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response theory
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Abstract

This article proposes an Item Response Theoretical (IRT) forecasting model that incorporates proper scoring rules and

provides evaluations of forecasters’ expertise in relation to the features of the specific questions they answer. We illustrate the

model using geopolitical forecasts obtained by the Good Judgment Project (GJP) (see Mellers, Ungar, Baron, Ramos, Gurcay,

Fincher, Scott, Moore, Atanasov, Swift, Murray, Stone & Tetlock, 2014). The expertise estimates from the IRT model, which

take into account variation in the difficulty and discrimination power of the events, capture the underlying construct being

measured and are highly correlated with the forecasters’ Brier scores. Furthermore, our expertise estimates based on the first

three years of the GJP data are better predictors of both the forecasters’ fourth year Brier scores and their activity level than

the overall Brier scores obtained and Merkle’s (2016) predictions, based on the same period. Lastly, we discuss the benefits of

using event-characteristic information in forecasting.
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1 Introduction

Probabilistic forecasting is the process of making formal

statements about the likelihood of future events based on

what is known about antecedent conditions and the causal

and stochastic processes operating on them. Assessing the

accuracy of probabilistic forecasts is difficult for a variety of

reasons. First, such forecasts typically provide a probability

distribution with respect to a single outcome so, method-

ologically speaking, the outcome cannot falsify the forecast.

Second, some forecasts relate to outcomes of events whose

“ground truth” is hard to determine (e.g., Armstrong, 2001;

Lehner, Micheslson, Adelma & Goodman, 2012; Mandel

& Barnes, 2014; Tetlock, 2005). Finally, forecasts often

address outcomes that will only be resolved in the distant

future (Mandel & Barnes, 2014).
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Scoring rules are useful tools for evaluating probability

forecasters. These mechanisms assign numerical values

based on the proximity of the forecast to the event, or value,

when it materializes (e.g., Gneiting & Raftery, 2007). A

scoring rule is proper if it elicits a forecaster’s true belief as

a probabilistic forecast, and it is strictly proper if it uniquely

elicits an expert’s true beliefs. Winkler (1967), Winkler

& Murphy (1968), Murphy & Winkler (1970), and Bickel

(2007) discuss scoring rules and their properties.

Consider the assessment of a probability distribution by a

forecaster i over a partition of n mutually exclusive events,

where n > 1. Let pi = (pi1, . . . , pin) be a latent vector

of probabilities representing the forecaster’s private beliefs,

where pi j is the probability the ith forecaster assigns to event

j, and the sum of the probabilities is equal to 1. The fore-

caster’s overt (stated) probabilities for the n events are rep-

resented by the vector ri = (ri1, . . . , rin), and their sum is

also equal to 1. The key feature of a strictly proper scoring

rule is that forecasters maximize their subjectively expected

scores if, and only if, they state their true probabilities such

that ri = pi.

Researchers have devised several families of proper scor-

ing rules (Bickel, 2007; Merkle & Steyvers, 2013). The ones

most often employed in practice include the Brier/quadratic

score, the logarithmic score, and the spherical score, where:

Brier Score:Qi (r) = a + b(2ri − rr)

Logarithmic Score:Li (r) = a + b ln(ri)

Spherical Score:Si (r) = a + b
ri

(rr)
1
2

(1)

where a and b (b > 0) are arbitrary constants (Toda, 1963).
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Figure 1. Relationship between probability predictions and

Brier scores in events with binary outcomes.

Without any loss of generality, we set a = 0 and b = 1

in all our analyses. Figure 1 illustrates the relationship be-

tween probability predictions and Brier scores for binary

cases (where 0 = outcome does not happen in blue, and

1 = outcome does happen in red). Brier scores measure the

mean square difference between the predicted probability

assigned to the possible outcomes and the actual outcome.

Thus, lower Brier scores indicate better calibration of a set

of predictions.

In addition to motivating forecasters (Gneiting & Raftery,

2007), these scores provide a means of assessing relative

accuracy as they reflect the “quality” or “goodness” of the

probabilistic forecasts: The lower the mean Brier score is for

a set of predictions, the better the predictions.

Typically, scores do not take into account the characteris-

tics of the events, or class of events, being forecast. Consider,

for example a person predicting the results of games to be

played between teams in a sports league (e.g., National Foot-

ball League, National Basketball Association). A probability

forecast, p, earns the same score if it refers to the outcome

of a game between the best and worst teams in the league (a

relatively easy prediction) or between two evenly matched

ones (a more difficult prediction). Similarly, they give equal

credit for assigning the same probabilities when predicting

political races where one candidate runs unopposed (an event

with almost no uncertainty) and in very close races (an event

with much more uncertainty). This paper uses the Item Re-

sponse Theory (IRT) framework (e.g., Embretson & Reise,

2000; Lord, 1980; van der Linden & Hambleton, 1996) to in-

corporate event characteristics and, in the process, provides

a framework to identify superior forecasters.

IRT is a stochastic model of test performance that was

developed as an alternative to classical test theory (Lord

& Novick, 1968). It describes how performance relates to

ability measured by the items on the test and features of

these items. In other words, it models the relation between

test takers’ abilities and psychometric properties of the items.

One of the most popular IRT models for binary items is the

2-parameter logistic model:

Pj (θi) =
1

1 + e−a j (θi−b j )
(2)

where θi is the person’s ability, a j and bj are the item discrim-

ination and item difficulty parameters, respectively. Pj (θi)

is the model’s predicted probability that a person with ability

θi will respond correctly to item j with parameters a j and

bj .

From this point on, we will abandon the test theory ter-

minology and embrace the corresponding forecasting terms.

We will refer to expertise, instead of ability, and events,

instead of items. Extending the IRT approach to the assess-

ment of probabilistic forecasting accuracy could bridge the

measurement gap between expertise and features of the target

events (such as their discrimination and difficulty) by putting

them on the same scale and modeling them simultaneously.

The joint estimation of person and event parameters facili-

tates interpretation and comparison between forecasters.

