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COMPATIBLE TIGHT RIESZ ORDERS ON THE GROUP 
OF AUTOMORPHISMS OF AN 

0-2-HOMOGENEOUS SET 

GARY DAVIS AND COLIN D. FOX 

I n t r o d u c t i o n . Davis and Bolz (1974) considered, and to some extent clas
sified, compatible t ight Riesz order on the group of all order-preserving permu
tat ions of a totally ordered field. Glass (1976) carried out a more general s tudy 
of compatible t ight Riesz orders on ordered permuta t ion groups and, in par
ticular, showed the importance of determining compatible t ight Riesz orders on 
O-primitive ordered permuta t ion groups. However, the general problems of 
existence and classification of compatible t ight Riesz orders on O-primitive 
ordered permutat ion groups remained open. 

In this paper we consider these problems in relation to the group A (12) of all 
order-preserving permuta t ions of a totally-ordered set 12 with A (12) acting 
0-2-transitively on 12. Such a group has compatible t ight Riesz orders 
(Theorem 7), which answers an implicit question of Glass (1976) and, with a 
further restriction on 12, we can describe certain maximal compatible t ight 
Riesz orders on A(£l) (Theorem 8) . T h e final section deals with the maximal 
tangents of the compatible t ight Riesz orders we have found. 

We are grateful to the referee for his comments : especially a neater proof of 
Theorem 10. We are also grateful to Andrew Glass for his comments on the 
paper, and for pointing out to us t h a t Rick Ball independently, and abou t the 
same time, proved our Theorem 7. 

For a totally-ordered set 12 we denote by A + (12) the positive set of A (12) with 
the usual lattice order. T h a t is A + (12) = {g £ A (12) : xg ^ x for all x £ 12}. For 
x G 12 the stabilizer of x in A (12) is AX(Q) = {g £ A (12) : xg = x}, and we write 
AX+(Q) for AX(Q) H .4+(12). 

In the sequel we shall call an order-preserving permuta t ion of 12 an auto
morphism of 12, and we shall assume always t ha t A (12) is a non-trivial group. 

We recall t h a t a subgroup G of A (12) acts 0-2-transitively on 12 if for all 
Xi < x2 and yi < y2 in 12 there is a g £ G satisfying xtg = yt (i = 1, 2) . We say 
tha t 12 is homogeneous (respectively, 0-2-homogeneous) if A (12) acts transit ively 
(respectively, 0-2-transitively) on 12. 

For the record we provide a proof of the following piece of folklore (appa
rent ly originating with Wielandt ) , since it is the key to our constructions. 

T H E O R E M 1. For a totally-ordered set 12 the following are equivalent: 
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(1) 12 is 0-2-homogeneous. 
(2) 12 has neither least nor greatest element and all closed intervals of 12 with 

more than one point have the same order-type. 

Proof ((1) implies (2)) . Since 12 is homogeneous it can have neither least nor 
greatest element. If %\ < x2 and yi < y% in 12 then x{g = yt (i = 1, 2) for some 
g G A (12). Clearly the restriction of g to the closed interval [xi, x2] is an order-
isomorphism onto [3/1, y2]. 

((2) implies (1)) . By a result of Holland (1965, Theorem 4) we need only 
show tha t for all x < y < z in 12 there is a g £ AX

+(Q) satisfying y g = z. (Since 
12 is without a least element this also shows immediately tha t 12 is homo
geneous). For each integer n take an £ 12 satisfying x < an < an+i, y = a0 and 
z = a,\. This is possible since 12 is dense in itself and has no greatest element. 
Now for each n let <j)n be an order-isomorphism from \an, an+{\ onto [an+\, an+i\. 
The map g : 12 —> 12 defined by 

_ iw<j>n if w G [ani <Vf 1) for some n 
\w otherwise 

is an element of AX
+(Q) and y g = z (both facts being easy to verify). 

By Lemma 9 of Holland (1963) we have the following result, which is im
por tan t for us: 

COROLLARY 2. If 12 is 0-2-homogeneous then A (12) is divisible. 

C o m p a t i b l e t i g h t Riesz orders. A compatible tight Riesz order on A (12) is 
a subset T of A (12) satisfying the following: 

(1) T is a proper dual ideal of ^4+(12) 
(2) T is normal in A (12) 
(3) T = TT 
(4) inf T = 1 
Our objective in this section is to show tha t A (12) has a compatible t ight 

Riesz order when 12 is 0-2-homogeneous and then, in some cases, to determine 
maximal compatible t ight Riesz orders. 

