NORMAL LIGHT INTERIOR FUNCTIONS
DEFINED IN THE UNIT DISK

J.H. MATHEWS

1. Preliminaries

Let D be the unit disk, C the unit circle, and f a continuous function from D into the Riemann sphere W. We say that f is normal if f is uniformly continuous with respect to the non-Euclidean hyperbolic metric in D and the chordal metric in W. Let $\chi(w_1, w_2)$ denote the chordal distance between the points $w_1, w_2 \in W$; and let $\rho(z_1, z_2)$ denote the non-Euclidean hyperbolic distance between the points $z_1, z_2 \in D$ [6]. If $\{z_n\}$ and $\{z'_n\}$ are two sequences of points in D with $\rho(z_n, z'_n) \to 0$, we say that $\{z_n\}$ and $\{z'_n\}$ are close sequences.

Let A be an open subarc of C, possibly C itself. A Koebe sequence of arcs relative to A is a sequence $\{J_n\}$ of Jordan arcs such that: (a) for every $\varepsilon > 0,$

$$J_n \subset \{z \in D : |z - a| < \varepsilon \text{ for some } a \in A\}$$

for all but finitely many n, and (b) every open sector Δ of D subtending an arc of C that lies strictly interior to A has the property that, for all but finitely many n, the arc J_n contains a subarc L_n lying wholly in Δ except for its two end points which lie on distinct sides of Δ.

We say that the function f has the limit c along the sequence of arcs $\{J_n\}$ (denoted by $f(J_n) \to c$) provided that, for every $\varepsilon > 0$, $\chi(c, f(J_n)) < \varepsilon$ for all but finitely many n.

2. Factorization of light interior functions

Let f be a light interior function from D into W, i.e. f is an open map which does not take any continuum into a single point. Church [4, p. 86] has pointed out that f has the representation $f = g \circ h$ where h is a
homeomorphism of D onto a Riemann surface R and g is a non-constant meromorphic function defined on R. In view of the uniformization theorem [1, p. 181], there exists a conformal mapping φ of R onto either the unit disk or the finite complex plane. We will be concerned with the case when the range of φ is the unit disk, but remark that similar results hold when the range is the complex plane. Therefore, if f is a light interior function from D into W then f has a factorization $f = g \circ h$ where h is a homeomorphism of D onto D and g is a non-constant meromorphic function in D. Conversely, if h is a homeomorphism of D onto D and g is a non-constant meromorphic function in D then the function $f = g \circ h$ is light interior.

Definition 1. Let h be a homeomorphism of D onto D. If h is uniformly continuous with respect to the non-Euclidean hyperbolic metric in both its domain and range then we say that h is HUC.

Definition 2. Let f be a light interior function in D with factorization $f = g \circ h$. If h is HUC then f has a type I factorization; otherwise f has a type II factorization.

Theorem 1. If f is a light interior function in D then f has a unique factorization type.

Proof. Let f have the factorization $f = g \circ h$. Suppose f also has the factorization $f = G \circ H$. Then as pointed out by Church [4, p. 86] $h \circ H^{-1}$ is a conformal homeomorphism. In view of Pick's theorem [6, Theorem 15, 1.3, p. 239] both $h \circ H^{-1}$ and $h^{-1} \circ H$ are HUC. Since the composition of two uniformly continuous functions is uniformly continuous, it follows that h is HUC if and only if H is HUC; and the proof of the theorem is complete.

3. Necessary conditions for both f and g normal

Noshiro [10, p. 154] has divided the class of normal meromorphic functions in D into two categories which are defined as follows: A normal meromorphic function g in D is of the first category if the normal family $\left\{ g\left(\frac{a - z}{1 - \bar{a}z} \right) : a \in D \right\}$ admits no constant limit; otherwise g is of the second category.

