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Evolution of the density self-correlation in
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Turbulent mixing in a Richtmyer–Meshkov unstable light–heavy–light (air–SF6–air)
fluid layer subjected to a shock (Mach 1.20) and a reshock (Mach 1.14) is investigated
using ensemble statistics obtained from simultaneous velocity–density measurements.
The mixing is driven by an unstable array of initially symmetric vortices that
induce rapid material mixing and create smaller-scale vortices. After reshock the flow
appears to transition to a turbulent (likely three-dimensional) state, at which time our
planar measurements are used to probe the developing flow field. The density self-
correlation b = −〈ρv〉 (where ρ and v are the fluctuating density and specific volume,
respectively) and terms in its evolution equation are directly measured experimentally
for the first time. Amongst other things, it is found that production terms in the b
equation are balanced by the dissipation terms, suggesting a form of equilibrium in
b. Simultaneous velocity measurements are used to probe the state of the incipient
turbulence. A length-scale analysis suggests that an inertial range is beginning to
form, consistent with the onset of a mixing transition. The developing turbulence is
observed to reduce non-Boussinesq effects in the flow, which are found to be small
over much of the layer after reshock. Second-order two-point structure functions of the
density field exhibit a power-law behaviour with a steeper exponent than the standard
2/3 power found in canonical turbulence. The absence of a significant 2/3 region is
observed to be consistent with the state of the flow, and the emergence of the steeper
power-law region is discussed.

Key words: transition to turbulence, turbulence modelling, turbulent mixing

1. Introduction
High-resolution mean and fluctuating velocity and density field measurements are

made in a Richtmyer–Meshkov (RM) flow to provide new insights about production
and dissipation in a two-fluid, developing turbulent flow field. Understanding the
nature of mixing in this shock-driven turbulent field is critical to modelling and
simulation efforts with important consequences for many flows. In inertial confinement
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fusion reactions, the mixing induced by the RM instability (created by a converging
shock wave on the fuel–shell interface) results in fuel contamination and reduced
fusion yield (Lindl, McCrory & Campbell 1992). RM instabilities increase the mixing
between the fuel and the oxidizer in supersonic engines, enhancing combustion
efficiency (Yang, Kubota & Zukoski 1993). The patterns observed in supernova
explosions and ejecta from shock-induced metal melt have also been attributed to
RM instability (Arnett et al. 1987).

Variable-density (VD) mixing offers challenges beyond even those of the classical
turbulent mixing problem. In VD mixing of fluids with vastly different densities,
e.g. ρ2/ρ1 > 3 and for which ρ/ρ > 1, there are several physical processes that do
not appear in constant-density mixing, and new mixing physics is seen (Livescu &
Ristorcelli 2009). Here ρ = ρ∗ − ρ denotes the fluctuation of the mixture density
about its mean ρ, with ρ∗ representing the total (instantaneous) mixture density. In
this article we address binary VD mixing between two fluids with densities ρ1 and
ρ2 and with an ‘equation of state’, once the shock has passed and the compressible
fluctuations are small (the low turbulent Mach number limit), of the form

1
ρ∗
= Y1

ρ1
+ 1− Y1

ρ2
. (1.1)

With the density acutely dependent on the mixing mass fraction Y1, the advection term
in the Navier–Stokes equation has cubic nonlinearity associated with the differential
acceleration of the different fluids, which produces density-dependent mixing effects
(Livescu & Ristorcelli 2009). In these flows the conservation equation for the mass
fraction vector, Yα, is (Williams 1994)

(ρ∗Yα),t + (ρ∗YαUk),k =−Jαk,k, α = 1, . . . ,N, (1.2)

where ρ∗, Uk and Jαk are the mixture density, mixture velocity and diffusive mass
fluxes, respectively. The problem described in terms of the mass fraction variables
(1.2) is highly nonlinear due to: (i) ρ∗ = ρ∗(Y) in the advective term; and (ii) the
diffusive flux, Jαk (unlike the Boussinesq case with ρ ≈ constant) depends, importantly,
on ρ and thus on all components of Yα. The diffusive flux in a simple class of
multicomponent VD mixing is

Jαk =−ρ∗(Y)DYα,k, (1.3)

where the diffusion coefficient D is assumed constant and uniform for all species. For
the present binary mixing case the diffusive flux of species 1 is then

J1
k =−

ρ2

1+ Y1(ρ2/ρ1 − 1)
DY1,k. (1.4)

In extreme cases, e.g. ρ2/ρ1 > 10, the diffusive flux varies considerably for various
0 < Y1 < 1. Thus, the nonlinear nature of the diffusion process is clear. This leads
to phenomena not seen in the ρ ≈ constant case that relate to the fact that heavy
fluid mixing into light occurs qualitatively differently than light into heavy, introducing
a new source of skewness of the probability density function (p.d.f.) (Livescu &
Ristorcelli 2008, 2009; Bakosi & Ristorcelli 2011). Hence, VD mixing exhibits
interesting new behaviours when extreme effects are considered, and represents a great
predictive challenge in fluid mechanics even for more moderate VD effects (which is
the case in the present flow).

As shown above, one fundamental aspect of the complexity of VD mixing is a
dependence both on the velocity and density fields, where the density field actively
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modulates the response of the fluid to a given stress condition (called level-2
mixing by Dimotakis (2005)). This feedback between the velocity and density fields
demands the application of a suitable diagnostic, one that can measure both of these
quantities simultaneously, to begin to understand this type of turbulent mixing. Recent
advances in the successful implementation of simultaneous particle-image velocimetry
(PIV)–planar laser-induced fluorescence (PLIF) diagnostics to RM flows allow the
measurement of instantaneous velocity and density two-dimensional fields at the same
time (Balakumar et al. 2008). An earlier paper focused on fundamental velocity
statistics and select density–velocity correlations relevant to mixing, including the
streamwise mass flux (ρu1) and components of the general Reynolds stress tensor,
Rij = ρ∗u′′i u′′j (Balakumar et al. 2012). (Here the double prime denotes fluctuations
from a density-weighted or Favre average.) The behaviour of the streamwise mass
flux is quantified and discussed, and it is shown that the in-plane self-correlation
Reynolds stresses (R11 and R22) are dominant relative to the cross-correlation term
(R12). Further, when the mass-weighted Reynolds stresses are written in terms of the
standard (non-mass-weighted) fluctuations, one of the three terms, the mean density
and cross-velocity product term ρ uiuj, is shown to be dominant in its contribution, and
hence critical for accurate modelling.

