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EXACT MONTE CARLO SIMULATION
FOR FORK-JOIN NETWORKS
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Abstract

In a fork-join network each incoming job is split into K tasks and the K tasks are
simultaneously assigned to K parallel service stations for processing. For the distributions
of response times and queue lengths of fork-join networks, no explicit formulae are
available. Existing methods provide only analytic approximations for the response time
and the queue length distributions. The accuracy of such approximations may be difficult
to justify for some complicated fork-join networks. In this paper we propose a perfect
simulation method based on coupling from the past to generate exact realisations from
the equilibrium of fork-join networks. Using the simulated realisations, Monte Carlo
estimates for the distributions of response times and queue lengths of fork-join networks
are obtained. Comparisons of Monte Carlo estimates and theoretical approximations are
also provided. The efficiency of the sampling algorithm is shown theoretically and via
simulation.
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1. Introduction

In a fork-join network jobs arrive according to a Poisson process with rate λ and each
incoming job is split into K tasks at the fork station. Then the K tasks are simultaneously
assigned to K parallel service stations for processing. The ith service station has si servers.
Each server has exponential service times with rate µi . When all the K tasks of a job are
completed, they will be joined immediately at the join station and leave the system.

Such fork-join networks are commonly used to model computer and manufacturing systems.
For example, each logical computer I/O request is split into several physical I/O requests across
the disk device and after all physical I/O requests are completed they are joined. Another
example is that of manufacturing the assembly of a product, where the system requires several
parts to be processed simultaneously at parallel work stations.

A fork-join queueing model is shown in Figure 1, where each service station has finite
capacity N (the number of task-waiting places), i.e. the ith service station can hold at most
N + si tasks (including tasks in service and tasks in the queue). Other fork-join networks may
have infinite capacity (N = ∞) or be such that the servers in each service station have different
service rates. For various types of fork-join network, our main interests are the probability
distributions of the response time (the time to complete a job) and the queue length (the number
of jobs in the network) in equilibrium. The difficulty is that the stationary distribution of the
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Figure 1: A fork-join network.

fork-join network, even if the network is as simple as that given in Figure 1, is intractable
(see [9]).

Various methods for approximating or bounding the mean response times and approximating
the queue length distributions for fork-join networks have been developed. Flatto and Hahn [6]
and Flatto [5] derived the generating functions of the queue length distribution for a fork-join
network having two service stations, each with a single server. Baccelli et al. [2], Balsoma
et al. [3], and Nelson and Tantawi [10] gave bounds for the mean response time of an M/M/1
fork-join network. Ko and Serfozo [9] established a closed-form formula for approximating
the distributions of the response time and queue length for certain fork-join networks in
equilibrium. Raghavan and Viswanadhan [12] and Xia et al. [16] presented bounds for the
mean response time of several types of fork-join network. Squillante et al. [14] considered a
more general fork-join queueing system in which dynamic polices are considered for scheduling
multiple tasks to maintain effective server utilization. However, most existing methods focus on
analytical approximations for the equilibrium of fork-join networks. Simulation results in [9]
demonstrated that the accuracy of such approximations may decrease as siµi decreases to λ.

In this paper we consider the use of Monte Carlo simulations to estimate the distributions
of the response time and queue length when N is finite. This work is important since existing
approximation methods are valid for only N = ∞. The accuracy of the Monte Carlo estimates
depend on the number of simulated realisations; the more simulated realisations, the more
accurate the Monte Carlo estimate. Therefore, such Monte Carlo estimates are important for
fork-join networks with λ ≈ siµi where existing analytic approximations may not be good
enough. Another advantage of the Monte Carlo method is that we can obtain queue length
distribution estimates for fork-join networks with multiple servers in each service station.
However, analytic approximations of the queue length distribution for such fork-join networks
are not available using existing methods, such as the method in [9]. In addition, we can
also use the Monte Carlo distribution estimate to justify the accuracy of existing analytical
approximations for fork-join networks. Finally, most existing methods focus on analytic
approximations of mean response times; however, the response time distribution characteristics,
such as the median and quartiles, are sometimes more important, as, for example, in our
simulation scenarios where the response time distribution is highly skewed.

Traditional Monte Carlo simulation methods run the fork-join network as a continuous-time
Markov chain starting from a given state. Then realisations are collected after the burn-in
stage. Such methods only generate random realisations approximately from the equilibrium of
the network. Thus, the estimates highly depend on the quality of the random realisations. In
this paper we propose a perfect simulation method based on coupling from the past (CFTP),

https://doi.org/10.1239/aap/1308662489 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662489


486 H. DAI

introduced in [11], to generate exact realisations from the equilibrium of fork-join networks
given in Figure 1. The CFTP algorithm developed in this paper is very efficient (a polynomial-
time algorithm), i.e. the mean coalescence time of the algorithm is bounded by a polynomial
function of KN . Based on the simulated realisations we provide Monte Carlo estimates for the
distributions of the response time and queue length. Comparisons of the Monte Carlo estimates
based on perfect sampling and approximation results in [9] demonstrate that the proposed
perfect sampling method works very well.

This paper is organized as follows. In Section 2 we introduce the model notation and an
algorithm to simulate a fork-join network from any given starting state. Then we develop a
CFTP algorithm with bounding chains in Section 3 to simulate exactly from the equilibrium
of the fork-join network. Simulation studies and estimates of the distributions of the queue
length and response times are provided in Section 4. Complexity of the algorithm is discussed
in Section 5. Section 6 contains a discussion.

2. Preliminaries and continuous-time Markov chain simulation

2.1. Notation

Consider the fork-join network shown in Figure 1. Jobs arrive at the system according to a
Poisson process with rate λ and each incoming job is split into K tasks at the fork station. Then
the K tasks are simultaneously assigned to K parallel service stations for processing. The ith
station has si servers, each with exponential service times with mean 1/µi . When all the K

tasks of a job are completed, they are joined immediately at the join station (the service time
at the join station is 0) and leave the system. Service station i can hold Ni = N + si tasks at
most. Define N = (N1, . . . , NK).

If the tasks of a job are not all completed, the completed tasks will wait in the corresponding
buffer of the join station. We also assume that the join station has enough places to hold all
completed waiting tasks.