The conventional estimates of a forecaster’s expertise

(e.g., his or her mean Brier score, based on all events forecast)

are content dependent, so people may be assigned higher or

lower “expertise” scores as a function of the events they

choose to forecast. This is a serious shortcoming because

(a) typically judges do not forecast all the events and (b) their

choices of which events to forecast are not random. In fact,

one can safely assume that they select questions strategi-

cally: Judges are more likely to make forecasts about events

in domains where they believe (or are expected to) have

expertise or events they perceive to be “easy” and highly

predictable, so their Brier scores are likely to be affected by

this self-selection that, typically, leads to overestimation of

one’s expertise. Thus, all comparisons among people who

forecast distinct sets of events are of questionable quality.

A remedy to this problem is to compare directly the fore-

casting expertise based only on the forecasts to the common

subset of events forecast by all. But this approach can also

run into problems. As the number of forecasters increases,

comparisons may be based on smaller subsets of events an-

swered by all and become less reliable and informative. As

an example, consider financial analysts who make predic-

tions regarding future earnings of companies that are traded

on the market. They tend to specialize in various areas, so

it is practically impossible to compare the expertise of an

analyst that focuses on the automobile industry and another

that specialize in the telecommunication area, since there is

no overlap between their two areas. Any difference between

their Brier scores could be a reflection of how predicable one
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industry is, compared to the other, and not necessarily of the

analysts’ expertise and forecasting ability. An IRT model can

solve this problem. Assuming forecasters are sampled from

a population with some distribution of expertise, a key prop-

erty of IRT models is invariance of parameters (Hambleton

& Jones, 1993): (1) parameters that characterize an individ-

ual forecaster are independent of the particular events from

which they are estimated; (2) parameters that characterize an

event are independent of the distribution of the abilities of the

individuals who forecast them (Hambleton, Swaminathan &

Rogers, 1991). In other words, the estimated expertise pa-

rameters allow meaningful comparisons of all the judges

from the same population as long as the events require the

same latent expertise (i.e., a unidimensional assumption).

Most IRT models in the psychometric literature are de-

signed to handle dichotomous or polytomous responses and

cannot be used to analyze probability judgments, which, at

least in principle, are continuous. One recent exception is

the model by Merkle, Steyvvers, Mellers and Tetlock (2016).

They posit a variant of a traditional one-factor model, and

assume that an individual i’s observed probit-transformed

forecast yi j on event j is a function of the forecaster’s exper-

tise θi:

yi j = b0j + (b1j − b0j )e−b2ti j
+ λ jθi + ei j (3)

where ti j is the time at which individual i forecast item

j (measured as days until the ground truth of the event is

determined), b0j reflects item j’s easiness as days to item

expiration goes to infinity, b1j reflects item j’s easiness at

the time the item resolves (i.e., the item’s “irreducible uncer-

tainty”), and b2 the describes change in item easiness over

time.

The underlying latent individual trait in Merkle et al.’s

(2016) IRT model, θi , measures expertise, but it is not linked

with a proper scoring rule. When using a model to analyze

responses, it is always beneficial and desirable to have the

model reflect the respondents’ knowledge about the evalu-

ation criterion in the testing environment. In the absence

of such a match, one can question the validity of the scores

obtained, as it is not clear that they measure the target con-

struct. A good analogy is a multiple-choice test that is scored

with a penalty for incorrect answers without informing the

test takers of the penalty (Budescu & Bar-Hillel, 1993). In

this paper we propose a new model that is based on the same

scoring rule that is communicated to forecasters.

More generally, we describe an IRT framework in which

one can incorporate any proper scoring rule into the model,

and we show how to use weights based on event features

in the proper scoring rules. This leads to a model-based

method for evaluating forecasters via proper scoring rules,

allowing us to account for additional factors that the regular

proper scoring rules rarely consider.
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Figure 2. Distributions of the original probability forecasts and

their rounded values

2 IRT Forecasting Model

Consider a forecasting event j with K possible responses

that is scored by a given proper scoring rule. Each response

is assumed to follow a multinomial distribution with a prob-

ability of each possible response specified in equation (4,

below). In most cases, each possible response links to one

possible score, so an event with K possible responses, has K

possible scores. Each possible score is denoted as sk where

k = (1, . . . , K ) and sk ∈ [0, 1], with 0 being the best and 1

being the worst. The model’s predicted probability that the

i’th (i = 1, . . . , N ) forecaster receives a score si j = sk′ based

on a proper scoring rule on the j’th ( j = 1, . . . ,M) event con-

ditioning on his/her expertise θi is denoted as p(si j = sk′ |θi).

Proper scores in the model should match the proper scoring

rule that motivates and guides the forecasters. In this paper

we focus on the Brier scoring rule. The model predicts the

probability via the equation

p(si j = sk′ |θi ) =
ea j (1−sk′ )(θi−(b j+ρk′ ))

∑K
k=1 ea j (1−sk )(θi−(b j+ρk ))

(4)

Here a j is the event’s discrimination parameter, bj is its

difficulty parameter, defined as the event’s location on the

expertise scale, and ρk is a parameter associated with the

k’th (k = 1, . . . , K ) possible score. The parameter ρk is

invariant across events and reflects the responses selected

and their associated scores.

The model requires forecasts to be binned. Choosing a

large number of bins (K ) would complicate and slow down

the estimation process, especially when the data are sparse

(as is the case in our application, to be described in the next
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Figure 3. Item characteristic curves (varying only event diffi-

culty b).

section). Thus, it is more practical to estimate the model

with smaller values of K and we choose to set K = 6. Figure

2 shows the distribution of the probability responses that we

used (see details below) in the left panel, and the distribution

of the binned probabilities in the right panel. Clearly, the

distribution of binned probabilities preserves the shape of

the empirical distribution, so it is reasonable to assume that

it contains most of the information needed to estimate the

model parameters accurately. It is reasonable to assume the

model would work better with more, say K = 11, bins so

our results are essentially a lower bound for the quality of

the method.