Theorem 2. Let f be a normal light interior function with factorization $f = g \circ h$. If g is a normal meromorphic function then h is normal. Furthermore, if g is a normal meromorphic function of the first category then h is HUC.
Proof. Let f have the factorization $f = g \circ h$. If h is not normal there exists close sequences $\{z_n\}$ and $\{z'_n\}$ such that $h(z_n) \to e^{i\alpha}$ and $h(z'_n) \to e^{i\beta}$ with $0 < \beta - \alpha < 2\pi$ [7]. For each integer n, let J_n be the non-Euclidean geodesic joining z_n to z'_n. Then $\{h(J_n)\}$ is a sequence of Jordan arcs such that for every $\varepsilon > 0$,

$$h(J_n) \subset \{ z \in D : 1 - \varepsilon < |z| < 1 \}$$

for all but finitely many n, and the end points of $h(J_n)$ tend to $e^{i\alpha}$ and $e^{i\beta}$. Choosing a subsequence of $\{h(J_n)\}$ if necessary, we may assume that there exists a Koebe sequence of arcs $\{L_n\}$ relative to either the open arc (α, β) or the open arc $(\beta, \alpha + 2\pi)$ with $L_n \subset h(J_n)$, and a constant c such that $f(z_n) \to c$.

From the normality of f we have $f(J_n) \to c$, and it follows that $g(L_n) \to c$. By a theorem of Bagemihl and Seidel [2, Theorem 1, p. 10], $g \equiv c$ in violation of our hypothesis. Therefore h is normal and the proof of the first part is complete.

Now assume that g is a normal meromorphic function of the first category. If h is not HUC there exists close sequences $\{z_n\}$ and $\{z'_n\}$ and a $\delta > 0$ with $\rho(h(z_n), h(z'_n)) \geq \delta$, and a constant c such that $f(z_n) \to c$.

Let $S_n(z) = (h(z_n) - z)/(1 - \overline{h(z_n)}z)$ and let $G_n(z) = g(S_n(z))$. Then the normal family $\{G_n\}$ has a subsequence which converges uniformly on each compact subset of D to a meromorphic function G [8, p. 53]. Let J_n be the non-Euclidean geodesic joining z_n to z'_n and let $L_n = h(J_n)$. Then $d(L_n) = d(S_n^{-1}(L_n)) \geq \delta$, where $d(E)$ is the hyperbolic diameter of the set $E \subset D$. From the normality of f we have $f(J_n) \to c$, so that $g(L_n) \to c$, and hence $G_n(S_n^{-1}(L_n)) \to c$. For r ($0 \leq r \leq \delta$) fixed, there exists a point $Z_n \in S_n^{-1}(L_n)$ such that $\rho(0, Z_n) = r$. Let Z_0 be a cluster point of the sequence $\{Z_n\}$ on the circle $\{ z : \rho(0, z) = r \}$.

Choosing a subsequence of $\{G_n\}$ if necessary, we may assume that $Z_n \to Z_0$ and $G_n(Z_n) \to c$. A familiar argument (see e.g. [3, p. 179]) in the theory of continuous convergence shows that $G(Z_0) = c$. Since r ($0 \leq r \leq \delta$) was arbitrary, 0 is a limit point of values for which G assumes c and hence $G \equiv c$ in violation our hypothesis. Therefore h is HUC and the proof of the theorem is complete.
4. Bounded non-normal light interior functions

Every bounded holomorphic function is normal, but the following result shows that boundedness is not sufficient for a light interior function to be normal.

Theorem 3. If a homeomorphism h of D onto D is not HUC, then there exists a Blaschke product B in D such that the bounded light interior function $f = B \circ h$ is not normal.

Proof. If h is not HUC there exists close sequences $\{z_n\}$ and $\{z'_n\}$ and a $\delta > 0$ such that $\rho(h(z_n), h(z'_n)) \geq \delta$. Let $h(z_n) = w_n$ and $h(z'_n) = w'_n$. Since h is uniformly continuous on compact subsets we necessarily have that $|z_n| \to 1$, $|z'_n| \to 1$, $|w_n| \to 1$, and $|w'_n| \to 1$. Hence, choosing a subsequence of $\{w_n\}$ if necessary, we may assume that $\{w_n\}$ is a Blaschke sequence, i.e. $\sum_{n=1}^{\infty} (1 - |w_n|) < \infty$. There exists a Blaschke subsequence $\{w_{n_k}\}$ of $\{w_n\}$ and a corresponding subsequence $\{w'_{n_k}\}$ of $\{w'_n\}$ for which $\rho(R_{n_k}, r_k) \geq \tanh^{-1}(1-1/k^2)$ where $r_k = \min\{|w_{n_k}|, |w'_{n_k}|\}$ and $R_k = \max\{|w_{n_k}|, |w'_{n_k}|\}$.

