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A NOTE ON THE RANDOM WALK MODEL
ARISING IN DOUBLE DIFFUSION
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Abstract

The discrete random walk problem for the unrestricted particle formulated in the double
diffusion model given in Hill [2] is solved explicitly. In this model it is assumed that a
particle moves along two distinct horizontal paths, say the upper path 1 and lower path 2.
For 1 = 1 , 2 , when the particle is in path j , it can move at each jump in one of four
possible ways, one step to the right with probability />,-, one step to the left with
probability qt, remains in the same position with probability r, or exchanges paths but
remains in the same horizontal position with probability s, (/>, + q, + r, + s, = 1). Using
generating functions, the probability distribution of the position of an unrestricted
particle is derived. Finally some special cases are discussed to illustrate the general result.

1. Introduction

The classical random walk model is generalized by Hill [2], so that a particle
moves along one of two distinct paths 1 and 2 as follows. For i = 1,2, the particle
is in path i and at each jump it moves one step to the right with probability/*,,
one to the left with probability qt, remains in the same position with probability r,
or exchanges paths but remains in the same position with probability s, (p, + q,
+ r, + Sj — 1). These probabilities are assumed to be independent of the position
of the particle. The purpose of this article is to deduce explicit expressions for the
probability distribution of the position of an unrestricted particle. This problem is
formulated in Hill [2], but not solved, although means and variances are given. As
noted in the review paper Hill [3] the corresponding problems for the two models
continuous in time but with discrete space, and continuous in both space and
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time, can however be solved explicitly. Here we give the corresponding expres-
sions for the fully discrete formulation of the model.

Let u'k n, v'k „ (i =1,2) denote the probabilities that the particle is at position k
in paths 1 and 2 respectively at the «th step given that its initial position is at the
origin in path i. For the unrestricted particle we have the following forward
equations

"*.n+l = Plu'k-l.n

v'k,n+\ = PlVk-\,n + hV'k.n + Wk+l.n + *!<„> 0-1)

for / = 1,2 with the initial conditions

"*,o = 8*,o> » U = 0> "*,o = °. vl,o = sk,o> 0 - 2 )

for all integers k, for integers n > 0 and where 8tj is the usual Kronecker delta.
This formulation differs slightly from the approach of Hill [2]. We solve (1.1)
subject to the initial conditions (1.2) in Sections 2 and 3 using generating
functions. In the final section, the formulae obtained are illustrated with special
cases.

In this section, for comparison we note the solution of the forward equation for
the standard random walk model with three possibilities. Given

»k,n+\ =PUk-l,n + rUk,n + <lUk+\,m 0 - 3 )

for all integers k and for integers n > 0, the generating function

Un{z)= 1 uk<nz
k, (1.4)

satisfies

UH+l(z) = (pz + r + q/z)Un(z), (1.5)

which gives

l/n(z) = W(z)n, (1.6)

where ir(z) — pz + r + q/z. Expanding w(z)" as a power series of z, and taking
the coefficient of z*,we obtain the probability distribution uk n given by

,, = y "-P 9 r / i 71

mo (m+ k)\m\(n-2m-k

where m0 = max(0, —k) (see Cox and Miller [1], page 26).
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2. Formulae for generating functions

Let £/n'(z) and VJ(z) denote the ^-generating functions of the probability
distributions u'k „ and v'k „ respectively. For / = 1 we have from (1.1) and (1.2)

PB'+1(*) - K(z) = (o,2(z) - s2)Vj(z) + stf(z), (2.1)

where the functions «,(z) are defined by

<o,(z) = p,z — (pi + q,) + qjz (i = 1 , 2 ) (2-2)

and the initial conditions are

U0\z)=l, Vo
l(z)=O. (2.3)

Define the double generating functions

Ul(z,S)= 1 Un\z)S", V\z,S)= 1 K;(z){». (2-4)
n=0 n=0

Then from (2.1) and (2.3) we obtain

SU\z, S) = r -——— i r
 2 2 —;