Some key features of the model are illustrated in Figures 3

through 5. The curves plot the relationship between expertise

and the probability of giving a perfect prediction (that maps

into a Brier score, sk′=6 = 0) to events of different difficulties

bj , event discriminations a j and the scaling parameter ρk=6

of a perfect prediction. The blue curve that is replicated in

all three figures represents a “baseline” event with bj = −1,

a j = 3 and ρk=6 = −0.6. The values of the other five scaling

parameter ρk=1,. . . 5 are fixed in all the curves and they are

(−0.02,−0.62,−0.58,−0.51,−0.56).

Figure 3 shows how the model captures event difficulty.

The four curves have the same discrimination and the same

level of ρk=6, but differ in event difficulty (bj ). The top

curves represent easier events, and the bottom curves repre-

sent harder ones. For harder events, the probability of mak-

ing perfect predictions with a Brier score of 0 (sk′=6 = 0)

is lower at all levels of expertise. The stacked positions of

the four curves show that for any expertise level, the model
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Figure 4. Item characteristic curves (varying only event dis-

crimination a).

predicts probability increases for easier events.

Figure 4 illustrates discrimination – the degree to which

an event differentiates among levels of expertise. The four

curves have the same difficulty level and the same values

of ρk=6, but differ in discrimination, which drives their

steepness. The top curves represent the most discriminating

events: they are steeper than the other two, so the probability

of being correct changes rapidly with increases in expertise.

Finally, Figure 5 shows the scaling parameter, ρk=6. The

model treats the probability forecasts as a discrete variable:

with K possible probability forecast responses, there are K

possible scores. The scaling parameter is necessary to link

the score to the model. In our model, each event gets its own

slope and own “location” parameters, but the differences

among scores around that location are constrained to be

equal across event. In other words, the values of ρk are

fixed across all the items. Curves in Figure 5 have the same

level of discrimination and difficulty, but differ with respect

to ρk=6. The pattern is similar to that in Figure 3, indicating

that ρk=6 serves a similar function as event difficulty, with

the difference being that the event difficulty parameter varies

from event to event, while ρk=6 is fixed across all the events.

3 The relationship with Bock’s gener-

alized nominal model

Bock’s (1972) generalized nominal response model is an un-

ordered polytomous response IRT model. The model states

that the probability of selecting the h’th category response in
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an item with m mutually exclusive response categories is:

p(h) (θ) =
eah (θ−bh )

∑K
h=0 eah (θ−bh )

(5)

where ah and bh are the discrimination parameter and the

difficulty parameter for the category h of the item. Our

model (Equation 6) is a special case of the Bock’s model

(Equation 7). The values of a j (1 − sk′ ) and (bj + ρk′ ) can

be re-expressed as ak′ and bk′ and we can rewrite Equation

(6) accordingly:

p(sk′ |θi ) =
eak′ (θi−bk′ )

∑K
k=1 eak (θi−bk )

(6)

4 Parameter Estimation

According to Fisher (1922, p. 310), a statistic is sufficient

if “no other statistic that can be calculated from the same

sample provides any additional information as to the value

of the parameter.” The sufficient estimate of the judges’ ex-

pertise in our model is a monotonic transformation of the

operational scoring rule. More specifically, in the current

implementation (Equation 6), θi is a weighted sum of event-

specific Brier scores for forecaster i across all events he/she

forecasted (see derivation in Appendix A).

The intuition is straightforward: each event-specific Brier

score is weighted by the event’s level of discrimination, so

that the more (less) discriminating an event is, the more

we over (under) weigh it in estimating the judge’s expertise.

Thus, our main prediction is that expertise estimates from the

model will be a more valid measure of the judges’ underlying

forecasting expertise than the raw individual proper scores

that weight all events equally.

We take a Bayesian approach (see, e.g., Gelman, Carlin,

Stern & Rubin, 1995) for the estimation of model parameters.

This requires specification of prior distributions for all its pa-

rameters. The prior distribution for expertise parameters, θi ,

was a standard normal distribution (zero mean and unit vari-

ance). For bj and ρk , we used vague normal distribution

priors with a mean of 0 and standard deviations of 5. We

rely on vague priors because we don’t have much prior infor-

mation about the distributions of the event and the expertise

parameters. We prefer to let the observed data (forecasts)

find the distributions iteratively. We assume that the event

discrimination parameter, a j , has a positively-truncated nor-

mal prior (Fox, 2010). Fixing this parameter to be positive

makes the IRT model identifiable with respect to the location

and scale of the latent expertise parameter. To summarize,

the model parameters’ priors follow the Gaussian distribu-

tions with the means and variances shown below:

θi ∼ N (0, 1)

a j ∼ N (0, 25) ∈ [0,+∞)

bj ∼ N (0, 25)

ρk ∼ N (0, 25).

(7)

We used the Just Another Gibbs Sampler (JAGS) program

(Plummer, 2003) to sample posterior distribution in equation

(5). JAGS is a program for analysis of Bayesian hierarchical

models using Markov Chain Monte Carlo (MCMC) simula-

tion. It produces samples from the joint posterior distribu-

tion. To check the convergence of the Markov chain to the

stationary distribution1, we used two criteria: (1) Traceplots

that show the value of draws of the parameter against the it-

eration number and allow us to see how the chain is moving

around the parameter space; (2) A numerical convergence

measure (Gelman & Rubin 1992) based on the idea that

chains with different starting points in the parameter space

converge at the point where the variance of the sampled pa-

rameter values between chains approximates the variance of

the sampled parameter values within chains. A role of thumb

states that the MCMC algorithm converges when the Gell-

man – Rubin measure is less than 1.1 or 1.2 for all parameters

of the model (Gelman & Rubin 1992).

5 Implementing the model

We illustrate the model by using the geopolitical forecasts

collected by the Good Judgment Project (GJP) between

1The stationary distribution is the limiting distribution of the location of

a random walk as the number of steps taken approaches infinity. In other

words, a stationary distribution is such a distribution π that regardless of

the initial distribution of π (0) , the distribution over states converges to π as

the number of steps goes to infinity and is independent of π (0) .
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Figure 6. Observed and expected response frequencies at

the global level.

