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Abstract

We study log �-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The

proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch

type formula for perverse sheaves on smooth quasi-projective varieties. The log index theorem naturally generalizes

the Dubson-Kashiwara index theorem on smooth projective varieties.
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1. Introduction

Let (-, �) be a smooth log pair; that is, - is a smooth variety over C, and � is a reduced normal

crossing divisor. Denote the open embedding by 9 : * = - \ � ↩→ - . The sheaf of log differential

operators �-,� is the subsheaf of �- consisting of differential operators that preserve the defining

ideal of the divisor. Log �-modules are (left or right) modules over �-,� . In this article, we mainly

focus on studying log �-modules associated with �* -modules, called lattices (Definition 2.4), and we

use them to study perverse sheaves on*.

1.1. A comparison theorem for log �-modules

Our first theorem is a comparison between a �* -module M* and its lattice M in terms of (log) de
Rham (DR) complexes (see (2.1) for its definition).

Theorem 1.1 (log comparison). Let M* be a regular holonomic �* -module. Then for every lattice M
of M* , there exists @0 > 0 so that for all @ > @0, we have natural quasi-isomorphisms

DR-,� (M(@�))
@.8.≃ ' 9∗DR* (M* ). (1.1)

Suppose �8 , 8 = 1, · · · , : , are irreducible components of �. Then we may consider the following lattices

M(01�1 + · · · + 0:�: ), 08 ∈ Z

and the corresponding log DR complexes,

DR-,� (M(01�1 + · · · + 0:�: )). (1.2)

It is interesting to ask: how will the above log DR complexes change as we vary the shift parameters 08?

In this perspective, our log comparison theorem only says the log de Rham complex stabilizes if all the

08 are large enough.

1.1.1. Application to Deligne lattices

We compute (1.2) in the case of flat connections with regular singularities along boundaries. Assume

that V is the Deligne lattice of a local system ! on * satisfying that real parts of eigenvalues of the

residues along � are in (−1, 0]; see Section 4.4 for details. For simplicity, we write � =
∑:

;=1 �; ,

� � =
∑

;∈�
�; and � �̄ =

∑

;∉�

�;

for a subset � ⊆ {1, 2, . . . , :} and

9 �1 : * → - \ � � and 9 �2 : - \ � � → -.

In this case, Theorem 1.1 can be refined as follows.

Theorem 1.2. For every pair of integers :1, :2 > 0, we have quasi-isomorphisms

DR-,� (V(:2�
�̄ − :1�

� )) @.8.≃ DR-,� (V(−� � )) @.8.≃ 9 �2!' 9
�
1∗! [=] .
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In particular,

DR-,� (�- (:2�
�̄ − :1�

� )) @.8.≃ DR-,� (�- (−� � )) @.8.≃ 9 �2!' 9
�
1∗C* [=] .

1.2. Application to �. [s] (hs+v ·M0)
Suppose that h = (ℎ1, . . . , ℎ: ) is a :-tuple of regular functions on a smooth variety . of dimension <.

Let* = . \ (∏; ℎ; = 0), and 9 : * ↩→ . 1. For a regular holonomic �* -module M* , we consider the

�. [s]-module for v = (E1, . . . , E;) ∈ Z: :

M
v
h ≔ �. [s] (hs+v ·M0) ⊆ 9∗(hs ·M* [s])

where hs+v =
∏

; ℎ
B;+E;
;

and s = (B1, . . . , B: ) are independent variables and M0 is a coherent �- -

submodule of 9∗M* that generates 9∗M* over �. .

Following Ginsburg’s ideas and using Sabbah’s generalized Bernstein-Sato polynomials, we obtain

the following generalization of the Beilinson theorem [Gin86, Proposition 3.6] (see also [BG12]):

Theorem 1.3. For v = (E1, E2, . . . , E: ) ∈ Z: with E; ≫ 0 for every ;, we have

(i) 9∗M* = �. [s] (hs−v ·M0)/(B1, · · · , B=)�. [s] (hs−v ·M0).
(ii) 9!M* = �. [s] (hs+v ·M0)/(B1, · · · , B=)�. [s] (hs+v ·M0).
There is also a similar but different result where we set s = 0 from the beginning, instead of taking

the fiber at s = 0 as above.

Theorem 1.4. For v = (E1, E2, . . . , E: ) ∈ Z: with E; ≫ 0 for every ;, we have

(i) 9∗M* = �. (h−v ·M0).
(ii) 9!∗M* = �. (hv ·M0).

This should be known to experts and is a small generalization to Budur’s result [Bud15, Theorem 5.2].

The �. [s]-modules

Mh ≔ �. [s] (hs ·M0) and 9∗(hs ·M* [s])

can be alternatively understood as two families of �. -modules over SpecC[s]. Theorem 1.3 is about

their fibers at integral s ≫ 0 and s ≪ 0 (that is, each B8 ≫ 0 or B8 ≪ 0, respectively). The proofs

of Theorem 1.3 and Theorem 1.4 use localization over the generic point and the geometric points in

SpecC[s]; see Section 5 for details. The inclusion in family

Mh ↩→ 9∗(hs ·M* [s])

induces fiberwise morphisms of (complexes of) �. -modules

]a : Ca

L
⊗C[s] Mh → Ca

L
⊗C[s] 9∗(hs ·M* [s]) ≃ 9∗(ha ·M* )

at closed points a = (01, 02, . . . , 0: ) ∈ SpecC[s], where ha =
∏

; ℎ
0;
;

and Ca = C[s]/(s − a). The �. -

modules 9∗(ha ·M* ) are Z: -periodic in a, and 9∗(hk ·M* ) = 9∗(M* ) for k ∈ Z: . Here, ha ·M* is

the �* -module of M* twisted by the local system given by ha.

Theorem 1.31.4 (or, more precisely, Corollary 5.4) implies that

]a is a quasi-isomorphism for all 0; ≫ 0. (1.3)

1Here we deviate from the log pair setup and notation. Later the log pair (-, �) appears from graph embedding.
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In general, we have that

Image(]a) = �. (ha ·M0) ⊆ 9∗(ha ·M* ) (1.4)

for every a ∈ C: .

Remark 1.5. In the case that M* = �* , the result (1.3) has an application in [BVWZ19] to prove

a conjecture of Budur [Bud15] about zero loci of Bernstein-Sato ideals, which generalizes a classical

theorem of Malgrange and Kashiwara relating the 1-function of a multivariate polynomial with the

monodromy eigenvalues on the Milnor fibers cohomology.

Consider the graph embedding of h:

[h : . ↩→ - := . × C: , H ↦→ (H, ℎ1 (H), . . . , ℎ: (H)).

Let C1, · · · , C: be coordinates of C: , and � =
⋃:

8=1{C8 = 0} be the boundary divisor on - . Following

Malgrange [Mal83], we have a canonical isomorphism

[h
+ ( 9∗M* ) ≃ 9∗(hs ·M* [s]).

ThenMv
h

is a�-,�-lattice of [h
+ ( 9∗M* ) for every v ∈ Z: . See Section 5 and Section 7.1 for more details.

By (2.2), as we identify B; with −C;mC; , we have

[h
∗ (DR(C

L
⊗C[s] Mv

h)) ≃ DR-,� (Mv
h).

Using Corollary 5.4, we hence have for all E; ≫ 0

DR-,� (M−v
h ) = [h

∗ (' 9∗DR(M* )),

which recovers Theorem 1.1 in this case for lattices of [h
+ ( 9∗M* ). Since for (01, 02, . . . , 0: ) ∈ Z: ,

DR-,� (Mv+(01 ,02 ,...,0: )
h

) = DR-,� (Mv
h (−01�1 − · · · − 0:�: )),

Corollary 5.4 further implies

DR-,� (Mv
h (−01�1 − · · · − 0:�: )) ≃ [h

! ( 9!DR(M* ))

for a fixed v ∈ Z: and for all integral 0; large enough, which gives a partial answer to the question of

(1.2) for lattices Mv
h
.

1.3. Index theorems in the log cotangent bundle

One application of the log comparison theorem is to find a formula for the Euler characteristic of a

perverse sheaf ℱ• on*:

j(*,ℱ•) =
∑

8

(−1)8 dim H8 (*,ℱ•).

If* = - is compact, then we have the index theorem of Dubson-Kashiwara ([Dub78] and [Kas85]):

j(-,ℱ•) = [SSℱ•] · [)∗--] (1.5)

where )∗-- is the zero section of )∗- . For open*, Kashiwara shows

j(*,ℱ•) = [SSℱ•] · Γ3i , (1.6)

where Γ3i is a certain perturbation of )∗**; see Theorem 8.1.
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In this paper, we compactify )∗* to the log cotangent bundle )∗ (-, �), and we get:

Theorem 1.6. Let (-, �) be a smooth log pair with - projective and * = -\�, and let ℱ• be a
perverse sheaf on*. Then

j(*,ℱ•) = [SSℱ•] · [)∗- (-, �)] (1.7)

where SSℱ• is the closure of SSℱ• ⊂ )∗* inside )∗(-, �), and )∗- (-, �) is the zero section of
)∗ (-, �).

Since [SSℱ•] and [)∗- (-, �)] are two =-cycles in the Chow ring of the logarithmic cotangent bundle

)∗ (-, �), their intersection gives a 0-cycle in - ≃ )∗ (-, �), and [SSℱ•] · [)∗- (-, �)] simply means

the degree of the 0-cycle. We now consider the natural ring homomorphism from algebraic objects to

topological ones,

�•) ∗ (-,�) → �2•()∗ (-, �),Z),

where the former is the Chow ring and the latter is the cohomology ring of)∗ (-, �) (see [BFM75]). We

then can also see [SSℱ•] and [)∗- (-, �)] as cohomology classes. Their intersection, ?∗
1
([SSℱ•]), can

thus be seen as a 0-cycle in the Chow ring of - as well as in its cohomology ring, where ?1 : )∗- (-, �) →
)∗ (-, �) is the closed embedding. Therefore, by naturality, the degree of the 0-cycle can be obtained

purely topologically. More precisely, to compute the intersection on the RHS of (1.7), we can try to

perturb the zero-section from )∗- (-, �) to a smooth (�∞) section, which intersects SSℱ• transversally;

then one needs to count intersection points with sign. If )∗- (-, �) can be perturbed as a holomorphic

section that intersects [SSℱ•] transversally, then one only needs to count unsigned intersection points.