In the present paper, we initially focus on the density self-correlation (DSC), or
b = −〈ρv〉, an important quantity in mixing in VD flows due to its role in the mass
flux equation, and a fundamental quantity in second-moment turbulence models. We
experimentally measure the DSC and the terms in its evolution equation for the first
time (§ 4). In § 5, we perform a length-scale analysis to quantify the state of the
developing turbulence and place the DSC results in the context of the nascent mixing
transition. Several other aspects of the VD flow are examined and interpreted in later
sections, including non-Boussinesq effects, the time required to achieve equilibrium,
and the (non-classical) behaviour of density structure functions. Our results provide
insights into the nature and mechanisms of mixing in RM turbulence at low Mach
numbers, and yield the first measurements of key quantities in turbulence models
developed to tackle these types of flows.

2. Experiment
The current experiments were performed in a horizontal shock tube with a square

cross-section (76.2 mm × 76.2 mm). During each experiment, a Mach 1.2 shock wave
was created upstream of the shock tube by puncturing a diaphragm that separates
the driver gas (nitrogen) from the driven gas (air). The shock wave travels down the
tube (in the x direction) to accelerate a density gradient created at the test section
by flowing (in the vertical z direction) a gravity-driven curtain of SF6 (heavy gas)
that spans the test section from its top surface. The interaction of the shock wave
with the air–SF6–air fluid layer deposits baroclinic vorticity, which induces the growth
of perturbations at the interfaces. Since the deposition of baroclinic vorticity can
occur only in the presence of a misalignment between the pressure and density fields,
the nozzles through which SF6 flows into the test section were contoured to create
perturbations (of primary wavelength, λ = 3.6 mm) on either side of the curtain,
which acted to modify the direction of the density gradients. After depositing the
initial vorticity at the interface, the transmitted shock travels past the curtain and is
reflected from the downstream end of the shock tube by a reshock wall. The reshock
wave then interacts once again with the developing instability, depositing additional
energy and inducing a rapid transition to turbulence (see, e.g., Hill, Pantano & Pullin
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First shock direction Reshock Reshock direction
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FIGURE 1. Rapid transition of the varicose RM fluid layer into a well-mixed state after
reshock (9.66 tU/λ6 23.0).

2006; Balakumar et al. 2008), so that at this time the turbulent fluctuations are very
likely three-dimensional in nature. For the present experiments, the reflecting wall
has been adjusted such that the reshock wave impacts the curtain at t = 600 µs
(non-dimensional time, tU/λ = 17.2, where t is the measurement time after first
shock interaction with the curtain, U is the mean particle velocity behind first shock
and λ is the primary wavelength of the perturbation). All turbulence statistics are
presented at 200 µs (tU/λ= 5.7) after reshock (or equivalently 800 µs after first shock;
tU/λ= 23.0).

The instability is investigated by mixing the SF6 with acetone vapour and small
glycol droplets from a fog generator, and using simultaneous PIV–PLIF diagnostics.
A planar horizontal cross-section of the evolving fluid layer was illuminated by laser
light sheets of two different wavelengths (266 nm, 532 nm) from frequency-multiplied
Nd:YAG pulsed lasers. The fluorescence from the acetone was digitally registered
to calculate the instantaneous density field. The density field was complemented
by a simultaneous PIV velocity-field measurement that captures the streamwise (x)
and spanwise (y) velocity components (the out-of-plane z-velocity component is
not measured). Both the PIV and PLIF cameras were equipped with sharp cut-off
filters to prevent image cross-contamination. Further experimental details are provided
elsewhere, including discussions on quantitative concentration measurement with PLIF
(Tomkins et al. 2008), combining PLIF with a simultaneous PIV measurement and the
stability and characterization of the initial conditions (Balakumar et al. 2008), and a
detailed discussion of the present flow field, including a range of velocity and density
statistics with sampling errors for certain quantities (Balakumar et al. 2012).

3. Planar density and velocity measurements
A time series of the transition of the RM fluid layer to a turbulent state after reshock

is shown in figure 1. This sequence was assembled from an ensemble of instantaneous
realizations obtained from repeated runs of the same experiment with the reshock
occurring at tU/λ= 17.2. While the primary instability does not cause a transition and
results in well-ordered structures that cause limited mixing until tU/λ∼17.2 after first
shock, the interaction with a reshock wave creates a substantial increase in the mixing
within a short duration of tU/λ 6 5.7. Figure 2 shows a simultaneous PIV–PLIF field
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FIGURE 2. Simultaneous PIV–PLIF field showing vortical structures after reshock
(tU/λ= 23.0). Contours are mixture density (kg m−3).

of the well-mixed fluid layer after reshock (tU/λ = 23.0). It is clear that the ordered
fields observed earlier have disintegrated into a flow driven by a disordered distribution
of vortices. Larger clumps of heavier gas occur downstream of the centreline (in
the direction of the first shock) resulting in an asymmetric material distribution and
enhanced mixing.

The mixing of the density field can be quantified by the density p.d.f. before
and after reshock (figure 3). The p.d.f.s are calculated over a region consisting of
5.18 wavelengths in the spanwise direction and 3.36 wavelengths in the streamwise
direction. Both before and after reshock, on average, the heavier fluid is converted
into lower density fluid by mixing as evidenced by the lowering of the p.d.f.s at
higher densities as time progresses (marked with arrows in figure 3). The loss of the
heavier material is compensated by an increase in the p.d.f. of lower density material.
Although the data for each of these curves was obtained from a separate realization
of the experiment, the total mass of gas contained within the control volume remained
within 2 % between the realizations (figure 3, inset). This implies that very little
surrounding flow is actively entrained by the turbulent mixing zone beyond ∼1.7λ of
the centreline. At late times after reshock, a strong peak in the density p.d.f. forms at a
peak SF6 concentration of c∼ 0.08.

4. The density–specific volume correlation, 〈ρv〉
4.1. Motivation

While p.d.f.s provide information about the distribution of materials during the mixing
process, moments of the p.d.f. provide insights beyond quantification of the mixing
state. In VD flows, moments of the p.d.f. have dynamical importance to the turbulence
and thus the mixing process itself. We study the mixing process here using the
correlation between fluctuating specific volume and density, b = −〈ρυ〉, also known
as the DSC. Here ρ and υ represent the density and specific volume fluctuations,
respectively, and 〈·〉 represents an average (typically an ensemble average). As we
will discuss, b is a fundamental quantity in second-moment turbulence modelling
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FIGURE 3. Time evolution of the p.d.f. of instantaneous density field before and after
reshock: �, tU/λ= 9.6; N, tU/λ= 15.4; dotted line, tU/λ= 17.5; dashed line, tU/λ= 18.9;
solid line, tU/λ= 20.1.

approaches for VD flows, and through the moment equations has a direct role in
the physics of the turbulence and mixing. The DSC also carries information on the
instantaneous state of the mixing. The DSC is a second moment; it is, however, related
to a first moment, the mean specific volume, V:

+ρV = 1− 〈ρυ〉 = 1+ b. (4.1)

By definition, b is non-negative and equals 0 when the flow is fully mixed, as in
this case the mean specific volume is the inverse of the mean density. As is peculiar
to statistical approaches to VD flows, the mean specific volume is an independent
variable. One can write an equation for the mean specific volume:

∂

∂t
V + (UjV),j = 2VD− 〈ujv〉,j + 2〈vd〉 (4.2)

where D = Ui,i and d = ui,i are the mean and fluctuating dilatation, respectively. In
second-moment closure approaches, b plays a fundamental role in the production of
turbulence (see below) to which end an equation for b is typically carried,

∂

∂t
b+ Ujb,j =−1+ b

ρ̄
(ρ̄aj),j − ρ̄〈vuj〉,j + 2ρ̄〈vd〉, (4.3)

which follows from (4.2). In a heuristic sense b plays the role of the concentration
variance in buoyantly driven flows in the Boussinesq approximation, when ρ � ρ̄
(Launder 1989); in this case

b≈ 〈ρ
2〉
ρ̄2

, (4.4)
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which is an approximation used in some second-order closures (e.g. Gregoire,
Souffland & Gauthier 2005). As initially shown by Livescu et al. (2009) and further
discussed by Schwarzkopf et al. (2011), however, using the explicit transport equation
for 〈ρv〉 as a closure for VD flows captures important physics, particularly in regimes
away from the Boussinesq approximation.

The dynamical significance of b follows from its role in the mass flux equation,
as discussed by Livescu et al. (2009). If ai = 〈ρui〉/ρ̄, then the normalized mass flux
equation is written

∂

∂t
(ρ̄ai)+ (ρ̄Ũjai),j = bP,i + ρ̄〈vpi〉 − ρ̄aj(Ũi − ai),j

+ ρ̄,j
ρ̄
(〈ρuiuj〉 − Rij)+ ρ̄(aiaj),j − (〈ρuiuj〉,j + ρ̄〈uid〉). (4.5)

Thus, b plays a primary role in the production of the mass flux, bP,i. Further, the
primary production term of the kinetic energy of the turbulence, k, is ajP,j (Livescu
et al. 2009), and thus b is part of the feedback between the material mixing and the
turbulence that does the mixing.

4.2. Measurement of the DSC
Although Reynolds-averaged Navier–Stokes (RANS) models are heavily employed
in the fluid mechanics and aerospace communities, detailed examinations of terms
within RANS models are scarce for VD flows. Individual terms in VD transport
equations such as (4.3) and (4.5) have heretofore not been measured experimentally:
only high-resolution simulations have yielded estimates of terms in these types of
model equations for VD flows. For example, high-resolution weighted essentially
non-oscillatory (WENO) simulations have been used to examine amplification of
turbulence through production of turbulence kinetic energy (TKE) after reshock
(Schilling & Latini 2010). Also, in a reshocked RM flow, Moran-Lopez & Schilling
(2013) examined mechanisms of the TKE evolution in a RANS framework, observing
that shear production was balanced by molecular and turbulent diffusion of TKE
as the dominant terms. An experimental estimate of the DSC was computed by
Banerjee, Gore & Andrews (2010a) in a related flow for comparison with a modified
version of the Besnard et al. (1992) mix model. This estimate was based upon the
Rayleigh–Taylor experimental data at low Atwood number from Banerjee, Kraft &
Andrews (2010b). Results for terms in the evolution equation of b are scarcer yet,
owing to the specific nature of the problem and the relatively recent derivation and
presentation of these particular equations. To the best of the authors’ knowledge,
results here are limited to a detailed examination of direct numerical simulation data
by Livescu et al. (2009). Hence, perhaps the most significant single contribution of the
present work is to provide the first experimental measurements of these quantities.

To measure the DSC and investigate its evolution, an ensemble of instantaneous
velocity–density fields of the developing RM curtain is assembled from repeated runs
of the same experiment starting from nominally identical initial conditions. Previous
RM experiments investigating transition to turbulence, despite their novelty (Rightley,
Vorobieff & Benjamin 1997; Vorobieff, Rightley & Benjamin 1998, 1999), suffered
from unstable initial conditions that led to (non-repeatable) large-scale features
that had not fully dissociated into smaller vortices as expected from a turbulence
cascade (see figure 2a of Vorobieff et al. 1998). The present experimental facility
has been upgraded (see Balakumar et al. 2008) to stabilize the initial conditions
from experiment to experiment, allowing accurate ensemble averaging and Reynolds
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decomposition. Since the base flow on which the turbulent fluctuations are present
is sensitive to small changes in the experimental parameters, a subset of 9 runs was
selected (from a total of 115 runs) with closely controlled experimental parameters
(i.e. with the following maximum variation between shots: Mach number 6 ±0.3 %,
structure width 6 ±3 %, streamwise location jitter 6 ±2 % of structure width). From
these realizations, turbulence quantities are calculated by a true ensemble average
between the realizations followed by a spanwise average (where appropriate) to
enhance convergence.

The variation of the DSC across the width of the curtain is shown in figure 4(a)
for the initial condition, before reshock and after reshock. The DSC for the initial
condition was calculated from a single synthetic realization with the mean density
calculated as the spanwise average of Mikaelian’s initial condition equations (details in
Balakumar et al. 2008). The pre-reshock and post-reshock DSCs were calculated by
taking a true ensemble average followed by a spanwise average. After reshock and at
tU/λ= 23.0, the DSC shows a double peak structure with a stronger peak downstream
of the centreline. This is consistent with the higher mean density observed at the
downstream side of the centre of mass and is associated with greater clumpiness of the
heavy gas on the downstream side. The peak value of the DSC was measured to be
0.007± 0.001. The peaks occur on either side of the centre of mass, near the edges of
the turbulent fluid layer. This is consistent with the presence of material structures
(sometimes called vortex projectiles (Zabusky 1999)) that are sensitive to minor
variations in the initial conditions. Thus, the variation of the density introduced by
these material structures, both between instantaneous realizations and in the spanwise
direction, creates large fluctuations in the ensemble and spanwise averages resulting in
larger DSCs.

Note that while experiments allow the generation of ensembles, high-resolution
simulations are often limited to a single realization. Therefore, DSCs were calculated
from instantaneous density fields of single realizations using the spanwise-averaged
density for the mean density. Using this procedure, the profiles continued to show the
double-peaked structure (although the profiles were less smooth) and had a maximum
peak of 0.014. The effect of the type of average on estimates of b is addressed in
further detail by Balakumar et al. (2012).

