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CONSTRAINED APPROXIMATION IN SOBOLEV SPACES

Y. K. HU, K. A. KOPOTUN AND X. M. YU

ABSTRACT. Positive, copositive, onesided and intertwining (co-onesided) polyno-
mial and spline approximations of functions f 2 Wk

p[�1Ò 1] are considered. Both
uniform and pointwise estimates, which are exact in some sense, are obtained.

1. Introduction and main results. We start by recalling some of the notations
and definitions used throughout this paper. Let C[aÒ b] and Ck[aÒ b] be, respectively,
the sets of all continuous and k-times continuously differentiable functions on [aÒ b],
and let Lp[aÒ b], 0 Ú p Ú 1, be the set of measurable functions on [aÒ b] such that
kfkLp[aÒb] Ú 1, where

kfkLp[aÒb] :=
²Z b

a
jf (x)jp dx

¦ 1
p 

Throughout this paper L1[aÒ b] is understood as C[aÒ b] with the usual uniform norm,
to simplify the notation. We also denote by Wk

p[aÒ b], p ½ 1, the set of all functions f on
[aÒ b] such that f (k�1) are absolutely continuous and f (k) 2 Lp, and by Pn the set of all
polynomials of degree � n. The m-th symmetric difference of f is given by

∆m
h (f Ò xÒ [aÒ b]) :=

(Pm
i=0

�
m
i

�
(�1)m�if (x � mh

2 + ih)Ò if x š mh
2 2 [aÒ b],

0Ò otherwise.

Then the m-th (usual) modulus of smoothness of f 2 Lp[aÒ b] is defined by

°m(f Ò tÒ [aÒ b])p := sup
0Úh�t

k∆m
h (f Ò ÐÒ [aÒ b])kLp [aÒb]

We will also use the so-called ú-modulus, an averaged modulus of smoothness, defined
for all bounded measurable functions on [aÒ b] by

úm(f Ò tÒ [aÒ b])p := k°m(f Ò ÐÒ t)kLp [aÒb]Ò

where

°m(f Ò xÒ t) := supfj∆m
h (f Ò y)j : yš mhÛ2 2 [x � mtÛ2Ò x + mtÛ2] \ [aÒ b]g

is the m-th local modulus of smoothness of f . (We set úm(f Ò tÒ [aÒ b])p := 1 if the function
f is unbounded.) From the definition one can easily see that

úm(f Ò tÒ [aÒ b])1 = °m(f Ò tÒ [aÒ b])1 (1.1)
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The following relationship between the °- and ú-moduli holds for any f 2 W1
p[aÒ b] and

1 � p � 1 (Sendov and Popov, [29, Theorem 1.5])

úm(f Ò tÒ [aÒ b])p � Cmt°m�1(f 0Ò tÒ [aÒ b])pÒ t ½ 0(1.2)

If the interval [�1Ò 1] is used in any of the above notations, it will be omitted for the sake
of simplicity, for example,

kfkp := kfkLp[�1Ò1]Ò °m(f Ò t)p := °m(f Ò tÒ [�1Ò 1])p 

The moduli ° and ú measure the smoothness of f over the interval uniformly. It is well
known that polynomials approximate better near the endpoints of the interval than in
the middle, and this leads to either pointwise estimates (if p = 1), or the introduction
of “non-uniform” moduli of smoothness. The pointwise estimates for constrained ap-
proximation that we obtain in this paper are given in terms of °m

�
f Ò∆n(x)

�
1, where

∆n(x) := n�1
p

1 � x2 + n�2. The “non-uniform” modulus that we use is the m-th Ditzian-
Totik modulus of smoothness, defined for f 2 Lp[�1Ò 1] by

°mß(f Ò t)p := sup
0Úh�t

k∆m
hß(Ð)(f Ò ÐÒ [�1Ò 1])kp Ò

with ß(x) :=
p

1 � x2. We have

°mß(f Ò t)p � °m(f Ò t)p � úm(f Ò t)p � 2
1
p°m(f Ò t)1Ò 1 � p � 1

and
°mß(f Ò t)p � °m(f Ò t)p � 2

1
p°m(f Ò t)1Ò 0 Ú p Ú 1

Let Ys := fy1Ò    Ò ys j y0 := �1 Ú y1 Ú y2 Ú Ð Ð Ð Ú ys Ú 1 =: ys+1g, s ½ 0. We
denote by ∆0(Ys) the set of all functions f such that (�1)s�kf (x) ½ 0 for x 2 [ykÒ yk+1],
k = 0Ò    Ò s, i.e., those that have 0 � s Ú 1 sign changes at the points in Ys and
are nonnegative near 1. In particular, ∆0 := ∆0(Y0) denotes the set of all nonnegative
functions on [�1Ò 1]. Functions f and g which belong to the same class ∆0(Ys) are said
to be copositive.

Copositive approximation is the approximation of functions f from ∆0(Ys) class by
polynomials and splines that are copositive with f . For f 2 Lp[�1Ò 1] let

En(f )p := inf
Pn2Pn

kf � Pnkp

denote the degree of unconstrained approximation, and let

E(0)
n (f ÒYs)p := inf

Pn2Pn\∆0(Ys)
kf � Pnkp

be the degree of copositive polynomial approximation of f . (In particular, E(0)
n (f )p :=

E(0)
n (f ÒY0)p := infPn2Pn\∆0 kf � Pnkp is the degree of positive approximation.)
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The best onesided approximation of f by means of algebraic polynomials Pn 2 Pn in
Lp-metric is given by

Ẽn(f )p := inffkP� Qkp; PÒQ 2 Pn and P(x) ½ f (x) ½ Q(x)Ò �1 � x � 1g

A natural extension of (co)positive and onesided approximations is the concept of so-
called intertwining (or co-onesided) approximation.

DEFINITION . For the set Ys := fy1Ò    Ò ys j y0 := �1 Ú y1 Ú y2 Ú Ð Ð Ð Ú ys Ú
1 =: ys+1g the best intertwining polynomial approximation of a function f 2 Lp[�1Ò 1]
is given by

Ẽn(f ÒYs)p := inffkP�Qkp; PÒQ 2 PnÒP � f 2 ∆0(Ys) and f � Q 2 ∆0(Ys)g

We call fPÒQg an intertwining pair of polynomials for f with respect to Ys if P�f Ò f�Q 2
∆0(Ys).

Clearly, in the case s = 0 the above definition becomes the definition of the best
onesided polynomial approximation: Ẽn(f ÒY0)p = Ẽn(f )p.

We have the following relationships among the above quantities:
ž If f (x) ½ 0, x 2 [�1Ò 1], then E(0)

n (f )p � Ẽn(f )p.
ž If f 2 ∆0(Ys), then E(0)

n (f ÒYs)p � Ẽn(f ÒYs)p.

1.1. Positive and onesided approximations. First of all, if p = 1 (i.e., in the uniform
metric) the uniform estimates for positive and onesided approximations are not of much
interest since

En(f )1 � Ẽn(f )1 � 2En(f )1(1.3)

for any f 2 C[�1Ò 1], and

En(f )1 � E(0)
n (f )1 � 2En(f )1(1.4)

for f 2 C[�1Ò 1] \ ∆0.
At the same time, if 1 � p Ú 1, then the situation is quite different. It was shown

by Stojanova [31] (see also Hristov and Ivanov [9], [10], and [11]) that for any bounded
and measurable function on [�1Ò 1], and m 2 N,

Ẽn(f )p � C(m)úm(f Ò n�1)pÒ 1 � p Ú 1(1.5)

In fact, the estimates obtained in [31] were given in terms of úm
�
f Ò∆n(x)

�
p
, which is

smaller than úm(f Ò n�1)p, and which is, in a sense, “the right” quantity for estimation of
degree of onesided approximation.

We also remark that ú is the “correct” modulus in (1.5) (i.e., it can not be replaced
by ° or °ß), since the estimate Ẽn(f )p � Ckfkp, certainly, can not be correct for all
f 2 Lp[�1Ò 1], p Ú 1. To see this it is sufficient to consider the function f such that
f (0) = 1 and f (x) = 0, x 6= 0. Then kfkp = 0 and Ẽn(f )p Ù 0.
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An immediate consequence of (1.5) and (1.2) is the fact that if f 2 W1
p[�1Ò 1], then

Ẽn(f )p � C(m)n�1°m(f 0Ò n�1)pÒ 1 � p Ú 1

Moreover, it was shown in [31] that for any f 2 W1
p[�1Ò 1]

Ẽn(f )p � Cn�1En�1(f 0)pÒ 1 � p Ú 1(1.6)

(Though, the estimate (1.6) was not explicitly stated in [31], it immediately follows from
the proof of Corollary 1 in that paper.)

As for positive approximation, it was shown in [13] (see also Ivanov [17]) that for
any f 2 Lp[�1Ò 1] \ ∆0 and 0 Ú p Ú 1

E(0)
n (f )p � C°ß(f Ò n�1)p

At the same time, for every n 2 N , 0 Ú p Ú 1 and A Ù 0 there exists a function
f 2 Lp[�1Ò 1] \ ∆0 such that

E(0)
n (f )p Ù A°2(f Ò 1)p

In this paper we show, in particular, that pointwise estimates in terms of °m
�
f Ò∆n(x)

�
1

are true for onesided (and, therefore, for positive) approximation in C[�1Ò 1], thus, in a
sense, completing the investigation of these types of approximation. (Of course, some
improvements are possible if measures of smoothness different from those considered
here are used.)