We equip 12 with the order topology. The collection of all open dense subsets 
of 12 is denoted by D(£l). Clearly P(12) is a filter of the latt ice of open subsets 
of 12. The support of g G A(tt) is the set supp(g) = {x Ç 12 : xg 7^ x\. Each 
support set is open for the order topology. 

The collection 2(12) = {supp(g) : g G ^4(12)}, ordered by inclusion, is a 
sublattice of the lattice of open sets of 12 and is called the support lattice of 12. 
Thus 2(12) is a distributive lattice with least element • = s u p p ( l ) , bu t in 
general without a greatest element. We denote the annihilator of A in S (12) by 
A*. Thus A* = {A; Ç 2(12) : A C\ A' = • } , and we denote 2(12) H £>(12) by 
5(12). 

We say tha t a closed interval [a, b] in 12 supports a non-identity automorphism 
HA([a,b]) * (1). 
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LEMMA 3. If each closed interval of 12 with more than one point supports a non-
identity automorphism then 5(12) = {AG 2(1]) : A* = { •}} . 

Proof. Let 12 satisfy the hypothesis of the lemma and take any A in 5(12). 
If A' H A = • , with A' in 2(12), then A' = • (otherwise A', being open, 
meets the open dense set A). T h u s A* = { • } . Conversely, suppose tha t 
AG 2(12) and t ha t the closure Â of A is not 12. Then [y, z] Q 12\Â for some 
y < z in 12, so if we let h be a non-identi ty automorphism of [y, z] and define 
g : 12 —> 12 by 

(xh if x G [yj z\ 
xg = < , . 

[x otherwise 

then g G A(Q). Since supp (g) ^ D and A H supp (g) = • we have A* ^ { • } . 
T h u s for A in 2(12), A* = { • } implies A G D(fl) . 

COROLLARY 4. If 12 is 0-2-homogeneous then ô(12) = {A G 2(12) : A* = { • } } . 

Proof. Let [x, y], with x < y, be a proper closed interval of 12. A non-ident i ty 
automorphism of [x, y] can be constructed as in Theorem 1. 

Nowr we define a candidate for a compatible t ight Riesz order on A (12): 

Tô = {g G 4̂ + (12) : supp (g) is dense in 12}. 

LEMMA 5. Tô is either empty or a proper normal dual ideal of 4̂ +(12). 

Proof. Suppose T5 ^ • . T a k e / , g G Ts and any h G A (12). Recall t ha t D(12) 
is a filter of the lattice of open subsets of 12. Since f S h implies supp( / ) ÇZ 
supp(/z), and since s u p p ( / A g) = supp(f) Pi supp(g) , it follows t ha t Ts is a 
dual ideal of 4̂ + (12). Also supp{h~lfh) = supp(/)/&, and h is a homeomorphism 
of 12, so tha t T8 is normal in A (12). Clearly 1 G 7^ so Ts is either empty or a 
proper normal dual ideal of A(tt). 

In fact, when 12 is 0-2-homogeneous Ts is not empty . T h e next lemma 
describes the elements of 5(12) in this case. 

We shall say tha t a pairwise disjoint collection {Kt : i G / ( o f subsets of 12 is a 
topological partition of 12 if U{^M : i G I) is dense in 12 (for the order topology). 
If K Ç 12 we say tha t S ^ K is terminal in i£ if for all x G K there are a, b £ S 
such tha t a S oc S h. 

LEMMA 6. Jf 12 is dense in itself then there is a topological partition {Kf : i G I) 
of 12 for which each Kt is a convex set with a countable terminal subset. 

Proof. Let X denote the set of all collections {Kt : i G 1} where each Kt is a 
convex subset of 12 with a countable terminal subset, and Kt C\ Kj = • if 
i 9^ j . Then X, ordered by inclusion, is an inductive set, so let {Kt : i G /} be a 
maximal element of X. If A = {J{Kt : i G 1} is not dense in 12 then there is a 
non-empty open interval (x, y) contained in 12\Â. Since 12 is order-dense the 
interval (x, y) contains a convex set K with a countable terminal subset, and 
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for this K we have K C\ Kt = • for a l H G / . However this contradicts the 
maximali ty of {Kt : i G /} in X. 

T H E O R E M 7. If & is 0-2-homogeneous then T5 is a compatible tight Riesz order 
on A($l). 

