where C is a constant depending on r and the maximum ratio p = maxt! |Ji1] /]3],
and J; isan interval suchthat J C Ji C [Z_g—1y2- Zusr—12 -

(Note that this lemmais probably known. For example, asimilar result follows from
Andreev, Popov and Sendov [1] and Popov [27].)

2.2. Copositive spline approximation. The next theorem is an improvement to Theo-
rem4in Hu[12], whereit was proved for C* quadratic splines on equidistant knots. The
improvement is needed in the proof of Theorem 10.

THEOREM 15. Letf € Lp[—1,1] NA%(Ys), 1 < p < oo,s> 0, andletr > 3 bean
integer. Let T,, beagiven knot sequencesuch that thereareat least 4(r — 1)? knotsin each
openinterval (y,Yj+1),j =0....,s. Thenthereexistsaspline S, € C"2[—1, 1] N A%(Yy)
of order r on the knot sequence T, suchthat fori = 1. ..., n—1

(2.8) If = Sillp) < CE(E il J)p.

where C and J; areasin Theorem 3.

ProOOF. The theorem is proved in Hu [12] for the case of quadratic splines with
equidistant knots. We now generalize it to splines of any order r > 3 on unequally
spaced knots. The proof issimilar to that of Theorem 3. We shall use most of the notation
and only indicate the differences of the two proofs.

The first two paragraphs in the poof of Theorem 3 also work here, except that we
need to change (2.3) to:

(2.9) If = pillLmza < CF (. (][ Zu2D)p < C3(E. [, [Z- Ze2])p
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The main change of the proof is near each point y; of sign changeof f,j =1,...,s,
where we now construct a local quadratic polynomial pm 0N [Zy 1. Zn+2] interpolating
f at Zy 1, yj @d Zy+2. Since (2.1) isnow trueforj = 0,.. ., s, these points are separated
by at least d = 2(r — 1)2 knotsin T,. It is proved in [12] that Pm is copositivewith f and

satisfies 3
(210) If = Py llLpzza < Cr°(F [Im |- [Zm-1. Zm2])
Therest of the proof is analogousto that of Theorem 3. ]

3. Constrained polynomial approximation.

3.1. Intertwining approximation of truncated power functions. In this section, we con-
sider intertwining polynomial approximation of the truncated power functions (x — A)2,
i.e., we construct polynomials P, and P, which sufficiently approximate (x — A)%¢ and
such that P1(X) — (x — A)2¢ € A%(Ys) and (x — A) — Pa(x) € A%(Ys). After that we use
the well known procedure involving analytic representations of splinesto construct an
intertwining pair of polynomials for an arbitrary functionf.

Let
jm . _ T ow .
(= —. <I|1<n x = —_— ). <1 <n
X cosn, 0<i<mx c:os(n 2n) 1<j<n;
0 .- cos(1T T ifi 0= cos(1T _ 3T\ i > n/2
X .—cos(n 4n) ifj<n/2, x: cos(n 4n) ifj >n/2;

=16 %-1], hji=x-1—%, 1<j<n

(note that h;+; < 3hj and A, < hy < 54, for x € [j).
Also,

t(x) := (x — X)) cos” 2narccosx + (x — X)) 2 sin® 2n arccosx

is the algebraic polynomial of degree 4n — 2 (see[30], for example).

We also denote
(y) = j _ |1 ifxelab],
U= Gy MBI = (0 otmenwiee
-1 iff(x) <0,
0 = xD6. 1. san(f9) = {o 109 =0,
1 iff(x)>0.
Now, let

T _ JL — )@ — Yy — %) (4-1 — Y\t ()" dy
Ty =Ta50. 0 1, &, = .
o0 3= Tl & O0 = 03y = X)E (41 — V) ()  dy’

where o € [—1, %] and 8 € [x—1, 1]. If p is sufficiently large in comparison with £ and
¢ (for example, p > 5¢ + 5¢ + 15 will do), then T, 5 is a polynomial of degree < c(u)n,
and the denominator [2,(y — a&)(8 — Y)(y — X)*(X—1 — Y)°t;(y)" dy is a positive number
(see[18], for example).
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For the sake of brevity, we introduce the following convention:
() = (Y = %) (-1 — Y) ()"

First, we consider intertwining approximation of the step function x;(x). The following
lemmaand its corollary contain the basis for all our further constructions.