If ℱ• = C* [=] for dim* = =, then (1.7) implies

j(*) = (−1)= [)∗- (-, �)] · [)∗- (-, �)] (1.8)

for every normal crossing compactification (-, �) of*.

Theorem 1.7 (non-compact Riemann-Roch). In the situation of Theorem 1.6, let ℱ• be a perverse
sheaf on * and SSℱ• =

∑
E =EΛE . Assume that there exists a rational function 5 on - such that 5 |*

is non-vanishing and Γ3 log 5 intersects each ΛE transversally in )∗ (-, �) with intersection number

denoted as gdeg
log

5
(ΛE ). Then

j(*,ℱ•) =
∑

E

=E · gdeg
log

5
(ΛE ).

In particular, j(*,ℱ•) ≥ 0.

Remark 1.8. If* = (C∗)= with coordinates (I1, . . . , I=), Franecki and Kapranov proved

j((C∗)=,ℱ•) =
∑

E

=Egdeg 5 (ΛE ),

where gdeg 5 (ΛE ) is the intersection of Γ3 log 5 with ΛE in )∗* for 5 = I
B1

1
· · · IB== with generic non-zero

B8 ∈ Z. Using it, they further proved a non-compact Riemann-Roch theorem on quasi-abelian varieties

[FK00, Theorem (1.3)].

Take the natural compactification (C∗)= ↩→ P=, and set � to be the boundary divisor. Note that

by generic choice of 5 , one ensures that the intersection of Γ3 log 5 with ΛE in )∗ (P=, �) is actually

contained in )∗*, and hence gdeg 5 (ΛE ) = gdeg
log

5
(ΛE ). Therefore, applying Theorem 1.7 gives an

alternative proof of Theorem (1.3) in [FK00, Theorem (1.3)].

Example 1.9. Let - = P2 with homogeneous coordinates (., /,,), � = (./, = 0) and * = (C∗)2.

Let H = ./,, I = //, be affine coordinates on *. Let ( = {(H, I) ∈ * | I = H(1 − H)}; then (
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is P1, removing three points. Let ! = C( [1], where the degree shift is to make it a perverse sheaf. We

then have

j(*, !) = −(1 − 2) = 1.

On the other hand, we can take a rational function on - as 5 = .//; then 5 |* = H/I is non-vanishing.

Then on the*0 � C
2 patch where, ≠ 0, we have

Γ3 log 5 =
3H

H
− 3I
I
.

Then SS! in )∗* is the conormal bundle of (, which is C-cone generated by 3 (I − H(1 − H)) =
(−1 + 2H)3H + 3I; thus

SS! = {(H, I; bH , bI) ∈ )∗* | I − H(1 − H) = 0, bH = (−1 + 2H)bI}.

We can verify that Γ3 log 5 ∩SS!∩)∗* = ∅. Thus, one only need check the intersection of Γ3 log 5 ∩SS!

in )∗ (-, �) over the boundary �.

Then the equations for SS! in )∗ (-, �) |*0
are

I = H(1 − H), (1 − H)[H = (−1 + 2H)[I .

Hence, there is one intersection point at (H, I) = (0, 0) and ([H , [I) = (1,−1). Similarly, one can check

in other patches *1 = {. ≠ 0} and*2 = {/ ≠ 0} to see there are no additional intersections. Thus

#(SS! ∩ Γ3 log 5 ) = 1.

This verifies the non-compact Riemann-Roch theorem.

1.4. Sketch of the proof of the main theorems

For the log comparison theorem, we have to understand the behavior of log de Rham complexes for

latticesM(@�) as @ changes. To this purpose, we introduce Bernstein-Sato polynomials (or 1-functions)

for lattices. By applying Sabbah’s multi-filtrations for holonomic modules [Sab87a], the existence of

1-functions for lattices is guaranteed by Theorem 4.4. Using 1-functions for lattices, we show that

DR-,� (M(@�)) stabilizes for large @ (actually, for large |@ | is enough). Then we note that taking the

inductive limit as @ →∞,

lim
@→∞

DR-,� (M(@�)) = DR-,� ( lim
@→∞

M(@�)) = DR( 9∗M* ).

Hence, for large enough @, we have DR-,� (M(@�)) = DR( 9∗M* ).
The (log) de Rham functors in the log comparison theorem mean the analytic ones by GAGA, as

perverse sheaves are defined in the Euclidean topology. One can replace the algebraic regular holonomic

module M* with M̃(∗�), and it still holds in the analytic category, where M̃ is an analytic regular

holonomic �- -module and M̃(∗�) is its algebraic localization along � (see [Bjo93, Chapter II.5] for

definitions).

For the index theorem, we provide two proofs.

(1) The first is more algebraic and motivated by Laumon’s algebraic approach to the Dubson-

Kashiwara index equality (1.5) [Lau83, §6]. Roughly speaking, adapting Laumon’s construction of direct

images of filtered �-modules to the log situation, we obtain a Laumon-type direct-image formula for

log �-modules; see Theorem 3.3 and Corollary 3.4. Using the Laumon-type formula and Grothendieck-

Riemann-Roch together with Ginsburg’s characteristic cycle theorem (Theorem 6.1), we first obtain an

index result for lattices; see Theorem 6.3. It would further imply the index equality (1.7) after applying

Theorem 1.1.
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(2) The second proof is more topological, and it is presented in Section 8. The Euler charac-

teristic of j(Hom(�, �)) for two constructible sheaves �, � on an open * can be computed by

counting intersections of SS(�) and SS(�) ([Gin86]), or one can directly compute Hom(�, �) as

HomFuk() ∗* ) (L(�),L(�)), where L(�),L(�) are Lagrangians in the Fukaya category [NZ09]. The

first step in considering Lagrangian intersections is to make them intersect transversally. If both La-

grangians are compact, then any Hamiltonian perturbation is allowed; if two Lagrangians intersects at

‘infinity’, then certain directed perturbation (‘wrapping’) near infinity is needed. In our case, one of the

Lagrangians is )∗**, and we can perturb it to the Lagrangian section ([Kas85]) Γ3i , where i : * → R
has some growth property near infinity. Our only task, then, is to choose a nice perturbation so that

Γ3i ∈ )∗* extends to a smooth section Γ3i in the log cotangent bundle )∗(-, �). A prototypical

example is 3 log |I | as a smooth section in the log cotangent bundle )∗ (P1, {0,∞}). Also, one needs to

check that there is no additional contribution to the Lagrangian intersection in replacing Γ3i with its

log closure Γ3i .

Finally, the topological proof of Theorem 1.6 makes it still hold when replacing - with a complex

compact manifold.

1.5. Outline of the paper

In Section 2, we collect basic properties for log �-modules. We discuss the direct images of log �-

modules under proper morphisms of log smooth pairs in Section 3. Section 4 is about 1-functions for

lattices and the proof of the log comparison theorem. In Section 5, we discuss �-modules constructed

from graph embeddings from a log point of view. In Section 6, 7 and 8, we discuss the index theorem

in the logarithmic cotangent bundle and non-compact Riemann-Roch.

2. Preliminaries on �-,�-modules

Let (-, �) be a log smooth pair with dim - = =. Set �- (− log�) to be the locally free subsheaf of �-

generated by algebraic vector fields with logarithmic zeros along �, and �-,� the subalgebra of �-

generated by �- and �- (− log�). One can check that �-,� is a coherent and noetherian subalgebra

of �- . We then consider the logarithmic cotangent bundle

)∗ (-, �) ≔ Spec�•-,� ,

where �•-,� = Sym•(�- (− log�)), the symmetric algebra of �- (− log�). Then the natural inclusion

�- (− log�) ↩→ �-

induces a morphism over -

)∗- )∗ (-, �)

- .

c

We use )∗- (-, �) to denote the zero section of )∗ (-, �).
We consider both left and right �-,�-modules. The following lemma is useful and easy to check.

Lemma 2.1. Let M and M
′ be two left �-,�-modules, and let N and N

′ be two right �-,�-modules.
Then

M ⊗� M
′, Hom� (M,M′) and Hom� (N,N′)

are left �-,�-modules, and

M ⊗� N and Hom� (M,N)
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are right �-,�-modules, where the �-,�-module structures are induced by product rules or chain
rules of taking differentiations.

The order filtration of �- induces an order filtration �• of �-,� with the associated graded algebra

gr�• �-,� , and we have gr�• �-,� ≃ �
•
-,� .

Definition 2.2. A coherent filtration �• of a left�-,�-moduleM is an exhaustive increasingZ-filtration

bounded from below, compatible with the order filtration of �-,� so that the associated graded module

gr�•M is coherent over �•-,� . We then say (M, �•) is coherent over (�-,� , �•). We also say that M is

coherent over �-,� if there exists a coherent filtration �•.

Since c is affine, g̃r�•M is a coherent �) ∗ (-,�) -module. Analogous to the characteristic cycles of

coherent �- -modules, we define the characteristic cycle of M to be

SSM =
∑

<? (g̃r�•M) · ?̄,

where ? goes over the generic points of irreducible components of the support of g̃r�•M and <? is the

multiplicity of g̃r�•M at ?. Similar to �- -modules, the characteristic cycle is independent of the choices

of coherent filtrations.

Assume G1mG1
, . . . , G:mG: , mG:+1 . . . , mG= are free generators of �- (− log�) locally with coordinates

(G1, . . . , G=) so that � is defined by G1 · · · G: = 0. Then we have a canonical section (independent of

local coordinates)
∑

8

3G8

G8
⊗ G8mG8 ∈ Γ(-,Ω1

- (log�) ⊗�- (− log�)).

The logarithmic de Rham complex DR� (�-,�) of �-,� is the following complex of right �-,�-

modules starting from the −=-term

�-,�
∇−→ Ω1

- (log�) ⊗�-,� → · · · → Ω=
- (log�) ⊗�-,� ,

where the first differential is

% ↦→
∑

8

3G8

G8
⊗ G8mG8 · %

for a section % of �-,� . For a left �-,�-module M, its de Rham complex is

DR� (M) = DR� (�-,�) ⊗�-,� M. (2.1)

It is also denoted as DR-,� (M) if the ambient space - needs to be emphasized. In local coordinates, it is

DR� (M) ≃ Kos(M; G1mG1
, . . . , G:mG: , mG:+1 . . . , mG= ), (2.2)

the Koszul complex of M with actions of G1mG1
, . . . , G:mG: , mG:+1 . . . , mG= . By construction, we see

DR� (M) as a complex of sheaves over the Euclidean topology on - by GAGA.