THEOREM 1 (ONESIDED APPROXIMATION). Let f 2 C[�1Ò 1] and m 2 N . Then for
every n ½ m � 1 there exist polynomials PÒQ 2 Pn such that P(x) ½ f (x) ½ Q(x),
�1 � x � 1, and

jP(x) �Q(x)j � C(m)°m
�
f Ò∆n(x)

�
1(1.7)

COROLLARY 2 (POSITIVE APPROXIMATION). Let m 2 N and f 2 C[�1Ò 1] be such
that f (x) ½ 0, �1 � x � 1. Then for every n ½ m � 1 there exist a polynomial P 2 Pn,
P(x) ½ 0, �1 � x � 1 satisfying

jf (x) � P(x)j � C(m)°m
�
f Ò∆n(x)

�
1(1.8)

While preparing this paper for publication, the authors learned that Corollary 2 was
also recently proved by G. Dzyubenko [8].

The above results can be summarized as follows.
Onesided approximation

p = 1

f 2 C
9 Pn, Qn: Pn(x) ½ f (x) ½ Qn(x), such that
jPn(x) �Qn(x)j � C°m

�
f Ò∆n(x)

�
1

Theorem 1

1 � p Ú 1
f 2 Lp Ẽn(f )p � Cúm(f Ò n�1)p

Stojanova [31], see also
Hristov and Ivanov [10]

Ẽn(f )p 6� Ckfkp obvious

f 2 W1
p Ẽn(f )p � Cn�1En�1(f 0)p Stojanova [31]

https://doi.org/10.4153/CJM-1997-004-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-004-2


78 Y. K. HU, K. A. KOPOTUN AND X. M. YU

Positive approximation
p = 1

f 2 C
9 Pn, Pn(x) ½ 0, such that
jf (x) � Pn(x)j � C°m

�
f Ò∆n(x)

�
1

Corollary 2,
see also Dzyubenko [8]

1 � p Ú 1
E(0)

n (f )p � Cúm(f Ò n�1)p Stojanova [31]

f 2 Lp E(0)
n (f )p � C°ß(f Ò n�1)p [13], see also Ivanov [17]

E(0)
n (f )p 6� C°2(f Ò 1)p [13]

f 2 W1
p E(0)

n (f )p � Cn�1En�1(f 0)p Stojanova [31]

1.2. Copositive and intertwining approximations. Copositive approximation was ex-
tensively studied in recent years. A number of results were obtained (see [8], [12], [13],
[14], [15], [16], [20], [24], [25], [26], [28], [32], [33], [34], for example). Recently,
Kopotun [20] showed that if f 2 C[�1Ò 1] \ ∆0(Ys), then

E(0)
n (f ÒYs)1 � C(Ys)°3ß(f Ò n�1)1Ò n ½ 2(1.9)

(See Hu and Yu [16], Hu, Leviatan and Yu [14, 15] for weaker but earlier results.) This
is the best possible estimate in the sense that °3ß in (1.9) can not be replaced by °4 (Zhou
[33]). If f is continuously differentiable, Hu, Leviatan and Yu [15] gave an estimate in
terms of higher order modulus of f 0, i.e., for any function f 2 C1[�1Ò 1] \ ∆0(Ys)

E(0)
n (f ÒYs)1 � C2n�1°m(f 0Ò n�1)1Ò n ½ C1Ò(1.10)

where the constants C1 and C2 depend only on m and Ys. In fact, using a slight modification
of the proof in [15], one can show that °m in (1.10) can be replaced by °mß. In this paper
we use a different method to show that, and also obtain pointwise estimates improving
(1.10) (see Corollary 6).

As for f 2 Lp\∆0(Ys), the authors [12, 13] have shown that the copositive approxima-
tion is quite different from other kinds of constrained approximation such as monotone
or convex approximation, with which we have seen similarities between approximations
in Lp and in C. For example, DeVore, Hu and Leviatan [3] recently proved that the
degree of convex polynomial approximation in Lp, 0 Ú p Ú 1, has order °3ß(f Ò n�1)p,
which is a natural extension of Kopotun’s result in [19] for the space C. By contrast, if
0 Ú p Ú 1, the degree of copositive polynomial approximation is merely given by (see
[13])

E(0)
n (f ÒYs)p � C°ß(f Ò n�1)pÒ(1.11)

which is significantly lower than (1.9). We will show in this paper that °ß in (1.11) is
the best possible in the sense that it can not be replaced even by °2(f Ò 1)p (see also Zhou
[34], where a similar result was proved for 1 Ú p Ú 1), and that an analogue of this
holds true for splines. (As was shown in [13] and mentioned above, this is also the case
for positive approximation.)
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Also, we extend our investigation of copositive approximation to the Sobolev spaces
Wk

p, p ½ 1, and consider intertwining approximation in Wk
p as well, obtaining the

estimates which are exact in the sense of the orders of moduli of smoothness. We prove
that if f 2 W2

p, then the degree of intertwining (and, hence, copositive) polynomial
approximation has the order n�2°mß(f 00Ò n�1)p for any positive integer m. If f is merely
in W1

p, then it deteriorates to n�1úm(f 0Ò n�1)p, which is the best in the sense that one can
not replace n�1úm(f 0Ò n�1)p even by kf 0kp. At the same time, the degree of copositive
approximation does not deteriorate that bad. In particular, the estimate E(0)

n (f ÒYs)p �
Cn�1°2ß(f 0Ò n�1)p holds true. (This estimate is exact in the sense that n�1°2ß(f 0Ò n�1)p can
not be replaced by °3(f 0Ò 1)p.) Analogues of these again are true for splines.

The investigation of constrained approximation in Lp, 0 Ú p Ú 1 quasi-norm is
not our goal in this paper. (We prove some of our results in the case p Ú 1 as well.
However, it is done only if the proof is similar to that for p ½ 1, and no extra effort
or discussions are required.) It is known that for unconstrained approximation the usual
Jackson type estimates, involving the first derivatives of functions, are no longer valid if
p Ú 1 (see Kopotun [21], for example). However, it does not guarantee that the same is
true in constrained case, since the functions satisfying some shape preserving constraint
form a proper subset of Wk

p. In fact, it was shown in [21] that for convex polynomial
approximation one can get estimates which are not true in the general (unconstrained)
case. At the same time, the restriction f 2 ∆0(Ys), for example, is not as “strong”
as f 2 ∆2 (i.e., f is convex), and does not eliminate those functions f which “bring
anomalous properties” into Lp for p Ú 1. (See [21] for further discussions. We only
mention that the proof of Theorem 3 of [21] can be used to show that for every A Ù 0,
B Ù 0, 0 Ú p Ú 1, n 2 N and a set Ys, there exists a function f 2 AC[�1Ò 1] \ ∆0(Ys)
such that E(0)

n (f ÒYs)p Ù AnBkf 0kp.)
We now state our results on copositive and intertwining approximations, and begin

with a theorem on splines. We give local estimates in the theorems because they are
stronger than the corresponding global estimates (also, this is the form needed in the proof
of theorems on polynomial approximation). The global estimates follow immediately
from the inequality (which can be shown directly from the definition of the ú-modulus)

X
i
úm(f Ò tÒ Ii)

p
p � kúm(f Ò tÒ I)p

p Ò(1.12)

where [Ii = I, and each x in the interval I is contained in at most k subintervals Ii.
Moreover, if f is smooth, and the partition I = [Ii is (close to) the one formed by zeros
of Chebyshev’s polynomial cos(n arccos x), then the global estimates can be further
improved since

X
i
úm(f Ò jIi jÒ Ii)p

p � C
X

i
jIijp°m�1(f 0Ò jIijÒ Ii)p

p � Cn�p°m�1ß (f 0Ò n�1)p
p(1.13)

Let Tn := fz0Ò    Ò zn j �1 := z0 Ú z1 Ú Ð Ð Ð Ú zn�1 Ú zn := 1g, n ½ 1, be a given
knot sequence on [�1Ò 1], and set zi := �1, i Ú 0, and zi := 1, i Ù n. For i = �1Ò    Ò n,
let Ji := [ziÒ zi+1]. With this notation we have
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THEOREM 3 (INTERTWINING SPLINE APPROXIMATION, 1 � p � 1). Let f 2
W1

p[�1Ò 1], 1 � p � 1, Ys := fy1Ò    Ò ys j y0 := �1 Ú y1 Ú y2 Ú Ð Ð Ð Ú ys Ú
1 =: ys+1g, s ½ 0, and let r ½ 2 be an integer. Let Tn be a given knot sequence such that
there are at least 4(r � 1)2 knots in each open interval (yjÒ yj+1), j = 1Ò    Ò s � 1. Then
there exists an intertwining pair of splines fS̄Ò Sg of order r on the knot sequence Tn (i.e.,
SÒ S̄ 2 Cr�2[�1Ò 1] and S̄ � f Ò f � S 2 ∆0(Ys)) such that for i = 0Ò    Ò n � 1

kS̄� SkLp(Ji) � CjJijúr�1(f 0Ò jJijÒ Ji)pÒ(1.14)

where C is a constant depending on r and the maximum ratio ö := maxn�1
i=0 jJiš1jÛjJij, and

Ji is an interval such that Ji ² Ji �
h
zi�6(r�1)2 Ò zi+6(r�1)2

i
. Consequently, if in addition

f 2 W2
p, then

kS̄ � SkLp(Ji) � CjJij2°r�2(f 00Ò jJijÒ Ji)p(1.15)

We establish our results on polynomial approximation by proving that errors of
constrained polynomial approximants are no worse than those of their spline counterparts.
More precisely, the following theorem plays a main role in this paper.