LEMMA 16. For any A € [—1,%] and B € [x_1, 1] there exist « € [—1,A] and
B € [B, 1] suchthat

S Tos(A) =0
and
(32) Ta’(}(B) =1

Proor. If A = —1 or/fand B = 1, then the choice of « and 3 is obvious. Now, let
A € (—1.x] and B € [xj—1. 1) be fixed. Then for any 3 € [B, 1] there exists a unique
o € [—1, A] suchthat (3.1) is satisfied. Indeed,

_ iy = VB — y)T(y) dy
T =0 = @200 = W Gy

Since /A,(3 — y)r(y)dy # O for 8 € [B, 1], then the function ¥ € C[B, 1]. Also, for any
B € [B, 1] we have —1 < v(8) < A. The first inequality is obvious. The second one
holds since

P (A—Y)E —yry)dy
2408 = y)r(y) dy

70) <A =
which istrue since
son( [ (A=)~ yrm)ay) = sn( [y ay) = (-1

Similarly, it can be shown that for any o € [—1, A] there existsaunique 3 € [B, 1] such
that (3.2) issatisfied, i.e., thereexistsafunction 6 € C[—1, A] with therange[B, 1] such
that (3.2) is satisfied for 3 = §().

Thus, thereexists(«, 3) € [—1, A] X [B. 1] suchthat o = ¥(3) and 3 = §(w), i.e., (3.1)
and (3.2) are satisfied simultaneously. The proof of the lemmais complete. ]

COROLLARY 17. Letanindex 1 < j < n— 1 befixed. For any A € [—1, X+1] and
B € [x—1, 1] there exist polynomials T;(A, B)(x), i = 1,2, 3,4 of degree < C(u)n such
that T;(A, B)(X) = x;(x) for x = —1, A, B, 1, and also satisfying

(33 | -TiABMX| <1/3, xe[-L1\ [Xa.X-1], 1=1,234,
(34) IXj(®) — TI(A,B)(®¥)| < Cy(¥". xe€[-1.1],i=1234
(3.5)

sgn{T1(A. B)(X) — xj(¥)} = sgn{—(x — A)(x —x)(B—X)}. x € (=1.1) \ {%}.
(3.6)
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T1(A, B)(X) isincreasing on [A, B] and, thus, 0 < T1(A,B)(X) < 1, x¢€ (A B),
B7) son{TAA B)X) — x(9} = son{(x— AB —X)}. x €& (—1.1),
(38)  son{Ta(A B)¥) — (¥} =son{—(x — A)B— N} x e (~1.1).
(3.9
sgN{T4(A. B)(X) — xj(¥)} = sgn{(x — A(X —x)(B —X)}, X € (—1.%)U[X-1.1).
The polynomial T4(x) will not be used in the construction later on, but isincluded in

the above statement for completeness, since the authors believe that Corollary 17 is an
interesting and important result by itself.

ProoF. It is sufficient to choose

T1(A. B)(X) := To.5(Mj, Mn, 1. 0, 0)(X),
T2(A, B)(X) := T, 5(Mj + 1, Mn, 1, 0, 1)(X),
Ta(A, B)(X) := To5(Mj, Mn, 1. 1, 0)(X)
and
Ta(A, B)(X) = To5(Mj, Mn, p1. 1, 1)(X).

with sufficiently large constant M = M(u) € N .
The equalities (3.5)—3.9) are obvious, and (3.4) and (3.3) follow, respectively, from
[18, Lemma 5] and the proof of [18, Lemma 6]. ]

LEMMA 18. Letanindex 1 < j < n — 1 be fixed, and let the numbers {a;}}‘zl and
bbesuchthat -1 < a <ay < - - < & < X+ and x—1 < b < 1. Then there exist
polynomials Qi(X) := Qi(Xj, ;@1 . ... a; b)(X), i = 1,2, 3, of degree < C(u)n such that
QX = x(®,1 =123, for x= -1 a,..., a, b1, Q(X) >0, x> b, QX <1,
x < &, and also satisfying

