
 Numbers in a Nutshell

This is a book about what numbers are and where they come from, as

understood through their materiality, the material devices used to

represent and manipulate them: things like fingers, tallies, tokens,

and symbolic notations. This book is concerned with the natural or

counting numbers – the sequence one, two, three, four, and so on, and

maybe as high as ten or twenty or hundred – that are the basis of

arithmetic and mathematics. While the book focuses on how con-

cepts of number emerge and ultimately become elaborated as arith-

metic and mathematics through the use of material devices, it will

also examine related phenomena, like the way numbers vary cross-

culturally.

This book examines numbers through the lens of archaeology.

Why archaeology, of all things, is a reasonable question, since

numbers are not the sort of thing that can be dug up from the ground

or analyzed in the lab, the activities typically performed by most

archaeologists. However, archaeology is also the science of material

objects, and here we are looking at numbers through their material

component, the counting devices used to represent and manipulate

them. These devices include distributed exemplars (these are objects

like the arms or the hand, whose dependable quantity is used to

express quantities like two and five); the fingers used in counting;

tallies and other devices that accumulate quantity; tokens and forms

like the abacus that accumulate, group, and permit the manipulation

of quantity; and numerical notations. As noted in the preface, some of

these forms are unconventional as material devices, but will be

treated as such for the purposes of this analysis.

We are also taking a cognitive approach to material objects.

Accordingly, we will consider how and why material objects


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contribute to numerical concepts and numerical thinking, past and

present. This will require us to consider the material devices used in

numbers as having a role in conceptualizing and thinking about

numbers. We will consider material devices to be an implicit part of

the cognitive system for numbers, and this approach and the theoret-

ical framework used are explained in later chapters.

To understand what material devices do in numerical concep-

tualization and thinking, we will also need to look beyond the archae-

ological data and consider data from other disciplines, particularly

psychology and neuroscience, paleoneurology, biological anthropol-

ogy and zoology, linguistics, and ethnography. The interdisciplinary

data provide information that is useful for attesting or explaining how

material forms function in numbers. For example, contemporary lan-

guages often attest to ancient finger-counting in forms like six that

mean five and one and in productive terms that show counting struc-

tured by the number of fingers, like ten (the number of the fingers) and

hundred (the number of the fingers counted by the same amount).

Similarly, neuropsychology provides insight into neural interconnec-

tions within the brain that explain why finger-counting is ubiquitous

and cross-culturally prevalent. Such data are also useful for under-

standing what numbers are as concepts. This understanding is vital

when investigating the questions of how, when, and why numbers

began, as it necessarily informs what we look for in the archaeological

record and how we interpret what we find there. Thus, we will begin

by looking at what numbers are as concepts.

    

Number is formally defined as “a unit belonging to an abstract
mathematical system and subject to specified laws of succession,
addition, and multiplication; an element (such as π) of any of many
mathematical systems obtained by extension of or analogy with the
natural number system.”

(Merriam-Webster, 2014, def. 1c2 and 1c3)

    
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As formally if somewhat circularly defined, a number is an element of

a mathematical system obtained by extending or analogizing the

natural numbers,1 which are also known as the counting numbers,

the whole numbers, or the integers – one, two, three, and so on.

Numbers are the basic elements of a mathematical system, so all of

the things that we think of as arithmetic and mathematics develop –

or have the potential to develop – once a basic counting sequence

is available.

As stated, the formal definition is arguably an unsatisfactory

basis for our stated goal, which is understanding numerical emergence

and elaboration through the material devices used for representing

and manipulating numbers. We need a definition that specifies

numbers in terms of their properties – particularly those properties

that can be associated with and explained by the material devices

used, and which can be empirically established through the devices

and properties of different cultural number systems.

We will start by considering the old and deeply philosophical

questions of what numbers are as concepts – what the Greek philoso-

pher Aristotle might have called their essence, the properties that give

an entity or a substance its identity and nature. Here we will examine

what numbers are as concepts by specifying their properties.

A number, first and foremost, is the idea of how many of some-

thing there are, a distinct or discrete amount. This is cardinality, or

how many of something there are in a group of objects. For example, a

trio has three members, a property of threeness, and the number three

is how many members all trios have in common.2 In offering this

definition, the philosopher and mathematician Bertrand Russell dis-

tinguished a property of a particular trio (threeness) from a property

shared and instantiated by all trios (the number three). The former is

the property of having three members and is applicable to a particular

trio. The latter is a number, a property of all the sets with that many

members. The distinction between the quantity of a particular set and

1 Merriam-Webster, 2014. 2 Russell, 1920.

    
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the idea that a number is a quantity shared by two or more sets is

consistent with the idea that number begins as the perception of

quantity: The first is something we can appreciate through the per-

ceptual system for quantity when there are no more than three or four

members, while the second is the conceptualization of that quantity

as a number. We will look at how material forms are used as a second

(or “reference”) set to express perceptible quantity, which helps us

visualize, understand, and express quantities that lie beyond the per-

ceptible range of about three or four.