In the case that M has a filtration, DR� (M) is filtered as follows:

�?DR� (M) = [�?−=M→ Ω1
- (log�) ⊗ �?−=+1M→ · · · → Ω=

- (log�) ⊗ �?M] .

We denote the associated graded complex by gr�• DR� (M), which is a complex of �•-,�-modules.

Using Lie derivatives on l- and Lemma 2.1, the logarithmic canonical sheaf l- (�) = Ω=
- (log�)

is naturally a right �-,�-module. We then have the evaluation map

ev: Ω=
- (log�) ⊗�-,� → l- (�)
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given by

l ⊗ % ↦→ l · %.

Lemma 2.3. The evaluation map ev induces a locally free resolution ofl- (�) as a right�-,�-module

DR� (�-,�)
ev−→ l- (�).

Proof. By construction, the associated graded complex gr�• DR� (�-,�) can be locally identified with

the graded Koszul complex

Kos(�•-,� ; b),

where b = (b1, . . . , b=) are logarithmic symbols of (G1mG1
, . . . , G:mG: , mG:+1 . . . , mG= ). It is obvious that

(b1, . . . , b=) is a regular sequence in �
•
-,� . Since each b8 is of degree 1, we know that gr�• DR� (�-,�):

is acyclic for : > 0. Therefore, the inclusion

�?DR� (�-,�) −→ �?+1DR� (�-,�)

is quasi-isomorphic for every ? > 0. Since �0DR� (�-,�) = l- (�), we see that

�?DR� (�-,�)
ev−→ l- (�)

is a quasi-isomorphism for every ? ≥ 0. Taking the inductive limit as ? → ∞, as the inductive limit

functor is exact, we finish the proof. �

Let us now introduce a special kind of �-,�-modules called lattices, following Ginsburg [Gin86].

Definition 2.4. A (left) coherent �-,�-module M is called a lattice of a coherent �* -module M*

if we have an inclusion M ⊆ 9∗(M* ) and the inclusion gives the identity morphism on M* under

adjunction (that is, M|* = M* ), where 9 : * = - \ � ↩→ - is the open embedding. We also say that

M is a �-,�-lattice of 9∗(M* ) if M is a lattice of M* .

Lemma 2.5. Assume M* is a coherent �* -module. If 9∗M* = �- · M0 for some coherent �- -
submodule M0, then lattices of M* exist. In particular, if M* is regular holonomic, lattices of M*

exist.

Proof. We know that M = �-,� ·M0(:�) is a lattice of M* for every : ∈ Z. Hence, the first statement

follows. If M* is regular holonomic, then 9∗(M* ) is also regular holonomic by definition (see, for

instance, [HTT08, §6]). In particular, 9∗(M* ) is generated by a coherent �- -module over �- , from

which the second statement follows. �

By Lemma 2.1, if M is a lattice, then M(�) = M ⊗ �- (�) is also a (left) �-,�-module for every

divisor � supported on �, and hence they are all lattices of M* (one can easily check coherence of

M(�)). Furthermore, if M and M
′ are two lattices of M* , then for some @ > 0, we have

M ⊆ M
′(@�) and M

′ ⊆ M(@�). (2.3)

2.1. Characteristic cycles

The Lie bracket of �- induces a Lie bracket of �- (− log�). Hence, )∗ (-, �) is a logarithmic

symplectic manifold with a symplectic form having log poles along �. An ideal sheaf I of �) ∗ (-,�) is

called involutive if

{I, I} ⊆ I
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where {•, •} is the Poisson bracket induced by the logarithmic symplectic form. A subvariety of

)∗ (-, �) is called involutive if its ideal sheaf is so. By Gabber’s involutivity theorem (see, for instance,

[Bjo93, A:III.3]), we obtain:

Theorem 2.6. If M is a coherent �-,�-module, then the support of SSM is involutive.

It is worth mentioning that the dimension of logarithmic characteristic cycles does not satisfy the

Bernstein inequality. For instance, considering the �C,0-module C = C[G]/GC[G], its characteristic

cycle is the point {0} ⊂ C ≃ )∗
C
(C, 0) ⊂ )∗ (C, 0). The defect of Bernstein inequality can be fixed by

considering log dimensions; see [KT19, §3.3].

3. Direct images of �-,�-modules

We discuss direct image functors for �-,�-modules in this section. Suppose 5 : (-, �) → (., �) is a

morphism of log smooth pairs; that is, (-, �) and (., �) are two log smooth pairs, and 5 is a morphism

between - and . so that 5 −1� ⊆ �. We also say that 5 is a log morphism in this case.

Analogous to �-modules, we define the transfer module � 5 of the log morphism 5 by

� 5 = l 5 ⊗ 5 ∗�. ,� ,

where l 5 = l- (�) ⊗ 5 ∗l. (�)−1, the relative logarithmic canonical sheaf. Clearly, � 5 is a right

�-,� and left 5 −1
�. ,� bi-module with a filtration �• induced from the order filtration of �. ,� . The

direct image functor between bounded derived categories of left logarithmic �-modules

5+ : �1 (�-,�) → �1 (�. ,� )

is given by

5+(•) = ' 5∗(� 5

L
⊗�-,� •).

We set �1
coh
(�-,�) to be the bounded derived categories of left logarithmic �-modules with coherent

cohomology sheaves.

Theorem 3.1. For a log morphism 5 : (-, �) → (., �), if the morphism 5 : - → . is proper, then 5+
preserves coherence; that is,

5+ : �1
coh (�-,�) → �1

coh (�. ,� ).

Proof. If M = �-,� ⊗�- ℒ for some coherent �- -module ℒ (M is called an induced �-,�-module),

then

5+M ∈ �1
coh (�. ,� )

by projection formula and the standard fact in algebraic geometry that the direct images of �-modules

under proper morphisms are coherent. In general, for an arbitrary M
• ∈ �1

coh
(�-,�), using the

arguments in the proof of [Bjo93, Theorem 1.5.8], M• is quasi-isomorphic to a complex of induced

�-,�-modules. Then we also have

5+M
• ∈ �1

coh (�. ,� )

by induction on the length of the complex of induced �-,�-modules. �

3.1. Direct images and logarithmic Lagrangian correspondence

In this subsection, we discuss the direct image functor 5+ in the filtered case, which is the logarithmic

generalization of Laumon’s constructions for �-modules [Lau83].
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For a log morphism 5 : (-, �) → (., �), we consider the following diagram

)∗ (-, �) - ×. )∗ (., �) )∗ (., �)

- .,

c-

?1

?2

c 5 c.

5

where the square is Cartesian and ?1 is induced by the morphism of logarithmic tangent sheaves

�- (− log�) → 5 ∗�. (− log �).
Denote the bounded derived categories of the graded �

•
-,�-modules and �) ∗ (-,�) -modules by

�1 (�•-,�) and �1 (�) ∗ (-,�) ), respectively. We define a functor

5♯ : �1 (�) ∗ (-,�) ) −→ �1 (�) ∗ (. ,�) )

associated with 5 by

5♯ (•) = '?2∗(!?∗1 (•) ⊗ c∗5 l 5 ).

When 5 is proper, 5♯ preserves coherence.

Now, we consider the additive category MF(�-,�) whose objects are filtered (left) �-,�-modules

and morphisms are �-,�-linear morphisms compatible with the order filtration of �-,� . A sequence

of MF(�-,�)
(M1, �•) → (M2, �•) → (M3, �•)

is called strictly exact if

0→ gr�•M1 → gr�•M2 → gr�•M3 → 0

is a short exact sequence of �•-,�-modules. Then MF(�-,�) together with the class of all the strictly

exact sequences defines exact categories in the sense of Quillen (see, for instance, [Lau83, §1]). Denote

the bounded derived category of MF(�-,�) by DF1 (�-,�). Then we have an embedding of categories

MF(�-,�) ↩
' (•)−−−−→ Mod('(�-,� , �•))

and an induced embedding of (bounded) derived categories

DF1 (�-,�) ↩→ �1 ('(�-,� , �•)),

where '(�-,� , �•) =
⊕

8 �8�-,� , the Rees ring of (�-,� , �•), Mod('(�-,� , �•)) the abelian

categories of '(�-,� , �•)-modules and �1 ('(�-,� , �•)) the bounded derived categories. A complex

M
• ∈ DF1 (�-,�) is coherent if its image in �1 ('(�-,� , �•)) has coherent cohomologies. Denote by

DF1
coh(�-,�) the subcategory of coherent objects.

The direct image functor can be naturally generalized to the Rees modules case as follows:

5+ : �1 ('(�-,� , �•)) → �1 ('(�. ,� , �•))

5+(•) = ' 5∗('(� 5 , �•)
L
⊗' (�-,� ,�•) •),

where the filtration of � 5 is induced from that of �. ,� . By abuse of notations, we denote the direct

image functors on different derived categories all by 5+. Similar to the unfiltered case, 5+ preserves

coherence when 5 is proper (see the proof of Theorem 3.1); that is, we have

5+ : �1
coh ('(�-,� , �•)) → �1

coh ('(�. ,� , �•)).
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However, 5+ does not preserve strictness; that is, it might not be true that 5+ maps DF1 (�-,�) into

DF1 (�. ,� ) even when 5 is proper.

We then define an intermediate functor

5 •+ : �1 (�•-,�) → �1 (�•. ,� )

by

5 •+ (•) = ' 5∗(gr�• � 5

L
⊗�•-,�

•).

Since c− is affine, where − = - or . , we have the functor

∼− : �1 (�•−,−) → �1 (�) ∗ (−,−) ).

Then we obtain the following proposition:

Proposition 3.2. Suppose 5 : (-, �) → (., �) is a proper morphism of log smooth pairs. Then we
have the following commutative diagram

�1
coh
(�•-,�) �1

coh
(�•. ,� )

�1
coh
(�) ∗ (-,�) ) �1

coh
(�) ∗ (. ,�) ).