One expression for the evolution of the DSC in a VD turbulent flow is given by
(4.3). We may also follow Besnard et al. (1992), in which the evolution equation is
written as

∂b

∂t
+ Ũjb,j[1] = 2ajb,j[2] − 2aj (1+ b)

ρ,j

ρ
[3] + ρ

( 〈ujρυ〉
ρ

)
,j

[4] + 2ρ〈υd〉[5] (4.6)

where aj represent the mass flux, d represents the divergence of the velocity fluctuation
and ∼ represents Favre-averaged quantities (Besnard et al. 1992). In this form certain
terms are recast to have a more direct link to models. At late times (tU/λ > 23.0)
in the present flow, the initial periodicity of the structures in the y direction has
vanished due to the turbulent mixing. Hence, with the flow in a well-mixed state,
and in a thin curtain, the streamwise derivatives dominate the balance equation. The
Favre-averaged mean streamwise velocity was verified to be very close to its Reynolds-
averaged counterpart. Under such conditions, following a particle of fluid, the DSC
evolves depending upon the relative magnitudes of terms 2–5 in (4.6). It should be
noted that the velocity fluctuations are not solenoidal and therefore term 5 could be
non-negligible (Livescu et al. 2009). With the present simultaneous velocity–density
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FIGURE 4. (a) Variation of the DSC parameter at three different times: before first
shock (tU/λ = 0−), after first shock but before reshock (tU/λ = 15.4) and after reshock
(tU/λ= 23.0). (b) Experimental comparison of the relative magnitudes of the production and
convection terms in the DSC evolution equation (tU/λ = 23.0). (c) Variation of DSC after
reshock at three different times (tU/λ= 21.5, 24.4, 25.8).

data, some of these terms can be evaluated to investigate their relative importance to
understand the drivers behind evolution of the DSC, and hence the RM mixing.

Figure 4(b) shows the variation of terms 2–4 in (4.6). It is found that the production
term (term 3) exceeds the convection term (term 2) by more than a factor of 10.
The transport term (term 4) is also relatively small through most of the mixing
region. Therefore, in the absence of the destruction term (term 5), the peak DSC can
be expected to change by 0.0036 (24 × 150 × 10−6) in 150 µs. Similar experiments
performed earlier have shown that the DSC only varies very slowly with time during
this period of investigation, however (figure 4c). This slow variation is only feasible
if the production term is roughly balanced by the dissipation term (2ρ〈υd〉) in the
well-mixed state after reshock. Therefore, the dissipation term is inferred to have a
similar magnitude to the production term but opposite in sign. This is similar to the
behaviour found in Rayleigh–Taylor flows (Livescu et al. 2009).
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Hence, the measurements of individual terms in this evolution equation provide
new insights into which mechanisms are crucial in the physics and modelling of the
fundamental correlation −〈ρv〉 in a developing RM mixing flow. The mechanisms of
production and dissipation are dominant, while the convection and transport terms are
smaller. Further, we infer that the production is balanced by the dissipation, so in this
sense the flow is in a type of equilibrium (at least with regards to the evolution of b).
In a later section we explore the issue of ‘time to equilibrium’: some measures of how
long it takes to achieve this equilibrium in the DSC. In the following section, we seek
to quantify the state of development of the unstable flow that is driving the evolution
of b, and hence the overall mixing.

5. Probing the state of the flow
5.1. An inertial subrange?

The above results provide insights into the state of the mixing using the density field,
and insights into mechanisms of mixing and the evolution of b using the density and
velocity fields. In this section, we obtain direct insights into the state of the flow field
from the velocity data, by estimating relevant turbulent length scales. In particular, we
examine whether or not an inertial range exists in the current flow, which in a mixing
flow also corresponds to the ‘mixing transition’ criteria of Dimotakis (2000).

We begin with estimates of the small scales. We estimate the TKE dissipation rate
using the PIV data. Correcting for resolution effects requires an iterative approach
here, because the specifics of the correction are a function of the Kolmogorov scale
itself. For this mixing flow, it is appropriate to estimate the kinematic viscosity
of the gaseous mixture, one expression for which is given by Youngs (1984) as
νmix = (µ1 + µ2)/(ρ1 + ρ2). While accurate for low Atwood numbers (Banerjee et al.
2010b), for larger density ratios it is appropriate to use a more detailed expression for
the dynamic viscosity of a binary mixture, as given by Reid, Prausnitz & Sherwood
(1977),

µmix = yaµa

ya + ysφas
+ ysµs

ys + yaφsa
. (5.1)

Here subscript a denotes air and s denotes SF6, yi (i = a, s) are volume fractions and
µi are the post-shock dynamic viscosities of the air and SF6. The factors φ are given
by

φas =
[

1+
(
µa

µs

)1/2(Ms

Ma

)1/4
]2(

8
[

1+
(

Ma

Ms

)])−1/2

(5.2)

and

φsa = φas

(
µs

µa

)(
Ma

Ms

)
, (5.3)

where Mi are the molecular weights of the pure gases.
These expressions make clear that the mixture viscosity is a function of volume

fraction, and thus changes over time and space. Unlike canonical turbulent flows, the
viscosity here introduces significant variability into quantities such as the Reynolds
number. For the present flow, the average volume fraction of the heavy gas within
the measured curtain region is approximately ys ≈ 0.2 (Orlicz 2012), although at late
time it may reduce to ys ≈ 0.1. Assuming ys = 0.2, we find a post-shock estimate
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of µmix = 1.9 × 10−5 kg m−1 s−1, and thus νmix = 8.2 × 10−6 m2 s−1. Note that an
assumption of ys = 0.1 yields a kinematic viscosity estimate of νmix = 1.1× 10−5 m2/2,
so this variation alone will lead to an increase in Re of over 30 %. Hence, the
calculations of Re and associated length scales in this and related mixing flows should
be viewed within the context of this degree of variability.

Using the two measured velocity components, and assuming local isotropy where
necessary, we obtain an initial estimate of dissipation that neglects resolution effects,
εu ≈ 1.1 × 104 m2 s−3, where the superscript u denotes an under-resolved estimate.
Incorporating the nomenclature of Dimotakis (2000) for length scales, we calculate the
Kolmogorov scale as

λK = (ν3/ε)
1/4
, (5.4)

and our initial estimate (based on the initial dissipation value) is λu
K =

15 µm. Corrections to dissipation estimates from under-resolved PIV and hotwire
measurements are discussed by Tanaka & Eaton (2007) and Antonia, Zhu & Kim
(1993). In the present work, the vector spacing is 181 µm, yielding a dimensionless
resolution of 1x∗ = 1x/λK ≈ 12. The error in ε induced by this limitation is quite
severe, approximately 50 % low (see Antonia et al. 1993); this is adequate for our
purposes here, however, owing to the weak dependence of the Kolmogorov scale on ε.
A corrected dissipation value is thus ε ≈ 2.2×104 m2 s−3, which, in turn, yields a final
Kolmogorov scale of λK ≈ 13 µm (or, to more accurately reflect the uncertainty in the
estimate, λK ≈ O(10) µm). Comparing with λu

K , we also see the resolution had only a
minor effect on the estimate.

