
ON AN ARITHEMTICAL INEQUALITY
by S. SRINIVASAN

(Received 20 July, 1992)

Here we extend an arithmetical inequality about multiplicative functions obtained by
K. Alladi, P. Erdos and J. D. Vaaler, to include also the case of submultiplicative
functions. Also an alternative proof of an extension of a result used for this purpose is
given.

1. Introduction. Let Uk, for integral k, denote the set {1,2,. . . , k}, and Vk denote
the collection of all subsets of Uk. In the following, all unspecified sets like A,. . . , are
assumed to be subsets of Uk. Let a = {£,} and r = {7}} be two given collections of subsets
of Uk. Set

Aa,% = {A:A^5, U Tj for some i,j},

BaT= {A : S , c A , TjC\A = <p for some i,j}
and

Cr = {A :A c Tj, for some ;'}.

Let ' denote complementation in LJk (but for in the proof of (3) where it denotes
complementation in C). For any collection p of subsets of Uk, let p ' denote the collection
of the complements of members of p.

Let h(A) denote a non-negative (real) valued function on Vk satisfying (i) /i($)=£0,
(ii) A(/lUB)<li(/4)/i(fi), if AC\B = <p and (iii) h(A)<cw for some fixed constant c,
and h(A) denote the corresponding function defined by h(A) = cw. Set

(

and let h* be similarly defined. Then we have the following result.

THEOREM 1. There holds h* >h*.

We use the letter p, with or without affixes, to denote primes. For a given squarefree
number n = / ? , . . . pk, we define arithmetic functions h,.. . , by h(d) = h({j:pj | d}),. . . ,
over divisors d of n. Let 0 < a < l . Now, by taking T = TO. as the collection of
Ad = {j:pj | d), with d<na, we obtain immediately from Theorem 1, the following.

THEOREM 2. Let h(m) be a non-negative submultiplictive function defined on natural
numbers satisfying h(p)<c, for some fixed c >0. Then, for squarefree numbers n and
0 < a < 1, we have

with * signifying the condition that d is a divisor of n and (o(d) denoting the number of
(distinct) prime divisors of d.

If c is the reciprocal of an integer, and a = c/(c + 1) we see that (1) extends Theorem
3 of [2] to include the case of submultiplicative functions h, and in view of the result in [6]
we obtain the following stronger result.
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THEOREM 3. Let h{m) be a submultiplicative function satisfying 0 < h(p) < l/(/c - 1).
Then, for squarefree n and k = 2, 3, 4, . . . ,

d\n d\n,dsn"k

and, for rational k > 1 we have the same inequality but with the factor k replaced by a
constant defined in terms of the partial quotients in the continued fraction of k.

In this context see the theorem on p. 6 of [1] and also [5]. For the proof of Theorem
1, it suffices to use Theorem 1 of [1]; however, we note that the latter theorm is contained
in the following Lemma 0 due to Erdos, Herzog and Schonheim, which also in turn is
included in sharper versions from Marica and Berge (cf., pp. 103-4 of [3]).

LEMMA 0. There exists a bijective mapping <I> of CT into itself, satisfying A n <&(/t) =
4> for all A e CT.

Next, we shall see that, in view of Hall's theorem ([4]), this is equivalent to the
following universal result.

LEMMA 0'. There holds \BOJ < \AaJ.

In Section 3 we give a (non-inductive) proof of Lemma 0'.

2. Proof of Theorem 1. Let us define CT(r) = {A e CT:\A\ = r}; C'T(r) =
{AtCT: \A\ = r) and Mr = \CT(r)\, M'r = \CT(r)\.

Set h{A) = ho(A)h'(A), so that (by the conditions on h) 1 > ha(A) > h{)(B) for AcB.
Now it is easily checked that the theorem follows if we show that, for every J > 0,

£ HrM> 2 H'rMs, (2)
r+s=J r+s=J

where

Hr= 2 K{A), H'r= 2 hn(A).
AeC,(r) AeCi(r)

Next we view (2) as

to
2 {ho(A)-ho(B)}>0,

where (/) denotes summing over (A,B):A e Cr(r) and B e C'T(J - r) with 0 < r ̂ J. Now
this inequality can be written as

DcC I-

Let Hj(C, D) denote the inner sum here. In fact, we shall show that

Hj(C,D)>0, f o r D c C . (3)