Let Qi(t) be the number of tasks at service station i (including tasks in service and tasks
waiting) at time t . We know that Qi(t) can take a value in {0, 1, . . . , Ni + si}. The fork-
join network can be represented by Q(t) = (Q1(t), . . . , QK(t)), which is a K-dimensional
continuous-time Markov chain.

From the results in [9] we know that when N = ∞, the transition rate for the K-dimensional
continuous-time Markov chain Q(t) from a state n = (n1, . . . , nK) to another state n′ is
given by

q(n, n′) =

⎧⎪⎨
⎪⎩

λ if n′ = n + 1,

µi min{ni, si} if n′ = n − ei ,

0 otherwise.

Here ei is a K-dimensional vector with 1 in the ith component and 0s elsewhere, and 1 is a
K-dimensional vector of all 1s. The Markov chain with N = ∞ is ergodic when λ < µisi for
all values of i, 1 ≤ i ≤ K .

Here we consider N to be a finite number, which means that each service station can only
hold up to a finite number of tasks. This is reasonable in practice. If service station i holds the
maximum number of tasks, N + si , the newly arrived job will not be split into K tasks since
the buffer of service station i is full. Therefore, when N is finite, the transition rate for Q(t) is
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given by

q(n, n′) =

⎧⎪⎨
⎪⎩

λ if n′ = n + 1 and n + 1 ≤ N ,

µi min{ni, si} if n′ = n − ei ,

0 otherwise.

(1)

2.2. Continuous-time Markov chain simulation

We now introduce an algorithm to simulate the Markov chain Q(t) with a given starting
state. This algorithm will be used in the next section to develop a CFTP algorithm.

Using the continuous-time Markov chain theory, we know that the amount of time that Q(t)

spends in the current state n (holding time of a state) is exponentially distributed with rate

rn :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n′ �=n

q(n, n′) = λ +
∑

i

µi min{ni, si} if n + 1 ≤ N ,

∑
n′ �=n

q(n, n′) =
∑

i

µi min{ni, si} if n + 1 � N .

Then at the end of the holding time, Q(t) jumps to another state n′ with transition probability

pn,n′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ

rn
if n′ = n + 1 and n + 1 ≤ N ,

µi min{ni, si}
rn

if n′ = n − ei ,

0 otherwise.

(2)

Note that the holding times of each state and the transitions of Q(t) are independent.
We may simulate the continuous-time Markov chain using the following method. Suppose

that Q(t) = n. Simulate the next transition time t ′ = T + t , where T is drawn from an
exponential distribution with rate rn. This can be done by simulating ξ0 ∼ exp(λ) and ξij ∼
exp(µi), j = 1, . . . , si , i = 1, . . . , K , and setting

T = min{ξ0, ξij, j = 1, . . . , min{ni, si}, i = 1, . . . , K}
if n + 1 ≤ N or setting T = min{ξij, j = 1, . . . , min{ni, si}, i = 1, . . . , K} if n + 1 �≤ N .
This is because such T is from exp(rn). Note that if ni = 0 then define minj≤min{ni ,si } ξij = ∞.

At time t ′ the process Q will jump to n′ with probability pn,n′ . The transitions of the
chain can be simulated as follows. Provided that n + 1 ≤ N , if T = ξ0 then let n′ =
n + 1; if T = minj≤min{ni ,si } ξij for some i then let n′ = n − ei . This is because P(T =
minj≤min{ni ,si } ξij for some i) = µi min{ni, si}/rn and P(T = ξ0) = λ/rn, which correspond
to the transition probabilities in (2). Similarly, given n + 1 �≤ N , if T = minj≤min{ni ,si } ξij

for some i then let n′ = n − ei . On the other hand, with such a simulation method, the
transitions are independent of the holding times. So the Markov chain Q(t) is correctly
simulated.

The above simulation method can be proved using the properties of exponential variables.
Details can be found in [13, Chapter 5]. Although this simulation idea is easy to implement,
in order to develop a CFTP method later, we use the following more complicated algorithm
instead to simulate {Q(t), t ≤ T }. The algorithm outputs a sequence of times τ = {τ1, τ2, . . .}
which is a superset of the transition times t = {t1, t2, . . .} of Q(t). A thinning method is used
to identify the transition times t from τ .
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Algorithm 1. (Markov chain simulation algorithm.) Outputs: τl, Q(τl), and tk .

01. Set t0 = τ0 = 0, k, l = 0, and Q(t0) = starting state.

02. While (tk < T )

03. Simulate ξ
(l)
0 ∼ exp(λ) and ξ

(l)
ij ∼ exp(µi) for j = 1, . . . , si and i = 1, . . . , K .

Note that we use U(l) to denote all simulated ξ (l)s.

04. MC(τl, Q(τl), U
(l); τl+1, Q(τl+1), I ) (given in Algorithm 2 below).

05. If I = 1 then tk+1 = τl+1 (the next transition time) and k = k + 1.

06. l = l + 1.

Algorithm 2. (Markov chain updating algorithm.) This subroutine is given by MC(τl, Q(τl),

U(l); τl+1, Q(τl+1), I ).

Inputs: τl, Q(τl), and U(l). Outputs: τl+1, Q(τl+1), and I .
For simplicity, denote Q(τl) as n(l) = (n

(l)
1 , . . . , n

(l)
K ). Let T min

l = min{ξ (l)
0 , ξ

(l)
ij , j = 1, . . . ,

si , i = 1, . . . , K} and Tl = min{ξ (l)
0 , ξ

(l)
ij , j = 1, . . . , min{n(l)

i , si}, i = 1, . . . , K}.
01. τl+1 = τl + T min

l

02. If Tl = T min
l then

03. if Tl = ξ
(l)
0 then

04. Q(τl+1) = Q(τl) + 1 and I = 1

05. if Q(τl+1) � N then Q(τl+1) = Q(τl) and I = 0.

06. else if Tl = ξ
(l)
ij for some i then

07. Q(τl+1) = Q(τl) − ei and I = 1

08. end if

09. else

10. I = 0 and Q(τl+1) = Q(τl)

11. end if

Lemma 1. Algorithm 1 outputs τ = {τ0, τ1, . . . , τl, . . .} and {Q(τl), l = 0, 1, . . .}. The
algorithm also outputs a subsequence of τ , as {t0, t1, . . . , tk, . . .}.