5 •+

∼- ∼.
5♯

We use coh(•) (respectively, KFcoh(•)) to denote the Grothendieck group of the triangulated category

�1
coh
(•) (respectively, DF1

coh(•)). We then have a Laumon-type formula for log �-modules, roughly

speaking,

gr ◦ 5+ ≃ 5 •+ ◦ gr.

To be more precise:

Theorem 3.3. Suppose 5 : (-, �) → (., �) is a proper morphism of log smooth pairs. Then we have
the following commutative diagram

KFcoh(�-,�) KFcoh(�. ,� )

 coh(�•-,�)  coh(�•. ,� ).

5+

[gr] [gr]
5 •+

Proof. For a filtered complex (M•, �•) ∈ DF1 (�-,�), 5+(M•, �•) is a filtered complex. The construc-

tion of the filtration is a bit complicated; see [Lau83, §3,§4] for details. One first observes that

gr�• 5+(M•) ≃ 5 •+ (gr•M
•).

The associated spectral sequence converges:

�=
A ,• =

⊕

?

�
?,=−?
A ⇒ gr�•ℋ

= 5+(M•)

with the induced filtration on ℋ
? 5+(M•) for every A ∈ Z≥0. The graded module �=

A ,• is naturally a

graded �
•
. ,� -module by construction.

Take the natural C-structure on DF1 (�. ,� ) (use the usual truncation functor), and denote the heart

by � and the associated =th cohomology functor by �=
C . Let us refer to [Lau83, §1] and [BBD] for
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C-structures. Then the objects of � are 2-term complexes of injective morphisms (not necessarily strict)

of filtered �. ,� -modules

[ : (M−1, �•)−→(M0, �•).

Since taking limits of spectral sequences and truncation operations commutes (by naturality), by induc-

tion, it is enough to assume that 5+(M•, �•) is in the heart � and given by the morphism [ and thus

5 •+ (gr�•M
•) is the 2-term complex gr[. Since [ is a filtered 2-term complex, we only need to consider

the Ath differential

3A : �−1
A ,• → �0

A ,•−A

for every A . The 0th differential 31 is just gr[. By construction, we see for every A

ker 3A = �−1
A+1,• and coker 3A = �0

A+1,•−A

and

[coker 3A ] − [ker 3A ] = [coker 3A+1] − [ker 3A+1] (3.1)

in  coh(�•. ,� ). By convergence (see, for instance, [Lau83, Lemma 3.5.13 (iii)]) and (3.1), we see

[coker 30] − [ker 30] = [coker gr[] − [ker gr[] = [gr�•ℋ
0 5+(M•)] .

Since 5 •+ (gr�•M
•) is the 2-term complex gr[, the proof is finished. �

By combining Proposition 3.2 and Theorem 3.3, we then immediately have:

Corollary 3.4. Suppose 5 : (-, �) → (., �) is a proper morphism of log smooth pairs. Then for
(M•, �•) ∈ DF1

coh(�-,�),

5♯ [g̃r�•M
•] =

∑

8

[(−1)8 g̃r�• (ℋ8 5+(M•))]

in  coh(�) ∗ (. ,�) ).

4. Logarithmic comparisons for lattices

4.1. Sabbah’s multi-filtrations and generalized Bernstein-Sato polynomials

In this subsection, we review the result from [Sab87a] about multi-filtrations of coherent �-modules.

Let . be a smooth algebraic variety (or, more generally, a complex manifold) and � ⊂ . a smooth

hypersurface. The Kashiwara-Malgrange filtration {+8�. }8∈Z on �. along � is an increasing filtration

defined by

+8�. = {% ∈ �. |% · � 9 ⊆ � 9−8 for ∀ 9 ∈ Z},

where � is the ideal sheaf of � and � 9 = �. for 9 ≤ 0.

For simple normal crossing (SNC) divisors, there is a notion of multi-filtration on �- and local good

coherent �- -modules. Working locally, we may assume that - = Δ= is the =-dimensional polydisc

with coordinates (G1, . . . , G=), and smooth divisor �; = (G; = 0) for ; = 1, 2, . . . , : and : ≤ =. We write
9+•�- , the Kashiwara-Malgrange filtration of �- along � 9 , and then set for s = (B1, . . . , B: ) ∈ Z:

+s�- =

:⋂

9=1

9+B8�- .
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We then obtain the (multi-indexed) :-filtration {+•�- }Z: . We write the associated Rees ring by

'+ (�- ) =
⊕

s∈Z:
+s�- · Ds; Ds = D

B1

1
· · · DB:

:

and one can check that '+ (�- ) is a (graded) coherent and Noetherian sheaf of rings.

We fix a �- -module M̃ and consider a :-filtration {*•M̃}Z: compatible with {+•�- }Z: . The

filtration {*•M̃}Z: is called good if the Rees module

'* (M̃) =
⊕

s∈Z:
*sM · Ds

is coherent over '+ (�- ). It is worth mentioning that if {*•M̃}Z: is good, then M̃ is coherent; and,

conversely, if M̃ is coherent, then good :-filtrations exist locally. For notation simplicity, we denote

*sM̃ as*s.

As remarked in [Sab87a], the subtlety with multi-filtration on modules (as in contrast with �- ) is

that in general,

*s (
1*B1
∩ · · · ∩ :*B: , where 9*B′9 =

⋃

s∈Z: B 9=B′9

*s.

For example, for : = 2, we do not have*(0,0) = *(0,1) ∩*(1,0) in general.

It is precisely for this reason that Sabbah introduces a refined filtration with respect to a cone Γ. To

give a precise definition, we introduce the following notation:

" = Z: , "+ = (Z≥0): , "Q = # ⊗ Q, "+Q = (Q≥0): .

Let # = (Z: )∨ be the dual lattice of " , and define #Q, #+
Q

accordingly. We use elements in " to

label monomials on (C∗): and also to index the multi-filtrations below. For concreteness, we sometimes

write s ∈ Z: instead of s ∈ " . Let Γ ⊂ #+
Q

be a unimodular simplicial cone contained in the positive

quadrant of #Q; that is, the primitive generators of the rays in Γ can be completed to a Z-basis of the # .

We use ℒ(Γ) to denote the set of such primitive generators. We also denote the dual cone by

Γ̌ = {< ∈ " |〈<, E〉 ≥ 0,∀E ∈ Γ}

and the annihilator of Γ in " by Γ⊥. We denote a partial ordering on " induced by Γ by

B ≤Γ B′⇔ B′ − B ∈ Γ̌,

and we say

B <Γ B
′⇔ B ≤Γ B′ but not B′ ≤Γ B.

Definition 4.1. Let *• be a good :-filtration of M̃ with respect to +•�- . Let Γ be a : ′-dimensional

unimodular simplicial cone contained in the positive quadrant. For any element B ∈ " , we define a new

:-filtration by

Γ*B =
∑

B′≤ΓB
*B′ .

Note that if : ′ < : , then Γ*B only depends on the image of B in "/Γ⊥. Hence, in the special case

that ! is a one-dimensional cone (or, abusing notation, a primitive generator of this cone), we write !*_

for the Z-indexed filtration, where _ ∈ Z � "/!⊥.

Let 'Γ (M̃) =
⊕

B∈"
Γ*BD

B denote the Rees module for Γ*•. There is a natural C[Γ̌ ∩ "] action

on 'Γ (M̃), namely for B ∈ Γ̌. We recall the following property.
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Lemma 4.2. [Sab87a, Lemma 2.2.2] If 'Γ (M̃) is a flat C[Γ̌ ∩"]-module, then for all B ∈ " , we have

Γ*B =
⋂

!∈ℒ (Γ)

!*! (B) .

If Γ*• satisfies the flatness condition, we call such a cone Γ adapted to *•. In general, the standard

cone "+
Q

is not adapted to*•. However, Sabbah shows that one may subdivide the standard cone to get

an adapted fan Σ; that is, every cone in Σ is adapted.

Let ℒ(Σ) denote the set of rays in Σ. We also define a new :-filtration by

*s =
⋂

!∈ℒ (Σ)

!*! (s)

for every s ∈ " � Z: . This is called the saturation of *•M̃ with respect to Γ. The saturation filtration

is also good provided that*•M̃ is good (see [Sab87a, Proposition-Définition 2.2.3]). By definition, we

have for every s ∈ Z:
*s ⊆ *s;

the :-filtration*•M̃ is called saturated if the above inclusion is an equality.

The following beautiful theorem of Sabbah [Sab87a, Théorèm de Bernstein] is a natural generalization

of the existence of the Bernstein-Sato polynomials for regular functions.

Theorem 4.3 (Sabbah). Suppose that*•M̃ is a good :-filtration for a holonomic �- -module M̃. Then
for every primitive vector ! ∈ #+ in the first quadrant, there exists a polynomial of one-variable
1! (B) ∈ C[B] such that for every _ ∈ Z,2

1! (!(G1mG1
, . . . , G:mG: ) + _)!*_ ⊆ !*_−1.

4.2. Bernstein-Sato polynomials for lattices

In this subsection, we prove the existence of Bernstein-Sato polynomials for lattices using Sabbah’s

multi-filtrations.

We continue to assume that - = Δ= is the =-dimensional polydisk with coordinates (G1, G2, . . . , G=)
and smooth divisor �; = (G; = 0) for ; = 1, 2, . . . , : and : ≤ =. We set � =

∑:
;=1 �; , and let M be a

�-,� lattice of some regular holonomic �* -module M* , where 9 : * = - \ � ↩→ - .

We obtain a good :-filtration*•M̃ of M̃ = �- ·M associated with M by requiring

'* (M̃) = '+ (�- ) ·
⊕

s≤0

M(
:∑

;=1

B;�;) ⊆
⊕

s∈Z:
M̃; (4.1)

it is good because
⊕

s≤0 M(� · s) is coherent over
⊕

s≤0+s�-,� . In other words, we have

*sM̃ = +s�- ·M.

In particularly, we have for s ≤ 0

*sM̃ = M(
:∑

;=1

B;�;).

2We suspect there is a typo in [Sab87a, 3.1.1. Théorèm de Bernstein], missing a +_) in the formula 1! (! (...)!*_. Also, we
use operator G8mG8 instead of mG8 G8 , resulting in a possible difference in coefficients in 1! .
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The following theorem is a generalization of [Sab87b, Proposition 1.2]. Although the statement there

only concerns log D-modules coming from the graph embedding, the proof carries through exactly.