September 2011 and July 2014 (Mellers et al. 2014; Mellers,

Stone, Murray, Minster, Rohrbaugh, Bishop, Chen, Baker,

Hou, Horowitz, Ungar and Tetlock, 2015; Tetlock, Mellers,

Rohrbaugh and Chen, 2014). GJP recruited forecasters via

various channels. Participation in the forecasting tournament

required at least a bachelor’s degree and completion of a 2-

hour long battery of psychological and political knowledge

tests.

Participants were informed that the quality of their fore-

casts would be assessed using a Brier score (Brier, 1950)

after the scoring was explained to them, and their goal was

to minimize their average Brier score (across all events they

chose to forecast). Mellers et al. (2014) provide further de-

tails about data collection. A unique feature of this project is

that participants could choose which events to forecast. The

average number of events forecasters predicted every year

during the first three years of the tournament2 was 55. Over-

all there were approximately 458,000 forecasts from over

4,300 forecasters and over 300 forecasting events. The data

set is very sparse, with almost 66% “missing” forecasts.

We began by fitting the IRT forecasting model with the

Brier scoring rule to a reduced, but dense, subset of the full

GJP data set to avoid potential complications associated with

missing data. This data set, created and used by Merkle et

al. (2016), includes responses from 241 judges to 157 binary

forecasting events). It contains responses of the most active

and committed judges who made forecasts on nearly all the

2Year 4 data were not included in the calculation of mean average number

of items predicted by the forecasters because data collection was ongoing

at the time of the analysis.
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Figure 7. Boxplot of the event-level correlations between the

observed and the expected response frequencies.

events. Each judge forecast at least 127 events and each event

had predictions from at least 69 judges. The mean number of

events forecast by a judge was 144 and the mean number of

forecasts per event was 221, and the data set included 88,540

observations.3 The percentage of missing data in this data

subset was only 8%. They were treated as missing at random

and were not entered into the likelihood function.

The probabilistic forecasts were rounded to 6 equally

spaced values (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) as shown

in Figure 2. Convergence analyses show that the MCMC

algorithm reached the stationary distributions, and Gelman

& Rubin’s (1992) measures for all of the model’s parameters

were between 1 and 1.5.4 Importantly, Gelman & Rubin’s

(1992) measures for the estimated expertise parameters were

all less than 1.2. The trace plots of the parameter estimates

show that the chains mixed well. The trajectories of the

chains are consistent over iterations and the corresponding

posterior distributions look approximately normal.

Model Checking. We compared the observed and expected

response frequencies at the global level and the event level.

The observed response frequencies are, simply, the counts

of each of the 6 possible probability responses. The model

calculates the probability of each of the 6 possible responses

(0, 0.2, 0.4, 0.6, 0.8 and 1) for each unique combination

of an event and a forecaster. The expected frequencies are

3Forecasters were allowed to give multiple predictions to the same item,

and the response data set includes all the predictions made by a forecaster on

an item and they were considered to be multiple independent observations

for the same combination of judge and item.

4There is no guarantee of convergence of the MCMC algorithm in this

(or any other) case, but that we are only using posterior means, rather than

details of the exact posterior distribution, so the possible lack of convergence

may not be a serious concern.
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Table 1. Joint distribution of resolution type and goodness of

fit in 157 events

Status-

quo

Non

status-

quo

NC Total

cor(observed,

expected) ≥ 0.7

113 19 3 135

cor(observed,

expected) < 0.7

7 13 2 22

Total 120 32 5 157

Not Classified (NC) refers to events that cannot be classi-

fied as status-quo or not.

the sums of the model predicted probabilities for each of

the 6 possible responses aggregated across all events and

forecasters.

Figure 6 plots the observed and predicted response fre-

quencies for each of the 6 possible responses across all events

and respondents. The correlation between expected and ob-

served values is 0.97. Figure 7 shows the distribution of the

correlations between the expected and observed values at the

event level (i.e., 157 correlations). One hundred and twenty

of the 157 events (76.4%) have correlations above 0.9 and

15 of them (9.6%) have correlations between 0.7 and 0.9.

Only 22 events (14%) of the correlations between ob-

served and the expected frequencies are below 0.7. There is

no obvious commonality to these events in terms of duration5

or domain6 but their estimated discrimination parameters are

lower than the others (mean of 0.3 and a standard deviation of

0.27), suggesting that they don’t discriminate among levels of

expertise. Interestingly, these are disproportionately events

that resolved as change from the “status quo”, as shown in

Table 1.7 The odds ratio in the table is 113
19
/ 7

13
= 11, and

the Bayes factor in favor of the alternative that the variables

are not independent is 8,938, which projects strong evidence

against the null hypothesis. Results indicate that the model

fits the forecasts for the status quo event better than the non-

status quo events. In other words, it is harder to predict

change than constancy.

Parameter estimates. The events in this subset were rel-

atively “easy”8 with only 15 out of 157 (9.5%) events hav-

5Different items refer to various time horizons: In some cases the true

outcome is revealed in a matter of a few weeks and in others only after many

months.

6The items forecast are from different domains, including diplomatic

relationship, leader entry/exit, international security/conflict, business

7Status-quo items ask about maintaining the existing social structure

and/or values. For example, an item (“Before 1 March 2014, will Gazprom

announce that it has unilaterally reduced natural-gas exports to Ukraine?”)

contained an artificial deadline of March 1. The item resolved as the status

quo, namely “no change” in the exports by the deadline.

8The mean estimate of θi being 0.04 and the mean estimate of ρk being
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Figure 8. The scatterplot matrix of the event Brier scores and

the event parameter estimates.

ing positive bj estimates. The mean bj estimate was –1.37

(SD=2.70) and single event estimates ranged from –9.27 to

13.89. The mean discrimination, a j , was 2.29, and estimates

ranged from 0.04 to 10.43. The mean estimated expertise, θi ,

was 0.04 (SD = 0.96) with estimates ranging from –1.71 to

3.29. The estimated values of ρk (k = 1, . . . 6) were –0.04,

–0.90, –0.86, –0.79, –0.84 and –0.88 for the score categories.