The simulated continuous-time Markov process is given by {tk, Q(tk)}, k = 0, 1, . . . . The
time tk is the kth transition time of Q(t) and the process Q(t) is constant in [tk, tk+1). The
simulated process has transition rates given in (1).

Lemma 1 is true since Algorithm 1 simulates potential holding times T min
l of Q(t) from

an exponential distribution with rate parameter λ + ∑
i µisi , which is larger than the rates of

exponential holding times of all states. Then a thinning method is used to check whether time
τl is a transition time point of Q(t). See Appendix A for a detailed proof.
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Note that the updating rules in Algorithm 2 can be denoted as a deterministic function φ as

Q(τl + a) = φ(Q(τl), U
(l), a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(τl) if 0 < a < T min
l ,

Q(τl) + 1 if a = T min
l , Q(τl) + 1 ≤ N , and T min

l = Tl = ξ
(l)
0

(line 04 of Algorithm 2),

Q(τl) if a = T min
l , Q(τl) + 1 � N , and T min

l = Tl = ξ
(l)
0

(line 05 of Algorithm 2),

Q(τl) − ei if a = T min
l and T min

l = Tl = ξ
(l)
ij for some i

(line 07 of Algorithm 2),

Q(τl) if a = T min
l and T min

l < Tl (line 10 of Algorithm 2),

(3)

where U(l) is defined in Algorithm 1.

3. Simulating from equilibrium using CFTP with bounding chains

CFTP was introduced in the landmark paper by Propp and Wilson [11], who showed how
to provide perfect samples from the limiting distribution of a Markov chain. The idea is to run
Markov chains starting from all states simultaneously from the past, using the same random
numbers in the updating procedure, until all chains coalesce into a single chain, then keep
running the coalesced chain and collect a sample at time 0.

By running all Markov chains simultaneously, CFTP may result in very heavy computational
costs. The fork-join network can be described by the K-dimensional continuous-time Markov
chain Q(t) with state space Q. The number of states in Q is larger than KN . It is impossible
to run so many chains simultaneously. The computational cost of the algorithm can be reduced
if, for the state space Q, there is a partial order preserved by the process Q(t). This is called
monotone CFTP for which we only need to run the upper chain starting from the maximum
state and the lower chain starting from the minimum state (see [11] for more details). If the
upper and lower chains, which bound all the other chains, coalesce then all chains coalesce.
Thus, the efficiency of the CFTP algorithm can be improved significantly.

Although monotone CFTP is easy to perform, finding a partial order preserved by the Markov
chains is a nontrivial task in many cases. An alternative improvement is CFTP with bounding
chains or dominating processes; see [4], [7], and [8]. The advantages of bounding-chain CFTP
are that the partial order preserved by the Markov chains is not required and that only several
bounding chains, which bound all Markov chains, are required to run simultaneously.

In Section 3.1 we first define a partial order for Q. Then we show that the partial order is
preserved by Q(t) in some cases, but not always. Then based on this result we provide a CFTP
algorithm using bounding chains in Sections 3.2 and 3.3.

3.1. A partial order

For n, n′ ∈ Q, define n ≺ n′ if nj ≤ n′
j , j = 1, . . . , K , and nj < n′

j for at least one value
of j . Define n = n′ if nj = n′

j for j = 1, . . . , K .
The partial order is preserved byQ(t)meaning that ifQ(τl) 
 Q′(τl) thenφ(Q(τl), U

(l), a)


 φ(Q′(τl), U
(l), a) for all a such that 0 < a ≤ T min

l . The following lemma gives the cases
where the partial order is preserved and the cases where the partial order is not preserved.
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Lemma 2. Suppose that the current time is τl and that Q(τl) = n ≺ Q′(τl) = n′. Define

Tl = min{ξ (l)
0 , ξ

(l)
ij , j = 1, . . . , min{ni, si}, i = 1, . . . , K}

and

T ′
l = min{ξ (l)

0 , ξ
(l)
ij , j = 1, . . . , min{n′

i , si}, i = 1, . . . , K}.
Then we have the following results.

(a) For all a such that 0 < a < T min
l , we have

Q(τl + a) = φ(Q(τl), U
(l), a) 
 Q′(τl + a) = φ(Q′(τl), U

(l), a).

Define the events A(l) = {T min
l �= ξ

(l)
0 }, B(l)

1 = {(n, n′) : n′ + 1 ≤ N}, B(l)
2 = {(n, n′) : n +

1 � N}, and B(l)
3 = (B

(l)
1 ∪ B

(l)
2 )c. Obviously, (Q(τl), Q

′(τl)) must belong to B(l)
1 ∪B(l)

2 ∪B(l)
3 .

For a = T min
l , the relation between Q(τl + a) and Q′(τl + a) must be such that one of the

following cases holds.

(b) If T min
l �= ξ

(l)
0 , i.e. A(l) is true, we have

φ(Q(τl), U
(l), a) 
 φ(Q′(τl), U

(l), a).

(c) If T min
l = ξ

(l)
0 , i.e. A(l) is not true, and (Q(τl), Q

′(τl)) ∈ B(l)
1 , then

φ(Q(τl), U
(l), a) 
 φ(Q′(τl), U

(l), a).

(d) If A(l) is not true and (Q(τl), Q
′(τl)) ∈ B(l)

2 , then

φ(Q(τl), U
(l), a) 
 φ(Q′(τl), U

(l), a).

(e) If A(l) is note true and (Q(τl), Q
′(τl)) ∈ B(l)

3 , then

φ(Q(τl), U
(l), a) 
 φ(Q′(τl), U

(l), a)

is not guaranteed.

Proof. See Appendix B.

Note that result Lemma 2(a) implies that the partial order is always preserved by the process
in (τl, τl+1). If a = T min

l then τl + a = τl+1. Thus, Lemma 2(b) means that the partial order
is preserved if A(l) is true. Similarly, at time τl+1 the partial order is also preserved under the
conditions of Lemma 2(c) and (d). But the partial order may not be preserved at τl+1 under the
conditions of Lemma 2(e). Therefore, we cannot simply use a monotone CFTP algorithm, but
it is possible to use a bounding-chain algorithm to deal with this problem.