(Necessarily |C| + |D| =/ . ) At this point we note that it suffices to prove (3) with D = <p,
for, any pair (A,B) occurring in the summation determines a pair (AUBX) defined
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through Ax= A — D, B, = B — D and vice versa, and we can work with hl(Al): = h()(A)
and assume hi(<j))=£O. Further,

AciC /leC

Here, by using Lemma 0 with T = {C} and regarding C as Uj, we have

2 K{A)= 1 K{<S>{A))> 2 W ) .
AcC A^C A<=C

since the bijective «5 satisfies <fr(A)cA', for A c C . This proves (3) and thus completes
the proof of Theorem 1.

3. Proof of Lemma 0. For 5 € Cr, let D(S) denote the set of all AeCr such that
A D S = (f>. Then, by Theorem 1 of [4], we know that a bijective <£> specified in the lemma
exists if and only if

(4)

for any choice of r (distinct) subsets Su. . . ,Sr from CT. Now (4) can be rewritten as

\{A : 5 , cAcTj, f o r s o m e i,j}\ < \{A :A n S,, = <p, A c 7}, f o r s o m e i,j}\, ( 5 )

by considering the set on the left as the choice of r subsets. By changing r in (5) to r' and
considering the complement of the set on the right side we obtain the statement of
Lemma 0'.

For the proof of (5) we use the following extension of the classical Chebyshev's
inequality.

LEMMA *. Suppose that two given set of real numbers xA, yA (A c. UK) satisfy

xA^xB, yA^yB\ AcBcUk. (6)

Then, we have

(Z W S )(2 ) (7)\Vk\(Z
MEU

Lemma * is a special case of FKG-inequality (cf., Corollary 6.2.5 of [3]). However
we give another direct proof of it in Section 4. Actually, by means of the Lemma A below
(also proved in Section 4), we obtain a monotonically decreasing sequence of numbers
starting with the quantity on the left in (7) having the expression on the right as the limit,
by showing that the expression in (8') below is non-negative.

For the statement of Lemma A we introduce the following notation. Set EA: =
{B:(\A-B\ + \B-A\)^1}; \EA\ = (k + l) for all A. Also, define inductively, z</+1) =
(k + I)"1 E z ( ^ for integers js0, for a given set of numbers zA =:zA

y). Now we notice
BeEA

that E z^y) is independent of;'. Also, define dBA as 1 if A = B and as 0, otherwise.
A

LEMMA A. We have, for every set A,
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REMARK. By considering the definition of {z^} as a linear transformation on {zA},
we note that Lemma A can be viewed as the statement:

lim M' = Mo,
y-.co

where M = (mAB) is the matrix defined by mAB = (k + I)"1 if B e EA and =0 if B $ EA

and every entry of the matrix M(, equals 2~*. Now, on defining a chain {AO,AU . . . ,Aj}
joining Ao and Aj as a sequence satisfying A,e EA. _1 (i = l , . . . , y ) and introducing

40, /4y) as the number of such chains we obtain the following equivalent result.

LEMMA A'. We have

l ( , ) ( ) as /->°°,

for every pair (A, B).

Proof of (5). In the present proof, the phrase "by (JI)" means the use of the fact that
the cardinality of a collection of sets A, subjected to some conditions, is unaltered if A'
replaces A in those restrictions. First, we show that both the sets in (5) can be assumed to
be disjoint. For, in the notation Bax (resp. Aax) for the set on the left (resp. right), we
observe that (5) is equivalent to \Bax-Aax\-<\Aax-Bax\ and that the set Bax-Aax is
seen to be equal to BXx with respect to some A while the set Aax - Bax contains AXx and
thus the two sets occurring in (5) with respect to (AT) (instead of (or)) do not intersect.
Thus, in particular, every pair of members of a can be assumed to have (i) non-empty
intersection and, as will be seen shortly, also to have (ii) their union =f Uk. By (n), we see
that |BOT| = \Br-a-\ and |i4aT| = |^TCT|. So, by starting with (r 'a ' ) instead of (ax) and
proceeding as above, we can assume (i) above with respect to members of r', which
means that the union of any two members of T can be assumed =f Uk, proving (ii) for a.
Similarly, by starting with (x'o1) instead of (or) and proceeding as above (since the
inequality (5) is unchanged), T' also can be assumed to fulfil (i) and (ii).

