Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T07:15:06.669Z Has data issue: false hasContentIssue false

3 - Insights into Cementogenesis from Human Disease and Genetically Engineered Mouse Models

from Part I - The Biology of Cementum

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

Acellular cementum (AC) is critical for dental attachment and periodontal function. This chapter emphasizes how insights into cementum's nature have increased through human disease and experimental animal models. X-linked hypophosphatemia (XLH) is the most common form of hereditary rickets, in which low circulating phosphate and altered vitamin D metabolism are associated with skeletal and dental mineralization defects. AC thickness is reduced in XLH, and periodontal function may be affected. Inorganic pyrophosphate is a circulating inhibitor of mineralization. The inherited disorder, hypophosphatasia (HPP), is characterized by increased pyrophosphate levels, leading to skeletal and dental hypomineralization. AC is mainly affected by HPP, and premature loss of deciduous and permanent teeth is a common result. Conversely, a decrease in pyrophosphate results in increased cementum thickness. Extracellular matrix proteins also regulate cementum formation. Bone sialoprotein (BSP) is a component of cementum. Deletion of BSP in genetically edited mice results in reduced or absent AC, leading to periodontal destruction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ao, M., Chavez, M. B., Chu, E. Y., Hemstreet, K. C., Yin, Y., Yadav, M. C., Millan, J. L., Fisher, L. W., Goldberg, H. A., Somerman, M. J., and Foster, B. L.. 2017. Overlapping functions of bone sialoprotein and pyrophosphate regulators in directing cementogenesis. Bone 105: 134–47.Google Scholar
Baroncelli, G. I., Angiolini, M., Ninni, E., Galli, V., Saggese, R., and Giuca, M. R.. 2006. Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur J Paediatr Dent 7 (2): 61–6.Google ScholarPubMed
Barros, N. M., Hoac, B., Neves, R. L., Addison, W. N., Assis, D. M., Murshed, M., Carmona, A. K., and McKee, M. D.. 2013. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res 28 (3): 688–99.CrossRefGoogle ScholarPubMed
Beertsen, W., VandenBos, T., and Everts, V.. 1999. Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: Inhibition of acellular cementum formation. J Dent Res 78 (6): 1221–9.CrossRefGoogle ScholarPubMed
Bergwitz, C., and Jüppner, H.. 2010. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61: 91104.CrossRefGoogle ScholarPubMed
Biosse Duplan, M., Coyac, B. R., Bardet, C., Zadikian, C., Rothenbuhler, A., Kamenicky, P., Briot, K., Linglart, A., and Chaussain, C.. 2017. Phosphate and vitamin D prevent periodontitis in x-linked hypophosphatemia. J Dent Res 96 (4): 388–95.CrossRefGoogle ScholarPubMed
Bosshardt, D., Luder, H. U., and Schroeder, H. E.. 1989. Rate and growth pattern of cementum apposition as compared to dentine and root formation in a fluorochrome-labelled monkey (Macaca fascicularis). J Biol Buccale 17 (1): 313.Google Scholar
Bosshardt, D. D., and Schroeder, H. E.. 1996. Cementogenesis reviewed: A comparison between human premolars and rodent molars. Anat Rec 245 (2): 267–92.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Bosshardt, D. D. 2005. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84 (5): 390406.CrossRefGoogle ScholarPubMed
Bosshardt, D. D., Zalzal, S, McKee, M. D., and Nanci, A.. 1998. Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 250 (1): 1333.Google Scholar
Boukpessi, T., Septier, D., Bagga, S., Garabedian, M., Goldberg, M., and Chaussain-Miller, C.. 2006. Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif Tissue Int 79 (5): 294300.Google Scholar