THEOREM 4. Let Ys := fy1Ò    Ò ys j y0 := �1 Ú y1 Ú Ð Ð Ð Ú ys Ú 1 =: ys+1g,
s ½ 0, m 2 N [ f0g, ñ ½ 2m + 30, 0 Ú p � 1, and let S(x) be a spline of an
odd order r (r = 2m + 1) on the knot sequence fxj = cos jô

n gj2J(Ys), where n Ù C(Ys)
is such that there are at least 4 knots xj in each interval (yiÒ yi+1), i = 0Ò    Ò s, and
J(Ys) = f1Ò    Ò ng n fjÒ j � 1 j xj � yi Ú xj�1 for some 1 � i � sg. Then there exists an
intertwining pair of polynomials fP1ÒP2g ² PC(ñ)n for S with respect to Ys such that

kP1 � P2kp
p � C(rÒ ñÒ s)p

n�1X
j=1

Er�1(SÒ Ij [ Ij+1)p
pÒ if 0 Ú p Ú 1Ò(1.16)

and

(1.17)

jP1(x) � P2(x)j � C(rÒ ñÒ s)
n�1X
j=1

Er�1(SÒ Ij [ Ij+1)1
 jIjj
jx � xjj + jIjj

!ñ
Ò if p = 1Ò

where Ij := [xjÒ xj�1] and En(f Ò [aÒ b])p := infPn2Pn kf � PnkLp[aÒb].

REMARK. We emphasize that Theorem 4 is not true in general for a spline S on the
knot sequence fxjgn�1

j=1 (i.e., if the knots xj which are “too close” to yi’s are not removed).

For example, if m = 0, s = 1, n is even, y1 = 0, and S(x) =
(

1 if x ½ 0,
0 otherwise,

then, clearly,

no polynomial P(x) satisfies P(x) � S(x) = 0 for x Ú 0, and P(x) ½ S(x) = 1 for x ½ 0.
(In other words, an intertwining pair of polynomials for S with respect to fy1g simply
does not exist in this case.)

As shown in Section 3 the following results are almost straightforward consequences
of the above theorem and direct estimates for constrained spline approximation.
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THEOREM 5 (INTERTWINING POLYNOMIAL APPROXIMATION IN C1[�1Ò 1]). Let f 2
C1[�1Ò 1], m 2 N , and Ys := fy1Ò    Ò ys j y0 := �1 Ú y1 Ú y2 Ú Ð Ð Ð Ú ys Ú 1 =: ys+1g,
s ½ 0. Then

Ẽn(f ÒYs)1 � C(mÒ s)n�1°mß(f 0Ò n�1)1Ò n ½ C(Ys)(1.18)

Also, there exists an intertwining pair of polynomials fPnÒQng ² Pn such that

jPn(x) � Qn(x)j � C(mÒ s)∆n(x)°m
�
f 0Ò∆n(x)

�
1Ò n ½ C(Ys)(1.19)

COROLLARY 6 (COPOSITIVE POLYNOMIAL APPROXIMATION IN C1[�1Ò 1]). Let f 2
C1[�1Ò 1] \ ∆0(Ys), Ys := fy1Ò    Ò ys j y0 := �1 Ú y1 Ú y2 Ú Ð Ð Ð Ú ys Ú 1 =: ys+1g,
s ½ 0, and m 2 N . Then

E(0)
n (f ÒYs)1 � C(mÒ s)n�1°m

ß(f 0Ò n�1)1Ò n ½ C(Ys)(1.20)

Also, there exists a polynomial Pn 2 Pn \ ∆0(Ys) such that

jf (x) � Pn(x)j � C(mÒ s)∆n(x)°m
�
f 0Ò∆n(x)

�
1Ò n ½ C(Ys)(1.21)

The following result does not hold for intertwining approximation (see Theorem 13),
and, therefore, copositive case is considered separately.

THEOREM 7 (COPOSITIVE POLYNOMIAL APPROXIMATION IN C[�1Ò 1]). Let f 2
C[�1Ò 1] \ ∆0(Ys), Ys := fy1Ò    Ò ys j y0 := �1 Ú y1 Ú y2 Ú Ð Ð Ð Ú ys Ú 1 =: ys+1g,
s ½ 0. Then there is a polynomial Pn 2 Pn, copositive with f , such that

jf (x) � Pn(x)j � C(s)°3
�
f Ò∆n(x)

�
1Ò n ½ C(Ys)(1.22)

Now, we state the results on approximation of functions in Lp[�1Ò 1], 1 � p Ú 1
norm.

THEOREM 8 (INTERTWINING POLYNOMIAL APPROXIMATION, 1 � p Ú 1). Let f 2
W1

p[�1Ò 1], 1 � p Ú 1, m 2 N , and Ys := fy1Ò    Ò ys j y0 := �1 Ú y1 Ú y2 Ú Ð Ð Ð Ú
ys Ú 1 =: ys+1g, s ½ 0. Then

Ẽn(f ÒYs)p � C(mÒ s)n�1úm(f 0Ò n�1)pÒ n ½ C(Ys)(1.23)

Moreover, if f is also in W2
p[�1Ò 1], then

Ẽn(f ÒYs)p � C(mÒ s)n�2°m�1ß (f 00Ò n�1)pÒ n ½ C(Ys)(1.24)

COROLLARY 9 (COPOSITIVE POLYNOMIAL APPROXIMATION, 1 � p Ú 1). Let f 2
W1

p[�1Ò 1] \ ∆0(Ys), 1 � p Ú 1. Then

E(0)
n (f ÒYs)p � C(mÒ s)n�1úm(f 0Ò n�1)p n ½ C(Ys)(1.25)

Moreover, if f is also in W2
p[�1Ò 1], then

E(0)
n (f ÒYs)p � C(mÒ s)n�2°m�1ß (f 00Ò n�1)pÒ n ½ C(Ys)(1.26)
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Again, the following estimates are true for copositive approximation and false in the
intertwining case.

THEOREM 10 (COPOSITIVE POLYNOMIAL APPROXIMATION, 1 � p Ú 1). Let f 2
Lp[�1Ò 1] \ ∆0(Ys), 1 � p Ú 1. Then

E(0)
n (f ÒYs)p � C(s)ú3(f Ò n�1)pÒ n ½ C(Ys)(1.27)

Moreover, if f 2 W1
p[�1Ò 1], then

E(0)
n (f ÒYs)p � C(s)n�1°2

ß(f 0Ò n�1)pÒ n ½ C(Ys)(1.28)

As mentioned earlier, (1.28) is the best one can get for f 2 W1
p. We back this assertion

by proving the following counterexample.

THEOREM 11. For every n 2 N , 0 Ú p Ú 1, 0 Ú ¢ � 1 and A Ù 0, there
exists a monotone increasing function f 2 C1[�1Ò 1] with f (0) = 0 such that for every
polynomial Pn 2 Pn with Pn(0) = 0 and Pn(x) ½ 0 for x 2 [0Ò ¢], the following inequality
holds:

kf � PnkLp[0Ò¢] Ù A°3(f 0Ò 1)p(1.29)

It also follows from Theorem 11 that the estimate

kf � Snkp � Cé°2(f 0Ò é)pÒ

where é is the mesh size of the knot sequence Tn, is the best possible for copositive
spline approximation in the Lp metric. Also, (1.29) and (1.2) imply that ú3 in (1.27) can
not be replaced by ú4.

In the second counterexample, we show that (1.11) and its spline analogue proved in
[12, 13] are best possible.

THEOREM 12. For every n 2 N , 0 Ú p Ú 1, 0 Ú ¢ � 1 and A Ù 0, there exists
a function f 2 C1[�1Ò 1] satisfying xf (x) ½ 0, x 2 [�1Ò 1], and such that for every
polynomial Pn 2 Pn with Pn(0) ½ 0, the following inequality holds:

kf � PnkLp[0Ò¢] Ù A°2(f Ò 1)p(1.30)

The following theorem shows that the estimates in terms of °(f Ò 1)p or ú(f Ò 1)p are
impossible for intertwining approximation. (Note, that °(f Ò 1)p � Ckfkp and ú(f Ò 1)p �
Ckf 0kp.)

THEOREM 13. For every n 2 N , 0 Ú p � 1, 0 Ú ¢ � 1 and A Ù 0, there
exists a monotone increasing function f 2 C1[�1Ò 1] with f (0) = 0 such that for every
polynomial Pn 2 Pn with Pn(0) = 0 and Pn(x) ½ f (x), 0 � x � ¢, the following inequality
holds:

kf � PnkLp[0Ò¢] Ù AkfkLp[�1Ò1](1.31)

Under the same conditions except that 0 Ú p Ú 1, there also exists such a function f
that

kf � PnkLp[0Ò¢] Ù Akf 0kLp[�1Ò1](1.32)
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Finally, we summarize all the results discussed in this section in the form of the
following two tables.