Next, for any collection p of subsets of Uk satisfying (i) and (ii), we observe that p '
does likewise and that the function ep(A) can be defined through (a): =1, if A e Cp; (b):
= - 1 , if A'eCp and, (c): =0, otherwise. Clearly ep(A) > ep(B), whenever A c B, and
E ep(A) = 0. So, by (M) and (6), in view of Lemma *, we obtain 0 < E ea.(A)ex(A) =
A A

2[\Aax\ - \Bax\\, which proves (4). Thus the proof of Lemma 0 is completed.

4. Proofs of Lemmas A and *.

Proof of Lemma A. First we note that it suffices to prove the lemma for the
choices zB = 6BA with respect to every A. To start with we shall obtain the result under
the assumption that

zA>zB; A^B^Uk. (6')

Then we observe that zA
j) also satisfy (6') and z^>'> z(/+1)', for ; > 0 . Put zo = limz(^),

j—>oo

which exists because zA^ are bounded below by min^ zA. Now we can show, by induction
on r, that there are (positive) constants c(hcu. . . ,ck such that, for every e > 0 , the
numbers zA'\ with |v4| = r, belong to the interval [z()- cre, z() + cre] provided / is
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sufficiently large. This is true for r = 0 with co= 1 (say) by definition of z0. The passage
from r to (r+ 1) is facilitated by the definition of z</+l) and the fact that z ^ - z ^ s O
whenever B = A U {e} with e £>1 and \A\ = r. Thus lim z^ = z0 for every A. Since £ z ^
is independent of; the lemma is proved under (6'). '~"°

In particular, we can take zB = 6B4,. For any given A, we define the mapping i/> = %j>A

by

Now observe that D e EB if and only if i/>(D) e E^gy Therefore we have the lemma for
the choice zB = dy{B)4> = 6BA. This completes the proof.

Proof of Lemma *. Given (6), we see that the two sets {xA
j)}, {y^} also satisfy (6),

for every j s= 0.
Now consider, for given A, the identity

\{k

where (>1) denotes summation over EA. On summing over A, the left side becomes

i\{ ) (Hll

while the right side gives

A B.C

Next, we show that the expression in (8") (which is empty if k = 1) is non-negative. To
start with, observe that any pair (B, C) here satisfies | | f i | - |C | |<2 . Since, for (B, C)
with \\B\ - \C\\ = 1, either B c C o r C c B , we have that the contribution to (8") from
such (B, C) is non-negative by our initial remark above regarding (6) and obviously there
is no contribution from pairs (B, C) with B = C. The remaining part of (8") can be
rearranged to give

2 2 [(.*& - xW)(y& ~ yW) + (xtt - xW){yW - y$)l (9)
R

where R = [A, B, C, D] denotes a (typical) configuration satisfying (i) AcC, \C\ =
\A\ + 2 and (ii) |fl| = |D|, BUD = C, BHD=A. (For this we need only observe that
each remaining pair (B,C) occurs twice in (8") and appears in two configurations
[A',B',C',D'] and [A',D',C',B'] (like R) as corresponding to the pair (A',C) or
{C',A') or (fl\ D') or (£>', B') and each of the last four pairs is among the pairs (B, C)
remaining in (8") and the summand in (9) corresponding to (C,A) (resp. to (D, B)) is
unaltered if A and C (resp. B and D) are interchanged.) Now every summand in (9) is
non-negative. For, with the notation z, = z^' — z^y), z2 = z$ — zty, z3 = z^ - ztf and
z4 = z\p — z$, the summand becomes

(x1+x2)(yi+y2) + (xj

which, on simplification by using zx + z2 = z3 + z4, becomes xty4 + x2y2 + x3y3 + x4yu and
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this last expression is sO since each of xh y, (/ = 1,2, 3,4) is non-negative. Thus the
expression in (8") is non-negative and so is also the quantity in (8')- Now, by Lemma A,
x^'s (resp. y^'s) tend, as y->-°°, to the value IV*!"1 T.xA (resp. IV^"1 £ JU>- So, (8')

, . « A A

gives (as ] —»oo)

which is (7), thus completing the proof of Lemma *.
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