The first value is distinctly different from the other five ρk
(k = 2, . . . , 6).9

Relationship between Brier scores and the model pa-

rameter estimates. Figure 8 shows the scatter plot matrix

(SPLOM) of the two event-level parameters and the events’

mean Brier scores. The diagonal of the SPLOM shows his-

tograms of the three variables, the upper triangular panel

shows the correlations between row and column variables,

and the lower triangular panel shows the scatter plots. We

observe a negative curvilinear relationship between the dis-

crimination parameter a j and the Brier scores, indicating that

events with higher mean Brier scores tend not to discriminate

well among forecasters varying in expertise. Most of the bj

-0.72 suggest that an item with a negative b j is relatively easy for a typical

forecaster.

9The parameter ρ1 corresponds to the first response category (0), which

has a Brier score of 1, so the numerator of the model’s predicted probability

for s1 = 1 is 1 for all the expertise levels. That is, the model cannot use the

information from the response data to estimate the ρ1 and the value is set

to be the initial value plus some random noise from the prior distribution

of ρk . On the other hand, if we were to exclude the component (1 − sk ),

the model cannot be identified without a restriction on the ρk (for example,

fixing ρ1 = 0). Therefore, the fact that the estimate of ρ1 is very close

to 0 can be considered to approximate a constraint necessary for model

identification.
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Figure 9. Scatter plot matrix of the IRT forecasting model-

based expertise estimates, Merkle et al.’s (2016) expertise

estimates and the Brier scores.

estimates cluster around 0, with Brier scores ranging from 0

to 0.5. Among the events with Brier scores above 0.5, there

is a positive relationship between Brier scores and difficulty

parameters. The correlation between the discrimination and

the difficulty parameters is low (.17), as they reflect different

features of the events. We regressed the events’ mean Brier

scores on the two parameters – discrimination and difficulty

– and their squared values. The fit is satisfactory (R2
= 0.78;

F (4, 152) = 131.6, p < .001), and all four predictors were

significant.

Figure 9 shows a SPLOM of the model’s expertise esti-

mates, the mean Brier scores and the expertise estimates from

Merkle et al.’s (2016) model of the 241 judges. We observe a

negative curvilinear relationship between the model’s exper-

tise estimates and the mean Brier scores. Judges with high

expertise estimates had lower Brier scores. Table 2 shows

results of linear and polynomial regressions predicting the

expertise estimates. In the linear regression, the mean Brier

score was the sole predictor, and the polynomial regression

also included the squared mean Brier score. The R2 val-

ues for the linear and polynomial regressions are 0.72 and

0.84, respectively, indicating that the nonlinear component

increases the fit significantly (by 12%). This non-linearity

reflects the fact that the model uses different weights for

different events as a function of the discrimination parame-

ters to estimate expertise, a unique feature of the IRT-based

expertise estimates. The relationship between Merkle et

al.’s (2016) expertise estimates and mean Brier scores is also

curvilinear, but the non-linearity is not as strong as that found

Table 2. Polynomial and linear regressions of the expertise

estimates as a function of the mean Brier scores.

Estimate S.E. t value Pr(>|t|)

Polynomial Regression of Model’s Expertise Extimate

(n=241)

Intercept 4.40 0.16 27.21 <2e-16

Mean Brier Score

(forecaster level)

−17.98 0.83 −21.73 <2e-16

Mean Brier Score2

(forecaster level)

13.68 1.01 13.48 <2e-16

R2 = 0.84

Linear Regression of Model’s Expertise Estimate (n=241)

Intercept 2.50 0.11 23.77 <2e-16

Mean Brier Score

(forecaster level)

−7.23 0.29 −24.59 <2e-16

R2 = 0.72
−
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Figure 10. The super forecasters’ and the regular forecast-

ers’ expertise distributions. The Y axes represent expertise

estimates from our model.

with model. Expertise estimates of the two IRT models are

moderately positively correlated, but our estimates are more

highly correlated with Brier scores than those of Merkle et

al.(2016).

Identifying expertise. At the end of every year, GJP se-

lected the top 2% forecasters (based on their Brier scores)

and placed them in elite teams of “super forecasters.” These

super forecasters are over-represented in our data set (n = 91,

or 38%). Figure 10 shows a comparison of their expertise

estimates to the other 150 regular forecasters. A two-sample

https://doi.org/10.1017/S1930297500005647 Published online by Cambridge University Press

http://journal.sjdm.org/vol12.2.html
https://doi.org/10.1017/S1930297500005647


Judgment and Decision Making, Vol. 12, No. 2, March 2017 Proper scoring rules and item response theory 98

t-test shows a significant difference between expertise esti-

mates for the two groups (t = 16.13, df = 239, p < 2.2e−16;

Cohen’s d = 2.09) with the super forecasters’ expertise es-

timates (M = 1.30, SD = 0.91) being substantially higher

than the regular forecasters’ (M = −0.34, SD = 0.57). We

ran a similar two-sample t-test on the Brier scores of the two

groups and found a significant difference between the two

groups (t = −11.96, df = 239, p < 2.2e − 16, Cohen’s

d = 1.55). The mean Brier score of the super forecasters

was 0.22 with a standard deviation of 0.04, and the mean

Brier score of regular forecasters was 0.38 with a standard

deviation of 0.10. In other words, our expertise estimates

differentiate better between the two groups than the Brier

scores.

We performed an additional test of the robustness of the

expertise parameters by dividing the 157 events into 4 groups

according to their closing dates. There were 39 events each

in the 1st, 2nd, and 4th periods and 40 events in the 3rd

period.10 We estimated the expertise parameters using both

Merkle et al.’s model and our IRT forecasting model, as well

as the mean Brier scores for all the 241 forecasters in each

of the 4 time periods. We identified the top M performers

(Ms =20,30,40,and 50) in each of the 12 cases (3 methods * 4

periods) and measured the proportion of agreement between

the various classifications in the top M .11 Figure 11 plots

the mean (± standard error) agreement of the two IRT based

models (Bo et al. and Merkle et al.) with the Brier scores in

the other periods. The ability to predict the top forecasters

decreases monotonically as we become more selective and

focus our attention on a smaller group of top forecasters.