Theorem 4.4. Assume that M is a �-,� lattice of some regular holonomic �* -module M* . Then
locally around a point G ∈ � there exists 1M (B1, · · · , B: ) ∈ C[s] such that

1M (xm)M ⊂ M(−�).

Moreover, 1M can be factorized as a product of linear functions of the form 2 + ∑:
8=1 U8B8 , where

U8 ∈ Q≥0.

Proof. Write M̃ = �- ·M. Let*•M̃ = +•�- ·M be the filtration associated with M as in (4.1). Let Σ

be a fan in #+
Q

adapted to *•M̃. Let !1, · · · , !< be the collection of primitive vectors in the rays of Σ.

Let 1!8 (B) be the corresponding Bernstein-Sato polynomial for !8*• as in Theorem 4.3.

Then one can define a polynomial 1(B1, · · · , B=) given by

1(s) =
<∏

8=1

!8 (®1)−1∏

9=0

1!8 (!8 (s) − 9),

where ®1 = (1, · · · , 1) ∈ Z: , such that

1(G1mG1
, · · · , G:mG: )*®0 ⊂ *−®1,

where*• is the saturation of*•. Hence, for all ®0 ∈ Z: , we have

1(G1mG1
+ 01, · · · , G:mG: + 0: )* ®0 ⊂ * ®0−®1.

Hence, for any ®0 and any Z ∋ _ ≥ 1, we have a 1-function

1 ®0,_ ({G8m8})* ®0 ⊂ * ®0−_·®1.

Since *• is a good filtration of M̃, in particular, there is a #1 ≫ 0 such that for all ®0 ∈ (Z≥0): , and we

have

+−®0�- ·*−#1 ·®1 = *−#1 ·®1−®0 .

And we also have

+−®0�- ·*−#1 ·®1 = G
01

1
· · · G0:

:
*−#1 ·®1.

Since*−#1 ·®1 is a lattice for M̃* , we can find #2 ≫ 0 such that

*−#1 ·®1 ⊂ (G1 · · · G: )−#2M.

Hence, we get

*−(#1+#2+1) ·®1 ⊂ M(−�) ⊂ M = *®0 ⊂ *®0.

Thus the following construction will work:

1M (B1, · · · , B: ) = 1®0, (#1+#2+1) (B1, · · · , B: ).

�
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4.3. Proof of Theorem 1.1

Since the required statement is local, we can assume

- = # × )

with coordinates (G1, . . . , G: , G:+1, . . . , G=) centered at a point G ∈ �, so that (G1, . . . , G: ) are coordinates

of # and (G:+1, . . . , G=) are coordinates of ) and

� =

:⋃

8=1

(G8 = 0).

Since for every @ ∈ Z, M(@�) is a lattice, we have a short exact sequence of �-,�-modules

0→M((@ − 1)�) →M(@�) → M(@�)
M((@ − 1)�) → 0. (4.2)

We first prove that

DR� (
M(@�)

M((@ − 1)�) ) are acyclic for all |@ | ≫ 0. (4.3)

To this purpose, we apply Theorem 4.4 to the lattice M and obtain the linear forms !1, . . . , !<.

Meanwhile, the �-,�-module structure of M makes the stalks

(
M(@�)

M((@ − 1)�)

)

G

C[B1, · · · , B: ] ≃ C[xm]-modules for all @ ∈ Z. Thanks to Theorem 4.4 again, the support ofC[s]-module

(
M

M(−�)

)

G

is contained in the zero locus of
∏

8, 9 1!8 (!8 (s) − 9). Note that the zero locus of
∏

9 1!8 (!8 (s) − 9) is a

union of parallel hyperplanes in "Q with co-vector !8 . Also, since !8 is in the first quadrant of # , we

have 〈!8 (1, · · · , 1)〉 > 0; that is, the lines Q · (1, · · · , 1) pass through the zero-locus of
∏

9 1!8 (!8 (s))
only finitely many times.

Since

M(@�)
M((@ − 1)�) ≃

:∏

;=1

G
−@
;
·
(

M

M(−�)

)
,

(
M(@�)

M( (@−1)�)

)
G

is supported on a finite union of the zero locus of
∏

8, 9 1!8 (!8 (B1 + @, · · · , B: + @) − 9).
Hence, for |@ | large enough, (0, · · · , 0) is not contained in the support of ( M(@�)

M( (@−1)�) )G as a C[s]-
module. The Koszul complex

Kos

((
M(@�)

M((@ − 1)�)

)

G

; xm

)

is identified with the complex

(
M(@�)

M((@ − 1)�)

)

G

⊗C[s] Kos(C[s]; s).
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As the Koszul complex Kos(C[s]; s) is supported exactly on {0}, the complexes

Kos(( M(@�)
M((@ − 1)�) )G ; xm)

are acyclic for all |@ | ≫ 0. Moreover, by (2.2), we see that

DR� (
M(@�)

M((@ − 1)�) )G ≃ DR) (Kos(( M(@�)
M((@ − 1)�) )G ; xm)),

where DR) means the de Rham functor is applied on the ambient space ) instead of - . Hence, we

conclude that they are both acyclic for every |@ | ≫ 1.

Considering the short exact sequence (4.2), since the de Rham functor is exact, we obtain that

DR� (M((@ − 1)�)) −→ DR� (M(@�))

is a quasi-isomorphism for every |@ | ≫ 1. We then take the inductive limit as @ → ∞. Since the

inductive limit functor is exact, the natural morphism

DR� (M(@�)) → lim
@→∞

�'� (M(@�)) = DR( 9∗M* )

is a quasi-isomorphism @ ≫ 1. SinceM* is regular holonomic, we know DR and algebraic localizations

commute (see [Bjo93, Chapter V.4]), and hence we have

DR( 9∗M* ) ≃ ' 9∗DR(M* ).

Consequently, we obtain the quasi-isomorphism (1.1). �

4.4. An example: Deligne lattices

Suppose that (-, �) is a smooth log pair with dim - = =. We fix a C-local system ! on*an = (- \�)an

and set

V
an = ! ⊗ �an

*

the flat holomorphic vector bundle. Denote by V the Deligne lattice with eigenvalues of residues along

� having real parts in (−1, 0]. It is well known that the construction of Deligne lattices is analytic in

nature; see [Del70] and [HTT08, §5]. More precisely, V is a locally free�an
- -module of finite rank. Since

- is algebraic, V is also algebraic by GAGA (by adding more boundary divisors, - can be assumed to

be complete). We take V = V|* , the algebraic �* -module of the local system !. Then V is a �-,�

lattice of 9∗V, where 9 : * ↩→ - .

We write � =
∑:

;=1 �; . For a subset � ⊆ {1, 2, . . . , :}, we also write

� � =
∑

;∈�
�; and � �̄ =

∑

;∉�

�;

and

9 �1 : * → - \ � � and 9 �2 : - \ � � → -.

We now briefly recall the construction V
an

. Assume that the local system ! is of rank <, and let

{21, 22, . . . , 2<} be a (linear independent) set of multi-valued sections of ! on a polydisk neighborhood

, around G ∈ � with coordinates (G1, G2, . . . , G=) so that � = (G1 · G2 · · · G: = 0). For simplicity, we

write

+ = SpanC{21, 22, . . . , 2<} ≃ C=.
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Using the above isomorphism, the multivaluedness is equivalent to giving )8 ∈ GL(<,C) for 8 =

1, . . . , : , where )8 are the monodromy actions of ! along the divisors (G8 = 0). We then define

{48 = exp(
:∑

;=1

Γ; log G;) · 28}<8=1, (4.4)

where Γ; ∈ gl(+,C) satisfies that the eigenvalues of Γ; ∈ (−1, 0] for every ;; that is, Γ; is the branch of

the logarithm of )−1
; under the eigenvalue requirement. In each 48 , log G; is multivalued, and 28 is also

multivalued with monodromy action ); . We thus see that 48 is a well-defined univalued local section of

9∗(Van). We then define V
an |, =

⊕<
8=1 �

an
, · 48 . One sees easily that G;mG; operates naturally on 48 and

hence also on V
an |, . Since V

an |, \� = V
an, the local construction glues and gives V

an
.

We now calculate the local 1-function for V
an

. By definition,

G;mG; · 48 = Γ; · 48

as the multivalued sections 28 are flat. Therefore,

∏

;,8

(G;mG; − _;,8)=;,8 · V
an ⊆ V(−�)an (4.5)

with the real part Re(_;,8) ∈ (−1, 0], where _;,8 are eigenvalues of Γ; and the powers =;,8 are determined

by the minimal polynomial of ); . In particular, (4.5) gives the local 1-function for V
an

. More generally,

since �an
- (:2�

�̄ − :1�
� )an is locally generated by

∏

;∈�
G
:1

;

∏

;∉�

G
−:2

;
,

we further have

∏

;∈� ,8
(G;mG; −_;,8 + :1)=;,8

∏

;∉� ,8

(G;mG; −_; − :2)=;,8 ·V(:2�
�̄ − :1�

� )an ⊆ V(:2�
�̄ − :1�

� −�)an. (4.6)

All the Deligne lattices (with different eigenvalues) together give a good :-filtration on 9∗(V). One can

indeed check that the standard cone is adapted to this filtration.

Proof of Theorem 1.2. When G ∈ � �̄ \ � � , Theorem 1.1 and (4.6) imply for :2 > 0

DR� (V(:2�
�̄ − :1�

� ))G ≃ DR� (V(:2�))G ≃ (' 9 �1∗! [=])G ≃ ( 9 �2!' 9
�
1∗! [=])G .

We still need to prove the case when G ∈ � � . We now prove this case. To this purpose, we consider the

morphism

G;mG; : V(:2�
�̄ − :1�

� )an
G −→ V(:2�

�̄ − :1�
� )an

G (4.7)

for ; ∈ � and for :1, :2 > 0. If the rank of ! is 1, then by construction, the local generators of V
an

are

41 =

:∏

;=1

G
_;
;
· 21

for each _; ∈ C satisfying Re(_;) ∈ (−1, 0], and hence the section

∏

;∈�
G
_;+:1

;

∏

;∉�

G
_;−:2

;
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generates V(:2�
�̄ − :1�

� )an locally. In this case, by using the above generator, one can easily check

that the morphism (4.7) is an isomorphism. In general, we can choose a simple sub local system !1 of

! locally around G (hence the rank of !1 is 1) and obtain a short exact sequence

0→ !1 −→ ! −→ !2 → 0.