Bruckner, R. J., Rickles, N. H., and Porter, D. R.. 1962. Hypophosphatasia with premature shedding of teeth and aplasia of cementum. Oral Surg Oral Med Oral Pathol 15: 1351–69.Google Scholar
Burke, A. M., and Castanet, J.. 1995. Histological observations of cement growth in horse teeth and their applications to archaeology. J Archaeol Sci 22: 479–93.CrossRefGoogle Scholar
Carpenter, T. O., Imel, E. A., Holm, I. A., Jan de Beur, S. M., and Insogna, K. L.. 2011. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 26 (7): 1381–8.Google Scholar
Chaussain-Miller, C., Sinding, C., Wolikow, M., Lasfargues, J. J., Godeau, G., and Garabédian, M.. 2003. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: Prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 142 (3): 324–31.CrossRefGoogle ScholarPubMed
Cipriano, A. 2002. Cold stress in captive great apes recorded in incremental lines of dental cementum. Folia Primatol (Basel) 73 (1): 2131.CrossRefGoogle ScholarPubMed
Colard, T., Falgayrac, G., Bertrand, B., Naji, S., Devos, O., Balsack, C., Delannoy, Y., and Penel, G.. 2016. New insights on the composition and the structure of the acellular extrinsic fiber cementum by Raman analysis. PLoS One 11 (12): e0167316.Google Scholar
Condon, K., Charles, D. K., Cheverud, J. M., and Buikstra, J. E.. 1986. Cementum annulation and age determination in Homo sapiens. II. Estimates and accuracy. Am J Phys Anthropol 71 (3): 321–30.Google Scholar
Coyac, B. R., Falgayrac, G., Baroukh, B., Slimani, L., Sadoine, J., Penel, G., Biosse-Duplan, M., Schinke, T., Linglart, A., McKee, M. D., Chaussain, C., and Bardet, C.. 2017. Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 103: 334–46.CrossRefGoogle ScholarPubMed
Eicher, E. M., Southard, J. L., Scriver, C. R., and Glorieux, F. H.. 1976. Hypophosphatemia: Mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci USA 73 (12): 4667–71.Google Scholar
Fisher, L. W., and Fedarko, N. S.. 2003. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44 (Suppl) 1: 3340.Google Scholar
Fong, H., Chu, E. Y., Tompkins, K. A., Foster, B. L., Sitara, D., Lanske, B., and Somerman, M. J.. 2009. Aberrant cementum phenotype associated with the hypophosphatemic hyp mouse. J Periodontol 80 (8): 1348–54.Google ScholarPubMed
Fong, R. K., LeBlanc, A. R., Berman, D. S., and Reisz, R. R.. 2016. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs. J Morphol 277 (7): 916–24.Google Scholar
Foster, B. L. 2017. On the discovery of cementum. J Periodontal Res 52 (4): 666–85.Google Scholar
Foster, B. L., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., Tran, A. B., Wimer, H. F., Zerfas, P. M., Nociti, F. H., Jr., Kantovitz, K. R., Quan, B. D., Sone, E. D., Goldberg, H. A., and Somerman, M. J.. 2015. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 78: 150–64.CrossRefGoogle ScholarPubMed
Foster, B. L., Nagatomo, K. J., Nociti, F. H., Jr., Fong, H., Dunn, D., Tran, A. B., Wang, W., Narisawa, S., Millan, J. L., and Somerman, M. J.. 2012. Central role of pyrophosphate in acellular cementum formation. PLoS One 7 (6): e38393.CrossRefGoogle ScholarPubMed
Foster, B. L., Nagatomo, K. J., Tso, H. W., Tran, A. B., Nociti, F. H., Narisawa, S., Yadav, M. C., McKee, M. D., Millán, J. L., and Somerman, M. J.. 2012. Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28(2): 271–82.Google Scholar
Foster, B. L., Nociti, F. H., Jr., and Somerman, M. J.. 2014. The rachitic tooth. Endocr Rev 35 (1): 134.Google Scholar
Foster, B. L., Popowics, T. E., Fong, H. K., and Somerman, M. J.. 2007. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78: 47126.Google Scholar