Proof. Suppose tha t 12 is 0-2-homogeneous. To show tha t both T& 9e D and 
inf T = 1, it is sufficient to take any w G 12 and then find g G T^ C\ AW(Q). So 
take w G 12 and let Oi = jx ^ 0 : x < w) and 122 = {x G 12 : x > w}. By 
Lemma 6 we can write 121 = [J{Ki :i G / } , where i£* = U{ [#*(n)> #*(n+i)] : ?z G Z} 
with Xj(n) < Xi(n+D for all w G Z. For each i G / and n G Z l e t 0 i ( n ) be an order-
isomorphism from [xt(n), Xi(n+i)] onto [tf^+i), #*(ra+2)]. Then gi : 12x —> 121 defined 
by 

_ ixcj)i(n) if x G [tfi(n), x i (B+i)) for some i(n) 
\x otherwise 

is an element of ^4+(12i), and supp(gi) = U{i£* : i G /} is dense in 12i. Similarly 
we can find g2 G 4̂ + (122) with supp(g2) dense in 122. Then g : 12 —> 12 defined by 

ixgi if x G 12i 
xg = <x if x = w 

(xg2 if x G 122 

is an element of T^C\ AW{Q). By Lemma 5 it remains to show tha t Td = T^Tb. 
Since T8 is a dual ideal of A+(12) it is also a subsemigroup, and since A (12) is 
divisible (Corollary 2) and supp(g) = supp(g2) for all g G ^4(12) we have 

T, c r5rô. 
There are two obvious compatible t ight Riesz orders larger than T5. Namely 

Tp = {g G ^4+(12) : supp(g) H [x, GO ) is dense in [x, oo ) for some x G &}, and 
its dual 7 \ . (Here [x, oo ) = {3; G 12 : y ^ x}). When are these compatible 
t ight Riesz orders maximal? Not always, we suspect. The following theorem 
gives a partial answer. 

T H E O R E M 8. If 12 is 0-2-homogeneous and has a countable cofinal (coinitial) 
subset then TP(I\) is a maximal compatible tight Riesz order on A (12). 

Proof. Suppose 12 is 0-2-homogeneous with countable cofinal subset Z\ < z2 < 
. . . ( that is, for each x G 12 there is an n for which x ^ zn). Assume tha t T is a 
compatible t ight Riesz order properly containing Tp. Then there is a g G T with 
fixed intervals [xn, yn] such tha t zn ^ xn < yn S xn+i for all natural numbers n. 
We choose arbi t rary elements xn, yn (n = 0, — 1 , — 2, . . .) in 12 satisfying 
3V_i < xn < yn < Z\. Then (as in our previous constructions) there is an 
h G A (12) satisfying xnh = yn and ynh = xn+i for all integers n. We see t ha t the 
support of g A h~1gh is bounded above. If x ^ Xi, then x G [#n, yn] for some 
integer w, in which case xg = x, or x G [;yw, #n+i] for some integer n, in which 
case x{h~lgh) = x. Since these are the only possibilities for x ^ x\ it follows 
t ha t supp(g A h~lgh) is bounded above by Xi. We can then find k £ Tp with 
x& = x for x ^ Xi, and therefore 1 = k A g A h~lgh G 2"—a contradiction. 
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Maximal tangents. If F is a filter of the distributive lattice A+(Q) of 
positive elements of A(£l) then any subset of A+(£l) maximal with respect to 
being a lattice ideal not meeting F is a prime ideal (this is a specialization of a 
well-known theorem of M. H. Stone) . When Tis a compatible t ight Riesz order 
on A (12) the subsets of A (12) tha t are maximal with respect to being convex sub-
lattice subgroups not meeting T, are called the maximal tangents of T. Since 
convex sublatt ice subgroups of A (12) are generated by their intersection with 
^4+(12) as lattice ideals it follows t h a t the maximal tangents of a compatible 
t ight Riesz order are prime subgroups of A (12) (i.e. convex sublatt ice subgroups 
M of A (12) for which A + (Q)\M is a dual ideal). 

We shall denote the set of maximal tangents for a compatible t ight Riesz 
order T by M a x ( r ) . A fundamental theorem due to Norman Reilly (1973) 
asserts tha t , always, T = A+(Q)\\J M a x ( r ) . 

Our objective in this section is to determine the maximal tangents of Ts, and 
this turns out to be a piece of lattice theory. 