Most importantly for our purposes, the rate of deterioration

in predictive ability is not uniform across methods: Our

model is the most stable in this respect and, for M ≤ 40,

it does (slightly) better than the Brier scores. Researchers

generally consider Brier scores the gold standard to assessing

predictions, and our model predicts the judges with best Brier

scores in other periods as well, or better, than Brier scores

from different periods.

Predicting future performance. A subset of the judges

(n = 130) also participated in the 4th year of the tournament

(between August 2014 to May 2015), and they provided

58,888 new forecasts. We used the expertise scores, which

include the IRT expertise estimates from both Merkle et

al.’s model and our IRT forecasting model and the rescaled

Brier scores12 of these 130 judges in years 1 to 3 to predict

10The events in the 1st period closed the earliest (between "2011-09-29"

and "2012-06-30") and the events in the 4th period closed the latest (between

"2012-09-27" and "2014-01-31").

11Consider M = 20 for example. We first used each of the 3 methods

to identify the top 20 performers in each of the 4 periods and then we

calculated the agreement within each method (at various times) as well as

across the methods. Finally, we calculated the mean agreement based on

the values obtained within/across the methods.

12The rescaled score simply reverses the direction of scores to match

the direction of our estimates (Higher = Better): Rescaled Brier scores
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Figure 11. Agreement with top Brier scores across time by

the 3 methods. X axis — M represents the number of top

performers; Y axis – Mean represents the mean agreement

calculated based on the three methods (Bo et al., Brier Score,

Merkle et al); Bars represent the standard errors.

their mean Brier scores in year 4 and their activity level

(the number of events they predicted). We used dominance

analysis (Budescu, 1993; Azen & Budescu, 2003) to analyze

the contribution of the three predictors – the IRT expertise

estimates from Merkle et al.’s model (abbreviation: Merkle),

the IRT expertise estimates from our model (abbreviation:

Bo) and the rescaled Brier scores (abbreviation: Brier) – to

the models.

Results are shown in Tables 3 and 4. We examine R2 or

the proportion of variance accounted for in the year 4 Brier

scores that is reproduced by the predictors in the model. The

additional contributions of every other predictor are mea-

sured by the increase in the R2 from adding that predictor

to the regression model. For example, the additional con-

tribution of Brier in the model, where Merkle is the only

predictor, is computed as the increase of Brier in R2 when

Brier is added to the model (R2
Brier&Merkle

− R2
Merkle

=

0.37 − 0.07 = 0.30). The global dominance is the mean

of the average contribution at each model size. For exam-

ple, the global dominance of “Brier” is calculated using the

mean of the average contribution of model sizes of 0, 1 and

2:
0.366+ 0.292+0.018

2
+0.016

3
= 0.179. As shown in Tables 3 and 4,

the expertise estimated from our IRT model is the dominant

predictor.

= 100 − 50∗BriersScore
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Table 3. Dominance analysis for the mean Brier score in the 4th period of the GJP tournament.

Contribution of

Predictors

Additional contribution of:

Model Predictors R2 Past Brier Merkle Bo

Null 0 0.00 0.37 0.07 0.39

Brier 1 0.37 . 0.00 0.04

Merkle 1 0.07 0.29 . 0.33

Bo 1 0.39 0.02 0.01 .

Brier & Merkle 2 0.37 . . 0.05

Brier & Bo 2 0.41 . 0.01 .

Merkel & Bo 2 0.40 0.02 . .

All: Brier, Merkle, Bo 3 0.42 . . .

Global Dominance 0.42 0.18 0.03 0.21

Dominance % 100.0% 42.82% 7.42% 49.76%

Table 4. Dominance analysis for the activity level in the 4th period of the GJP tournament.

Contribution of

Predictors

Additional contribution of:

Model Predictors R2 Past Brier Merkle Bo

Null 0 0.00 0.04 0.06 0.10

Brier 1 0.04 . 0.03 0.07

Merkle 1 0.06 0.01 . 0.04

Bo 1 0.10 0.02 0.01 .

Brier & Merkle 2 0.07 . . 0.05

Brier & Bo 2 0.12 . 0.01 .

Merkel & Bo 2 0.11 0.01 . .

All: Brier, 3 0.12 . . .

Merkle, Bo

Global Dominance 0.12 0.02 0.03 0.07

Dominance % 100.00% 19.27% 25.06% 55.67%

6 Efficacy of Recovery & Missing

Data

We conducted several simulations to check the ability of the

model (and the estimation approach) to recover the model’s

parameters in the presence of large levels of missing data. In

all of the simulations we used the event parameter estimates

from the original analysis based on 241 judges. We simulated

responses of 300 new forecasters (with expertise parameters

sampled from a standard normal distribution) to the same

157 binary events. We implemented two different missing

data mechanisms (missing at random/AR; and missing not at

random/NAR) and simulated data sets with different levels

of incompleteness (20%, 40%, 60% and 80%). Under the

NAR mechanism, we generated missing responses based on

the forecasters’ location in the distribution of expertise and

the pre-determined degree of sparsity.13

Table 5 presents the correlations between the parameters

used to simulate the responses and their recovered values.

The corresponding Root Mean Squared Errors (RMSE) are

shown in Table 6. In both tables, each column represents

one of the 9 data sets. All the correlations are high and, as

expected, they decrease, but only moderately, as a function of

13We started by simulating a full response data set and we calculated the

distribution of the expertise. We then deleted responses at different rates for

various levels of expertise: P(missing) = 1 – percentile of the forecaster’s

expertise in the population. Thus, forecasters’ expertise level correlates

negatively with missing data.
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Table 5. Correlations between true model parameters and recovered parameters for different combinations of missing mech-

anism and levels of missing data.