(3.10) 0 — Q| < Clu Ky, 1=1.2.3,

%n{Ql(Xj', Biags ..., 8 b)(X) —Xj (X)}
k
(3.12) =son{—T[x—a)x—x)b—-2}. xe[-1.1\ {x}

r=1

SgN{ Q2(X;. s @, - . . » & b)(X) — x; ()}
(3.12) :sgn{ —]E[(x—aq,)(b—x)}, x € [-1,1],

r=1
and
SO{Qs(X. ;@1 - - - » &; B)(X) — x;(¥) }

(3.13) :sgn{ﬁ(x—a,/)(b—x)}. x € [-1.1].

v=1
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ProOF. Let
Qu(X, ps a1, ..., & b)(x) = 15[l Ti(a,. b)(x),
Qa2 -2 D)0) = T] Ta(a B Ta(a B
and ’
Qa(X, s 84, - - -, & D)(X) = Ul:Isz(aq/, b)(x).

It is straightforward to check that the inequalities (3.11)—(3.13) are satisfied. Inequality
(3.10) follows from the observation that if §(x) = I1*.; g,(X) and |x;(X) — g.(X)| <
C(u)vj(¥)*, x € [—1,1], then |xj(x) — 8(X)| < C(u. K)yj(x)* for all x € [—1,1]. Indeed,
for x < x we have

k
160 —x; (9 = 1IGIV(X)I < C(u. Ky ().

V=

If x > x, then

k=1, v
609 — x| = S (I1609) (@109 — 1)+ 0 — 1| < Clu Ky (9"

=1 ‘i=1

k
H ql/(x) - 1' =
=1

Now, consider the“flipped” functions (§i (X, s by, .., b)(X), 1= 1,2, 3, defined as
follows:

Qi(%. p;a; by, ... b)(X) := 1 — Qi(Xn_js 1t} —bx. . . . . —by; —a)(—X)

for—1§§§><j+1andxj,1§b1<b2<...<h(§1' ~
_ Then Q(®) = xj(®), i = .23, for x = —Laby.,....b.1, Q¥ > 0, x > by,
QX)) <1,x<aandaso

(3.14) i) — Q)| < Clu. Ky (" 1=1,2.3,
Sn{Qu(%. ;& by. ..., BY(X) — x;(x)}
k
(315) = sn{—(x—a)(x— %) [16, =9}, x =111\ {x}:
son{ Q0% 1 & br, . ... BY(X) — ()}
(3.16) :sgn{(x— a)]'k[(b,/ —x)}, x € [-1.1]
=1
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and
SI{Qa(x;: 3 & b, .. I — X ()}
(3.17) :sgn{—(x—a)l/]f[l(b,, —x)}. x € [-1,1].
Let
Ri(¥) = Ri(X. a1, ....ac b ....B)X)
_tl:[iél(xi-ﬂ;av;bl ----- B)(X)Qa(X. 415 &; by . ... B)(X)
and
R = R .-+ D)) = T Qoo 03B B0,
Then
(3.18) G0 — ROJ| < Clu. k. D", =12,
SON{Ru(X. p; @1, - ... a;br. ..., B)(X) — % (9}
(3.19) :sgn{—ylli[l(x—a,/);]l:[l(b;—x)}, x € [-1.1]
and
SON{Ro(X. s &, - - - » Abr, ..., B)(X) — x; ()}
(3.20) = sgn{v]f[l(x ~a,) ;fl_l_l(b; - x)}, x € [-1.1].

Finally, multiplying R, i = 1.2, by (x — A)?™ we obtain an intertwining pair of polyno-
mialsfor (x — A)2™ with respect to {a; }<, U{b; }|_; with good approximation properties.

LEMMA 19. Let anindex 1 < j < n— 1 be fixed, {a}%; and {b;}|_, be such that
—1§a1<a2<--~<ak§X,-+1<X,-_2§b1<-~-<b| Sl,/\e[x,—,x,-_l]and
me N U {0}. Then the polynomials

R = RGA g8 86 b ... B)(X)
= (X— AR (Xsi2. 15 8. - ... B b ... D)K. P=1.2
of degree < C(u)n are such that