Intertwining approximation

p = 1
f 2 C Ẽn(f ÒYs)1 6� Ckfk1 Theorem 13

Ẽn(f ÒYs)1 � Cn�1°mß(f 0Ò n�1)1 Theorem 5

f 2 C1 9 an intertwining pair fPnÒQng for f satisfying
jPn(x) �Qn(x)j � C∆n(x)°m

�
f 0Ò∆n(x)

�
1

Theorem 5

1 � p Ú 1
f 2 Lp Ẽn(f ÒYs)p 6� Ckfkp Theorem 13

Ẽn(f ÒYs)p 6� Cú(f Ò 1)p
Theorem 13 and
ineq. (1.2)

f 2 W1
p Ẽn(f ÒYs)p 6� Ckf 0kp Theorem 13

Ẽn(f ÒYs)p � Cn�1úm(f 0Ò n�1)p Theorem 8

f 2 W2
p Ẽn(f ÒYs)p � Cn�2°mß(f 00Ò n�1)p Theorem 8

Copositive approximation

p = 1
E(0)

n (f ÒYs)1 � C°3ß(f Ò n�1)1 Kopotun [20]

f 2 C
9 Pn, copositive with f , such that
jf (x) � Pn(x)j � C°3

�
f Ò∆n(x)

�
1

Theorem 7

E(0)
n (f ÒYs)1 6� C°4(f Ò n�1)1 Zhou [34]

E(0)
n (f ÒYs)1 � Cn�1°mß(f 0Ò n�1)1 Corollary 6, see also

Hu, Leviatan and Yu [15]

f 2 C1 9 Pn, copositive with f , such that
jf (x) � Pn(x)j � C∆n(x)°m

�
f 0Ò∆n(x)

�
1

Corollary 6
see also Dzyubenko [8]

1 � p Ú 1
E(0)

n (f ÒYs)p � Cú3(f Ò n�1)p Theorem 10

E(0)
n (f ÒYs)p � C°ß(f Ò n�1)p [13]

f 2 Lp E(0)
n (f ÒYs)p 6� C°2(f Ò 1)p

Theorem 12,
see also Zhou [34]

E(0)
n (f ÒYs)p 6� Cú4(f Ò 1)p

Theorem 11
and ineq. (1.2)

E(0)
n (f ÒYs)p � Cn�1°2ß(f 0Ò n�1)p Theorem 10

f 2 W1
p E(0)

n (f ÒYs)p � Cn�1úm(f 0Ò n�1)p Corollary 9

E(0)
n (f ÒYs)p 6� C°3(f 0Ò 1)p Theorem 11

f 2 W2
p E(0)

n (f ÒYs)p � Cn�2°mß(f 00Ò n�1)p Corollary 9
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The rest of this paper is organized as follows. The affirmative results for splines,
including the proof of Theorem 3, are given in Section 2, and those for polynomials in
Section 3. The last section is devoted to proving Theorems 11–13.

2. Constrained spline approximation.

2.1. Intertwining spline approximation.

PROOF OF THEOREM 3. We only consider the case for 1 � p Ú 1. The proof for
p = 1 is almost identical. We use some idea in the proof of [16, Theorem 3]. Let
d := 2(r � 1)2, m := [(n + d � 1)Ûd] and z̄i := zdi. Note that z̄i = �1 for i � 0 and
z̄i = 1 for i ½ m. We first construct overlapping polynomial pieces of degree Ú r on
the coarser partition Tn := fz̄igm

i=0. We call the interval Īi := [z̄iÒ z̄i+1] contaminated if
z̄i Ú yj � z̄i+1 for some point yj 2 Ys. By assumption, there exists exactly one yj in each
of the contaminated intervals Īmj , j = 1Ò    Ò s, and there is at least one non-contaminated
interval between Īmj and Īmj+1 , that is,

mj Ú mj + 2 � mj+1Ò j = 1Ò    Ò s � 1(2.1)

For convenience we also denote m0 := �1, and ms+1 := m. Note that there are no yi’s
between Īmj and Īmj+1 , j = 0Ò    Ò s.

If mj+1 = mj + 2 (i.e., if there is only one non-contaminated interval between Īmj and
Īmj+1 ), then the following construction is not needed, and the next two paragraphs can be
skipped.

In the case mj+1 Ù mj + 2, by Whitney’s Theorem for onesided polynomial approx-
imation (see Theorem 2.6 of [12], but most of the credit goes to V. H. Hristov and
K. G. Ivanov), on each of the intervals [z̄iÒ z̄i+2], i = mj + 1Ò    Òmj+1 � 2, there exist two
polynomials Pi and Qi of degree Ú r such that

Pi(x) ½ f (x) ½ Qi(x)Ò 8x 2 [z̄iÒ z̄i+2](2.2)

kPi � QikLp[z̄i Òz̄i+2] � Cúr(f Ò jĪi jÒ [z̄iÒ z̄i+2])p

We define pi and qi on [z̄iÒ z̄i+2] by pi := Pi and qi := Qi if (�1)s�j Ù 0, and pi := Qi

and qi := Pi if (�1)s�j Ú 0. Hence, (�1)s�j
�
pi(x)� f (x)

�
½ 0, (�1)s�j

�
qi(x)� f (x)

�
� 0,

and

kpi � qikLp[z̄i Òz̄i+2] = kPi �QikLp[z̄iÒz̄i+2](2.3)

� Cúr(f Ò jĪijÒ [z̄iÒ z̄i+2])p � CjĪijúr�1(f 0Ò jĪijÒ [z̄iÒ z̄i+2])pÒ

where, in the last step, we have used the inequality (see [29])

úm(f Ò t)p � Cmtúm�1(f 0Ò t)pÒ t ½ 0

We should emphasize that when we speak of a polynomial on an interval, we mean the
restriction of the polynomial to the interval, hence it is considered undefined outside.
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Near each point yj, we construct local polynomials differently. More precisely, we
approximate f 0 on [z̄mj�1Ò z̄mj+2], j = 1Ò    Ò s, from above and below by two polynomials
P̃mj and Q̃mj of degree Ú r � 1. Then

P̃mj (x) ½ f 0(x) ½ Q̃mj (x)Ò 8x 2 [z̄mj�1Ò z̄mj+2](2.4) 


P̃mj � Q̃mj





Lp[z̄mj�1Òz̄mj+2]

� Cúr�1(f 0Ò jĪmj jÒ [z̄mj�1Ò z̄mj+2])p

Define p̃mj := P̃mj and q̃mj := Q̃mj if (�1)s�j Ù 0, and p̃mj := Q̃mj and q̃mj := P̃mj

otherwise. It is easy to check that

pmj (x) :=
Z x

yj

p̃mj (t) dt + f (yj)

and
qmj (x) :=

Z x

yj

q̃mj (t) dt + f (yj)

satisfy the inequalities

(�1)s�j
�
pmj (x) � f (x)

�
sgn(x � yj) ½ 0Ò

(�1)s�j
�
qmj (x) � f (x)

�
sgn(x � yj) � 0Ò

and

kpmj � qmjkp =




Z x

yj

�
P̃mj (t) � Q̃mj (t)

�
dt






p
�




Z z̄mj+2

z̄mj�1

�
P̃mj (t) � Q̃mj (t)

�
dt






p
(2.5)

� CjĪmj j kP̃mj � Q̃mjkp � CjĪmj júr�1
�
f 0Ò jĪmj jÒ [z̄mj�1Ò z̄mj+2]

�
p
Ò

where all norms are taken over [z̄mj�1Ò z̄mj+2].
Having constructed the overlapping local polynomials which are “intertwining” with

f and have the right approximation order, we now blend them for smooth spline approx-
imants S̄ and S on the original knot sequence Tn with the same properties. If both Īi�1

and Īi are non-contaminated and i Ú m, then pi�1 and pi overlap on Īi, which contains
d � 1 interior knots from Tn. By Beatson’s Lemma (see Lemma 3.2 of [2]), there exists
a spline S̄i of order r on Īi on these knots that connects with pi�1 and pi in a Cr�2 manner
at z̄i = zdi and z̄i+1 = zd(i+1), respectively. Moreover, the graph of S̄i lies between those
of pi�1 and pi, and, hence, sgn

�
pi�1(x) � f (x)

�
= sgn

�
pi(x) � f (x)

�
= sgn

�
S̄i(x) � f (x)

�
,

x 2 Īi.
Similarly, considering the overlapping polynomials qi�1 and qi, we construct a spline

Si satisfying sgn
�
qi�1(x) � f (x)

�
= sgn

�
qi(x) � f (x)

�
= sgn

�
Si(x) � f (x)

�
, x 2 Īi. Also,

Z
Īi

jS̄i � Sijp � 2p
�Z

Īi

jpi�1 � qi�1jp +
Z

Īi

jpi � qijp
�


By (2.3) and a property of the ú-modulus, this gives

kS̄i � SikLp(Īi) � Cúr(f Ò jĪijÒ [z̄i�1Ò z̄i+2])p � CjĪijúr�1(f 0Ò jĪijÒ [z̄i�1Ò z̄i+2])p(2.6)
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The blending of overlapping polynomial pieces involving contaminated intervals can
be done in the same way. The spline pieces S̄i and Si thus produced also satisfy the
estimate above with a slightly larger interval in place of [z̄i�1Ò z̄i+2] on the right-hand
side, ([z̄i�2Ò z̄i+3] at worst), which will make no difference in the rest of the proof.

We define the final spline S̄ on each Īi as follows: if there is only one local polynomial
pi over Īi, set S̄ to this polynomial; if there are two polynomials overlapping on Īi, then
there must be a blending local spline S̄i, set S̄ to S̄i. It is clear from its construction that
S̄ � f 2 ∆0(Ys) on the whole interval [�1Ò 1], and S̄ 2 Cr�2. Similarly, we construct
S 2 Cr�2 such that f�S 2 ∆0(Ys). Now, recall that all neighboring intervals Ii := [ziÒ zi+1]
in the original partition Tn are comparable in size and each interval Īi = [zdiÒ zd(i+1)]
contains no more than d such intervals. Therefore, (1.14) follows directly from (2.3) and
(2.6). Now (1.15) is a direct consequence of (1.14) and (1.2).

The above proof also yields the following result on onesided spline approximation.