3.2. Bounding chains

We run Markov chains starting from different states from time 0. Suppose that Q(0) 
 Q(0)

bounds all other Markov chains. We construct two bounding chains Q(t) and Q(t) as follows.
Suppose that the current time is τl . After simulating random numbers U(l), we update Q(t)

and Q(t) in (τl, τl+1) according to Algorithm 2. We know that Q(t) and Q(t) will bound all
Markov chains in (τl, τl+1) since, according to Lemma 2(a), the partial order is preserved.

At time τl+1, if one of the conditions in Lemma 2(b), (c), or (d) is satisfied, we also update
Q(t) and Q(t) at τl+1 according to Algorithm 2. We know that Q(τl+1) and Q(τl+1) will
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bound all Markov chains Q(τl+1) since the partial order is preserved according to Lemma 2(b),
(c), and (d).

If the condition in Lemma 2(e) is true, we let

Q(τl+1) = Q(τl),

Q(τl+1) = (min{Q1(τl) + 1, N1}, . . . , min{QK(τl) + 1, NK}). (4)

Lemma 3. The above bounding chains will bound all Markov chains, i.e. Q(t) 
 Q(t) 
 Q(t)

for all t and any Markov chains Q(t).

Proof. We only need to prove that if the condition in Lemma 2(e) is true then Q(τl) 

Q(τl) 
 Q(τl) implies that Q(τl+1) 
 Q(τl+1) 
 Q(τl+1).

If the condition in Lemma 2(e) is true, we know that Q(τl+1) = Q(τl) + 1 or Q(τl+1) =
Q(τl). Obviously, given Q(τl) 
 Q(τl) 
 Q(τl), we have

Q(τl) 
 Q(τl+1) and Q(τl+1) 
 (min{Q1(τl) + 1, N1}, . . . , min{QK(τl) + 1, NK}).
So (4) guarantees that Q(τl+1) 
 Q(τl+1) 
 Q(τl+1). This completes the proof.

When Q(t) and Q(t) coalesce, all Markov chains coalesce. Based on this, a CFTP algorithm
is given in the next subsection.

3.3. CFTP with bounding chains

Define an upper-bound chain starting from N and a lower-bound chain starting from 0 =
(0, . . . , 0). When the upper-bound chain and lower-bound chain coalesce, all Markov chains
coalesce. When using CFTP, we need to re-use old random numbers. A simple variation on
CFTP is the so called read-once CFTP proposed in [15], which outputs random realisations
from equilibrium using just a read-once source of random numbers. Here we use the read-once
CFTP algorithm, as Wilson [15] suggested that read-once CFTP has the advantage if many
independent realisations are desired. According to Wilson [15], the following read-once CFTP
algorithm returns realisations from the equilibrium of Q(t).

Algorithm 3. (Read-once CFTP (NumberofRealisations).)

01. State := (0, 0, . . . , 0) (it can be an arbitrary state)

02. Repeat

03. ApplyCompositeMap(State,CoalescenceFlag) (given in Algorithm 4 below)

04. Until CoalescenceFlag

05. For i = 1 to NumberofRealisations

06. Repeat

07. OldState = State

08. ApplyCompositeMap(State,CoalescenceFlag)

09. Until CoalescenceFlag

10. Output OldState
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Algorithm 4. (ApplyCompositeMap(State,CoalescenceFlag).) Inputs: State and Coales-
cenceFlag. Outputs: State and CoalescenceFlag.

01. n1 = N , n1 = 0, n2 = N , n2 = 0, l = 0, τl = 0, and τ ′
l = 0.

02. while n2 �= n2

03. Simulate U(l) = {ξ (l)
0 ∼ exp(λ), ξ

(l)
ij ∼ exp(µi), j = 1, . . . , si , i = 1, . . . , K}.

04. MC(τl, State, U(l); τl+1, State, I )

05. If T min
l = ξ

(l)
0 and (n1, n1) ∈ B(l)

3 (B(l)
3 is defined in Lemma 2) then

06. n1 = (min{n1,1 +1, N1}, . . . , min{n1,K +1, NK}), n1 = n1, and τl+1 = τl + T min
l

07. else

08. MC(τl, n1, U
(l); τl+1, n1, I ) and MC(τl, n1, U

(l); τl+1, n1, I )

09. Simulate U(l) = {ξ (l)
0 ∼ exp(λ), ξ

(l)
ij ∼ exp(µi), j = 1, . . . , si , i = 1, . . . , K}.

10. If T min
l = ξ

(l)
0 and (n2, n2) ∈ B(l)

3 then

11. n2 =(min{n2,1 + 1, N1}, . . . , min{n2,K + 1, NK}), n2 = n2, and τ ′
l+1 =τ ′

l + T min
l

12. else

13. MC(τ ′
l , n2, U

(l); τ ′
l+1, n2, I ) and MC(τ ′

l , n2, U
(l); τ ′

l+1, n2, I )

14. l = l + 1

15. If n1 = n1 and τl ≤ τ ′
l then CoalescenceFlag = 1

16. Else then CoalescenceFlag = 0

Theorem 1. Algorithm 3 returns realisations from the equilibrium of Q(t).

Theorem 1 follows from Lemma 3 and the fact that Algorithm 3 is the read-once CFTP
algorithm in [15].

4. Simulation results

The number of jobs in the network at time t is Q(t) = max1≤i≤K Qi(t). Let Wmi be the
time from entering the system to exiting the service station of the ith task of the mth job. Then
the total time the mth job spends in the network is Wm = max1≤i≤K Wmi , which is the response
time of the mth job. When Q(t) is at equilibrium, we denote task quantities at each service
station by Q = (Q1, . . . , QK) and we define W to be the response time. We use the proposed
perfect sampling methods to estimate probability distributions for Q = max1≤i≤K Qi and the
response time W .

In this section, all Monte Carlo simulation results are based on 100 000 realisations.

4.1. Simulation results for response times

Scenario 1. In Table 1 we present the Monte Carlo estimates of E W for the fork-join network
with K = 2, λ = 1, si = 1, and different values of µi and N . From Table 1 we can see that the
approximations, given in [9] with N = ∞, are very close to the Monte Carlo estimates using
perfect simulation with a finite value of N . Obviously, the fork-join network with N = ∞, on
average, has a longer queue at equilibrium than the fork-join network with a finite value of N .
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Table 1: Approximations, from [9], and estimates with N = 300 and N = 100. The estimates are based
on the 100 000 realisations simulated using perfect sampling methods. The values in brackets are 100

times the standard errors of the estimates.