(321)  [RX) — (x—A)2" < Clu.k. Ny () 2", xe[-1.1], i=1.2,

(3.22) (D" (Ru(x) — (x— A)3™) € A°({ai ey U {bity)
and _
(3.23) (-1 (R — (x — A)2™) € A%({a Sy U {bi}ioy).-
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PROCF. The assertion of the lemma follows from (3.18)—(3.20), the observation that
R(X) — (x— A2
= (k= NP (R O4si-2: @, -, A br, - B)(X) = XA 2(¥)
= (= A?"(R(Ksi2. . 81 .- 8 i D)) — xjeic2(®). 1= 1.2,

for x € [—1,1] \ [%, X—1], the inequalities

Ro(Xj, s @1, .. . ag; b, ..., B)X) > x;(¥) > x[A LX) > xj-1(X)
> Ri(X-1, p, @0, ..., &b, .., b))
for x € [x.%—_1], and the fact that ¥;(X) ~ ;+1(x) for x € [-1. 1]. n

3.2. Proof of Theorem4. For the proof of Theorem 4 we need the following classical
result on analytic representation of splinesin terms of the truncated power functions. Its
proof can be found in Kornegjchuk [23], for example.

LEMMA 20. Let S(t) beasplineof order r ontheknotsequence—1 =ty <t; <--- <
th—1 <ty =1. Then, for t € [-1, 1],

G2y =Y D agy SISy
2 N ]

Let Ssatisfy the assertion of Theorem 4. Then

2m gv) —1
=5 Ty s 3 agx— w2
=0 v j€d(Ys)
2m gz/) -1
= S D ey 3 gl — )27 = 3 ok — )2,
v=0 v jeJ* jed-

where o 1= ZTUIST0E) 3= (| o > 04N I(Ye), and I~ = {j | g < O} N I(Ye).

For eachj € J(Ys) we define
u@) = mini | yi > x}
(i.e., yug) isthefirst point y; on the right of x;), and

N o B if Yui) = X—2,
V(J) ’ J +1, if Xj—1 < Yui) < Xj—2.

(In other words, we define v(j) to be an index satisfying |v(j) — j| < 1 and such that the
interval [%,). X.()—1] isnot “too close” to y;’s (recall thatj € J(Ys)). Thisisatechnicality
which is needed because g;’s and b;’sin the assertion of Lemma 19 “should be far” from
x;. Also, we would like to emphasize that if v(j) = j + 1, then yyj)—1 < Xj+2, since there
are at least 4 points x; between yyj)—1 and yy().)
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We show that the polynomials
2m (-1 ~ :
PO =S Dty s 3 aRK. i=L2
= V! j€I(Ys)

where R j(Y)(X) = Ri(%.). % 2m+30; Y)(X) if j € J* and (—1)>4) > 0, 0rj € J~ and
(—1)>40) < 0, and R j(Ys)(X) = Ra_i (%) % 2m + 30; Ys)(X) otherwise, i = 1,2, form
an intertwining pair for Ssatisfying the estimate (1.16).

It is relatively straightforward to verify (1.16). Using Markov’s inequality first and
then Jensen'sinequality (note that ;" v (x)*~*™ < C), aswell asthefact that by ~ hj;
and 1j(X) ~ ¥j+1(x), we write for 0 < p < oo:

IPL—Polls < [ 11(1_6% | 157709 — S0 e [Rui (Y0 — Ros () ax

1 n-1 p
<c /_ 1(_2 IS — s+1(x)||c(.j)¢j(x)u*2m) dx
J-\z
< Cpn_lhfl _ p ol (u—2m) min{Lp} 4
= Z; NE! S+1||Lp(|1)_/_l¢1(x) X
]:
n—1
< sz; IS = §eallf -
]:

where § denotes a polynomial from P;_; such that §(x) = S, (x), x € |; (i.e, §isa
polynomial of degree < r — 1 which coincideswith Son [;). A similar estimate is true
inthe case p = oo aswell (see[19], for example). It remains to show that

(3.25) IS — S+1|||_p(|j) <CE-1(S1jUlj+1)p, 0<p <00,

Indeed, using the observation that S.1 is the best approximant to S on lj+1 from P,_;
(thisis, of course, true since §.1 = §);,,,) we write

1S+1 — S0 = 1S54 — Sl
S ”$+l - S||Lp(|jU|j+1)
< CE-1(S lj U |j+1)p.

In the last inequality, we used the fact that S+, is also a near-best L, approximant to S
on lj U lj+1 from P,_; (see DeVore and Popov [6, Lemma 3.3]).