By the construction of the Deligne lattice, we obtain a short exact sequence of log �-modules from the

above sequence:

0→ V
an

1 −→ V
an −→ V

an

2 → 0.

Therefore, the morphism (4.7) is an isomorphism in general by induction. Since the cone of an isomor-

phism gives an acyclic complex, we thus conclude that

DR� (V(:2�
�̄ − :1�

� ))G

is acyclic for G ∈ � � by (2.2). Since 9 �
2!

is 0-extension along � � , the proof is now accomplished. �

5. Application to �. [s] (hs+v ·M0)
Suppose that h = (ℎ1, . . . , ℎ: ) is a :-tuple of regular functions on a smooth variety . of dimension

<. Let * = . \∏; ℎ; = 0 and 9 : * ↩→ . be the open embedding. Let M* be a regular holonomic

�* -module. Since M̃ = 9∗M* is also regular holonomic, we can assume that M̃ is generated over �.

by some�. -coherent submodule M0. With respect to M0, we consider the �. [s]-module generated by

hs+v for v = (E1, . . . , E;) ∈ Z: :

M
v
h = �. [s] (hs+v ·M0) ⊆ 9∗(hs ·M* [s]) = hs · M̃[s],

where hs+v =
∏

; ℎ
B;+E;
;

and s = (B1, . . . , B: ) are independent variables. The �. [s]-module structure on

hs · M̃[s] is induced by

\ · hs =
∑

;

B;\ (ℎ;)/ℎ; · hs

for any vector field \ on . .

On the other hand, consider the graph embedding of h:

[h : . ↩→ - = . × C:

given by

H ↦→ (H, ℎ1 (H), . . . , ℎ: (H)) for H ∈ . .

We write the coordinates of C: by (C1, . . . , C: ). By identifying B; with − C;mC; we have

9∗(hs ·M* [s]) ≃ [h
+M̃

as �- -modules, where [h
+ denotes the �-module pushforward of [h. In this case, we write

� =

:⋃

;=1

(C; = 0),

and then the �. [s]-module Mv
h

is a �-,�-lattice of [h
+M̃ for every v ∈ Z: . One checks immediately

C±1
; ·Mv

h = M
v±1;
h

, (5.1)
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where 1; ∈ Z: is the unit vector with the only 1 in the ;-position.

Definition 5.1. We define

(i) M
v
h
[s]<a

= M
v
h
⊗C[s] C[s]<a

(ii) M
v
h
(s) = M

v
h
⊗C[s] C(s)

where <a is the maximal ideal of a closed point a ∈ SpecC[s] and C[s]<a
is the localization, and C(s)

is the field of fractions of C[s].
The above definitions are motivated by Ginsburg’s ideas in [Gin86, §3.6-3.8]. Indeed, the case for

: = 1 is discussed using the completion C[[s]] of C[s] with respect to the maximal ideal <0 in [Gin86,

Section 3.6-3.8], while we only need the usual localization but for general : .

By definition, Mv
h
[s]<a

(respectively, Mv
h
(s)) are �. [s]<a

-modules (respectively, �. (s)-modules).

For an �-module M, we consider the duality functor

D(M) = 'H><� (M,�) ⊗�• l• [<],

where� = �•,�• [s],�• [s]<a
or�•(s) and • = . or*. We then define the functor 9! for�-modules by

9! = D ◦ 9∗ ◦ D;

in particular, for �* -modules, 9! is the usual !-extension of �-modules.

We write as . (�) the variety of . over the defining ring � through the base change C→ �, where

� = C[s],C[s]<®0 or C(s). Then �. [s] ⊗C[s] �-modules are �. (�) -modules over the variety . (�).
Using Maisonobe’s results in [Mai16], we can prove the following duality property analogous to that

of holonomic �-modules.

Theorem 5.2. With notations as above, there exists a proper algebraic set / ( C: so that for every
a ∉ / , we have

D(M) @.8.≃ EGC<
�. (�)

(M,�. (�) ) ⊗� l. ,

where M =M
v
h
⊗C[s] � for � = C[s]<a

and C(s).

Proof. By [Mai16, Résultat 1], we know the relative characteristic variety of Mv
h

is Λ ×C: , where Λ is

a conic Lagrangian in )∗. . By definition, one can check that taking characteristic varieties and taking

localization commute. Hence, the �. (C(s)) -characteristic variety of Mv
h
(s) is

ΛC(s) ≔ Λ × C: ×C: SpecC(s).

This means M
v
h
(s) is �. (s) -holonomic. Therefore, the case for � = C(s) follows by, for instance,

[HTT08, Theorem D.4.3.] and the Bernstein inequality (the Bernstein inequality is true for �-modules

over fields of characteristic 0).

When � = C[s], since the Bernstein inequality does not hold for coherent �. (�) -modules (see

[Mai16, §2] for more details), we cannot apply the above argument directly. We take a filtered free

resolution of Mv
h

as a relative �-module over C: . By [Bjo93, Appdedix IV, 4.5 Proposition], we have

that grrel
• (EGC;�. (C[s])

(Mv
h
,�. (C[s]) )) is a subquotient of

EGC;gr•�. (C[s])
(grrel
• (Mv

h), gr•�. (C[s]) )

for every ;, where by definition gr•�. (C[s]) = gr•�. ⊗C C[s].
By [Mai16, Proposition 14] and [Bjo93, A.IV Theorem 4.10], we have 9 (grrel

• (Mv
h
)) = < and

EGC;
�. (C[s])

(Mv
h,�. (C[s]) ) = 0
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for ; < <. Since

supp(grrel
• (Mv

h)) = Λ × C:

by the definition of relative characteristic varieties, grrel
• (EGC;�. (C[s])

(Mv
h
,�. (C[s]) )) is supported on

Λ × C: . Hence, EGC;
�. (C[s])

(Mv
h
,�. (C[s]) ) ⊗� l. is majoré by Λ in the sense of Maisonobe ([Mai16,

Définition 1]). Then by [Mai16, Proposition 8], we conclude that its relative characteristic variety is

⋃

U

ΛU × (;U,

where ΛU is a Lagrangian supported on Λ for every U and an algebraic subset (;U ⊂ C: .

Since the dimension of the support of

EGC;gr•�. (C[s])
(grrel
• (Mv

h), gr•�. (C[s]) )

is < < + : for ; > < (see, for instance, [HTT08, Theorem D.4.4]), (;U is a proper algebraic subset of C:

for every U and for ; > <. Therefore, by [Mai16, Proposition 9], the C[s]-module support of

EGC;
�. (C[s])

(Mv
h,�. (C[s]) ) ⊗� l.

is ⋃

U

(;U ( C
:

for ; > <.

Now we take

/ =
⋃

U,;><

(;U,

which is a proper algebraic subset of C: , and obtain that

EGC;
�. (C[s])

(Mv
h,�. (C[s]) ) ⊗C[s] C[s]<a

= EGC;
�. (C[s]<a )

(Mv
h [s]<a

,�. (C[s]<a ) ) = 0

for U ∉ / and ; > <. Therefore, the case for � = C[s]<a
also follows. �

Theorem 5.3.

(i) For any v ∈ Z: ,

M
v
ℎ (s) = 9∗(hs ·M* (s)) = 9!(hs ·M* (s)) = 9!∗(hs ·M* (s)).

(ii) For v ∈ Z: with E; ≫ 0 for every ;, M−v
ℎ
[s]<®0 = 9∗(hs ·M* [s]<®0 ).

(iii) For v ∈ Z: with E; ≫ 0 for every ;,

M
v
ℎ [s]<®0 = 9!(hs ·M* [s]<®0) = 9!∗(hs ·M* [s]<®0).

Proof. The strategy of the proof is similar to that of [Gin86, Theorem 3.8.1, Proposition 3.8.3 and

Corollary 3.8.4] by applying generalized 1-functions for lattices as in Theorem 4.4.

As we identify B; with −C;mC; , by Theorem 4.4, there exists a generalized 1-function 1v (s) so that

1v(s)Mv
h ⊆ M

v+®1
h ,
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where ®1 = (1, 1, . . . , 1) ∈ Z: , thanks to (5.1) again. Since 1v(s) is invertible in C(s), we conclude that

M
v
h (s) = M

v+q
h
(s) (5.2)

for every q = (@, @, . . . , @) ∈ Z: , and hence

M
v
h (s) = 9∗(hs ·M* (s)) (5.3)

for every v ∈ Z: .

By Theorem 5.2 for D(M* ) in the case for � = C(s), we know that 9!(hs ·M* (s)) is a coherent

�. (s) -module instead of a complex. One can easily check

9! (hs ·M* (s)) |* ≃ hs ·M* (s).

By adjunction, we hence have a natural morphism

9!(hs ·M* (s)) −→ 9∗(hs ·M* (s)),

and we define 9!∗(hs ·M* (s)) to be its image. By duality, 9!∗(hs ·M* (s)) is the minimal extension of

hs ·M* (s).
By minimality, we have for every v ∈ Z:

9!∗(hs ·M* (s)) ↩→M
v
h (s)

and the quotient is supported on . \*. By coherence and nullstellensatz, we see that if @ ≫ 0,

M
v+q
h
(s) ↩→ 9!∗(hs ·M* (s)),

and hence by (5.2) for every v ∈ Z:

M
v
h (s) = 9!∗(hs ·M* (s)). (5.4)

To prove the second equality in the first statement, we use duality. By (5.3) and (5.4), the natural

morphism

9! (hs ·M* (s)) −→ 9∗(hs ·M* (s)) (5.5)

is surjective, and we denote the kernel by  , which is a holonomic �. (C(s)) -module. It is clear that

D(hs ·M* [s]) ≃ hs · D(M* ) [s] and D(hs ·M* (s)) ≃ hs · D(M* ) (s).

Since D ◦ D is identity, we then have

D( 9∗ (hs ·M* (s))) = 9! (hs · D(M* ) (s))) and D( 9! (hs ·M* (s))) = 9∗(hs · D(M* ) (s))).

Therefore, we have an exact sequence

0 −→ 9!(hs · D(M* ) (s)) −→ 9∗(hs · D(M* ) (s)) −→ D −→ 0.