{[(1/^ — 1) — «,(z) + 5,J[(1/^ — 1) — «2(z) + s2\ -
. . . j i

Let w+(z) = [
given by

Now

where

p± = (

w,(z) + w2(z)]/2 and w_(z) = [i

= j + w ( 2 ) _ s>

p,±p2)/2, Q± = (q\±q2)/

(2.5)

T,(Z) — w2(z)]/2 where w,(z) is

(i = 1,2). (2.6)

G*A (2-7)

2, /?:t = (r1 ±r2)/2, (2.8)

so that from (2.5) we have
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On expanding (2.9) as a power series in £ we have

( 2 1 0 )

where

0+ = n+ (z) +[»_ (zf + s,s2]
V2, 0_ = TT+ (z) -[„_ {zf + sxs2\

/2.
(2.11)

The appearance of the square root term in (2.10) makes it difficult to proceed
any further in obtaining the probabilities u\ „ and v\ „. In order to overcome this
situation we make use of the identities

0l±0»_=[{0++d_)/2\n{{\+x)n±{\-x)"}, (2.12)

where

x = (6+ -0_ ) / (6+ +0_)= [«_ {zf + Sis2]
 l/2/*+ (z). (2.13)

From the above expression we obtain

(01-0"-)

}s2\

and

- 2 , 7 + ( z ) 2 2 / + ] , (2.14)
10 vKz)+ s}s2\ 1=0

where

Lo = «/2 — 1, L, = H/2 for « even,

Lo = L, = (n - l ) /2 for n odd. (2.16)

These results permit writing Uj(z), Vn'(z) as double series in -n+ (z) and w_ (z).
These in turn are expressible as series in z of the form
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where P± , Q+ and R ± are given by (2.8) and

Jo = m a x ( 0 , - / ) , J0 = max(O, -g). (2.18)

Thus
n-2l+2m

v+(zy-2lv_(z)2m= 2 Tt.-W*. (2-19)
* = -(n-2/+2m)

where the coefficients yatb,c
 a r e defined as the convolution

ya,b,c= 2 aa-H,baH,c> (2-2°)

where / /0 = max(a — b, —c), / / , = min(a + b, c), and

(b-a)/2 b\Pk + "Ok Rb~2k~a

C (221)

and Ko = max(O, —a). Substituting these results in the series obtained for t/n'(z)
and Kn'(z) and using the double sum

N j N N

2 2 a,,,- 2 2<W (2-22)
y=o z=o y=o i=j

we obtain

n-2l

1=0 m = l
2 (2"m)(7
/
2 \2w'

Lo . \ / \ n — 21

1=0 m = l

(2.23)

v\( \ _ y y
/=0 m = /

Similar expressions can be obtained for U?(z) and Kn
2(z) from ^ ' (z) and Uj(z)

respectively by simply interchangingpt andp2, qx and q2, rx and r2 and 5, and 52.

3. The probability distribution of the position of the particle

In this section, the probability distribution of the position of the particle is
given. The probabilities u'k n and v'k „ are obtained from the coefficients of zk in
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the generating functions U^(z) and V^z) respectively. The final results for / = 1
are

n/2-\k/2\ [n/2]
Uk,n = 2 2 [2m)(ni

1=0 m = l

+ 2 2 [2^+ ]){ni)(S\S2)'yk,n-2m-\.2(m-l)+l> (3-0
/=0 m = l

for — n «s A: =£ n and where [j>] denotes the largest integer less than or equal to y
and h = n /2 - | k/2 \ -Sk0/2. Further

»*.« = * i 2 2 (2m"+ I)(7)^«52)'Y*.--2».-IA»-/)» (3-2)

/=0 m = /

for — (n — 1) < k < (n — 1). Similarly for / = 2 we have

h [n/2-1/2]

"L = * 2 2 2 ( 2 m + 1)(7)^'J2)'^.«-2'»-i.2(«.-/)' (3-3)
1=0 m = l

for - ( / i - 1) < A: < (n - 1). Further

2 - 4 % ( \ ( ] ( y
° 2 2 ^ 2 W j \ / / y y ' V*: ,«-2m,2(m-/ )

/=0
/, [n/2-1/2]/, [n/21/2]

- 2 2 ( 2 # n ' + i ) ( 7
/0 l/=0

for — n < k < n. Thus the probability that the particle is at position k, of path 1
at the nth step, uk „, is given by

"*.» = "o«*,« + »o«l.«. (3-5)
and the probabiUty that the particle is at position k of path 2 at the nth s tep ,^ „,
is given by

( 3 6 )
where «0 and o0 are the probabilities the particle is initially at the origin in paths
1 and 2 respectively.