Finally, we verify that P1(x) — S(x) € A%(Ys) (the proof of theinclusion S(x) — Px(X) €
A°(Y) is similar). Let x € [y, yis1) be fixed. Then denoting R j(x) := Ri(X,q) % 2m +
30; Yo)(X), i = 1,2, and using Lemma 19 with | = s— u(j) + 1 for eachj € J(Ys), we have

P1(x) — S()
= 3 aj(Rei(Y09 — (x—%)2")

j€3(Ys)
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= )Y || (=150 (Ry (Yo () — (x — %)3™)
jeI (=15 U0 >00r jeJ—,(—1)suh<0
+ > |og| (= 1)> 0" (Ryj (Ye) (%) — (x — %)3™)
jed* (—1)su<0 Or jed-,(—1)s~u>0

€ AO(YS)ﬁ

sinceif fj € A%(Ys) and 3; > Ofor all j, then 3 3jf; € A%(Ys). The proof is now complete.

The proofs of Theorems 1, 5, 7, 8, and 10 will follow the same scheme. Namely,
using Theorems 3, 15, and Lemma 14 we construct splines satisfying the appropriate
constrains and having the right approximation order. Then, we use Theorem 4 to find
polynomial(s) with similar characteristics.

PrROOF OF THEOREM 1. Letf € C[—1.1] and m € N . It follows from Lemma 14
(with Ty = {x;}) that there exist splines Sand S of an odd order r, r > m (we choose
r =2[J] +1), suchthat S(x) > f(x) > S(x), x € |, and

IS Sl < C (F. 13 9w
Since |Jj| ~ [Ij| = hj ~ An(x) for x € J;, then
1S9 — S| < Cuf (F-hy)oo < Cu' (F.An(x) , < C™(F.80(9)) - X E .

and, therefore, B
S0 — S| < C™(f.Bn(x))  forallxel.

Also,

E,-,l(é lj Ulj+1)oo Erfl(g— folj Ulj+1)oo + Er—a(fL 1 U lj41)oo

1IS— Sllcgun *+ Co' (f. hy)oo < Cu'(F. hy)oo

INIA

and, similarly,
E—1(S1j Uljs1)eo < C' (f, hj)oo.

Theorem 4 (where i = 31mis chosen) implies that there exist polynomials Py, Py,
P4, and P, of degree < C(m)n such that P1(X) > S(X) > P2(X), P1(X) > S(X) > P»(X),

(3.26) P00 — Pa()] < cr_’i;lw“(f. )ty 002
>

n—-1

< Cof (f.An(0) 2; ¥ (%)?
fz

< Cu' (f.8n(¥)) _

< Cwm(f- An(X))

N
o]
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and,
P1() — P2(¥)| < Cu™(f. An())

oo’

Here, we have used the inequality
(3.27) hj < CANX)Y; () x e,

which follows from the fact that An(y)? < 4An(X)(|x — Y| +An(X)) and [x — y| + Ay(X) ~
X —y| +An(y), X,y € | (see[30] or [19], for example). Now, the polynomials Py and P,
arewhat we arelooking for sinceP; > S>f > S> P,, and

P1(x) — P2(X)] < |P1(x) — P2(¥)] + [S(X) — SK)| + [P1(X) — Po(x)| < Cw™(f.8n(¥))_ .
The proof is complete for large n (n > C(m)). For m— 1 < n < C(m) the estimate (1.7)
isatrivia corollary of (1.3). ]

PROOF OF THEOREM 5. Theorem 3 implies the existence of the intertwining pair
of splines {S S} of order r for f on the knot sequence {X; }jcyv,) (recall that J(Ys) =
{1,....n}\ {j.] — 1| % <yi <x-1forsomel <i < s}) satisfying

IS— Sleg) < Chw ™ (. 1y, J)oo

wherer isan odd integer suchthatm+1 <r < m+ 2,
We need the following consequenceof Lemma 5 of [22]:
Let [a,b] C [—1,1] besuchthat b —a] ~ Aq(X) for x € [a, b]. Then for
anyr € N there existsa constant C(r) such that

ClrY ™ (F. n(). [a.b]) | < ol (F.n 7% 2. bl

< C(n)o (f.8n(x).[ab]) ., x€[ab].
In particular,
(3.28) WTHE L e < COWH(E N Y.
Therefore, B
IS0 — S| < o) H(F.8a(¥)) . X €,
and