Approximation of E W Estimates of E W Estimates of E W

µ1 µ2 with N = ∞ with N = 300 with N = 100

10.00 15.00 0.1384 0.137 945 (0.034) 0.137 299 (0.035)
10.00 20.00 0.1276 0.127 368 (0.033) 0.126 932 (0.033)

5.00 7.50 0.3057 0.303 399 (0.077) 0.301 999 (0.076)
5.00 10.00 0.2825 0.279 991 (0.076) 0.279 578 (0.074)
3.33 5.00 0.5138 0.509 327 (0.130) 0.503 866 (0.130)
3.33 6.67 0.4762 0.470 525 (0.130) 0.467 724 (0.130)
2.50 3.75 0.7822 0.766 465 (0.200) 0.760 212 (0.200)
2.50 5.00 0.7280 0.716 088 (0.200) 0.703 631 (0.200)
2.00 3.00 1.1458 1.124 944 (0.300) 1.103 505 (0.290)
2.00 4.00 1.0729 1.049 793 (0.300) 1.037 470 (0.300)
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Figure 2: The response time distribution function with K = 2, si = 1, λ = 1, µ1 = 10, and µ2 = 20.
The dotted lines are the Monte Carlo estimates ±20 times the standard error. The solid line is the Monte

Carlo estimate with N = 300 and the dashed line is the approximation in [9] with N = ∞.

Since a longer queue results in a longer response time, we expect that the fork-join network
with N = ∞ has a slightly larger mean response time. The results in Table 1 confirm this: the
mean response time decreases as N decreases.

We can also compare the Monte Carlo estimates and the approximation in [9] for F(t) =
P(W ≤ t). With µ1 = 10 and µ2 = 20, the results are shown in Figure 2, where the solid line
(the Monte Carlo estimate) and the dashed line (the approximation given in [9]) are almost the
same. If we zoom into the graph (see Figure 3), we can see that the approximation is slightly
lower. With µ1 = 2 and µ2 = 3, the results are shown in Figures 4 and 5. We can see that
the difference between the Monte Carlo estimate and the theoretical approximations becomes
larger. Note that the simulated sample size 100 000 is very large and the 95% confidence
interval will be almost the same as the estimate. Thus, in these graphs we output the Monte
Carlo estimate ±20 times its standard error (dotted lines).

Scenario 2. In Table 2 we present the Monte Carlo estimates of E W for the fork-join network
with K = 2, λ = 1, s1 = 2, s2 = 3, and different values of µi and N . From the results we
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Figure 3: A zoomed-in view of the response time distribution function of Figure 2, with K = 2, si = 1,

λ = 1, µ1 = 10, and µ2 = 20. The dotted lines are the Monte Carlo estimates ±20 times the standard
error. The solid line is the Monte Carlo estimate with N = 300 and the dashed line is the approximation

in [9] with N = ∞.
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Figure 4: The response time distribution function with K = 2, si = 1, λ = 1, µ1 = 2, and µ2 = 3.
The dotted lines are the Monte Carlo estimates ±20 times the standard error. The solid line is the Monte

Carlo estimate with N = 300 and the dashed line is the approximation in [9] with N = ∞.
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Figure 5: A zoomed-in view of the response time distribution function of Figure 4, with K = 2, si = 1,

λ = 1, µ1 = 2, and µ2 = 3. The dotted lines are the Monte Carlo estimates ±20 times standard error.
The solid line is the Monte Carlo estimate with N = 300 and the dashed line is the approximation in [9]

with N = ∞.
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Table 2: Approximations, from [9], and estimates with N = 300 and N = 100. The estimates are based
on the 100 000 realisations simulated using perfect sampling methods. The values in brackets are 100

times the standard errors of the estimates.

Approximation of E W Estimates of E W Estimates of E W

µ1 µ2 with N = ∞ with N = 300 with N = 100

5.00 5.00 0.2989 0.302 923 (0.071) 0.300 916 (0.071)
5.00 10.00 0.2342 0.234 578 (0.060) 0.234 795 (0.061)
5.00 15.00 0.2181 0.218 539 (0.061) 0.218 199 (0.061)
1.00 1.00 1.7208 1.756 273 (0.400) 1.746 010 (0.400)
1.00 2.00 1.4477 1.443 872 (0.370) 1.437 890 (0.370)
1.00 3.00 1.3822 1.375 673 (0.380) 1.369 130 (0.380)
0.56 0.56 9.7814 8.624 601 (2.400) 8.122 390 (2.250)
0.56 1.11 9.5285 8.310 150 (2.450) 7.807 320 (2.300)
0.56 1.67 9.4974 8.266 610 (2.470) 7.811 830 (2.290)

can see that the difference between the Monte Carlo estimate with a finite value of N and the
theoretical approximation with N = ∞ increases as siµi/λ decreases. When siµi/λ is large
(for example, λ = 1 and µi = 5), the queue length in equilibrium is small, and N = 300 and
N = 100 are large enough compared to the queue length. New jobs will not be rejected since
N is very large, which is the same as the fork-join network with N = ∞. Therefore, in such
situations, the mean response time with N = ∞ is almost equal to the mean response time
with a large finite value of N . On the other hand, when siµi/λ is close to (but larger than) 1
(for example, λ = 1 and µi = 0.56), the queue length in equilibrium may be very large, and
N = 300 and N = 100 are not large enough. In such situations, new jobs may be rejected
due to limited waiting space. The queue length in equilibrium with N = ∞ will be randomly
larger than that with a finite value of N since with N = ∞ new jobs will never be rejected.
Therefore, the mean response time with N = ∞ is larger than the mean response time with a
finite value of N .

We plot the estimates for F(t) = P(W ≤ t) with µ1 = 0.56, µ2 = 0.56 and µ1 = 5, µ2 =
15 in Figures 6 and 7, respectively. We can see that the mean response times decreases as siµi/λ

0 2 4 6 8 10 12 14 16 18 20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Response time

C
ul

m
ul

at
iv

e 
pr

ob
ab

ili
ty

Figure 6: The response time distribution function with K = 2, s1 = 2, s2 = 3, λ = 1, µ1 = 0.56, and
µ2 = 0.56. The dotted lines are the Monte Carlo estimates ±20 times the standard error.
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Figure 7: The response time distribution function with K = 2, s1 = 2, s2 = 3, λ = 1, µ1 = 5, and
µ2 = 15. The dotted lines are the Monte Carlo estimates ±20 times the standard error.
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Figure 8: Histogram of response times, with N = 300, K = 2, s1 = 2, s2 = 3, λ = 1, µ1 = 0.56, and
µ2 = 0.56.

increases. Under this scenario, the distribution approximation for W is not readily available by
using the methods in [9].