LEMMA 14. Let f 2 Lp[�1Ò 1], 1 � p � 1, and let r ½ 2 be an integer. Then there
exist splines S̄n and Sn of order r on the knot sequence Tn such that S̄n(x) ½ f (x) ½ Sn(x),
x 2 [�1Ò 1], and for i = 1Ò    Ò n � 1

kS̄n � SnkLp(Ji) � Cúr(f Ò jJijÒ Ji)pÒ(2.7)

where C is a constant depending on r and the maximum ratio ö := maxn�1
i=0 jJiš1jÛjJij,

and Ji is an interval such that Ji ² Ji �
h
zi�6(r�1)2 Ò zi+6(r�1)2

i
.

(Note that this lemma is probably known. For example, a similar result follows from
Andreev, Popov and Sendov [1] and Popov [27].)

2.2. Copositive spline approximation. The next theorem is an improvement to Theo-
rem 4 in Hu [12], where it was proved for C1 quadratic splines on equidistant knots. The
improvement is needed in the proof of Theorem 10.

THEOREM 15. Let f 2 Lp[�1Ò 1] \ ∆0(Ys), 1 � p Ú 1, s ½ 0, and let r ½ 3 be an
integer. Let Tn be a given knot sequence such that there are at least 4(r�1)2 knots in each
open interval (yjÒ yj+1), j = 0Ò    Ò s. Then there exists a spline Sn 2 Cr�2[�1Ò 1]\∆0(Ys)
of order r on the knot sequence Tn such that for i = 1Ò    Ò n � 1

kf � SnkLp(Ji) � Cú3(f Ò jJijÒ Ji)pÒ(2.8)

where C and Ji are as in Theorem 3.

PROOF. The theorem is proved in Hu [12] for the case of quadratic splines with
equidistant knots. We now generalize it to splines of any order r ½ 3 on unequally
spaced knots. The proof is similar to that of Theorem 3. We shall use most of the notation
and only indicate the differences of the two proofs.

The first two paragraphs in the poof of Theorem 3 also work here, except that we
need to change (2.3) to:

kf � pikLp[z̄i Òz̄i+2] � Cúr(f Ò jĪi jÒ [z̄iÒ z̄i+2])p � Cú3(f Ò jĪi jÒ [z̄iÒ z̄i+2])pÒ(2.9)
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The main change of the proof is near each point yj of sign change of f , j = 1Ò    Ò s,
where we now construct a local quadratic polynomial pmj on [z̄mj�1Ò z̄mj+2] interpolating
f at z̄mj�1, yj and z̄mj+2. Since (2.1) is now true for j = 0Ò    Ò s, these points are separated
by at least d = 2(r� 1)2 knots in Tn. It is proved in [12] that pmj is copositive with f and
satisfies

kf � pmjkLp[z̄iÒz̄i+2] � Cú3
�
f Ò jĪmj jÒ [z̄mj�1Ò z̄mj+2]

�
p
(2.10)

The rest of the proof is analogous to that of Theorem 3.

3. Constrained polynomial approximation.

3.1. Intertwining approximation of truncated power functions. In this section, we con-
sider intertwining polynomial approximation of the truncated power functions (x�Λ)2k

+ ,
i.e., we construct polynomials P1 and P2 which sufficiently approximate (x � Λ)2k

+ and
such that P1(x) � (x � Λ)2k

+ 2 ∆0(Ys) and (x � Λ)2k
+ � P2(x) 2 ∆0(Ys). After that we use

the well known procedure involving analytic representations of splines to construct an
intertwining pair of polynomials for an arbitrary function f .

Let

xj := cos
jô
n
Ò 0 � j � n; x̄j := cos

� jô
n
� ô

2n

�
Ò 1 � j � n;

x0
j := cos

� jô
n
� ô

4n

�
if j Ú nÛ2Ò x0

j := cos
� jô

n
� 3ô

4n

�
if j ½ nÛ2;

Ij := [xjÒ xj�1]Ò hj := xj�1 � xjÒ 1 � j � n

(note that hjš1 Ú 3hj and ∆n Ú hj Ú 5∆n for x 2 Ij).
Also,

tj(x) := (x � x0
j )�2 cos2 2n arccos x + (x � x̄j)

�2 sin2 2n arccos x

is the algebraic polynomial of degree 4n � 2 (see [30], for example).
We also denote

†j(x) :=
hj

jx � xjj + hj
Ò ü[aÒ b](x) :=

(
1 if x 2 [aÒ b],
0 otherwise,

üj(x) := ü[xjÒ 1](x)Ò sgn
�
f (x)

�
:=

8><
>:
�1 if f (x) Ú 0,
0 if f (x) = 0,
1 if f (x) Ù 0.

Now, let

TãÒå(x) := TãÒå(jÒ nÒ ñÒ òÒ ê)(x) :=
R x�1(y � ã)(å � y)(y � xj)ò(xj�1 � y)ê tj(y)ñ dyR 1�1(y � ã)(å � y)(y � xj)ò(xj�1 � y)ê tj(y)ñ dy

Ò

where ã 2 [�1Ò xj] and å 2 [xj�1Ò 1]. If ñ is sufficiently large in comparison with ò and
ê (for example, ñ ½ 5ò + 5ê + 15 will do), then TãÒå is a polynomial of degree � c(ñ)n,
and the denominator

R 1�1(y � ã)(å � y)(y � xj)ò(xj�1 � y)ê tj(y)ñ dy is a positive number
(see [18], for example).
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For the sake of brevity, we introduce the following convention:

ú(y) := (y � xj)
ò(xj�1 � y)ê tj(y)ñ

First, we consider intertwining approximation of the step function üj(x). The following
lemma and its corollary contain the basis for all our further constructions.

LEMMA 16. For any A 2 [�1Ò xj] and B 2 [xj�1Ò 1] there exist ã 2 [�1ÒA] and
å 2 [BÒ 1] such that

TãÒå(A) = 0(3.1)

and
TãÒå(B) = 1(3.2)

PROOF. If A = �1 or/and B = 1, then the choice of ã and å is obvious. Now, let
A 2 (�1Ò xj] and B 2 [xj�1Ò 1) be fixed. Then for any å 2 [BÒ 1] there exists a unique
ã 2 [�1ÒA] such that (3.1) is satisfied. Indeed,

TãÒå(A) = 0 () ã = ç(å) :=
RA�1 y(å � y)ú(y) dyRA�1(å � y)ú(y) dy



Since
RA�1(å � y)ú(y) dy 6= 0 for å 2 [BÒ 1], then the function ç 2 C[BÒ 1]. Also, for any

å 2 [BÒ 1] we have �1 � ç(å) � A. The first inequality is obvious. The second one
holds since

ç(å) � A ()
RA�1(A � y)(å � y)ú(y) dyRA�1(å � y)ú(y) dy

½ 0Ò

which is true since

sgn
�Z A

�1
(A � y)(å � y)ú(y) dy

�
= sgn

�Z A

�1
(å � y)ú(y) dy

�
= (�1)ò

Similarly, it can be shown that for any ã 2 [�1ÒA] there exists a unique å 2 [BÒ 1] such
that (3.2) is satisfied, i.e., there exists a function é 2 C[�1ÒA] with the range [BÒ 1] such
that (3.2) is satisfied for å = é(ã).

Thus, there exists (ãÒ å) 2 [�1ÒA]ð [BÒ 1] such that ã = ç(å) and å = é(ã), i.e., (3.1)
and (3.2) are satisfied simultaneously. The proof of the lemma is complete.

COROLLARY 17. Let an index 1 � j � n � 1 be fixed. For any A 2 [�1Ò xj+1] and
B 2 [xj�1Ò 1] there exist polynomials Ti(AÒB)(x), i = 1Ò 2Ò 3Ò 4 of degree � C(ñ)n such
that Ti(AÒB)(x) = üj(x) for x = �1ÒAÒBÒ 1, and also satisfying

jüj(x) � Ti(AÒB)(x)j � 1Û3Ò x 2 [�1Ò 1] n [xj+1Ò xj�1]Ò i = 1Ò 2Ò 3Ò 4Ò(3.3)

jüj(x) � Ti(AÒB)(x)j � C†j(x)ñÒ x 2 [�1Ò 1]Ò i = 1Ò 2Ò 3Ò 4Ò(3.4)

(3.5)

sgnfT1(AÒB)(x) � üj(x)g = sgnf�(x � A)(x � xj)(B � x)gÒ x 2 (�1Ò 1) n fxjgÒ
(3.6)
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T1(AÒB)(x) is increasing on [AÒB] and, thus, 0 Ú T1(AÒB)(x) Ú 1Ò x 2 (AÒB)Ò
sgnfT2(AÒB)(x) � üj(x)g = sgnf(x � A)(B � x)gÒ x 2 (�1Ò 1)Ò(3.7)

sgnfT3(AÒB)(x) � üj(x)g = sgnf�(x � A)(B � x)gÒ x 2 (�1Ò 1)Ò(3.8)

(3.9)

sgnfT4(AÒB)(x) � üj(x)g = sgnf(x � A)(x � xj)(B � x)gÒ x 2 (�1Ò xj) [ [xj�1Ò 1)

The polynomial T4(x) will not be used in the construction later on, but is included in
the above statement for completeness, since the authors believe that Corollary 17 is an
interesting and important result by itself.