IS— Slcgy < Cn w7 ).
Theorem 4 (with sufficiently large u, say, p = 31m) implies that there exist intertwining
pairs of polynomials {P;,P,} and {P1,P;} for S and S, respectively, satisfying the
inequalities
P1(x) — P2(X)] < CAn(X)w'H(F'. An(X) _.
[P1(X) — P2(¥)| < CAn(x)w"*(F', An(9)) .
IP1 = Pallcgy < Cnm Y THE . nh)..
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and
IP1 = Pallcy < Cn™ Yl M (', 0t

which can be verified similarly to (3.26) using (3.28), (3.27), and the fact that
Y (X)? < C. Finally, {P1. P2} is an intertwining pair of polynomials for f sat-
isfying (1.18) and (1.19). L]

PROOF OF THEOREMS 7, 8 AND 10. The proofs of these theorems are similar to the
above proofs. The needed modifications are obvious. We omit details and just emphasize
that the inequalities (1.12) and (1.13) should be used. ]

Finally, we mention that the same proofs can be used to show the validity of the
results of Stojanova [31] (ineg. (1.5)), Kopotun [20] (ineg. (1.9)) and the authors [13]

(ineg. (1.12)).
4. Counterexamples.

PrOOF OF THEOREM 11. Letn e N,0< p < 00,0 < ¢ < 1 and A > 0 be fixed,
and define
g(x) :=Inx +e™).  f/(x) := bx? — Inb— g(x)
and

f(x) = /0 “£(t) dt = gx3 +(2 — Inb)x — 26~/ ? arctan(xe®’?) — xIn(x? + e ).

whereb > 1 is a parameter to be chosen later. Obvioudly, f € C* and f(0) = 0. Basic
calculus shows that f/ assumesits minimum 1 — be™® > O at x = i\/% € (—1,1),
thusf’(x) > Ofor all x, and f isstrictly increasing.
Sinceln2 > g(X) > Inx? = 2In|x| on[—1, 1], we have
1) ol = ./_11 Ig0|P dx = 2/01 Ig0|P dx < 2./01(In 2P dx+ 2./01 12Inx]° dx
= 2(In2)P + 27 (p+ 1) = M.

Hence
(4.2) W3, Dp = w3(g, Dp < 8™ P g||, < 8TEALYPIM, =: My

We now prove there exists b > 1 for the given n, ¢, p and A such that if any
Pn(X) = ap + a1x + - - - + X" satisfies

(4-3) [f = PallLy0 < A3, 1)p,

then P,(0) < 0. The theorem follows immediately becauseif P,, were copositivewith f,
P/,(0) would be nonnegative. Let Pn(x) — (2 — Inb)x — bx® /3 be denoted by P,. From
(4.2—(4.3) we have

_ 1 . p
@4 Pall? oy < IIf = Pall? 0.y + [ [2672arctan(xe”’2)[ dx

1 [P
+(/71‘xln(x2 +e7)|" dx < APLA(F, 1B + 27 + | g8

< APME +27° + MY =1 M5,
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It follows from Markov’s inequality and the equivalence of norms in P, (see Theo-
rem 2.2.7 of [5], for example) that

a; — 2+Inb= F_);](O) < n25_1||5n||c[0~5] < anE_l_l/ng = M4,
or
a <My+2—1Inbh.

Since My is independent of b, (though it depends on n, ¢, p and A), we can choose
b > exp(M4 + 2), which gives P;,(0) = a; < 0, asdesired. "

PROOF OF THEOREM 12. Letne N,0 < p < o00,0< e < 1and A > 0 be fixed,
and define

gx) = In((x—b™H2+e™P), f(x):=bx+Inb2+eP) —g(x).

whereb > 3 is a parameter to be chosen later. Obvioudly, f € C* and f(0) = 0. Basic
calculus showsthat f increaseson [—1, x1], where x; = m%e*b > 0, and assumes a
maximum at X;; then it decreases and assumes a minimum

2+vV1—bPeb+In(l+b% P —In2+2vV1—beb) >2—-2In2>0

atxp = Lgbze“’ € (X1, 1). On[xz, 1] it becomesmonotoneincreasing again. Therefore,
f(x) <O0forx e[—1,0)andf(x) > 0forx < (0, 1].