It follows easily that

$$\rho(w_{n_k}, w'_{n_k}) \geq \begin{cases} \tanh^{-1}(1 - 1/(k + 1)^2) & (1 \leq k < j) \\ \tanh^{-1}(1 - 1/k^2) & (1 \leq j \leq k), \end{cases}$$

and hence

$$\left| \frac{w_{n_k} - w'_{n_j}}{1 - w_{n_k}w'_{n_j}} \right| \geq \begin{cases} 1 - 1/(k + 1)^2 & (1 \leq k < j) \\ 1 - 1/k^2 & (1 \leq j \leq k). \end{cases}$$

Recall that $\rho(w_{n_k}, w'_{n_k}) \geq \delta > 0$ ($k = 1, 2, \ldots$) so that

$$\left| \frac{w_{n_k} - w'_{n_k}}{1 - w_{n_k}w'_{n_k}} \right| \geq \tanh^{-1} \delta > 0 \ (k = 1, 2, \ldots).$$

Set $B(z) = \prod_{k=1}^{\infty} \frac{|w_{n_k}|(w_{n_k} - z)}{w_{n_k}(1 - w_{n_k}z)}$.

Consider $B(w'_{n_j})$ for $j \geq 1$,

$$|B(w'_{n_j})| = \prod_{k=1}^{j-1} \left| \frac{w_{n_k} - w'_{n_j}}{1 - w_{n_k}w'_{n_j}} \right| \cdot \left| \frac{w_{n_j} - w'_{n_j}}{1 - w_{n_j}w'_{n_j}} \right| \cdot \prod_{k=j+1}^{\infty} \left| \frac{w_{n_k} - w'_{n_j}}{1 - w_{n_k}w'_{n_j}} \right|$$
\[
\geq \left(\tanh^{-1} \theta \right) \prod_{k=1}^{j-1} \left(1 - \frac{1}{(k+1)^2} \right) \prod_{k=j+1}^\infty \left(1 - \frac{1}{k^2} \right)
\]

\[= \left(\tanh^{-1} \theta \right) \prod_{k=2}^\infty \left(1 - \frac{1}{k^2} \right) = \frac{1}{2} \tanh^{-1}(\theta) > 0.\]

Let \(f = B \circ h \). By assumption \(\{z_n\} \) and \(\{z'_n\} \) are necessarily close sequences with

\[\lim f(z_n) = \lim B(h(z_n)) = \lim B(w_n) = 0\]

and \(|f(z'_n)| = |B(h(z'_n))| = |B(w'_n)| \geq 1/2 \tanh^{-1}(\theta) > 0.\) By a theorem of Lappan [7, Theorem 3, p. 156], \(f \) is not normal and the proof is complete.

The previous theorem suggests that the normality of \(g \) does not insure the normality of \(f \). An even stronger statement is the following result.

Theorem 4. There exists a homeomorphism \(h \) of \(D \) onto \(D \) with the property: If \(g \) is a normal meromorphic function in \(D \), which has two distinct asymptotic limits, then the light interior function \(f = g \circ h \) is not normal.

Since a bounded holomorphic function in \(D \) is normal and possesses uncountably many distinct radial limits we obtain the following corollary.

Corollary. There exists a homeomorphism \(h \) of \(D \) onto \(D \) with the property: If \(g \) is a non-constant bounded holomorphic function in \(D \), then the bounded light interior function \(f = g \circ h \) is not normal.

Proof of Theorem 4. Let \(\{R_n\} \) be a strictly increasing sequence of non-negative real numbers with \(R_1 = 0 \) for which \(\rho(R_n, R_{n+1}) = 1/n \). Define the mapping \(h \) in \(D \) by

\[h(z) = h(re^{i\theta}) = r \exp \left(i\theta + 2\pi i (r - R_n)/(R_{n+1} - R_n) \right)\]

for \(R_n \leq r < R_{n+1} \) \((n = 1, 2, \cdots)\). It is easy to verify that \(h \) is a homeomorphism of \(D \) onto \(D \).