Correlation Complete

data

AR

20%

AR

40%

AR

60%

AR

80%

NAR

20%

NAR

40%

NAR

60%

NAR

80%

Expertise parameters (θ) 0.97 0.96 0.94 0.93 0.88 0.96 0.96 0.93 0.85

Event difficulty parameters (b) 0.85 0.86 0.84 0.81 0.73 0.83 0.83 0.78 0.61

Event discrimination parameters (a) 0.98 0.99 0.97 0.96 0.89 0.98 0.97 0.95 0.87

Scaling parameters (ρ) 1.00 0.97 0.99 0.99 0.99 1.00 1.00 0.99 0.99

Table 6. RMSEs between true model parameters and recovered parameters for different combinations of missing mechanism

and levels of missing data

RMSE Complete

data

AR

20%

AR

40%

AR

60%

AR

80%

NAR

20%

NAR

40%

NAR

60%

NAR

80%

Expertise parameters (θ) 0.26 0.29 0.31 0.36 0.47 0.28 0.29 0.37 0.52

Event difficulty parameters (b) 1.40 1.37 1.64 1.83 2.32 1.50 1.66 1.99 2.54

Event discrimination parameters (a) 0.37 0.44 0.46 0.58 0.94 0.38 0.50 0.70 1.07

Scaling parameters (ρ) 0.11 0.18 0.84 1.09 1.70 0.20 0.85 1.27 1.90
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Figure 12. Super forecasters and regular forecasters’ exper-

tise distributions. Y axes represent expertise estimates from

our model.

the rate of missing data, with only small differences between

the missing data mechanisms. The values of the RMSEs also

don’t change substantially from case to case, indicating that

the model and the estimation algorithm tolerate both types

of missing data mechanism and high degrees of sparsity.

7 Re-analysis the GJP data set

Encouraged by the results of these simulations, we applied

the IRT forecasting model with the Brier scoring rule to a

larger subset of the geopolitical forecasting data collected by

GJP, with more missing data. In this analysis we included all

judges who forecast at least 100 events, and all events that

had at least 100 forecasts. The new data set included 393

forecasters and 244 events, and has 58,16714 observations.

The degree of missing data (relative to the complete data set

with observations in all the unique combinations of an event

and a forecaster) was 39.6%.

After 60,000 iterations, the chains converged and the Gel-

man & Rubin’s (1992) measures for 875 out of 887 model’s

parameters were between 1 and 1.3, and for the other 15 pa-

rameters were between 1.3 and 1.6. The correlation between

the observed and predicted frequencies at the global level

was almost 1.00, and the mean, event-specific, correlation

was 0.97 (only 29 events had correlations below 0.7).

We used the 87 common events to correlate the two

sets of event parameters and obtained high correlations:

cor (b̂1, b̂2) = 0.93, cor (̂a1, â2) = 0.70. We used the 205

common forecasters to compare the two sets of expertise pa-

rameters and found cor (θ̂1, θ̂2) = 0.92. Expertise estimates

from the model were highly correlated with Brier scores

(−0.81). Both linear and polynomial regressions predicting

expertise from Brier scores were estimated. The superiority

14The data include multiple forecasts from many forecaster-item combi-

nations.

https://doi.org/10.1017/S1930297500005647 Published online by Cambridge University Press

http://journal.sjdm.org/vol12.2.html
https://doi.org/10.1017/S1930297500005647


Judgment and Decision Making, Vol. 12, No. 2, March 2017 Proper scoring rules and item response theory 101

of the polynomial regression (R2
= 0.76) over the linear one

(R2
= 0.66) supports and reinforces the conclusion in the

original analysis that the model captures specific features of

the events when estimating the judges’ expertise.

Of the 393 forecasters, 126 (32%) were super forecast-

ers. Figure 12 shows the boxplots of the expertise esti-

mates of super forecasters and regular forecasters. The

mean expertise estimate of the super forecasters (M =

1.09, SD = 0.88) was significantly higher than the mean

estimate (M = −0.50, SD = 0.58) of the regular forecasters

(t = 21.48, df = 391, p < 2.2e − 16;Cohen’s d = 2.17).

The mean Brier score of the super forecasters is 0.20, with a

standard deviation of 0.05, and the mean Brier score of the

regular forecasters is 0.34 with a standard deviation of 0.10.

The two-sample t-test for the forecasters’ Brier scores (t =-

15.46,df =391,p < 2.2e−16; Cohen’s d = 1.56). The value

of Cohen’s d based on Brier scores is lower than that based

on the expertise estimates, providing additional evidence of

the superiority of the expertise scores.

8 Discussion

We proposed an IRT model for probabilistic forecasting.

The novel and most salient feature of the model is that it

can accommodate various proper scoring rules, such that the

expertise parameters estimated from the model reflect the

operational scoring rule used to incentivize and motivate the

forecasters. The model and estimation algorithm can also

handle large number of missing data generated by different

mechanisms, including non-random processes. As such, this

model can be applied to many forecasting contexts, including

sports, elections, meteorology, and business settings.

Summary In addition to estimating individual expertise,

the model provides estimates of important information about

events which traditional methods cannot easily quantify.

Both the event-discrimination and event-difficulty param-

eters describe event features that matter to practitioners in

forecasting contexts.

Event-difficulty parameters are on the same scale as ex-

pertise. Therefore, one can easily determine whether judges’

expertise corresponds to the difficulty level of the events they

are expected to forecast. The event difficulty in forecasting

complements the information in forecasters’ expertise: when

fixing an event, the expertise parameter captures differences

between forecasters in their prediction skills, whereas event

difficulty captures the degree to which the same forecaster

would make predictions for different events with differential

accuracy.