Following the concepts of Dimotakis (2000), the lower end of the range (in physical,
not wavenumber, space) decoupled from small and large scales is the ‘inner-viscous’
scale λv. With a measurement of λK in the flow, λv may be estimated directly using

λv ≈ 50λK ≈ 0.6 mm. (5.5)

At the other end of the spectrum, we seek a length scale decoupled from the
large scales at which the turbulence is forced. With the largest scale denoted δ, this
decoupled ‘Liepmann–Taylor’ scale represents the size of a growing viscous layer
based upon a δ-scale sweep across the flow. It is estimated as

λL = 5.0Re−1/2δ. (5.6)

The outer scale of the flow, δ, is taken to be the height h of the unstable layer. In
the present flow, this is measured to be δ = h = 6.5 mm (Balakumar et al. 2012). A
Reynolds number in vortex-driven flows may be chosen as

ReΓ = Γ/ν, (5.7)

where Γ is the circulation of a representative vortex or region, which may be
measured from vorticity maps computed directly from PIV data (see, e.g., Tomkins
et al. 2003). In this flow, the measured circulation after reshock is Γ ≈ 0.1 m2 s−1

(Balakumar et al. 2008), leading to ReΓ = 12, 200. These values of δ and ReΓ yield an
estimated Liepmann–Taylor scale of λL ≈ 0.3 mm.

A flow with an established inertial range will have λL/λv � 1, with this quantity
representing the dynamic range, or scale, of the inertial range itself. In this sense, this
ratio is a measure of the development of the turbulence, and indeed in recent work
Lombardini, Pullin & Meiron (2012) include this as part of a criteria for transition
(here they suggest the existence of an inertial range requires at least a decade of
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scales, λL/λv > 10). Our goal here is to establish an order-of-magnitude estimate of
λL/λv. From the results above it is clear we have

λL/λv ≈ 1. (5.8)

Hence, this flow is just at the point where an inertial range is being established: the
size of the range is zero and growing. This is also the point at which a mixing
transition would begin to occur. This is an interesting result, because in the earlier
analysis of the DSC evolution equation we saw that production and dissipation were
approximately in balance. These results suggest that perhaps the criterion λL/λv > 1
is not critical for this type of equilibrium to occur in the density field, but instead
λL/λv ≈ 1 may be sufficient. These results are also broadly consistent with the findings
of Lombardini et al. (2012), who find in a large eddy simulation (LES) study of
a shocked single interface that transition to fully developed turbulence occurs only
for M > 1.56, when measured by the presence of a −5/3 power law in the velocity
spectra, and only for M > 3.0, when measured by scale separation at late times.

We may also consider the criterion developed by Zhou, Robey & Buckingham
(2003a) and Zhou et al. (2003b) for mixing transition in time-dependent flows.
Equating the upper bound of the inertial range with a laminar diffusion layer, the
authors propose an alternative scale λD = C × (νt)1/2, with C varying from

√
15 to 5.0

depending on the flow. This is an additional criteria that must be satisfied for mixing
transition, as the upper scale is taken to be min{λL, λD}. Here, at t = 800 µs and with
C = 5.0, we obtain λD ≈ 0.4 mm. Strictly speaking, this does not change the analysis,
as min{λL, λD} = λL; however, it is interesting to note that we have

λv ≈ λL ≈ λD (5.9)

at this time.
In this flow, then, the time-dependent criteria is just satisfied as the inertial range

is forming, and intuitively this is exactly what one would want in such a criterion. It
is not clear that this result can be universal, however, as significant vorticity is added
during reshock, injecting energy at scales throughout the spectrum, to more quickly
transition the flow, and this effect cannot be captured by the time-dependent criterion
of Zhou et al. (2003b). For example, a comparable flow without reshock is the singly
shocked results of Balakumar et al. (2008), and these are clearly not fully turbulent at
t = 815 µs; the same is true for shocked gas cylinder results at t = 1000 µs (Tomkins
et al. 2008).

5.2. Length-scale estimates using local and global measures
In the previous subsection we obtained one estimate of the inner-viscous scale
λv based upon our measurement of the Kolmogorov scale. With the simultaneous
PIV–PLIF measurements, we are able to explicitly evaluate the approach in Dimotakis
(2000) in which length scales (such as λv) are calculated as functions of large-scale
observables. For many accelerated, complex flows such an evaluation is not possible
due to diagnostic limitations. Developing straightforward expressions for length scales
as a function of some global Reynolds number is necessary for understanding scaling
with Re, and permits broader application of the approach, particularly with regards
to complex experimental systems in which only Reh = hḣ/ν is available, e.g. in high-
energy density systems (Robey et al. 2003) or challenging laboratory environments
(Weber et al. 2012). The general expression for λv = f (Re), however, is based upon
results for turbulent jets, which are fundamentally different from many RM flows in
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Approach used to estimate λv Value of λv (mm)

Local, λK = f (ε, ν) 0.6
Local, Re= f (u′, δ) 0.4
Global, Re= f (Γ, ν) 0.3
Global, Re= f (h, ḣ, ν) 0.3

TABLE 1. Estimates of λv based upon local and global information.

certain ways, such as the presence of a mean shear. We will investigate the validity of
this relation here in an unsteady, accelerated (RM) flow.

As discussed previously, λv may be estimated directly from the dissipation and
viscosity using λv ≈ 50λK . The more general expression of Dimotakis (2000) for the
inner-viscous scale is

λv ≈ 50Re−3/4δ, (5.10)

which can be evaluated here using both local and global estimates of Re. A local
Reynolds number may be defined in terms of turbulent fluctuations, Reu = u′δ/ν. We
estimate the velocity scale by using the width of the velocity fluctuation histograms
for u and v in Balakumar et al. (2012), which yield an average fluctuation of
u′ = 9.2 m s−1. The outer scale of the flow, δ, is taken to be the height h = 6.5 mm
of the unstable layer, as discussed previously. Our estimate of Re based on local
information (turbulent fluctuations) is thus Reu = 7300. Equation (5.10) is then used to
compute our second estimate of λv ≈ 0.4 mm.

These two length-scale estimates based on local information may then be compared
with estimates based upon large-scale, global information. There are two approaches
here also. Using the previously defined circulation Reynolds number, ReΓ = Γ/ν =
12 200, yields an estimate of the inner-viscous scale of λv = 0.3 mm. A large-scale
Reynolds number may also be calculated in a growing RT or RM layer as Reh = hḣ/ν;
as discussed above, for many systems h and ḣ may be the only experimental
observables from which a Reynolds number may be calculated. Here h is chosen
as above, and ḣ is measured as 13 m s−1 when averaged over the first 200 µs after
reshock (Balakumar et al. 2008), yielding a second estimate of a global or large-
scale Re, Reh = 10 300. This leads to a second global-based length-scale estimate of
λv ≈ 0.3 mm.