4. Special cases and examples

In this section we illustrate the results obtained with some special cases and
examples. Firstly we check the case where /», = p2— p, qt = q2

 = Q, >"\ = r2 = r
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and J, = s2 = s. This should give a simple random walk model with the probabil-
ity of the particle being in the same position to be r + s. Thus equation (2.8)
becomes

P+=P, Q+ = q, R+ = r, P_ = Q_ = R_ = 0, (4.1)

which gives together with (2.19), (2.20) and (2.21) that

«7,b = sajcfibjo> V6,c = < A , o - (4-2)
Hence equations (3.1) and (3.2) reduce to, for — n ̂  k < n,

(n-\k\)/2

<n= 2

while for - ( « - 1) < k < (n - 1)

<„= 2

Thus the probability that the particle is in position k at the nth step, starting from
the origin is given by

i=0

( " ~ * ) / 2

"*'<-..

where mo = max(Q,—k). Notice that this result does agree with that of the
classical random walk model (see (1.7)).

Secondly, consider the case J, = 0, in which downward transitions are forbid-
den. Then the equations (3.1) and (3.2) give

y 2
m=0 m=0

and uJt „ = 0 for all k such that — n < A: =£ n. Further (4.6) reduces to

<•= 2 (")Y*.-,.I.
01 = 0

which can be shown to take the form of a simple random walk model with
parameters p,, qt and r,. Now consider the probability the particle is in position n
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at the Hth step. From (3.1) and (3.2) we have

\2m-

[8 ]

<„ =
m=O

= Pl

= 0.

— 0 + ,n-(2m+l),2m+l

(4.8)

Hence,

= f ^ (4.9)

Similarly we can show that

U-n,n = U0?l"> V-n n ~ Uo92- (4-10)

Finally we give explicitly the probability distributions for n — 2 and n = 3 from
(3.1) and (3.2). Using (4.8) we can easily obtain the probabilities w±2,2, u±2,2,
"±3,3» u=t3,3- I n order to obtain the remaining probabilities, the necessary values
for the y and a* functions are given by Tables 1 and 2. For the case n = 2, which
represents an even number of steps, we have after simplification

„! - ,2 ,
" 0 , 2 "~ ' 1 T * 1 A 2

" - 1 , 2 =

(4.11)

ya b c in terms of

TABLE 1

functions for special values of a, b and c.

y..o

y>ja,j

Yo.i.i

^0,1,2

%A1

Vl.1,1

Yl.1,2

y , 2,1

T2.1.2

Y2,2,l

a7j
at\c
at\c
a,+

2c

a ^ t
a i + i c

a l+2£

(i, J
('. 7

r-i I "'"̂
i l l 2 + a

*-l 1 ^"a

^ , +aj
^2 +«ot
«!,_, +a

= 0,
= 0,

o,\ao.

ot2«a
1«U

1 « U

it2aa
« ^ 2

2«ai

1
1

2

+

,2 , . .
,2 , . .

+ a^
+ a l

a-i,i

+ «(t;

)
)

i,iai7i

l,lttlT2

1,2«U

B y
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TABLE 2

a * functions appearing in Table 1, in terms of P± , Q± and R ± (a^0 = 1).

<2

<2

n

n 2 i ^ p *~\

OP Ti

PI

*\ P J? | Q p 2 ^\

For n = 3, which represents an odd number of steps, simplification yields

xr2 + 2plql + 2p2q2 + p2qx + pxq2),
«o,3 = r\

M - i ,3 =

f =

=

"-2,3 =

2Plr2+P2r\ +

tf 2SIS2<1\

(4.12)

Such expressions might be expected, and provide a check on the general result.
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