PROOF. It is sufficient to choose

T1(AÒB)(x) := TãÒå(MjÒMnÒ ñÒ 0Ò 0)(x)Ò
T2(AÒB)(x) := TãÒå(Mj + 1ÒMnÒ ñÒ 0Ò 1)(x)Ò

T3(AÒB)(x) := TãÒå(MjÒMnÒ ñÒ 1Ò 0)(x)

and
T4(AÒB)(x) := TãÒå(MjÒMnÒ ñÒ 1Ò 1)(x)Ò

with sufficiently large constant M = M(ñ) 2 N .
The equalities (3.5)–(3.9) are obvious, and (3.4) and (3.3) follow, respectively, from

[18, Lemma 5] and the proof of [18, Lemma 6].

LEMMA 18. Let an index 1 � j � n � 1 be fixed, and let the numbers faigk
i=1 and

b be such that �1 � a1 Ú a2 Ú Ð Ð Ð Ú ak � xj+1 and xj�1 � b � 1. Then there exist
polynomials Qi(x) := Qi(xjÒ ñ; a1Ò    Ò ak; b)(x), i = 1Ò 2Ò 3, of degree � C(ñ)n such that
Qi(x) = üj(x), i = 1Ò 2Ò 3, for x = �1Ò a1Ò    Ò akÒ bÒ 1, Qi(x) ½ 0, x ½ b, Qi(x) � 1,
x � ak, and also satisfying

jüj(x) �Qi(x)j � C(ñÒ k)†j(x)ñÒ i = 1Ò 2Ò 3Ò(3.10)

sgnfQ1(xjÒ ñ; a1Ò    Ò ak; b)(x) � üj(x)g

= sgn
²
�

kY
ó=1

(x � aó)(x � xj)(b � x)
¦
Ò x 2 [�1Ò 1] n fxjgÒ(3.11)

sgnfQ2(xjÒ ñ; a1Ò    Ò ak; b)(x) � üj(x)g

= sgn
²
�

kY
ó=1

(x � aó)(b � x)
¦
Ò x 2 [�1Ò 1]Ò(3.12)

and

sgnfQ3(xjÒ ñ; a1Ò    Ò ak; b)(x) � üj(x)g

= sgn
² kY
ó=1

(x � aó)(b � x)
¦
Ò x 2 [�1Ò 1](3.13)
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PROOF. Let

Q1(xjÒ ñ; a1Ò    Ò ak; b)(x) :=
kY
ó=1

T1(aóÒ b)(x)Ò

Q2(xjÒ ñ; a1Ò    Ò ak; b)(x) :=
k�1Y
ó=1

T1(aóÒ b)(x)T3(akÒ b)(x)

and

Q3(xjÒ ñ; a1Ò    Ò ak; b)(x) :=
kY
ó=1

T2(aóÒ b)(x)

It is straightforward to check that the inequalities (3.11)–(3.13) are satisfied. Inequality
(3.10) follows from the observation that if q̃(x) =

Qkó=1 qó(x) and jüj(x) � qó(x)j �
C(ñ)†j(x)ñ, x 2 [�1Ò 1], then jüj(x) � q̃(x)j � C(ñÒ k)†j(x)ñ for all x 2 [�1Ò 1]. Indeed,
for x � xj we have

jq̃(x) � üj(x)j =
kY
ó=1

jqó(x)j � C(ñÒ k)†j(x)kñ

If x ½ xj, then

jq̃(x)�üj(x)j =
þþþþ kY
ó=1

qó(x)�1
þþþþ =

þþþþk�1X
ó=1

� óY
i=1

qi(x)
�

(qó+1(x)�1) + q1(x)�1
þþþþ � C(ñÒ k)†j(x)ñ

Now, consider the “flipped” functions Q̄i(xjÒ ñ; a; b1Ò    Ò bk)(x), i = 1Ò 2Ò 3, defined as
follows:

Q̄i(xjÒ ñ; a; b1Ò    Ò bk)(x) := 1 �Qi(xn�jÒ ñ;�bk Ò    Ò �b1;�a)(�x)

for �1 � a � xj+1 and xj�1 � b1 Ú b2 Ú Ð Ð Ð Ú bk � 1.
Then Q̄i(x) = üj(x), i = 1Ò 2Ò 3, for x = �1Ò aÒ b1Ò    Ò bkÒ 1, Q̄i(x) ½ 0, x ½ b1,

Q̄i(x) � 1, x � a, and also

jüj(x) � Q̄i(x)j � C(ñÒ k)†j(x)ñÒ i = 1Ò 2Ò 3Ò(3.14)

sgnfQ̄1(xjÒ ñ; a; b1Ò    Ò bk)(x) � üj(x)g

= sgn
²
�(x � a)(x � xj)

kY
ó=1

(bó � x)
¦
Ò x 2 [�1Ò 1] n fxjgÒ(3.15)

sgnfQ̄2(xjÒ ñ; a; b1Ò    Ò bk)(x) � üj(x)g

= sgn
²

(x � a)
kY
ó=1

(bó � x)
¦
Ò x 2 [�1Ò 1](3.16)
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and

sgnfQ̄3(xjÒ ñ; a; b1Ò    Ò bk)(x) � üj(x)g

= sgn
²
�(x � a)

kY
ó=1

(bó � x)
¦
Ò x 2 [�1Ò 1](3.17)

Let

R1(x) := R1(xjÒ ñ; a1Ò    Ò ak; b1Ò    Ò bl)(x)

:=
k�1Y
ó=1

Q̄1(xjÒ ñ; aó; b1Ò    Ò bl)(x)Q̄3(xjÒ ñ; ak ; b1Ò    Ò bl)(x)

and

R2(x) := R2(xjÒ ñ; a1Ò    Ò ak; b1Ò    Ò bl)(x) :=
kY
ó=1

Q̄2(xjÒ ñ; aó; b1Ò    Ò bl)(x)

Then
jüj(x) � Ri(x)j � C(ñÒ kÒ l)†j(x)ñÒ i = 1Ò 2Ò(3.18)

sgnfR1(xjÒ ñ; a1Ò    Ò ak;b1Ò    Ò bl)(x) � üj(x)g

= sgn
²
�

kY
ó=1

(x � aó)
lY

ó̃=1
(bó̃ � x)

¦
Ò x 2 [�1Ò 1](3.19)

and

sgnfR2(xjÒ ñ; a1Ò    Ò ak;b1Ò    Ò bl)(x) � üj(x)g

= sgn
² kY
ó=1

(x � aó)
lY

ó̃=1
(bó̃ � x)

¦
Ò x 2 [�1Ò 1](3.20)

Finally, multiplying Ri, i = 1Ò 2, by (x � Λ)2m we obtain an intertwining pair of polyno-
mials for (x�Λ)2m

+ with respect to faigk
i=1[fbigl

i=1 with good approximation properties.

LEMMA 19. Let an index 1 � j � n � 1 be fixed, faigk
i=1 and fbigl

i=1 be such that
�1 � a1 Ú a2 Ú Ð Ð Ð Ú ak � xj+1 Ú xj�2 � b1 Ú Ð Ð Ð Ú bl � 1, Λ 2 [xjÒ xj�1] and
m 2 N [ f0g. Then the polynomials

R̄i(x) := R̄i(xjÒΛÒ ñ; a1Ò    Ò ak; b1Ò    Ò bl)(x)

:= (x � Λ)2mRi(xj+i�2Ò ñ; a1Ò    Ò ak; b1Ò    Ò bl)(x)Ò i = 1Ò 2

of degree� C(ñ)n are such that

jR̄i(x) � (x � Λ)2m
+ j � C(ñÒ kÒ l)†j(x)ñ�2mh2m

j Ò x 2 [�1Ò 1]Ò i = 1Ò 2Ò(3.21)

(�1)l+1
�
R̄1(x) � (x � Λ)2m

+

�
2 ∆0(faigk

i=1 [ fbigl
i=1)(3.22)

and
(�1)l

�
R̄2(x) � (x � Λ)2m

+

�
2 ∆0(faigk

i=1 [ fbigl
i=1)(3.23)
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PROOF. The assertion of the lemma follows from (3.18)–(3.20), the observation that

R̄i(x) � (x � Λ)2m
+

= (x � Λ)2m
�
Ri(xj+i�2Ò ñÒ a1Ò    Ò ak; b1Ò    Ò bl)(x) � ü[ΛÒ 1](x)

�
= (x � Λ)2m

�
Ri(xj+i�2Ò ñÒ a1Ò    Ò ak; b1Ò    Ò bl)(x) � üj+i�2(x)

�
Ò i = 1Ò 2Ò

for x 2 [�1Ò 1] n [xjÒ xj�1], the inequalities

R2(xjÒ ñÒ a1Ò    Ò ak; b1Ò    Ò bl)(x) ½ üj(x) ½ ü[ΛÒ 1](x) ½ üj�1(x)

½ R1(xj�1Ò ñÒ a1Ò    Ò ak; b1Ò    Ò bl)(x)

for x 2 [xjÒ xj�1], and the fact that †j(x) ¾ †jš1(x) for x 2 [�1Ò 1].

3.2. Proof of Theorem 4. For the proof of Theorem 4 we need the following classical
result on analytic representation of splines in terms of the truncated power functions. Its
proof can be found in Kornejchuk [23], for example.

LEMMA 20. Let S(t) be a spline of order r on the knot sequence�1 = t0 Ú t1 Ú Ð Ð Ð Ú
tn�1 Ú tn = 1. Then, for t 2 [�1Ò 1],

S(t) =
r�1X
ó=0

S(ó)(�1)
ó!

(t + 1)ó +
n�1X
j=1

S(r�1)(tj+) � S(r�1)(tj�)
(r � 1)!

(t � tj)r�1
+ (3.24)

Let S satisfy the assertion of Theorem 4. Then

S(x) =
2mX
ó=0

S(ó)(�1)
ó!