The various estimates of λv are summarized in table 1. We see that there is
variation in these four estimates by approximately a factor of two, so the different
approaches, based on the Kolmogorov scale λK = f (ε, ν), a local Re = f (u′, δ), a
global Re = f (Γ, ν) and an alternative global Re = f (δ, ḣ, ν), do yield different length-
scale estimates, but not significantly different when viewed in the context of the
overall level of precision of a mixing-transition type of analysis. Hence, these results
provide insights into the level of accuracy, approximately a factor of two, that one
might expect in estimating length scales used in a mixing-transition analysis based
solely upon large-scale observables such as h and ḣ. To within this level of accuracy,
the above results provide confirmation of this methodology in an RM flow.

5.3. Time to equilibrium
We may also use the present results to begin to explore the topic of ‘time to
equilibrium’ in RM flows: the time it takes to move from an initial quiescent state,
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through instability and transition, to some form of equilibrium or fully developed state,
which in this case is an equilibrium in the evolution equation for the DSC. One may
characterize this duration in terms of the Kolmogorov time scale,

τη =
(ν
ε

)1/2
, (5.11)

which based on the dissipation at the time of measurement is τη ≈ 20 µs. The time to
equilibrium expressed in terms of the Kolmogorov time scale is t∗eq = t/τη ≈ 40. It is
important to state here that these estimates cannot be strictly valid, as the notions of
an equilibrium state and turbulent cascade that underpin Kolmogorov-type quantities
are simply not present in these types of flows during most of the time in question.
Nevertheless, the estimate presented here is one approach for quantifying the time to
equilibrium, or time to the start of an inertial range, expressed in terms of concepts
(such as τη) that are understood and accepted by the community. While interesting
in a general sense in terms of non-equilibrium, unsteady turbulence, such an estimate
also yields insights into when one might expect turbulence models or simulation
approaches that are based on the concept of a cascade to be applicable.

An alternative approach is to employ a time scale that reflects the large scales,
such as an eddy turnover time, τeddy = L/u′, where L is the layer height and the
prime denotes fluctuations associated with large-scale vortices in the flow. Here we
obtain τeddy ≈ 700 µs, and so equilibrium is achieved at t∗eq = t/τeddy ≈ 1. Interestingly,
equilibrium in the b evolution equation is achieved in one eddy turnover time in
this flow. The fact that the layer is reshocked with the reflected wave is likely a
contributing factor in this (intuitively short) time to equilibrium.

6. The Boussinesq approximation

In buoyancy-driven flows, the Boussinesq approximation is typically used to
simplify the governing equations. It is useful to investigate the validity of this
approximation in RM turbulence, especially in light of the observations that: (i) the
density ratio ρ2/ρ1 is 5 for the unmixed fluids here; and (ii) larger density clumps
of material occur downstream of the centre of mass for the present varicose initial
condition at Mach 1.2 after reshock. Figure 5 shows a comparison of the DSC (b) to
the first term of its Taylor expansion (〈ρ2〉/ρ2) (Chassaing et al. 2002). Interestingly,
throughout most of the flow the two values are similar, indicating that non-Boussinesq
effects are not significant at the measurement time over most of the layer. In light
of the VD initial condition, this result suggests that the developing turbulence and
other mixing mechanisms (as discussed by Tomkins et al. 2008) have reduced VD
effects in many regions as the flow evolves. Hence, the validity of the approximation
will necessarily vary as a function of time, and for many flows vary as a function of
position. Further, in a challenge to predictive modelling for mixing, this implies that
the Boussinesq approximation is most valid when and where significant mixing has
already occurred.

Despite the good agreement seen in figure 5 over most of the layer, the Boussinesq
approximation is not valid everywhere in this flow field. Observable variations (610 %)
occur near the downstream edge of the fluid layer, around the peak of the DSC.
Therefore, the Boussinesq equations would slightly over-predict the mass flux near the
downstream edge at late times after reshock.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

43
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.430


302 C. D. Tomkins, B. J. Balakumar, G. Orlicz, K. P. Prestridge and J. R. Ristorcelli

0.002

0.004

0.006

0.008

0.010

0

0.012

–
D

SC
 a

nd
 f

ir
st

 te
rm

 in
 T

ay
lo

r 
ex

pa
ns

io
n

–4 –2 0 2 4

–DSC (–b)
First term in Taylor series expansion of (–b)

FIGURE 5. (Colour online) Validity of the Boussinesq approximation: comparison between
DSC (b) and first term in the Taylor expansion (〈ρ2〉/ρ2) at late time after reshock
(tU/λ= 23.0).

7. Density structure functions
Classical scaling laws for scalar turbulence have been of interest since the original

works of Obukhov and Corrsin. Much work has been done exploring anomalous
scaling behaviour, as evidence has accumulated that scalar fluctuations depart from
classical behaviour in important ways, including a departure from isotropy at the
small scales and intermittency. (For further discussion of this topic, see the detailed
review by Warhaft (2000).) Nevertheless, researchers continue to probe mixing flows
for evidence of universality, such as classical scaling of power spectra (−5/3
exponent) or structure functions (2/3 exponent). Several researchers have examined
inhomogeneous, unsteady flows, and have found some evidence of this behaviour
(Vorobieff et al. 1998) despite the departure from fundamental assumptions. Here we
examine the second- and fourth-order longitudinal structure functions of density. In
the present flow, we have evidence that the classical 2/3 region should not exist
over any significant extent, as the inertial range is only beginning to form. A plot of
(Sn = 〈(ρ(x+ δx)− ρ(x))n〉Area) calculated for the present data is shown in figure 6,
where the overline represents an area average. The second-order structure function
shows a power law scaling with a best-fit exponent of 1.23, which is closer to a
4/3 law than a 2/3 law. The fourth-order structure function in the present work
shows a power-law behaviour with an exponent of 2.73. It should be noted that the
present density fields appear to be advanced in their mixing when compared visually
to the previous work that showed the 2/3 scaling (Vorobieff et al. 1998). This result
is consistent, however, with the earlier analysis of turbulent length scales, finding
λL/λv ≈ 1: while there will exist some small region of the curve to which a 2/3 slope
is tangent, no such region appears of any significant extent; moreover, the slope for
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FIGURE 6. Second- and fourth-order longitudinal structure functions of the density at late
time after reshock (tU/λ= 23.0).

small 1x is clearly different. This result is also consistent with the examination of
structure functions of the velocity field in a similar flow (Vorobieff et al. 2003). Here a
decomposition was performed into ensemble-averaged and fluctuating components, and
a 2/3-type scaling appears in the structure function of the fluctuations, but does not
appear for the total (mean plus fluctuating) field at a comparable time.

It is interesting to note that for the small scales, the slope is significantly steeper
than the classical result. One interpretation for the steeper slope is as follows. The
present experiments consider a mixing flow in a thin-layer regime; that is, unlike
most classical mixing problems, there is no fresh unmixed fluid introduced as the
instabilities and mixing evolve, as discussed in Tomkins et al. (2008). In the limit of
very long times in such a flow, the fluids must approach a fully mixed state, with
the p.d.f. of density (or concentration) evolving to a delta function. As a result, the
structure function will ultimately trend to zero for all δx, as fluctuations vanish. The
behaviour shown in figure 6 is consistent with this concept, provided that the small
scales are trending towards this limiting state the fastest, and thereby steepening the
scaling exponent. Over time, of course, the difference at all scales would be expected
to diminish in such a flow.