We recall t ha t a distr ibutive lattice i f with least element 0 is quasi-pseudo-
complemented (or a distr ibutive *-lattice) if for each x f i f there is a y £ <if 
s u c h x A y = Oand (x V y)* = (0) where, for z 6 i f ,z* = {zf G i f : z A z' = 0}. 

If we denote by R the congruence on ^£ defined by xRy if x* = 3/*, and by D 
the set {s G i f : s* = (0)} of dense elements of «if, then the following condi
tions, amongst others, are known to be equivalent (see, for instance, T . P. 
Speed (1969)): 

(1) i f is quasi-pseudo-complemented 
(2) S£/R is Boolean 
(3) for any x £ i f there is a 3/ G i f satisfying x** = 3/* 
(4) for any ideal / o f «if with I C\ D = \3 there is a minimal prime ideal 3 / . 
Since a quasi-pseudo-complemented lattice J£ has dense elements the set D 

of dense elements of «if is a filter and the prime ideals of S£ not meeting D are 
precisely the minimal prime ideals (Gràtzer (1971), p . 169). 

T H E O R E M 9. If 12 is 0-2-homogeneous then S (12) is quasi-pseudo-complemented. 

Proof. Take any g G 4̂ + (12). Then 12\supp(g) is closed for the order topology 
and can be writ ten as a disjoint union of maximal closed intervals (whose end-
points may be in 12, the Dedekind completion of 12). For each such interval 
[Xj y] we can find an automorphism of 12 whose support set is contained in and 
dense in [x, y] by Theorem 7. If g' is the join of these automorphisms of 12 then 
g A gf = 1 so t ha t supp(g) C\ supp(g ' ) = • and supp(g) \J supp(g ' ) = 
supp(g V g') is dense in 12. By Corollary 5 we then have (supp(g) KJ 

supp(g ' ) )* = { • } . 
We recall t ha t a prime subgroup M of a lattice-ordered group G is minimal 

prime if and only if for all ra£ MC\ G+ there is a g £ G+\Msuch tha t m A g = 1. 

T H E O R E M 10. If 12 is 0-2-homogeneous then the maximal tangents of T5 are 
precisely the minimal prime subgroups of A (12). 
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Proof. Let M be a maximal tangent. Then M is a prime subgroup. If m G M+ 

then, since m G Tô and 2(12) is quasi-pseudo-complemented, there exists an 
m* G A+(ti) with m A w* = 1 and m V m* G ?Y Thus ni* (l M and i f is a 
minimal prime. 

Conversely, let M be a minimal prime and m G if+ . Then m f\ m* = 1, for 
some m* G ^4+(12)\if. Therefore m (£ Ts and i f H Tô = 0. Hence M is con
tained in a maximal tangent which, by the first par t of the proof, is a minimal 
prime and therefore equal to M. 

COROLLARY 11. / / {M\ : X G A} is a non-empty collection of minimal prime 
subgroups of A (12) left invariant by conjugation then T = A+(Çl)\\J{M\ : X G A} 
is a compatible tight Riesz order on A (12). 

We denote by A the normal convex sublattice subgroup of A (12) consisting of 
all g G A (12) for which supp(g) C 12\[x, GO ) for some x G 12, and by B the dual 
normal convex sublattice subgroup of ^4(12). 

COROLLARY 12. The maximal tangent of the compatible tight Riesz order TP(T\) 
are precisely the minimal prime subgroups of A (to) lying above A(B). 

Proof. Let M be a maximal tangent of 7 \ . Since T\ D T&, M is a prime sub
group of A (12) not meeting T8 and therefore M is contained in a maximal 
tangent of 7Y T h a t is, i f is a minimal prime subgroup. Suppose t ha t there is a 
g ^ 1 in ^4\AT, so that , for some x G 12, [x, co ) Ç fix(g) = 12\supp(g). We can 
then find h G Tp satisfying g A fe = 1, so tha t either g G M or A G M—both 
contradictory. 

Suppose on the other hand tha t i f is a minimal prime subgroup lying above 
A and tha t M C\TP j£ • . Then there is a g > 1, g G i f such tha t [x, oo ) C\ 
supp(g) is dense in [x, co) for some x G 12. Since i f is a minimal prime sub
group there is an h ^ 1 satisfying g A h = 1 and h G M. Then we have zh — z 
on [x, oo ) P\ supp(g)—a dense subset of [x, oo )—so [x, GO) C fix(fe) = 
12\supp(fe). T h a t is, h G A Ç i f — a contradiction. 
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