_ 12, b _ e 2, b
@5) il = [, IIn(x—b ™2 +e®)Pax= [ [In6&+e )P dx
1 2 b 1 ! Pdx = MP
< ./72|In(x +e )|pdx§./72(In5)pdx+/72’2In|x|‘ dx =: MP.
Hence
(4.6) WA, 1)p = wA(g, 1)p < 4mLYP | g||, < 4mLYPIM, =2 M.

We now prove the theorem by showing that there existsb > 3 for the givenn, ¢, p
and A such that if any P,(X) = ag + a;x + - - - + aX" satisfies

(4.7) If = PallLo. < AA(F. D,
then Pn(0) < 0. Let Py(X) — In(b~2 + e®) — bx be denoted by Pn. From (4.5)+4.7) we
have B
(4.8) IPAllE 0. < I = Pall2 jo.q +IGIIT 0. < APME +ME = ME.
It follows from the equivalence of normsin P,, (see Theorem 2.2.7 of [5], for example)
that 3 3
a0 — In(b™2+ &™) = Py(0) < ||Pnllcio.g < Ce~YPM3 = M,
or

a <My +In(b2+e®) <My+In@2b~?) =Ms +In2—2Inb.

Since M4 is independent of b (though it depends on n, ¢, p and A), we can choose
b > exp((M4 +1In2)/2), which gives P,(0) = ap < 0, asdesired. n
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PrROOF OF THEOREM 13. Letne€ N, 0 < p < 00,0 < ¢ < 1and A > 0 be fixed,
and define
f(x) := arctan(bx),
whereb > 1isaparameter to be chosen later. Note that ||f ||, < 24/P17.
The inequality (1.31) can be proved in much the same way as the previous proofsin
the section: supposethere exist P, € P, with Pn(0) = 0 and Pn(x) > f(X), X € [0, €], and
A € R suchthat Hf — Pn|||_p[0.5] < A”fHLp[—lAl]' then

PL(0) < e Y|Pallcro.g < CPe > P||PylL 0.
< CnPe T HP(A+ D)|f||L -1y < CPeTYPA+ 1),

Choosing b greater than the right hand side, which is independent of b, gives the con-
tradiction b = f/(0) < P/(0) < b (since P(0) = f(0) and Pr(x) > f(x), x € [0, £] imply
P;(0) > f/(0).

We now suppose0 < p < oo and prove (1.32). Since

0<rip = o0 < |1 M VETD

1+b2x2 = | b, otherwise

we have

1 p _ / p p—1/2
/—l |f (X)l dx = {/\x|§\/ﬁ/b+/\/ﬁ/b§|x|gl} |f (X)| dx < C(b * 1)'

If some polynomial P, € Py, satisfies [|f — Pn||L 0.7 < Allf’||L —1.1, then

IN

PL0) < e Y|Pnllcrog < CPe > P||PylL 0.4
Cr2e Y YP(|[f — PyllL 1 + [IF]|L,—129)

< Cn2e 1 Y/PARL Y/ @) 4 1) := M(b1Y/@ + 1),

IN

therefore choosing b > (2M)™a{1.20} gives P/,(0) < b, which contradicts the facts that
Pn(0) =0 and Pn(x) > f(x) for x € [0, £]. n

REFERENCES

1. A.Andreev, V. A. Popov and B. Sendov, Jackson-type theorems for one-sided approximation by trigono-
metric polynomials and splines, Math. Notes 26(1979), 889-896.

2. R. K. Beatson, Restricted range approximation by splines and variational inequalities, SIAM J. Numer.
Anal. 19(1982), 372-380.

3. R.A.DeVore, Y.K.HuandD. Leviatan, Convex polynomial and splineapproximationinL,,0 < p < oo,
Constr. Approx. 12(1996), 409-422.

4. R. A. DeVore, D. Leviatan and X. M. Yu, Polynomial approximation in Lp(0 < p < 1) space, Condtr.
Approx. 8(1992), 187-201.

5. R.A.DeVoreand G. G. Lorentz, Constructive Approximation, Berlin, Springer-Verlag, 1993.

6. R.A. DeVoreand V. A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. (1) 305(1988),

397-414.

Z. Ditzian and V. Totik, Moduli of Smoothness, Berlin, Springer-Verlag, 1987.

G. A. Dzyubenko, Copositive and positive pointwise approximation, preprint.

© N

https://doi.org/10.4153/CJM-1997-004-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-004-2

10.