Since \(g \) has two distinct asymptotic limits, a theorem of Lehto and Virtanen [8, Theorem 2, p. 53] implies that \(g \) has two distinct radial limits. Let \(\tau_a \) and \(\tau_b \) be the radii which terminate at the points \(e^{i\alpha} \) and \(e^{i\beta} \), respectively, for which \(g(re^{i\theta}) \to a \) and \(g(re^{i\theta}) \to b \) with \(b \neq a \).

Now the radii of \(D \) are mapped onto spirals by \(h^{-1} \). Let \(h^{-1}(\tau_a) \cap [R_n, R_{n+1}) = z_n \) and \(h^{-1}(\tau_b) \cap [R_n, R_{n+1}) = z'_n \). Then \(\rho(z_n, z'_n) < \rho(R_n, R_{n+1}) = 1/n \) with
5. Sufficient conditions for \(f \) normal

We now determine conditions on \(h \) and \(g \) which insure the normality of \(f \). Since the composition of two uniformly continuous functions is uniformly continuous the first result in this direction is obvious.

Theorem 5. Let \(h \) be a homeomorphism of \(D \) onto \(D \) which is HUC. If \(g \) is a non-constant normal meromorphic function, then the light interior function \(f = g \circ h \) is normal. Furthermore, if both \(h \) and \(h^{-1} \) are HUC, then \(g \) is normal if and only if \(f \) is normal.

Let \(f \) be a light interior function in \(D \) with factorization \(f = g \circ h \) with \(h \) a \(K \)-quasiconformal homeomorphism of \(D \) onto \(D \). We show that \(f \) is normal if and only if \(g \) is normal. This result was proved by Väisälä [11, Theorem 5, p. 20] whose proof is considerably different.

Theorem 6. If \(h \) is a \(K \)-quasiconformal homeomorphism of \(D \) onto \(D \), then both \(h \) and \(h^{-1} \) are HUC.

Theorem 7. Let \(f \) be a light interior function in \(D \) with factorization \(f = g \circ h \) with \(h \) a \(K \)-quasiconformal homeomorphism. Then \(f \) is normal if and only if \(g \) is normal.

Proof of theorem 6. Since \(h \) is \(K \)-quasiconformal, by a theorem of Mori [9] \(h^{-1} \) is also \(K \)-quasiconformal. Hersch and Pfluger [5] have shown that if \(h \) is \(K \)-quasiconformal then \(\rho(h(z), h(z')) \leq \mathcal{W}_K(\rho(z, z')) \) where \(\mathcal{W}_K \) is continuous and strictly increasing and defined for all \(z \geq 0 \) with \(\mathcal{W}_K(0) = 0 \). It follows easily that \(h \) is HUC. Similarly \(h^{-1} \) is HUC and the theorem is proved.

Proof of theorem 7. From Theorem 6 both \(h \) and \(h^{-1} \) are HUC. By Theorem 5, \(f \) is normal if and only if \(g \) is normal and the theorem is proved.

Definition 3. Let \(h \) be a homeomorphism of \(D \) onto \(D \). Define the set \(F(h) \) as follows: \(e^{i\theta} \in F(h) \) if there exist close sequences \(\{z_n\} \) and \(\{z'_n\} \) and a \(\delta > 0 \) for which \(\rho(h(z_n), h(z'_n)) \geq \delta \) and \(h(z_n) \to e^{i\theta} \).
THEOREM 8. Let h be a normal homeomorphism of D onto D. If g is a non-constant normal meromorphic function which is continuous on $D \cup F(h)$, then the light interior function $f = g \circ h$ is normal.

Proof. If f is not normal there exist close sequences $\{z_n\}$ and $\{z'_n\}$ such that $f(z_n) \to a$ and $f(z'_n) \to b$ with $b \neq a$ [7]. It follows from the normality of g that $\{h(z_n)\}$ and $\{h(z'_n)\}$ are not close. Choosing a subsequence of $\{z_n\}$ and a corresponding subsequence of $\{z'_n\}$ if necessary, we may assume that $h(z_n) \to e^{i\theta}$ and $h(z'_n) \to e^{i\varphi}$ with $e^{i\varphi} \in F(h)$. But g is continuous on $D \cup F(h)$ and hence $b = \lim f(z'_n) = \lim g(h(z'_n)) = \lim g(h(z_n)) = \lim f(z_n) = a$ which is a contradiction. Therefore f is normal and the proof is complete.

REFERENCES