Event-discrimination parameters help to identify events

where it may be more important to seek high-expertise fore-

casters. Indeed, it is the critical weighting factor of the new

score that differentiates it from the Brier scores. Interest-

ingly, and reassuringly, we showed that the two event param-

eters correlate well but not very highly with the event Brier

scores. The two event parameters generally track the event

Brier scores but also capture additional aspects of the fore-

casters’ responses that the event Brier scores overlook. Most

importantly, estimated event parameters from the proposed

model portray some event characteristics better than the raw

event Brier scores. For example, we observed that some

events with high Brier scores are inherently unpredictable

(black swans), so they have no power to differentiate better

from worse forecasters. This is particularly true for items

that resolve, surprisingly, or against the status quo. Unlike

the Brier scores, the expertise parameters take into account

differences among the events. The estimation procedure ap-

plies different weights to different events. Thus, in our view,

estimated expertise parameters are more reliable and more

informative than the individual mean Brier scores. Exper-

tise parameters outperformed the Brier score counterparts in

several ways. The expertise parameters differentiated bet-

ter between the super and regular forecasters, and they did

a better job of identifying these top performers in future

contexts.

Probability forecast evaluation metric using IRT. Our fore-

casting model and Merkle et al.(2016)’s model are novel

extensions of IRT models into the realm of probabilistic

forecasting. Both models apply the IRT framework to im-

prove the probability forecast evaluation metric but there is a

fundamental difference between the two models. Our model

embraces the fact that Brier scores are the forecaster eval-

uation metric in practice. We built an IRT model, with its

sufficient statistics of the expertise estimates being the Brier

scores. Our expertise estimates reflect the target construct

and are more reliable than the Brier scores as the evaluation

metric. The model also estimates events parameter to help

practitioners to understand features of the events.

Merkle et al.(2016) introduce a novel evaluation metric

that considers the fact that event difficulty changes over time,

and predictions become easier as more information becomes

available. Time is a complex modeling challenge. It is

true that, for most events, Brier scores improve the closer

we get to the event’s occurrence or to the deadline for its

non-occurrence. The more diagnostic information attentive

forecasters have, the easier the problem becomes. But there

are Brier-score-degrading “black-swan” events that violate

this rule – and make it harder to distinguish better from worse

forecasters. This can happen when the time frame for the

event is about to expire and the event suddenly happens – or

when expectation build about the occurrence of the event and

it suddenly does not happen. There are also events for which
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the subjective-probability judgments are quite violently non-

monotonic, swinging quite high and low a number of times

before the resolution is known, raising tricky questions about

the criteria we should use in judging excessive volatility15.

From a statistical point of view the two models represent

different approaches. Our model assumes, as most other IRT

models, that difficulty and discrimination are stable charac-

teristic of events and our parameters are, essentially, averages

across all possible response times. Merkle et al’s model does

not have such stable event-specific parameters. It models the

time of the response and relies on measures of time-specific

relative difficulty. Of course, the closer the forecaster’s re-

sponse is to the time of the event’s resolution, the forecasters’

prediction tend to be more accurate and the event‘s relative

difficulty decreases. In other words, Merkel et al’s time-

specific parameters are absorbed into forecasters’ expertise

parameters and events’ difficulty parameters in our model.

In the GJP data, time varies across different combination of

forecaster and event so modeling time adds extra complex-

ity. It is hard to disentangle the interactions between time

and individual forecasters as well as between time and spe-

cific events. In short, a systematic treatment of the role of

time is beyond the current paper, but in the incorporation of

the time component into our model remains a challenge for

future work.

The methodology described here is certainly not restricted

to Brier scoring and can be easily adapted to probabilistic

response data sets with other scoring rules. One just has

to replace (1 − sk ) with the appropriate scores, so that the

latent trait estimates match the scoring system. The adoption

of Bayesian inference provided in this paper is also flexible

enough to accommodate data with complicated missing data

mechanisms.

Conclusion and limitation. To conclude, the proposed

IRT forecasting model provides reliable expertise estimates

and helpful insights about event characteristics. The model

and corresponding estimation algorithm are effective and

flexible. Future work should include sensitivity analyses

to select the number of bins to discretize the probability

responses. Incorporating timing and the granularity of the

forecast may further improve the model.
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Appendix

Consider the model as shown in Equation 6.

p(si j = sk′ |θi ) =
ea j (1−sk′ )(θi−(b j+ρk′ ))

∑K
k=1 ea j (1−sk )(θi−(b j+ρk ))

. (8)

We rewrite it using a vector ri j with elements ri jk′ equal to

1 if forecaster i receives score sk′ on item j, and 0 otherwise:

p(si j = sk′ |θi) = p(ri j |θi )

=

∏K
k′

[ea j (1−sk′ )(θi−(b j+ρk′ ))]ri jk′

∑K
k=1 ea j (1−sk )(θi−(b j+ρk ))

=

e
∑K

k′
ri jk′a j (1−sk′ )(θi−(b j+ρk′ ))

∑K
k=1 ea j (1−sk )(θi−(b j+ρk ))

(9)

Now we write the likelihood function for θi:

p(ri1, . . . , riM |θi )

=

M∏

j=1

e
∑K

k′
ri jk′a j (1−sk′ )(θi−(b j+ρk′ ))

∑K
k=1 ea j (1−sk )(θi−(b j+ρk ))

=

e
∑M

j=1

∑K
k′=1

ri jk′a j (1−sk′ )(θi−(b j+ρk′ ))

∏M
j=1

∑K
k=1 ea j (1−sk )(θi (b j+ρk ))

=

e
∑M

j+1

∑K
k′=1

ri jk′a j (1−sk′ )θi

∏M
j=1

∑K
k=1 ea j (1−sj )(θi−(b j+ρk ))

e
−
∑M

j=1

∑K
k′=1

ri jk′a j (1−sk′ )(b j+ρk′ ) .

(10)

This allows us to identify the sufficient statistics for θi as

T (ri1, ..., riM ) =

M∑

j=1

K∑

k′=1

[ri jk′a j (1 − sk′ )] (11)

Since
∑M

j=1

∑K
k′=1 ri jk′a j is a known constant (assuming

the item discrimination parameters are known), we may as

well identify the sufficient statistics as

T (ri1, ..., riM ) =

M∑

j=1

[a j

K∑

k′=1

(ri jk′ sk′ )]. (12)

Thus, the sufficient statistics for θi in our model is a

weighted sum of the item-specific Brier scores of forecaster

i, weighted by the items’ discrimination values.
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