The fact that the structure function does not exhibit classical scaling, although
unsatisfying in searches for universality, is important in our attempts to deal properly
with complex transitional flows. One implication of the appearance of a universal
scaling is that the emergence of a −5/3 or 2/3 region would not be a sufficient
condition, or even convincing evidence, of the existence of well-developed turbulence.
From a modelling perspective, for example, it would not be clear that models based on
fully developed turbulence assumptions are valid in regimes in which classical scaling
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of the density field is observed. In this sense, the present results preserve the role of
classical scaling as a valuable statistical diagnostic for estimating the state of the flow.

8. Conclusions

Shock-induced turbulence in reshocked light–heavy–light fluid layers with varicose
perturbations is investigated using simultaneous PIV–PLIF diagnostics to provide
insights into the nature of mixing in such flows. Measurements are performed at
low Mach numbers (Mach 1.2) and at late times after reshock (tU/λ = 23.0), with
ReΓ = Γ/ν = 12 200. The DSC function b, directly measured in such flows for
the first time, shows a double-peaked structure after reshock. This behaviour is a
characteristic feature of the flow and suggests faster mixing near the edges of the
turbulent fluid layer when compared with the core.

Second-moment turbulence models in VD flows often utilize an explicit evolution
equation for the DSC. Here we directly measure several terms in such an evolution
equation for the first time, providing new insights for turbulence modellers. The
production term in the b evolution equation is observed to be much larger than
the transport and convection terms (equation (4.6)) throughout most of the flow. In
addition, profiles of the DSC parameter at various times after reshock show slow
temporal variation when compared with the shock propagation time scale, allowing the
inference that the dissipation term is similar in magnitude and opposite in sign to the
production term. This is consistent with observations in Rayleigh–Taylor mixing, and
indicates a type of equilibrium in b.

Simultaneous PIV measurements are used to probe the state of the turbulence.
Calculations of various length scales to examine whether the flow is undergoing a
mixing transition indicate that an inertial range is only beginning to form at this time,
i.e. λL/λv ≈ 1, despite the type of equilibrium observed in the evolution of the DSC.
At Mach 1.2, this result is broadly consistent with the findings of Lombardini et al.
(2012) in a closely related flow, in which transition to fully developed turbulence
(roughly corresponding to λL/λv = 10) was only observed for Mach > 3.

In many experiments, such as high-energy-density/inertial-confinement-fusion
systems, calculation of these length scales from directly measured small-scale
quantities is simply not possible due to diagnostic limitations, so predictions of a
mixing transition must rely on large-scale observables. We investigate the validity of
these types of length-scale estimates, that is, those based upon large-scale, global
Reynolds numbers, in the mixing transition analysis by comparing with two estimates
derived from directly measured flow quantities. Although the global expressions were
derived for turbulent jets (Dimotakis 2000), these estimates are found to agree with
local estimates to within a factor of two for the inner-viscous length scale, suggesting
that, in at least this shock-accelerated flow, length-scale estimates based upon simple,
large-scale observables are providing reasonably consistent results.

The validity of the Boussinesq approximation is examined. A density ratio of
ρ2/ρ1 = 5 for the unmixed fluids suggests that non-Boussinesq effects may be
important in this flow. While likely important at earlier times, after reshock we
observe that over most of the layer the turbulence is highly Boussinesq, with the
largest effects occurring near the peak of the DSC, although even these are only
moderately non-Boussinesq in character (610 %). The observations are consistent with
the idea that as an inertial subrange is established, and the turbulence drives the flow
to a more mixed state, VD effects are moderated. This may not be the case, however,
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for single-interface flows in which large regions of unmixed fluid are continually
introduced into the mixing zone.

We compute rough estimates for the time it takes to achieve λL/λv ≈ 1 from an
initial quiescent state. In terms of dissipative time scales, this time is t∗eq = t/τη ≈ 40;
in terms of the time scales associated with the larger motions, we observe
t∗eq = t/τeddy ≈ 1.

The result that the inertial range is only beginning to form suggests that the second-
order structure function should not exhibit a broad range of the classic 2/3 power-law
behaviour, and indeed this is found to be the case. A power-law behaviour is observed
for small scales over a range of about a decade with a steeper slope, however, which
is explained in terms of the asymptotic behaviour of the structure function in a mixing
flow without unmixed fluid being introduced: ultimately the function must trend to
zero for all δx, and it does so most rapidly at the small scales.

Future work might include simultaneous density–velocity measurements at multiple
times to probe the temporal evolution of the quantities and physics discussed here.
Also, experiments with stronger shocks would yield insights into Mach number effects
and permit examination of higher-Re VD turbulence.

R E F E R E N C E S

ANTONIA, R., ZHU, Y. & KIM, J. 1993 On the measurement of lateral velocity derivatives in
turbulent flows. Exp. Fluids 15, 65–69.

ARNETT, W. D., BAHCALL, J. N., KIRSHNER, R. P. & WOOSLEY, S. E. 1987 Supernova 1987A.
Annu. Rev. Astron. Astrophys. 27, 629–700.

BAKOSI, J. & RISTORCELLI, J. R. 2011 Stochastic diffusion process for density-dependent
multi-material turbulent mixing. Tech. Rep. LA-UR-11-01618. Los Alamos National
Laboratory.

BALAKUMAR, B. J., ORLICZ, G. C., RISTORCELLI, J. R., BALASUBRAMANIAN, S., PRESTRIDGE,
K. P. & TOMKINS, C. D. 2012 Turbulent mixing in a Richtmyer–Meshkov fluid layer after
reshock: velocity and density statistics. J. Fluid Mech. 696, 67–93.

BALAKUMAR, B. J., ORLICZ, G. C., TOMKINS, C. D. & PRESTRIDGE, K. P. 2008
Simultaneous particle-image velocimetry–planar laser-induced fluorescence measurements of
Richtmyer–Meshkov instability growth in a gas curtain with and without reshock. Phys. Fluids
20 (12), 124103.

BANERJEE, A., GORE, R. & ANDREWS, M. 2010a Development and validation of a turbulent mix
model for variable-density and compressible flows. Phys. Rev. E 82, 046309.

BANERJEE, A., KRAFT, W. & ANDREWS, M. 2010b Detailed measurements of a statistically steady
Rayleigh–Taylor mixing layer from small to high Atwood numbers. J. Fluid Mech. 659,
127–190.

BESNARD, D., HARLOW, F. H., RAUENZAHN, R. M. & ZEMACH, C. 1992 Turblence transport
equations for variable-density turbulence and their relationship to two-field models. Tech. Rep.
LA-12303-MS. Los Alamos National Laboratory.