(x + 1)ó +
X

j2J(Ys)
ãj(x � xj)

2m
+

=
2mX
ó=0

S(ó)(�1)
ó!

(x + 1)ó +
X
j2J+

jãjj(x � xj)2m
+ �

X
j2J�

jãjj(x � xj)2m
+ Ò

where ãj := S(2m) (xj+)�S(2m) (xj�)
(2m)! , J+ := fj j ãj ½ 0g \ J(Ys), and J� := fj j ãj Ú 0g \ J(Ys).

For each j 2 J(Ys) we define

u(j) := minfi j yi ½ xjg

(i.e., yu(j) is the first point yi on the right of xj), and

ó(j) :=
(

jÒ if yu(j) ½ xj�2,
j + 1Ò if xj�1 � yu(j) Ú xj�2.

(In other words, we define ó(j) to be an index satisfying jó(j) � jj � 1 and such that the
interval [xó(j)Ò xó(j)�1] is not “too close” to yi’s (recall that j 2 J(Ys)). This is a technicality
which is needed because ai’s and bi’s in the assertion of Lemma 19 “should be far” from
xj. Also, we would like to emphasize that if ó(j) = j + 1, then yu(j)�1 Ú xj+2, since there
are at least 4 points xj between yu(j)�1 and yu(j).)
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We show that the polynomials

Pi(x) =
2mX
ó=0

S(ó)(�1)
ó!

(x + 1)ó +
X

j2J(Ys)
ãjR̃iÒj(Ys)(x)Ò i = 1Ò 2Ò

where R̃iÒj(Ys)(x) � R̄i(xó(j)Ò xjÒ 2m + 30; Ys)(x) if j 2 J+ and (�1)s�u(j) Ù 0, or j 2 J� and
(�1)s�u(j) Ú 0, and R̃iÒj(Ys)(x) � R̄3�i(xó(j)Ò xjÒ 2m + 30; Ys)(x) otherwise, i = 1Ò 2, form
an intertwining pair for S satisfying the estimate (1.16).

It is relatively straightforward to verify (1.16). Using Markov’s inequality first and
then Jensen’s inequality (note that

Pn�1
j=1 †j(x)ñ�2m Ú C), as well as the fact that hj ¾ hjš1

and †j(x) ¾ †jš1(x), we write for 0 Ú p Ú 1:

kP1 � P2kp
p � Cp

Z 1

�1

� X
j2J(Ys)

kS(2m)
j (x) � S(2m)

j+1 (x)kC(Ij)

þþþþR̃1Òj(Ys)(x) � R̃2Òj(Ys)(x)
þþþþ
�p

dx

� Cp
Z 1

�1

�n�1X
j=1

kSj(x) � Sj+1(x)kC(Ij)†j(x)ñ�2m
�p

dx

� Cp
n�1X
j=1

h�1
j kSj � Sj+1kp

Lp(Ij)

Z 1

�1
†j(x)(ñ�2m) minf1Òpg dx

� Cp
n�1X
j=1

kSj � Sj+1kp
Lp(Ij)

Ò

where Sj denotes a polynomial from Pr�1 such that Sj(x) � SjIj (x), x 2 Ij (i.e., Sj is a
polynomial of degree � r � 1 which coincides with S on Ij). A similar estimate is true
in the case p = 1 as well (see [19], for example). It remains to show that

kSj � Sj+1kLp(Ij) � CEr�1(SÒ Ij [ Ij+1)pÒ 0 Ú p � 1(3.25)

Indeed, using the observation that Sj+1 is the best approximant to S on Ij+1 from Pr�1

(this is, of course, true since Sj+1 � SjIj+1 ) we write

kSj+1 � SjkLp(Ij) = kSj+1 � SkLp(Ij)

� kSj+1 � SkLp(Ij[Ij+1)

� CEr�1(SÒ Ij [ Ij+1)p

In the last inequality, we used the fact that Sj+1 is also a near-best Lp approximant to S
on Ij [ Ij+1 from Pr�1 (see DeVore and Popov [6, Lemma 3.3]).

Finally, we verify that P1(x)�S(x) 2 ∆0(Ys) (the proof of the inclusion S(x)�P2(x) 2
∆0(Ys) is similar). Let x 2 [yiÒ yi+1) be fixed. Then denoting R̄iÒj(x) := R̄i(xó(j)Ò xjÒ 2m +
30; Ys)(x), i = 1Ò 2, and using Lemma 19 with l = s� u(j) + 1 for each j 2 J(Ys), we have

P1(x) � S(x)

=
X

j2J(Ys)
ãj

�
R̃1Òj(Ys)(x) � (x � xj)2m

+

�
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=
X

j2J+ Ò(�1)s�u(j)Ù0or j2J� Ò(�1)s�u(j)Ú0
jãjj(�1)s�u(j)

�
R̄1Òj(Ys)(x) � (x � xj)

2m
+

�

+
X

j2J+ Ò(�1)s�u(j)Ú0 or j2J� Ò(�1)s�u(j)Ù0
jãjj(�1)s�u(j)+1

�
R̄2Òj(Ys)(x) � (x � xj)2m

+

�

2 ∆0(Ys)Ò

since if fj 2 ∆0(Ys) and åj ½ 0 for all j, then
P

j åj fj 2 ∆0(Ys). The proof is now complete.

The proofs of Theorems 1, 5, 7, 8, and 10 will follow the same scheme. Namely,
using Theorems 3, 15, and Lemma 14 we construct splines satisfying the appropriate
constrains and having the right approximation order. Then, we use Theorem 4 to find
polynomial(s) with similar characteristics.

PROOF OF THEOREM 1. Let f 2 C[�1Ò 1] and m 2 N . It follows from Lemma 14
(with Tn = fxjg) that there exist splines S̄ and S of an odd order r, r ½ m (we choose
r = 2[ m

2 ] + 1), such that S̄(x) ½ f (x) ½ S(x), x 2 I, and

kS̄ � SkC(Ij) � C°r(f Ò jJjjÒ Jj)1

Since jJjj ¾ jIjj = hj ¾ ∆n(x) for x 2 Jj, then

jS̄(x) � S(x)j � C°r(f Ò hj)1 � C°r
�
f Ò∆n(x)

�
1 � C°m

�
f Ò∆n(x)

�
1Ò x 2 IjÒ

and, therefore,
jS̄(x) � S(x)j � C°m

�
f Ò∆n(x)

�
1 for all x 2 I

Also,

Er�1(S̄Ò Ij [ Ij+1)1 � Er�1(S̄ � f Ò Ij [ Ij+1)1 + Er�1(f Ò Ij [ Ij+1)1
� kS̄ � SkC(Ij[Ij+1) + C°r(f Ò hj)1 � C°r(f Ò hj)1Ò

and, similarly,
Er�1(SÒ Ij [ Ij+1)1 � C°r(f Ò hj)1

Theorem 4 (where ñ = 31m is chosen) implies that there exist polynomials P̄1, P̄2,
P1, and P2 of degree � C(m)n such that P̄1(x) ½ S̄(x) ½ P̄2(x), P1(x) ½ S(x) ½ P2(x),

jP̄1(x) � P̄2(x)j � C
n�1X
j=1

°r(f Ò hj)1†j(x)r+2(3.26)

� C°r
�
f Ò∆n(x)

�
1

n�1X
j=1

†j(x)2

� C°r
�
f Ò∆n(x)

�
1

� C°m
�
f Ò∆n(x)

�
1Ò
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and,
jP1(x) � P2(x)j � C°m

�
f Ò∆n(x)

�
1

Here, we have used the inequality

hj � C∆n(x)†j(x)�1Ò x 2 IÒ(3.27)

which follows from the fact that ∆n(y)2 � 4∆n(x)
�
jx � yj + ∆n(x)

�
and jx � yj + ∆n(x) ¾

jx � yj + ∆n(y), xÒ y 2 I (see [30] or [19], for example). Now, the polynomials P̄1 and P2

are what we are looking for since P̄1 ½ S̄ ½ f ½ S ½ P2, and

jP̄1(x) � P2(x)j � jP̄1(x) � P̄2(x)j + jS̄(x) � S(x)j + jP1(x) � P2(x)j � C°m
�
f Ò∆n(x)

�
1

The proof is complete for large n (n ½ C(m)). For m� 1 � n Ú C(m) the estimate (1.7)
is a trivial corollary of (1.3).

PROOF OF THEOREM 5. Theorem 3 implies the existence of the intertwining pair
of splines fS̄Ò Sg of order r for f on the knot sequence fxjgj2J(Ys) (recall that J(Ys) =
f1Ò    Ò ng n fjÒ j � 1 j xj � yi Ú xj�1 for some 1 � i � sg) satisfying

kS̄ � SkC(Ij) � Chj°r�1(f 0Ò hjÒ Jj)1Ò

where r is an odd integer such that m + 1 � r � m + 2.
We need the following consequence of Lemma 5 of [22]:

Let [aÒ b] ² [�1Ò 1] be such that jb � aj ¾ ∆n(x) for x 2 [aÒ b]. Then for
any r 2 N there exists a constant C(r) such that

C(r)�1°r
�
f Ò∆n(x)Ò [aÒ b]

�
1 � °rß(f Ò n�1Ò [aÒ b])1
� C(r)°r

�
f Ò∆n(x)Ò [aÒ b]

�
1Ò x 2 [aÒ b]

In particular,
°r�1(f Ò hjÒ Jj)1 � C(r)°r�1ß (f Ò n�1)1(3.28)

Therefore,
jS̄(x) � S(x)j � C∆n(x)°r�1

�
f 0Ò∆n(x)

�
1Ò x 2 Ij

and
kS̄ � SkC(Ij) � Cn�1°r�1

ß (f 0Ò n�1)1

Theorem 4 (with sufficiently large ñ, say, ñ = 31m) implies that there exist intertwining
pairs of polynomials fP̄1Ò P̄2g and fP1ÒP2g for S̄ and S, respectively, satisfying the
inequalities

jP̄1(x) � P̄2(x)j � C∆n(x)°r�1
�
f 0Ò∆n(x)

�
1Ò

jP1(x) � P2(x)j � C∆n(x)°r�1
�
f 0Ò∆n(x)

�
1Ò

kP̄1 � P̄2kC(I) � Cn�1°r�1
ß (f 0Ò n�1)1Ò
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and
kP1 � P2kC(I) � Cn�1°r�1

ß (f 0Ò n�1)1Ò
which can be verified similarly to (3.26) using (3.28), (3.27), and the fact thatPn�1

j=1 †j(x)2 � C. Finally, fP̄1ÒP2g is an intertwining pair of polynomials for f sat-
isfying (1.18) and (1.19).