Replacing M* with DM* , we have

9∗(hs · D(M* ) (s)) = 9!∗(hs · D(M* ) (s)),

and hence D and  are both 0. Therefore, the morphism (5.5) is identity.

One observes that for v ∈ Z: with E; ≫ 0 for every ;, the 1-functions 1v(s) and 1−v(s) are invertible

in C[s]<®0 , and the second statement follows.
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Now we apply Theorem 5.2 for M−v
h

and obtain a proper algebraic subset / . Since Z: is dense in

CA (with respect to the Zariski-topology), we conclude that ®0 ∉ / for certain E; ≫ 0 with ; = 1, . . . : .

Therefore

9! (hs ·M* [s]<®0)

is also a coherent �. (C[s]<®0 )
-module instead of a complex. Hence, we can define 9!∗(hs ·M* [s]<®0 ) to

be the minimal extension of hs ·M* [s]<®0 similar to how we define 9!∗(hs · D(M* ) (s)).
We know that 9∗ (hs ·M* (s)) is the localization of 9∗ (hs ·M* [s]<®0) at the generic point of SpecC[s]<®0 .

One can easily check that the duality functorD commutes with localization (at prime ideals insideC[s]).
Hence, we have

D( 9∗ (hs ·M* (s))) = D( 9∗(hs ·M* [s]<®0)) ⊗C[s]<®0 C(s). (5.6)

We also have a commutative diagram

9!(hs ·M* [s]<®0) 9∗(hs ·M* [s]<®0)

9!(hs ·M* (s)) 9∗(hs ·M* (s)).=

(5.7)

The second vertical morphism is injective as 9∗ is exact. By applying (5.6) for DM* , to conclude that

the first vertical morphism is injective, it is enough to prove that the morphism given by multiplication

by 11(s)

9!(hs ·M* [s]<®0)
·11 (s)−−−−→ 9!(hs ·M* [s]<®0 )

is injective for every polynomial 11 (s) ∉ <®0. Indeed, if on the contrary the morphism

9!(hs ·M* [s]<®0)
·11 (s)−−−−→ 9!(hs ·M* [s]<®0 )

has a non-zero kernel K, then K is majoré by a Lagrangian over C[s]<®0 . Since K is killed by 11(s), the

relative characteristic variety of K has dimension < = + : and hence the graded number 9 (K) > = (see

[Bjo93, Definition A.IV.1.8]). But by [Bjo93, Proposition A.IV 2.6], 9!(hs ·M* [s]<®0) is =-pure over

�- [s]<®0 (thanks to Theorem 5.2 again), and hence 9 (K) = =, which is a contradiction. Therefore, the

first horizontal morphism in Diagram (5.7) is injective, and we conclude that

9!(hs ·M* [s]<®0) = 9!∗(hs ·M* [s]<®0).

Running the argument in proving (5.5), we also obtain

M
v
ℎ [s]<®0 = 9!∗(hs ·M* [s]<®0 )

for v ∈ Z: with E; ≫ 0 for every ;. �

Corollary 5.4 (⇒Theorem 1.3+Theorem 1.4). For v ∈ Z: with E; ≫ 0 for every ;, we have quasi-
isomorphisms

C
L
⊗C[s] M−v

h ≃ 9∗M* and C
L
⊗C[s] Mv

h ≃ 9!M* .

In particular, for v ∈ Z: with E; ≫ 0 for every ;,

M
−v
h

(B1, . . . , B: )M−v
h

≃ �. · (
∏

;

ℎ
−E;
;

M0) = 9∗M*
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and
M

v
h

(B1, . . . , B: )Mv
h

≃ 9!M* and 9!∗M* = �. · (
∏

;

ℎ
E;
;
M0).

Proof. It is obvious that

C
L
⊗C[s]<®0 hs ·M* [s]<®0 ≃M* .

As 9∗ is exact, we have

C
L
⊗C[s]<®0 9∗(h

s ·M* [s]<®0) ≃ 9∗M* . (5.8)

Since

C
L
⊗C[s] M−v

h ≃ C
L
⊗C[s]<®0 M

−v
h (<®0),

using Thoerem 5.3 5.3 and (5.8), we get for v ∈ Z: with E; ≫ 0 for every ;

C
L
⊗C[s] M−v

h ≃ 9∗M* .

One can check that the functors C
L
⊗C[s] • and D commute. Hence, we have for v ∈ Z: with E; ≫ 0 for

every ;

C
L
⊗C[s]<®0 M

v
h [s]<®0 ≃ D( 9∗(h

s · (DM* ) [s]<®0)
L
⊗C[s]<®0 C) ≃ D( 9∗ (DM* )) = 9!M* .

Therefore we obtain for v ∈ Z: with E; ≫ 0 for every ;

C
L
⊗C[s] Mv

h ≃ 9!M* .

We have proved the first statement.

Using the Koszul resolution of C as a C[s]-module, the first statement implies

M
−v
h

(B1, . . . , B: )M−v
h

≃ 9∗M* and
M

v
h

(B1, . . . , B: )Mv
h

≃ 9!M* .

Applying the argument of the proof of the equation (5.3), one obtains

�. · (
∏

;

ℎ
−E;
;

M0) = 9∗M* .

The proof of �. · (
∏

; ℎ
E;
;
M0) = 9!∗M* is similar to that of (5.4) (see also the proof of Lemma 3.8.2

in [Gin86]). �

6. Index theorem for lattices

For regular holonomic �* -modules, using the microlocalization of the sheaf of logarithmic differential

operators, Ginsburg [Gin89, Appendix A.] proved the following deep theorem:

Theorem 6.1 (Ginsburg). If M* is a regular holonomic �* -module, then for every lattice M of M* ,
we have

SSM* = SSM,

where SSM* is the closure of SSM* inside )∗ (-, �).
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Suppose that 5 : (-, �) → (., �) is a morphism of smooth log pairs with dim - = = and dim. = <.

We consider again the diagram of the log Lagrangian correspondence of 5

)∗(-, �) ?1←− - ×. )∗ (., �)
?2−→ )∗ (., �).

Analogous to the functor 5♯, we define a morphism between Chow rings

5♯ : �•) ∗ (-,�) −→ �•) ∗ (. ,�)

by

5♯ (•) = ?2∗ (?∗1 (•)),

where �•
) ∗ (-,�) and �•

) ∗ (. ,�) are Chow rings of )∗ (-, �) and )∗ (., �), respectively.

We first recall some preliminaries of the intersection theory. The Riemann-Roch morphism g is

g :  coh(�−) −→ �•−

given by g−(•) = ch(•).td(�−), where− represents a complex algebraic variety and ch denotes the Chern

character and td(�−) the Todd class of the tangent sheaf. Let us list some Riemann-Roch formulas that

are needed (see [Ful98, Chapter 15.]):

(i) 6∗ ◦ g ≃ g ◦ '6∗, for every proper morphism 6.

(ii) g ◦ !ℎ∗ ≃ td([)ℎ]) · (ℎ∗ ◦ g) for every local complete intersection morphism ℎ, where [)ℎ] is the

virtual tangent bundle of ℎ.

(iii) g(V ⊗ U) ≃ ch(V) · g(U) for U ∈  coh(�−), and V is a class of a vector bundle.

Lemma 6.2. For every lattice M of a regular holonomic �* -module, we have

g([g̃r�•M] ⊗ [l 5 ]) = [SSM] .

Proof. We know that  coh(�−) has a decreasing filtration �• by the codimension of supports. In the

case of the claim, by the construction of multiplicity, we know

[g̃r�•M] ≡
∑

?

<?�?̄ mod �=+1,

where ? goes over the generic points of the support of g̃r�•M and <? the multiplicity (by Theorem 6.1,

SSM is of pure codimension =). Also, we have

g(�?̄) ≡ ?̄ mod �>=
) ∗ (-,�) =

⊕

<>=

�<
) ∗ (-,�) .

Since g is compatible with the filtration �•, by the Riemann-Roch formula 6 we conclude that

g([g̃r�•M] ⊗ [l 5 ]) = [SSM] mod �>=
) ∗ (-,�) .

Since )∗ (-, �) is an affine bundle with fiber dimension =, �>=
) ∗ (-,�) is trivial and the proof is finished.

�

Theorem 6.3. Let (-, �) be a projective log smooth pair with* = - \�. Assume that M* is a regular
holonomic �* -module and M a lattice. Then we have

j(-,DR� (M)) = [SSM] · [)∗- (-, �)] .
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Proof. We consider the log Lagrangian correspondence for the constant map 5 : (-, �) → Spec C:

)∗ (-, �) ?1←− - ?2−→ Spec C.

In this case, the Riemann-Roch morphism over Spec C is just taking the rank of vector spaces. By

Corollary 3.4, we hence have

g(?2∗?
∗
1 ([g̃rM] ⊗ [l 5 ])) = 5♯ [g̃rM] =

∑

8

(−1)8ℎ8 ( 5+M). (6.1)

Since ?1 is identified with the closed embedding )∗- (-, �) → )∗ (-, �), by Lemma 6.2, we have

?∗1g([g̃rM] ⊗ [l 5 ])) = ?∗1 [SSM] = [SSM · )∗- (-, �)]

in �=
- . Since [SSM · )∗- (-, �)] is a zero-cycle on - , by the Riemann-Roch formulas, we have

?2∗?
∗
1 [SSM] = [SSM] · [)∗- (-, �)], (6.2)

the degree of the zero cycle [SSM · )∗- (-, �)] in - ≃ )∗- (-, �).
Finally, by Lemma 2.3, we have a resolution

DR� (�-,�) → l- (�) = l 5 ,

and hence we get

5+M ≃ ' 5∗DR� (M). (6.3)

The proof is done by combining (6.1), (6.2) and (6.3). �

7. Logarithmic deformations of characteristic cycles and a non-compact Riemann-Roch theorem

7.1. Characteristic cycle of �-,� [s] (fs ·M) for rational functions

Suppose that (-, �) is a smooth log pair and f = ( 51, . . . , 5: ) is a :-tuple of rational functions on -

satisfying that the divisor of 5; is supported on � for each ; = 1, . . . , : . Let M* be a regular holonomic

�* -module and M be a �-,�-lattice.