12.

13.

14.

15.
16.

17.

18.

10.

20.

22.

23.

24.

25.

26.
27.

29.

30.

31

32.
33.

CONSTRAINED APPROXIMATION IN SOBOLEV SPACES 99

. V. H. Hristov and K. G. Ivanov, Characterization of best approximations from below and from above,

Proc. Conf. Approx. Theory, Kecskemet, (1990), 377-403.

, Operatorsfor onesided approximation by algebraic polynomialsin L p([—1, 1]9), Math. Balkan-
ica (new series) (4) 2(1988), 374-390.

, Realization of K-functionals on subsets and constrained approximation, Math. Balkanica (3)
4(1990), 236-257.

Y. K. Hu, Positive and copositive spline approximation in Lp[0. 1], Comput. Math. Appl. 30(1995),
137-146.

Y. K. Hu, K. Kopotun and X. M. Yu, On positive and copositive polynomial and spline approximation
inLp[—1,1],0 < p < 0o, J. Approx. Theory 86(1996), 320-334.

Y. K. Hu, D. Leviatan and X. M. Yu, Copositive polynomial approximation in C[0, 1], J. Analysis
1(1993), 85-90.

, Copositive polynomial and spline approximation, J. Approx. Theory 80(1995), 204-218.

Y. K. Hu and X. M. Yu, The degree of copositive approximation and a computer algorithm, SIAM J.
Numer. Anal. 33(1996), 388-398.

K. G. lvanov, Onanew characteristic of functions. I1. Direct and conver setheoremsfor the best algebraic
approximation in C[—1, 1] and Lp[—1, 1], PLISKA Stud. Math. Bulgar. 5(1983), 151-163.

K. A. Kopotun, Coconvex polynomial approximation of twice differentiable functions, J. Approx. Theory
83(1995), 141-156.

, Pointwise and uniform estimates for convex approximation of functions by algebraic polyno-
mials, Constr. Approx. (2) 10(1994), 153-178.

, On copositive approximation by algebraic polynomials, Anal. Math. 21(1995), 269-283.

, On k-monotone polynomial and spline approximation in Ly, 0 < p < oo (quasi)norm, Ap-
proximation Theory VIII, World Scientific Publishing Co., (eds. C. Chui and L. Schumaker), 1995,
295-302.

, Unconstrained and convex polynomial approximation in C[—1, 1], Approx. Theor. Appl. (2)
11(1995), 41-66.

N. P. Korngjchuk, Exact Constants in Approximation Theory, Moscow: |zdat. Nauka, 1987; English
trandation, Cambridge, Cambridge Univ. Press, 1991.

D. Leviatan, Monotone and comonotone polynomial approximation revisited, J. Approx. Theory
53(1988), 1-16.

, The degree of copositive approximation by polynomials, Proc. Amer. Math. Soc. 88(1983),
101-105.

E. Passow and L. Raymon, Copositive polynomial approximation, J. Approx. Theory 12(1974), 299-304.
V. A. Popov, The one-sided K-functional and its interpolation space, Proc. Steklov Inst. Math. 4(1985).
J. A. Roulier, The degree of copositive approximation, J. Approx. Theory 19(1977), 253-258.

B. Sendov and V. A. Popov, The averaged moduli of smoothness with applicationsin numerical methods
and approximation, John Wiley & Sons, 1988.

1. A. Shevchuk, Approximation by Polynomials and Traces of the Functions Continuous on an Interval,
Kiev, Naukova dumka, 1992.

Milena Stojanova, The best onesided algebraic approximation in Lp[—1,1] (1 < p < o0), Math.
Balkanica 2(1988), 101-113.

X. M. Yu, Degree of copositive polynomial approximation, Chinese Ann. Math. 10(1989), 409-415.

S. P. Zhou, A counterexample in copositive approximation, Israel J. Math. 78(1992), 75-83.

, On copositive approximation, Approx. Theor. Appl. (2) 9(1993), 104-110.

Georgia Southern University University of Alberta Southwest Missouri State University
Sateshoro, Georgia 30460 Edmonton, Alberta Soringfield, Missouri 65804
U.SA. T6G 2G1 U.SA

Current address:
Vanderbilt University
Nashville, TN

USA 37240

https://doi.org/10.4153/CJM-1997-004-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-004-2