PROOF OF THEOREMS 7, 8 AND 10. The proofs of these theorems are similar to the
above proofs. The needed modifications are obvious. We omit details and just emphasize
that the inequalities (1.12) and (1.13) should be used.

Finally, we mention that the same proofs can be used to show the validity of the
results of Stojanova [31] (ineq. (1.5)), Kopotun [20] (ineq. (1.9)) and the authors [13]
(ineq. (1.11)).

4. Counterexamples.

PROOF OF THEOREM 11. Let n 2 N , 0 Ú p Ú 1, 0 Ú ¢ � 1 and A Ù 0 be fixed,
and define

g(x) := ln(x2 + e�b)Ò f 0(x) := bx2 � ln b � g(x)

and

f (x) :=
Z x

0
f 0(t) dt =

b
3

x3 + (2 � ln b)x � 2e�bÛ2 arctan(xebÛ2) � x ln(x2 + e�b)Ò

where b ½ 1 is a parameter to be chosen later. Obviously, f 2 C1 and f (0) = 0. Basic

calculus shows that f 0 assumes its minimum 1 � be�b Ù 0 at x = š
r

eb�b
beb 2 (�1Ò 1),

thus f 0(x) Ù 0 for all x, and f is strictly increasing.
Since ln 2 Ù g(x) Ù ln x2 = 2 ln jxj on [�1Ò 1], we have

kgkp
p =

Z 1

�1
jg(x)jp dx = 2

Z 1

0
jg(x)jp dx � 2

Z 1

0
(ln 2)p dx + 2

Z 1

0
j2 ln xjp dx(4.1)

= 2(ln 2)p + 2p+1Γ(p + 1) =: Mp
1

Hence
°3(f 0Ò 1)p = °3(gÒ 1)p � 8maxf1Ò1Ûpgkgkp � 8maxf1Ò1ÛpgM1 =: M2(4.2)

We now prove there exists b ½ 1 for the given n, ¢, p and A such that if any
Pn(x) = a0 + a1x + Ð Ð Ð + anxn satisfies

kf � PnkLp[0Ò¢] � A°3(f 0Ò 1)pÒ(4.3)

then P0
n(0) Ú 0. The theorem follows immediately because if Pn were copositive with f ,

P0
n(0) would be nonnegative. Let Pn(x) � (2 � ln b)x � bx3Û3 be denoted by P̄n. From

(4.2)–(4.3) we have

kP̄nkp
Lp[0Ò¢] � kf � Pnkp

Lp[0Ò¢] +
Z 1

�1

þþþ2e�bÛ2 arctan
�
xebÛ2

�þþþp dx(4.4)

+
Z 1

�1

þþþx ln(x2 + e�b)
þþþp dx � Ap°3(f 0Ò 1)p

p + 2ôp + kgkp
p

� ApMp
2 + 2ôp + Mp

1 =: Mp
3
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It follows from Markov’s inequality and the equivalence of norms in Pn (see Theo-
rem 2.2.7 of [5], for example) that

a1 � 2 + ln b = P̄0
n(0) � n2¢�1kP̄nkC[0Ò¢] � Cn2¢�1�1ÛpM3 =: M4Ò

or
a1 � M4 + 2 � ln b

Since M4 is independent of b, (though it depends on n, ¢, p and A), we can choose
b Ù exp(M4 + 2), which gives P0

n(0) = a1 Ú 0, as desired.

PROOF OF THEOREM 12. Let n 2 N , 0 Ú p Ú 1, 0 Ú ¢ � 1 and A Ù 0 be fixed,
and define

g(x) := ln((x � b�1)2 + e�b)Ò f (x) := bx + ln(b�2 + e�b) � g(x)Ò

where b ½ 3 is a parameter to be chosen later. Obviously, f 2 C1 and f (0) = 0. Basic

calculus shows that f increases on [�1Ò x1], where x1 = 2�p1�b2e�b

b Ù 0, and assumes a
maximum at x1; then it decreases and assumes a minimum

2 +
p

1 � b2e�b + ln(1 + b2e�b)� ln(2 + 2
p

1 � b2e�b) Ù 2 � 2 ln 2 Ù 0

at x2 = 2+
p

1�b2e�b

b 2 (x1Ò 1). On [x2Ò 1] it becomes monotone increasing again. Therefore,
f (x) Ú 0 for x 2 [�1Ò 0) and f (x) Ù 0 for x 2 (0Ò 1].

kgkp
p =

Z 1

�1
j ln((x � b�1)2 + e�b)jp dx =

Z 1�b�1

�1�b�1
j ln(x2 + e�b)jp dx(4.5)

�
Z 1

�2
j ln(x2 + e�b)jp dx �

Z 1

�2
(ln 5)p dx +

Z 1

�2

þþþ2 ln jxj
þþþp dx =: Mp

1

Hence
°2(f Ò 1)p = °2(gÒ 1)p � 4maxf1Ò1Ûpgkgkp � 4maxf1Ò1ÛpgM1 =: M2(4.6)

We now prove the theorem by showing that there exists b ½ 3 for the given n, ¢, p
and A such that if any Pn(x) = a0 + a1x + Ð Ð Ð + anxn satisfies

kf � PnkLp[0Ò¢] � A°2(f Ò 1)pÒ(4.7)

then Pn(0) Ú 0. Let Pn(x) � ln(b�2 + e�b) � bx be denoted by P̄n. From (4.5)–(4.7) we
have

kP̄nkp
Lp[0Ò¢] � kf � Pnkp

Lp[0Ò¢] + kgkp
Lp[0Ò¢] � ApMp

2 + Mp
1 =: Mp

3(4.8)

It follows from the equivalence of norms in Pn (see Theorem 2.2.7 of [5], for example)
that

a0 � ln(b�2 + e�b) = P̄n(0) � kP̄nkC[0Ò¢] � C¢�1ÛpM3 =: M4Ò
or

a0 � M4 + ln(b�2 + e�b) � M4 + ln(2b�2) = M4 + ln 2 � 2 ln b
Since M4 is independent of b (though it depends on n, ¢, p and A), we can choose
b Ù exp((M4 + ln 2)Û2), which gives Pn(0) = a0 Ú 0, as desired.
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PROOF OF THEOREM 13. Let n 2 N , 0 Ú p � 1, 0 Ú ¢ � 1 and A Ù 0 be fixed,
and define

f (x) := arctan(bx)Ò

where b ½ 1 is a parameter to be chosen later. Note that kfkp � 21Ûp�1ô.
The inequality (1.31) can be proved in much the same way as the previous proofs in

the section: suppose there exist Pn 2 Pn with Pn(0) = 0 and Pn(x) ½ f (x), x 2 [0Ò ¢], and
A 2 R such that kf � PnkLp[0Ò¢] � AkfkLp[�1Ò1], then

P0
n(0) � n2¢�1kPnkC[0Ò¢] � Cn2¢�1�1ÛpkPnkLp[0Ò¢]

� Cn2¢�1�1Ûp(A + 1)kfkLp[�1Ò1] � C0n2¢�1�1Ûp(A + 1)

Choosing b greater than the right hand side, which is independent of b, gives the con-
tradiction b = f 0(0) � P0

n(0) Ú b (since P(0) = f (0) and Pn(x) ½ f (x), x 2 [0Ò ¢] imply
P0

n(0) ½ f 0(0)).
We now suppose 0 Ú p Ú 1 and prove (1.32). Since

0 Ú f 0(x) =
b

1 + b2x2
�
(

1Ò jxj ½
p

b � 1Ûb,
bÒ otherwise

we have
Z 1

�1
jf 0(x)jp dx =

²Z
jxj�pb�1Ûb

+
Z
p

b�1Ûb�jxj�1

¦
jf 0(x)jp dx � C(bp�1Û2 + 1)

If some polynomial Pn 2 Pn satisfies kf � PnkLp[0Ò¢] � Akf 0kLp[�1Ò1], then

P0
n(0) � n2¢�1kPnkC[0Ò¢] � Cn2¢�1�1ÛpkPnkLp[0Ò¢]

� Cn2¢�1�1Ûp(kf � PnkLp[�1Ò1] + kfkLp[�1Ò1])

� Cn2¢�1�1ÛpA(b1�1Û(2p) + 1) := M(b1�1Û(2p) + 1)Ò

therefore choosing b Ù (2M)maxf1Ò2pg gives P0
n(0) Ú b, which contradicts the facts that

Pn(0) = 0 and Pn(x) ½ f (x) for x 2 [0Ò ¢].
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