Foster, B. L., Ramnitz, M. S., Gafni, R. I., Burke, A. B., Boyce, A. M., Lee, J. S., Wright, J. T., Akintoye, S. O., Somerman, M. J., and Collins, M. T.. 2014. Rare bone diseases and their dental, oral, and craniofacial manifestations. J Dent Res 93 (7 Suppl): 7S19S.CrossRefGoogle ScholarPubMed
Foster, B. L., Soenjaya, Y., Nociti, F. H., Jr., Holm, E., Zerfas, P. M., Wimer, H. F., Holdsworth, D. W., Aubin, J. E., Hunter, G. K., Goldberg, H. A., and Somerman, M. J.. 2013. Deficiency in acellular cementum and periodontal attachment in bsp null mice. J Dent Res 92 (2): 166–72.Google Scholar
Foster, B. L., and Hujoel, P. P.. 2018. Vitamin D in dentoalveolar and oral health. In Vitamin D, eds. Feldman, D., Pike, J. W., and Bouillon, R.. London: Academic Press.Google Scholar
Foster, B. L., and Somerman, M. J.. 2012. Cementum. In Mineralized Tissues in Oral and Craniofacial Science: Biological Principles and Clinical Correlates, eds. McCauley, L. K. and Somerman, M. J.. Ames, IA: Wiley-Blackwell.Google Scholar
Gaengler, P. 2000. Evolution of tooth attachment in lower vertebrates to tetrapods. In Development, Function and Evolution of Teeth, eds. Teaford, M., Smith, M., and Ferguson, M.. Cambridge: Cambridge University Press.Google Scholar
Goldberg, H. A., and Hunter, G. K.. 2012. Functional domains of bone sialoprotein. In Phosphorylated Extracellular Matrix Proteins of Bone and Dentin, ed. Goldberg., M. France: Bentham Science Publishers.Google Scholar
Grosskopf, B. 1990. Individual age determination using growth rings in the cementum of buried human teeth. Z Rechtsmed 103 (5): 351–9.Google Scholar
Grosskopf, B., and McGlynn, G.. 2011. Age diagnosis based on incremental lines in dental cementum: a critical reflection. Anthropol Anz 68 (3): 275–89.Google Scholar
Grue, H., and Jensen, B.. 1979. Review of the formation of incremental lines in tooth cementum of terrestrial animals. Dan Rev Game Biol 11: 348.Google Scholar
Gurley, K. A., Chen, H., Guenther, C., Nguyen, E. T., Rountree, R. B., Schoor, M., and Kingsley, D. M.. 2006. Mineral formation in joints caused by complete or joint-specific loss of ANK function. J Bone Miner Res 21 (8): 1238–47.Google Scholar
Hall, B., Limaye, A., and Kulkarni, A. B.. 2009. Overview: Generation of gene knockout mice. Curr Protoc Cell Biol, Chapter 19, Unit 19.12, 19.12: 117.Google Scholar
Harris, N. L., Rattray, K. R., Tye, C. E., Underhill, T. M., Somerman, M. J., D’Errico, J. A., Chambers, A. F., Hunter, G. K., and Goldberg, H. A.. 2000. Functional analysis of bone sialoprotein: Identification of the hydroxyapatite-nucleating and cell-binding domains by recombinant peptide expression and site-directed mutagenesis. Bone 27 (6): 795802.Google Scholar
Ho, A. M., Johnson, M. D., and Kingsley, D. M.. 2000. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289 (5477): 265–70.CrossRefGoogle ScholarPubMed
Holm, E., Aubin, J. E., Hunter, G. K., Beier, F., and Goldberg, H. A.. 2015. Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization. Bone 71: 145–54.CrossRefGoogle ScholarPubMed
Hu, J. C., Plaetke, R., Mornet, E., Zhang, C., Sun, X., Thomas, H. F., and Simmer, J. P.. 2000. Characterization of a family with dominant hypophosphatasia. Eur J Oral Sci 108 (3): 189–94.CrossRefGoogle ScholarPubMed
Johnson, K., Goding, J., Van Etten, D., Sali, A., Hu, S. I., Farley, D., Krug, H., Hessle, L., Millán, J. L., and Terkeltaub, R.. 2003. Linked deficiencies in extracellular PP(i) and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J Bone Miner Res 18 (6): 9941004.Google Scholar
Kagerer, P., and Grupe, G.. 2001. Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Sci Int 118 (1): 7582.Google Scholar