From Figure 8 we can see that the distribution of response times is highly skewed. Therefore,
the other characteristics of the response time distribution, such as the median and quartiles, will
be important. Existing methods cannot give approximations for these characteristics for multi-
server fork-join networks, but we can easily estimate the median or quartiles of the response
time using the simulated realisations. For example, under simulation Scenario 1 with µ1 =
2, µ2 = 4, and N = 300, the 0.5% and 99.5% quartiles for W are 0.000 963 and 12.065 317,
respectively (E W = 1.049 793); under simulation Scenario 2 with µ1 = µ2 = 0.56, and
N = 300, the 0.5% and 99.5% quartiles for W are 0.004 539 and 89.327 042, respectively
(E W = 8.624 601). For simplicity, the results with other values of µi are not shown here.

4.2. Simulation for the queue length

Now we consider the simulation for the probability distribution of Q under the following
three scenarios.

Scenario 3. In Table 3 we present the Monte Carlo estimates for the probability distribution
of Q for the fork-join network with K = 2, λ = 1, si = 1, and µ1 = µ2 = 2.
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Table 3: Estimation of P(Q = K). Scenario I gives the theoretical approximation from [9], and
scenarios II and III give Monte Carlo estimates based on the 100 000 realisations simulated using perfect

sampling methods. In scenario II N = 300 and in scenario III N = 100.

Scenario
k

I II III

0 0.3547 0.3646 0.3721
1 0.2767 0.2763 0.2796
2 0.1680 0.1679 0.1643
3 0.0951 0.0914 0.0896
4 0.0505 0.0495 0.0458
5 0.0264 0.0245 0.0245
6 0.0135 0.0128 0.0127
7 0.0070 0.0066 0.0062
8 0.0037 0.0030 0.0026
9 0.0020 0.0020 0.0012

10 0.0010 0.0007 0.0008

Table 4: Estimation of P(Q = K). Scenario I gives the theoretical approximation from [9], and
scenarios II and III give Monte Carlo estimates based on the 100 000 realisations simulated using perfect

sampling methods. In scenario II N = 300 and in scenario III N = 100.

Scenario
k

I II III

0 0.4297 0.4388 0.4511
1 0.2804 0.2829 0.2806
2 0.1488 0.1451 0.1406
3 0.0739 0.0693 0.0693
4 0.0359 0.0339 0.0308
5 0.0174 0.0149 0.0146
6 0.0085 0.0078 0.0068
7 0.0041 0.0037 0.0034
8 0.0020 0.0017 0.0017
9 0.0010 0.0010 0.0007

10 0.0005 0.0005 0.0002

Scenario 4. In Table 4 we present the Monte Carlo estimates for the probability distribution
of Q for the fork-join network with M = 2, λ = 1, si = 1, µ1 = 2, and µ2 = 3.

From the results of both scenarios we can see that, with a finite value of N , the number
of waiting jobs is randomly smaller than the number of waiting jobs with N = ∞, but the
difference is small.

Scenario 5. In Figure 9 we plot the Monte Carlo estimates for the probability distribution of
Q for the fork-join network with N = 300, M = 3, λ = 1, s1 = s2 = 2, s3 = 3, µ1 = µ2 = 1,
and µ3 = 1.5. The approximation method in [9] does not work for this scenario.
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Figure 9: Plot of the distribution of Q, with K = 3, s1 = s2 = 2, s3 = 3, λ = 1, µ1 = µ2 = 1.0, and
µ3 = 1.5.

5. Computational complexity of the CFTP algorithm

The complexity of the CFTP algorithm depends on the number of simulated U(l) until coales-
cence. Thus, we only need to consider Q(t) and Q(t) at discrete time points τ = {τ1, τ2, . . .}.
For simplicity, let Q

(l) = Q(τl) and Q(l) = Q(τl) for l = 1, 2, . . . . The computational
complexity depends on the number of steps, νc, needed for Q

(l)
and Q(l) to coalesce. In

this section we will find a bound for E νc, given λ < µisi for all i < K .
Letd(Q

(l)
, Q(l))be the distance between the upper chain and lower chain, which is defined as

d(Q
(l)

, Q(l)) :=
K∑

i=1

|d(l)
i |,

where d
(l)
i is the difference between Q

(l)
and Q(l) at the ith component. Obviously,

d(Q
(0)

, Q(0)) =
∑

i

Ni,

since Q
(0) = (N1, . . . , NK) and Q(0) = (0, . . . , 0). Define I (·) as the indicator function.

Recalling the notation for A(l) and B(l)
i in Lemma 2, we have

E[d(Q
(l+1)

, Q(l+1))]
= E[E[d(Q

(l+1)
, Q(l+1)) | Q

(l)
, Q(l)]]

=
3∑

j=1

E[I ((Q(l), Q
(l)

) ∈ B
(l)
i ) E[I (U(l) /∈ A(l))d(Q

(l+1)
, Q(l+1)) | Q

(l)
, Q(l)]]

+ E[E[I (U(l) ∈ A(l))d(Q
(l+1)

, Q(l+1)) | Q
(l)

, Q(l)]]
≤ P(U(l) /∈ A(l)) E[I ((Q(l), Q

(l)
) ∈ B(l)

1 ∪ B(l)
2 )d(Q

(l)
, Q(l))]

+ P(U(l) /∈ A(l)) E[I ((Q(l), Q
(l)

) ∈ B(l)
3 )[d(Q

(l)
, Q(l)) + K]]

+ P(U(l) ∈ A(l), T min
l = T l < T l) E[d(Q

(l)
, Q(l)) − 1]

+ P(U(l) ∈ A(l), T min
l < T l ≤ T l) E[d(Q

(l)
, Q(l))]
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+ P(U(l) ∈ A(l), T min
l = T l = T l) E[d(Q

(l)
, Q(l))]

= E[d(Q
(l)

, Q(l))] + K P(U(l) /∈ A(l)) P((Q(l), Q
(l)

) ∈ B(l)
3 )

− P(U(l) ∈ A(l), T min
l = T l < T l), (5)

where T l =min{ξ (l)
0 , ξ

(l)
ij , j = 1, . . . , min{Q(l)

i , si}, i = 1, . . . , K} and T l = min{ξ (l)
0 , ξ

(l)
ij ,

j = 1, . . . , min{Q(l)
i , si}, i = 1, . . . , K}. In (5) the first equality sign is because U(l) belongs

to A(l) or (A(l))c and (Q(l), Q
(l)

) must be in B(l)
1 ∪ B(l)

2 ∪ B(l)
3 . The inequality sign in (5)

follows from (3) and the definitions of A(l) and B(l)
i .