CHASSAING, P., ANTONIA, R. A., ANSELMET, F., JOLY, L. & SARKAR, S. 2002 Variable Density
Fluid Turbulence, Fluid Mechanics and its Applications, vol. 69, Kluwer.

DIMOTAKIS, P. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 69–98.
DIMOTAKIS, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356.
GREGOIRE, O., SOUFFLAND, D. & GAUTHIER, S. 2005 A second-order turbulence model for

gaseous mixtures induced by Richtmyer–Meshkov instability. J. Turbul. 6, N29.
HILL, D. J., PANTANO, C. & PULLIN, D. I. 2006 Large-eddy simulation and multiscale modelling

of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 29–61.
LAUNDER, B. E. 1989 Second-moment closure: Present ... and future? Intl J. Heat Fluid Flow 10

(4), 282–300.
LINDL, J. D., MCCRORY, R. L. & CAMPBELL, E. M. 1992 Progress toward ignition and burn

propagation in inertial confinement fusion. Phys. Today 377 (9), 32–40.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

43
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.430


306 C. D. Tomkins, B. J. Balakumar, G. Orlicz, K. P. Prestridge and J. R. Ristorcelli

LIVESCU, D. & RISTORCELLI, J. R. 2008 Variable-density mixing in buoyancy-driven turbulence.
J. Fluid Mech. 605, 145–180.

LIVESCU, D. & RISTORCELLI, J. R. 2009 Mixing asymmetry in variable density turbulence.
Adv. Turbul. XII 132 (1), 545–548.

LIVESCU, D., RISTORCELLI, J. R., GORE, R. A., DEAN, S. H., CABOT, W. H. & COOK, A. W.
2009 High-Reynolds number Rayleigh–Taylor turbulence. J. Turbul. 10 (13), 1–32.

LOMBARDINI, M., PULLIN, D. I. & MEIRON, D. I. 2012 Transition to turbulence in shock-driven
mixing: a Mach number study. J. Fluid Mech. 690, 203–226.

MORAN-LOPEZ, J. T. & SCHILLING, O. 2013 Multicomponent Reynolds-averaged Navier–Stokes
simulations of reshocked Richtmyer–Meshkov instability-induced mixing. High Energy Density
Phys. 9, 112–121.

ORLICZ, G. 2012 Incident shock Mach number effects on Richtmyer–Meshkov mixing with
simultaneous density and velocity measurements. PhD thesis, University of New Mexico.

REID, R. C., PRAUSNITZ, J. M. & SHERWOOD, T. K. 1977 The properties of gases and liquids.
McGraw-Hill.

RIGHTLEY, P. M., VOROBIEFF, P. & BENJAMIN, R. F. 1997 Evolution of a shock-accelerated thin
fluid layer. Phys. Fluids 9 (6), 1770–1782.

ROBEY, H. F., ZHOU, Y., BUCKINGHAM, A. C., KEITER, P., REMINGTON, B. A. & DRAKE, R. P.
2003 The time scale for the transition to turbulence in a high Reynolds number, accelerated
flow. Phys. Plasmas 10 (3), 614–622.

SCHILLING, O. & LATINI, M. 2010 High-order WENO simulations of three-dimensional reshocked
Richtmyer–Meshkov instability to late times: dynamics, dependence on initial conditions, and
comparisons to experimental data. Math. Acta Sci. 30B (2), 595–620.

SCHWARZKOPF, J., LIVESCU, D., GORE, R., RAUENZAHN, R. & RISTORCELLI, J. R. 2011
Application of a second-moment closure model to mixing processes involving multicomponent
miscible fluids. J. Turbul. 12 (49), 1–35.

TANAKA, T. & EATON, J. 2007 A correction method for measuring turbulence kinetic energy
dissipation rate by PIV. Exp. Fluids 42, 893–902.

TOMKINS, C., KUMAR, S., ORLICZ, G. & PRESTRIDGE, K. 2008 An experimental investigation of
mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150.

TOMKINS, C., PRESTRIDGE, K., RIGHTLEY, P., MARR-LYON, M., VOROBIEFF, P. & BENJAMIN,
R. 2003 A quantitative study of the interaction of two Richtmyer–Meshkov-unstable gas
cylinders. Phys. Fluids 15 (4), 986–1004.

VOROBIEFF, P., MOHAMED, N. G., TOMKINS, C., GOODENOUGH, C., MARR-LYON, M. &
BENJAMIN, R. F. 2003 Scaling evolution in shock-induced transition to turbulence. Phys. Rev.
E 68 (6), 065301.

VOROBIEFF, P., RIGHTLEY, P. M. & BENJAMIN, R. F. 1998 Power-law spectra of incipient
gas-curtain turbulence. Phys. Rev. Lett. 81 (11), 2240–2243.

VOROBIEFF, P., RIGHTLEY, P. M. & BENJAMIN, R. F. 1999 Shock-driven gas curtain: fractal
dimension evolution in transition to turbulence. Physica D 133, 469–476.

WARHAFT, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203–240.
WEBER, C., HAEHN, N., OAKLEY, J., ROTHAMER, D. & BONAZZA, R. 2012 Turbulent mixing

measurements in the Richtmyer–Meshkov instability. Phys. Fluids 24, 074105.
WILLIAMS, F. 1994 Combustion Theory. Perseus Books Publishing.
YANG, J., KUBOTA, T. & ZUKOSKI, E. E. 1993 Applications of shock-induced mixing to supersonic

combustion. AIAA J. 31 (5), 854–862.
YOUNGS, D. L. 1984 Numerical simulation of turbulent mixing by Rayleigh–Taylor instability.

Physica D 12, 32–44.
ZABUSKY, N. J. 1999 Vortex paradigm for accelerated inhomogeneous flows: visiometrics for

the Rayleigh–Taylor and Richtmyer–Meshkov environments. Annu. Rev. Fluid Mech. 31,
495–536.

ZHOU, Y., ROBEY, H. F. & BUCKINGHAM, A. C. 2003a Onset of turbulence in accelerated
high-Reynolds-number flow. Phys. Rev. E 67, 056305.

ZHOU, Y., ROBEY, H. F., BUCKINGHAM, A. C., KEITER, P., REMINGTON, B. A. & DRAKE, R. P.
2003b The time scale for the transition to turbulence in a high Reynolds number, accelerated
flow. Phys. Plasmas 10 (3), 614–622.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

43
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.430

	Evolution of the density self-correlation in developing Richtmyer--Meshkov turbulence
	Introduction
	Experiment
	Planar density and velocity measurements
	The density--specific volume correlation, < ρ v>
	Motivation
	Measurement of the DSC

	Probing the state of the flow
	An inertial subrange?
	Length-scale estimates using local and global measures
	Time to equilibrium

	The Boussinesq approximation
	Density structure functions
	Conclusions
	References