Kay, R. F., Rasmussen, D. T., and Beard, K. C.. 1984. Cementum annulus counts provide a means for age determination in Macaca mulatta (primates, anthropoidea). Folia Primatol (Basel) 42 (2): 8595.Google Scholar
Klevezal’, G. A., and Kleĭnenberg, S. E.. 1969. Age Determination of Mammals from Annual Layers in Teeth and Bones [by] G. A. Klevezal’ and S. E. Kleinenberg. Jerusalem: Israel Program for Scientific Translations.Google Scholar
Klevezal’, G. A. 1996. Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. trans. M. V. Mina and A. V. Oreshkin. Rotterdam: A. A. Balkema.Google Scholar
Klevezal’, G. A., and Shishlina, N. I.. 2001. Assessment of the season of death of ancient human from cementum annual layers. J Archaeol Sci 28 (5): 481–86.Google Scholar
LeBlanc, A. R., and Reisz, R. R.. 2013. Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS ONE 8 (9): e74697.Google Scholar
LeBlanc, A. R., Reisz, R. R., Brink, K. S., and Abdala, F.. 2016. Mineralized periodontia in extinct relatives of mammals shed light on the evolutionary history of mineral homeostasis in periodontal tissue maintenance. J Clin Periodontol 43 (4): 323–32.Google Scholar
Lieberman, D. E. 1994 . The biological basis for seasonal increments in dental cementum and their application to archaeological research. J Archaeol Sci 21 (4): 525–39.Google Scholar
Luan, X., Walker, C., Dangaria, S., Ito, Y., Druzinsky, R., Jarosius, K., Lesot, H., and Rieppel, O.. 2009. The mosasaur tooth attachment apparatus as paradigm for the evolution of the gnathostome periodontium. Evol Dev 11 (3): 247–59.Google Scholar
Luder, H. U. 2015. Malformations of the tooth root in humans. Front Physiol 6: 307.Google Scholar
Macneil, R. L., Sheng, N., Strayhorn, C., Fisher, L. W., and Somerman, M. J.. 1994. Bone sialoprotein is localized to the root surface during cementogenesis. J Bone Miner Res 9 (10): 1597–606.Google Scholar
Malaval, L., Wade-Guéye, N. M., Boudiffa, M., Fei, J., Zirngibl, R., Chen, F., Laroche, N., Roux, J. P., Burt-Pichat, B., Duboeuf, F., Boivin, G., Jurdic, P., Lafage-Proust, M. H., Amédée, J., Vico, L., Rossant, J., and Aubin, J. E.. 2008. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205 (5): 1145–53.Google Scholar
Mani-Caplazi, G., Schulz, G., Deyhle, H., Hotz, G., Werner, V., Wittwer-Backofen, U., and Müller, B.. 2017. Imaging of the human tooth cementum ultrastructure of archeological teeth, using hard x-ray microtomography to determine age-at-death and stress periods. Paper read at SPIE Optical Engineering and Applications, 2017, San Diego, CA.Google Scholar
Martin, R. R., Naftel, S. J., Nelson, A. J., Feilen, A. B., and Narvaez, A.. 2004. Synchrotron X-ray fluorescence and trace metals in the cementum rings of human teeth. J Environ Monit 6 (10): 783–6.Google Scholar
McIntosh, J. E., Anderton, X., Flores-De-Jacoby, L., Carlson, D. S., Shuler, C. F., and Diekwisch, T. G.. 2002. Caiman periodontium as an intermediate between basal vertebrate ankylosis-type attachment and mammalian “true” periodontium. Microsc Res Tech 59 (5): 449–59.Google Scholar
McKee, M. D., Nakano, Y., Masica, D. L., Gray, J. J., Lemire, I., Heft, R., Whyte, M. P., Crine, P., and Millán, J. L.. 2011. Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90 (4): 470–76.Google Scholar
McKee, M. D., Zalzal, S., and Nanci, A.. 1996. Extracellular matrix in tooth cementum and mantle dentin: Localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245 (2): 293312.Google Scholar
Millan, J. L., and Whyte, M. P.. 2016. Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98 (4): 398416.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., and Bocquet-Appel, J.-P. 2016. Cementochronology, to cut or not to cut? Int J Paleopathol 15:113–9.Google Scholar
Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y., and Ikegawa, S.. 1998. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19 (3): 271–3.Google Scholar
Pereira, C. M., de Andrade, C. R., Vargas, P. A., Coletta, R. D., de Almeida, O. P., and Lopes, M. A.. 2004. Dental alterations associated with X-linked hypophosphatemic rickets. J Endod 30 (4): 241–5.Google Scholar
Pilloud, S. 2004. Can there be age determination on the basis of the dental cementum also in older individuals as a significant context between histological and real age determination. Anthropol Anz 62 (2): 231–9.Google ScholarPubMed
Reibel, A., Maniere, M. C., Clauss, F., Droz, D., Alembik, Y., Mornet, E., and Bloch-Zupan, A.. 2009 . Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J Rare Dis 4 (6).Google Scholar
Ripamonti, U. 2007. Recapitulating development: A template for periodontal tissue engineering. Tissue Eng 13 (1): 5171.CrossRefGoogle ScholarPubMed
Ruchon, A. F., Tenenhouse, H. S., Marcinkiewicz, M., Siegfried, G., Aubin, J. E., DesGroseillers, L., Crine, P., and Boileau, G.. 2000. Developmental expression and tissue distribution of Phex protein: Effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res 15 (8): 1440–50.Google Scholar
Salmon, B., Bardet, C., Khaddam, M., Naji, J., Coyac, B. R., Baroukh, B., Letourneur, F., Lesieur, J., Decup, F., Le Denmat, D., Nicoletti, A., Poliard, A., Rowe, P. S., Huet, E., Vital, S. O., Linglart, A., McKee, M. D., and Chaussain, C.. 2013. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS One 8 (2): e56749.Google Scholar
Sitara, D., Razzaque, M. S., Hesse, M., Yoganathan, S., Taguchi, T., Erben, R. G., Jüppner, H., and Lanske, B.. 2004. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 23 (7): 421–32.Google Scholar
Stallibrass, S. 1982. The use of cement layers for absolute ageing of mammalian teeth: A selective review of the literature, with suggestions for further studies. In Ageing and Sexing Animal Bones from Archaeological Sites, eds. Wilson, B., Grigson, C., and Payne, S.. London: BAR Publishing.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., and Okasinski, J. S.. 2017. Cementum structure in Beluga whale teeth. Acta Biomater 48: 289–99.Google Scholar
Strott, N., and Grupe, G.. 2003. Structural characteristics of dental cementum of skeletal remains of the first Catholic cemetery in Berlin (St. Hedwig’s Cemetery, Central Berlin; 1777–1834). Anthropol Anz 61 (2): 203–13.Google Scholar
Thumbigere-Math, V., Alqadi, A., Chalmers, N. I., Chavez, M. B., Chu, E. Y., Collins, M. T., Ferreira, C. R., FitzGerald, K., Gafni, R. I., Gahl, W. A., Hsu, K. S., Ramnitz, M. S., Somerman, M. J., Ziegler, S. G., and Foster, B. L.. 2018. Hypercementosis associated with ENPP1 mutations and GACI. J Dent Res 97 (4): 432–41.Google Scholar
Tummers, M., and Thesleff, I.. 2009. The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol 312B (4): 309–19.Google Scholar
van den Bos, T., Handoko, G., Niehof, A., Ryan, L. M., Coburn, S. P., Whyte, M. P., and Beertsen, W.. 2005. Cementum and dentin in hypophosphatasia. J Dent Res 84 (11): 1021–5.Google Scholar
Wedel, V. L. 2007. Determination of season at death using dental cementum increment analysis. J Forensic Sci 52 (6): 1334–7.Google Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W.. 2004. Tooth cementum annulation for age estimation: Results from a large known-age validation study. Am J Phys Anthropol 123 (2): 119–29.Google Scholar
Yadav, M. C., de Oliveira, R. C., Foster, B. L., Fong, H., Cory, E., Narisawa, S., Sah, R. L., Somerman, M., Whyte, M. P., and Millan, J. L.. 2012. Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27 (8): 1722–34.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×