Using properties of exponential variables, it is easy to show that

P(U(l) ∈ A(l), T min
l = T l < T l) = P(T min

l = T l < T l) ≥ mini≤K µi

�
:= �, (6)

where � > 0 is a constant and � = λ + ∑
i siµi .

We also have the following lemma.

Lemma 4. Given λ < µisi for all i < K , for a large value of l, we find that P((Q(l), Q
(l)

) ∈
B(l)

3 ) converges to 0 at an exponential rate, denoted as εl .

Proof. See Appendix C.

Define M = KN . According to Lemma 4, for a large value of M and l > M , we have
εl < [log(l)]−1. Then, from (5), (6), and Lemma 4, we have

E[d( Q
(l+1)

, Q(l+1))] ≤ E[d( Q
(l)

, Q(l))](1 + O(εlM
−1) − O(M−1)). (7)

Then we have the following theorem.

Theorem 2. The expected number of coalescence steps is such that

E νc ≤ O(M2 log(M)).

Proof. According to (7), for a large value of M and l > M , we have

P(Q
(l) �= Q(l)) = P(d(Q

(l)
, Q(l)) ≥ 1) ≤ E[d(Q

(l)
, Q(l))]

≤ M[1 − O([M log(M)]−1)]l−M.

The expected number of coalescence steps is such that

E νc =
∞∑
l=1

P(νc ≥ l)

=
∞∑
l=1

P(Q
(l) �= Q(l))

≤ M + MO(M log(M))

= O(M2 log(M)).
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Table 5: Running time comparisons (in seconds) with µi = 1 and si = 3.

N
K

500 1000 1500

5 336 654 983
10 1147 2267 3377
15 2564 4979 7254

Therefore, the expected number of steps needed to achieve coalescence is bounded by
O(M2 log(M)), which means that the complexity of the algorithm increases as a polynomial
function of M = KN . The algorithm is efficient.

We consider the running time comparisons for different values of N and K . We choose
λ = 1, µi = 1, and si = 3 for all values of i. In Table 5 we present the running times (in
seconds) for simulating 10 000 realisations on a desktop with a 2.66 GHz Intel� CoreTM Duo
processer. We can see that the running time increases as N and K increase. The algorithm is
efficient for reasonably large values of N and K .

6. Discussion

We presented a perfect sampling method based on CFTP to draw perfect simulations from
the equilibrium of a fork-join network with finite capacity and zero service time at the join
station. This work is important since most existing works focus on the analytic approximation
for fork-join networks with infinite capacity. The accuracy of existing approximation methods
is difficult to justify in some cases. For example, the analytic approximation formula of F(t) =
P(W ≤ t) in [9] depends on some constant coefficients. The accurate values of the coefficients
are sometimes found by simulation experiments (details can be found in [9]). The proposed
simulation method can provide a Monte Carlo estimate, whose accuracy is controlled by the
number of simulated realisations. The proposed perfect sampling method brings new insight
to this area.

The proposed CFTP method makes use of the memoryless property of exponential service
times and simulates continuous-time Markov chains using the thinning idea. When service
times do not follow an exponential distribution, the thinning idea is not valid because the
memoryless property does not hold. Thus, future research work could seek perfect sampling
methods for fork-join networks with general independent service times (see [1] and [17]).

Other future research work could seek perfect sampling methods for fork-join networks
with infinite capacity, i.e. N = ∞, although the assumption of finite capacity is reasonable in
practice. This problem may be solved by extending the dominated CFTP method in [8]. Future
research work in this area could also seek perfect sampling methods for fork-join networks with
a nonzero service time at the join station or for networks with dynamic policies for scheduling
multiple tasks.

Appendix A. Proof of Lemma 1

Algorithm 1 obviously simulates the transition probability (steps 03, 05, and 06 of Algo-
rithm 2) from (2). We only need to show that it simulates holding times correctly.

Note that Algorithm 1 outputs τ = {τ0, τ1, . . .}, {Q(τ0), Q(τ1), . . .} (step 01 of Algo-
rithm 2), and all transition times {t0, t1, . . .} (a subset of τ ). Since

T min
l = min{ξ (l)

0 , ξ
(l)
ij , j = 1, . . . , si , i = 1, . . . , K}
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is exponentially distributed with rate � := λ + ∑K
i=1 siµi , then, obviously, τ0, τ1, . . . are jump

times of a Poisson process with rate �.
Now consider the thinning algorithm for simulating a Poisson process with a rate r, r < �.

Suppose that Ik is a Bernoulli random variable independent of T min and is such that P(Il =
1) = r/�. Then the subsequence {τl : Il = 1} will be the jump times of a Poisson process
with rate r . From this thinning idea we can simulate an exponential variable with mean 1/r

as follows. Suppose that Il = 1, and that we simulate Il+1, Il+2, . . . until we obtain the first
Il′ = 1. Then the interarrival time τl′ − τl must come from an exponential distribution with
mean 1/r . We use this idea to simulate the holding times of the Markov chain.

Suppose that tk = τl and Q(τl) = n(l). First consider n(l) + 1 ≤ N . Since Tl = min{ξ (l)
0 ,

ξ
(l)
ij , j = 1, . . . , min{n(l)

i , si}, i = 1, . . . , K}, we know that

P(T min
l = Tl) = rn(l)

�
=

(
λ +

∑
i

µi min{ni, si}
)/

�.