We introduce independent variables s = (B1, . . . , B: ). Since the divisor of 5; is supported on �, we

consider the �-,� [s]-module

�-,� [s] (fs ·M) ⊆ fs · 9∗M* [s] .

By assigning the extra variables B; of order 1, the order filtration �• on �-,� induces an order filtration

�• on �-,� [s] so that

gr�• �-,� [s] = (gr�• �-,�) [s] .

We then can further identify gr�• �-,� [s] with rings of functions on )∗ (-, �) × C: :

gr�• �-,� [s] = c∗�) ∗ (-,�) [s] .

We then can define the characteristic cycle of�-,� [s] (fs ·M) similar to that of coherent�-,�-modules,

denoted by

SS(�-,� [s] (fs ·M)).

It is a conic cycle in )∗ (-, �) × C: .
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Following Kashiwara [Kas77] and Ginsburg [Gin86, §2.2], we define the log analogue of Λ♯. For

a conic cycle Λ of )∗ (-, �) with dimΛ = =, since 3 log 5; (G) is a section of )∗ (-, �) for each ;, we

define the = + :-dimensional cycle Λ
♯
f
⊂ )∗ (-, �) × C: :

Λ
♯
f
= {(b +

:∑

;=1

B; · 3 log 5; (G), s) |b ∈ Λ, c(b) = G, s = (B1, . . . , B: ) ∈ C: }.

Theorem 7.1. With notations as above, for every lattice M, we have

SS(�-,� [s] (fs ·M)) = SS
♯
f
M

in )∗ (-, �) × C: .

Then we obtain an algebraic family of log-Lagrangian subvarieties

?2 : SS
♯
f
M→ C: ,

with the central fiber at 0 a =-dimensional conic cycle. Hence, ?2 gives a deformation of SSM* in the

logarithmic cotangent bundle )∗ (-, �) (by Theorem 6.1).

Proof of Theorem 7.1. Since the divisor of 5; is supported on �, we know that for %(s) ∈ �-,� [s],

%(s) ↦→ f−s · %(s) · fs

defines an automorphism [f of �-,� [B], and it induces an isomorphism

[M : �-,� [s] (fs ·M) ≃M[s]

by

[M (fs · D) = D

compatible with [f . The isomorphism [f induces an isomorphism

[f : )∗ (-, �) × C: → )∗ (-, �) × C:

by

(G, b, s) ↦→ (G, b +
:∑

;=1

B;3 log 5; , s).

We then have

[f (SS(M[s])) = SS
♯
f
M. (7.1)

Now we fix a coherent filtration (M, �•) and define a filtration for �-,� [s] (fs ·M) by

�? (�-,� [s] (fs ·M)) =
∑

|i |+ 9=?
si · fs · �9M,

where si = B
81
1
· B82

2
· · · B8:

:
. We also define a filtration on M[s] by

�?M[s] =
∑

|i |+ 9=?
si · �9M.
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Since [f preserves the order filtration of �-,� [B], [M is also a filtration-preserving isomorphism.

Hence, we obtain that

SS(�-,� [s] (fs ·M)) = supp(gr�• (�-,� [s] (fs ·M)) = [f (SS(M) × CA ).

The proof is now done by (7.1). �

Proof of Theorem 1.7. We let M* be the regular holonomic �* -module of ℱ• under Riemann-Hilbert

correspondence, and let M be a �-,�-lattice. For simplicity, we write Λ = SS(ℱ•), which is also the

characteristic cycle of M. Then the family ?2 : Λ
♯
5
→ C gives a deformation of the central fiber Λ inside

)∗ (-, �).
By Theorem 1.6, we know that

j(*,ℱ•) = j(-,DR� (M)) = [Λ] · [)∗- (-, �)] .

Since ?2 is a deformation of Λ, we know for every 0 ≠ B0 ∈ C

[Λ] · [)∗- (-, �)] = [(Λ
♯
5
)B0
] · [)∗- (-, �)] .

But since Λ is conic, we know

[(Λ♯
5
)B0
] · [)∗- (-, �)] =

∑

E

=Egdeg
log

5
(ΛE ).

�

8. An alternative proof of Theorem 1.6

In this section, we will work with the real cotangent bundles )∗* and )∗ (-, �) that underlie their

complex counterparts.

First, we recall a result of Kashiwara for the Euler characteristic on a non-compact set [Kas85].

Theorem 8.1 (Kashiwara). Let * be a complex =-dimensional quasi-projective variety. Let ℱ be a R-
constructible sheaf on it. Let i : * → R be a �2-function. Set Γ3i = {3i(G) : G ∈ *} ⊂ )∗*. We
assume that suppℱ ∩ {i(G) ≤ C} is compact for any C and SS(ℱ) ∩ Γ3i is compact. Then we have

dim� 9 (*;ℱ) < ∞

for any 9 and

j(*,ℱ) = (−1)=SS(ℱ) · Γ3i .

Note that the extra (−1)= is due to the degree shift between constructible sheaf and perverse sheaf.

In this paper, we work not in )∗* but in its log compactification )∗ (-, �). We shall choose a smooth

real perturbation of zero section Γ3i ⊂ )∗* such that it extends to a smooth section Γ3i in )∗ (-, �).
This Γ3i serves as a perturbation of zero-section )∗- (-, �).

8.1. Real log cotangent bundle and perturbation of zero section

First, we recall that every complex rank = vector bundle � → - has an underlying real rank 2= vector

bundle, denoted as �R. And since intersection of cycles is a topological notion, we may perform smooth

real perturbation to the zero section, instead of algebraic or holomorphic ones.

Pick a point I on the snc divisor �. Assume there are A irreducible component intersects at

I. We choose local complex coordinates centered at I, denoted as G1, · · · , GA , H1, · · · , H: , such that

� = {G1 · · · GA = 0}. The complex vector bundle )∗ (-, �) then has a local frame

3 log G1, · · · , 3 log GA , 3H1, · · · , 3H: .
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For the underlying real vector bundle )∗ (-, �)R, we have obtained the local frame by taking the real

and imaginary parts of the above holomorphic local frame

3 log d1, 3\1, · · · , 3 log dA , 3\A , G8 = d84
8 \8

3H1,', 3H1,� , · · · , 3H:,', 3H:,� , H8 = H8,' +
√
−1H8,� . (8.1)

Let � ⊂ - be a smooth complex hypersurface. A function d� : - → R is a real defining function for
� if, for any local holomorphic defining function CU : *U → C of � ∩*U, we have d� |*U = 5U |CU |.
By a partition of unity argument, we see the real defining function for � exists and is unique up to

multiplication by smooth positive functions.

Similarly, if � = ∪8�8 is a simple normal crossing divisor, we say d� : - → R is a real defining

function for � if locally, d� equals the modulus of a complex defining function of � up to multiplication

by smooth positive function. Clearly, we may take d� =
∏

8 d�8 , and hence d� exists as well.

Let d be a real defining function for �. Then the log closure

Γ3 log d := Γ3 log d |* ⊂ )∗ (-, �)

is a smooth section in )∗ (-, �).
Proposition 8.2. Let I ∈ �, and let (8.1) be local coordinates around I. Then

3 log d |I = 3 log d1 + · · · + 3 log d1 +
:∑

9=1

(0 93H 9 ,' + 1 93H 9 ,� ), 0 9 , 1 9 ∈ R.

Proof. Locally, d = 5 |G1 | · · · |GA | for a positive smooth function 5 . Hence

3 log d |I = 3 log d1 + · · · + 3 log d1 + 3 log 5 |I .

We can further verify that 3 log 5 |I has no component in 3 log d8 and 3\8 , for 8 = 1, · · · , A . �

8.2. Log closure of conic Lagrangians

Now we can give the alternative proof of Theorem 1.6. We claim that

[SS(ℱ)] · [)∗- (-, �)] = Γ−3 log d · SS(ℱ) = Γ−3 log d · SS(ℱ) = j(*,ℱ),

where the first equality follows from perturbation of the zero-section and the last equality follows from

Theorem 8.1. The middle equality is proven in the following lemma.

Lemma 8.3. Let Λ ⊂ )∗* be a real analytic conic Lagrangian and Λ ⊂ )∗ (-, �) its closure. Then

Γ−3 log d ∩ Λ = Γ−3 log d ∩ Λ.

Proof. We prove this by contradiction. Suppose the intersection Γ−3 log d ∩ (Λ\Λ) is non-empty and

contains a point @ that lies over I ∈ �. Choose a coordinate patch around I, as in (8.1).

The log cotangent bundle)∗ (-, �) has fiber coordinates [d8 , b\8 , bH, 9,', bH, 9,� in which the Liouville

1-form can be written as

_ =

A∑

8=1

(
[d83 log d8 + b\83\8

)
+

:∑

9=1

(
bH, 9,'3H 9 ,' + bH, 9,� 3H 9 ,�

)
.

Note that since Λ is a conic Lagrangian, _ vanishes on )Λ.
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Using the curve selection lemma, there exists a real analytic curve W : [0, 1) → )∗ (-, �) such

that W(0) = @ and W(0, 1) ⊂ Λ. We may write W(C) in coordinates of )∗ (-, �) as d8 (C), \8 (C), · · · and

[d8 (C), b\8 (C), · · · .
We consider the line integral ∫

W (0, n )
_, n ≪ 1.

On one hand, the integral is zero, since _ vanishes on 3W(C)/3C ∈ )Λ. On the other hand, if we write in

_ in components, we have

∫

W (0, n )
_ =

∫ n

0

A∑

8=1

(
[d8 (C)

3d8 (C)
d8 (C)

+ b\8 (C)3\8 (C)
)

+
:∑

9=1

(
bH, 9,' (C)3H 9 ,' (C) + bH, 9,� (C)3H 9 ,� (C)

)

As C → 0, by Proposition 8.2, we have

lim d8 (C) = 0, lim [d8 (C) = −1, lim b\8 (C) = 0,

and all other limits for \8 , H 9 ,� , H 9 ,', bH, 9,', bH, 9,� exist. The integral for the 3d/d part gives

∫ n

0

A∑

8=1

[d8 (C)
3d8 (C)
d8 (C)

∼ −
∫ n

0

A∑

8=1

3d8 (C)
d8 (C)

∼ −∞,

whereas the other terms in the integral are bounded. Hence,
∫
W (0, n ) _ = −∞, and we have a contradiction.

This proves the lemma. �
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