Thus, we can define Il = 1 if T min
l = Tl and Il = 0 otherwise. Algorithm 1 generates

Il+1, Il+2, . . . until we obtain the first Il′ = 1, i.e. T min
l′ = Tl′ and outputs the time tk+1 = τl′

(step 05 of Algorithm 1). Therefore, tk+1 − tk has an exponential distribution with mean 1/rn(l)

and it is the holding times of the process at Q(τl) = n(l).
If n(l) + 1/ � N , T min

l = Tl = ξ
(l)
0 implies that there is no jump at time τl+1 = τl + T min

l

(step 05 of Algorithm 2 will reset I = 0). Therefore, the probability of runn- ing step 07 of
Algorithm 2 is P(T min

l = Tl = ξ
(l)
ij for some i) = rn(l)/� =∑

i µi min{ni, si}/�. With similar
arguments as above, we know that the holding times are simulated correctly.

Appendix B. Proof of Lemma 2

Algorithm 1 outputs a Poisson process with rate � = λ + ∑
i siµi having jump times at

τ = {τk, k = 1, . . .}. According to the updating rules of Algorithm 1, a simulated Markov
chain can only have possible jumps at time τk .

We know that τl+1 = τl + T min
l , where T min

l is defined in Algorithm 2. Note that the partial
order is preserved in the interval (τl, τl+1) since there is no jump for both Q(t) and Q′(t).
Therefore, result (a) is proved.

Now consider a = T min
l . Since the generated variables ξ

(l)
0 , ξ

(l)
ij for j = 1, . . . , si , and

i = 1, . . . , K , will be mutually unequal with probability 1, given T min
l �= ξ

(l)
0 , we know

that, for some i, j , one of the following cases must be true: (i) T min
l = T ′

l = Tl = ξ
(l)
ij ,

(ii) T min
l = T ′

l = ξ
(l)
ij < Tl , or (iii) T min

l < T ′
l ≤ Tl . According to (3) if (i) is true, Q(τl+1) =

n − ei ≺ Q′(τl+1) = n′ − ei (the partial order is preserved). If (ii) is true then n′
i < ni .

Therefore, according to (3), Q(τl+1) = n 
 Q′(τl+1) = n′−ei (the partial order is preserved).
If (iii) is true then neither Q(t) or Q′(t) has a jump at time τl+1 = τl + T min

l . Therefore, the
partial order is preserved since Q(τl+1) = n ≺ Q′(τl+1) = n′. Thus, result (b) is proved.

For a = T min
l , if T min

l = ξ
(l)
0 then T min

l = T ′
l = Tl = ξ

(l)
0 . On the other hand, if (Q(τl),

Q′(τl)) ∈ B(l)
1 , i.e. n′ + 1 ≤ N , we have Q(τl+1) = n + 1 ≺ Q′(τl+1) = n′ + 1 according

to (3) (the partial order is preserved). Result (c) is proved.
For result (d), the conditions are T min

l = T ′
l = Tl = ξ

(l)
0 and (Q(τl), Q

′(τl)) ∈ B(l)
2 , i.e.

Q(τl) + 1 � N . According to (3), we have Q(τl+1) = n ≺ Q′(τl+1) = n′ (the partial order
is preserved). Result (d) is proved.

For result (e), the conditions are T min
l = T ′

l = Tl = ξ
(l)
0 and (Q(τl), Q

′(τl)) ∈ B(l)
3 . Then,

according to (3), φ(Q(τl), U
(l), a) = n + 1 
 φ(Q′(τl), U

(l), a) = n′ may not be true (the
partial order may not be preserved). Result (e) is proved.
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Appendix C. Proof of Lemma 4

For the definition of B(l)
3 in Lemma 2 we have

P((Q(l), Q
(l)

) ∈ B(l)
3 ) ≤ P(Q

(l)

i = Ni for at least one i) ≤ K max
i

P(Q
(l)

i = Ni).

Let h = 
√l�, where 
√l� is the floor function. Let event D be the event that from time 0 to
τl there are more than h jumps for Qi(t).

First we show that P(Dc) converges to 0 at an exponential rate. At each time τl , Qi(t) has a
jump with probability less than or equal to (µisi + λ)/�. Therefore, we have

P(Dc) = P(there are k jumps at times τ1, . . . , τl, with k ≤ h)

≤
h∑

k=1

(
l

k

)(
λ + µisi

�

)k(λ + ∑
j �=i µj sj

�

)l−k

≤ l!
h! (l − h)!hδl

1,

where 0 < δ1 = maxi{(λ + µisi)/�, (λ + ∑
j �=i µj sj )/�} < 1. Then, using Stirling’s ap-

proximation for l!/h! (l − h)!, we have

P(Dc) ≤ O

(
hh

(
l

l − h

)l−h)
h1/2δl

1 = O((heδh
1 )hh1/2),

which converges to 0 at an exponential rate.
The discrete transitions for Qi(t) are the same as the path of a simple random walk R =

{Rk, k = 0, . . . , h} starting from Ni with barriers 0 and Ni . The transition probabilities of
R may be different at different states, but the positive jump probabilities p of R are such that
p ≤ λ/(µisi + λ) < 1

2 when λ < µisi . It is easy to show that, given R0 = Ni , for a large
value of k,

P(Rk = Ni) ≤

(k+1)/2�∑

j=0

(
k

j

)(
λ

λ + µisi

)k−j(
µisi

λ + µisi

)j

≤ O(2kk−1/2)

k/2∑
j=0

(
λ

λ + µisi

)k−j(
µisi

λ + µisi

)j

= O(2kk1/2)

(
λ

λ + µisi

)k/2(
µisi

λ + µisi

)k/2

= O

(
k1/2

[
4λµisi

(λ + µisi)2

]k/2)

≤ O(k1/2δ
k/2
2 ),

where 0 < δ2 = maxi{4λµisi/(λ + µisi)
2} < 1. Thus, P(Rk = Ni) converges to 0 at an

exponential rate as λ < µisi . Therefore,

P(Q
(l)

i = Ni) = P(Q
(l)

i = Ni, D) + P(Q
(l)

i = Ni, Dc)

≤ l P(Rh = Ni) + P(Dc)

= O(l5/4δ
h/2
2 ) + O((heδh

1 )hh1/2),

which converges to 0 at an exponential rate, denoted as εl .
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