A number also has a specific place in a counting sequence. This

is ordinality, numbers in order. For example, six is the number

between five and seven. In any counting sequence, numerical order

is based on increasing size: It is five, six, seven, eight, and never six,

five, eight, seven or any of the other permutations possible – though

granted, the sequence eight, seven, six, five might preface an annual

cheering of Happy New Year! in Times Square or follow the phrase

“ten seconds to liftoff” at NASA. When whole numbers or integers are

counted in sequence, each number is one more than the one it

follows. In the sequence one, two, three, three follows two and is

one more than two, and two follows one and is one more than one.

While the relation of one-more is implicit to an ordinal sequence of

counting numbers, it is not necessarily explicit. After all, ordinality is

no more than ordering, and as such, is as equally applicable to

sequences like the letters of the alphabet or the days of the week as

it is to a sequence of counting numbers. Ordinality does not fix the

interval between any of the members of any sequence. Discovering

that the interval between counting numbers is one is a matter of using

material devices, where each new notch on a tally, for example, can be

visually discerned as one-more than the previous notch in the process

of making them.

Numbers have the potential for many more relations between

them than just one-more. For example, six is the result of adding four

and two, one of the many additive combinations that produce this

number; others are three plus three, five plus one, eight minus two,

    
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and thirteen minus seven. Even one, two, and three are potentially

related to each other in more ways than just the one-more of an

ordinal counting sequence, since for example, three is two more than

one. Just like the explicit one-more relation between sequential

numbers was a matter of elaboration, so too are any other explicit

relations between numbers. What is required for such elaboration is a

manipulable technology like pebbles or tokens, objects that can be

rearranged into different subgroups.

Numbers – or rather, the relations between them – have the

potential to be manipulated by means of operations like addition and

subtraction. Operations can involve explicit relations between

numbers. For example, knowing the relations between two, four,

and six permits the addition of two and four to obtain six, the

subtraction of two from six to obtain four, and the subtraction of

four from six to obtain two. It is also possible to add and subtract

without explicit relations. For example, two groups of like objects

can be commingled, and the whole counted to obtain the total

without knowing any relations between numbers. This is true of

numerical counters as well, since the beads on an abacus can be

moved without the numerical relations being explicit. In any case,

when relations are explicit, they facilitate the ability to compute

mentally, rather than mechanically. Such relations are essential to

mental – or, more accurately, knowledge-based – calculation. The

corollary to that thought is this: When such relations do not yet

exist, knowledge-based calculation is not yet possible. We will look

at how material forms support the emergence of mechanical and

knowledge-based calculation.

Not all numbers have attributes like the meshwork of potential

relations – for example, two being the square root of four and the

difference between 1,245,762 and both 1,245,760 and 1,245,764 – that

characterize Western numbers. These are numbers in a decimal or

base 10 system typically written in the familiar Hindu–Arabic

notations (0 through 9). We are particularly interested in the differ-

ences between cultural number systems, not only because they are

    
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fascinating, but also because they are potential clues to where

numbers come from and how they become elaborated over time.

    

The working definition of number used here is this: Numbers are

concepts of discrete quantity, arranged in magnitude order, with rela-

tions between them, and operations that manipulate the relations

(Fig. 1.1). As a system of numbers elaborates, it will also acquire a

productive base, a number upon which other numbers are built. For

example, in Western numbers, the number ten serves as the

. . The working definition of number. The definition focuses on five
key properties: discreteness, magnitude ordering, relatedness, operational
manipulability, and productive grouping. Image by the author.

    
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productive base, as it is repeatedly added or multiplied to produce

values like twenty (either 10 + 10 or 10 � 2), thirty (10 + 10 + 10 or

10 � 3), hundred (ten tens or 10 � 10), and thousand (ten hundreds or

10 � 10 � 10).

These qualities are simply, no more and no less, what Western

readers will already know about numbers from what they have been

exposed to through culture and language and have learned through

formal education. Granted, many readers may not have thought ex-

plicitly about numbers in terms of such properties before. Readers

have also learned algorithms, or sequences of operations, that enable

them to do things like add columns of numbers, divide one number

into another regardless of which one is larger, and convert fractions

from ratios to decimal format. While algorithmic insight will not be

much called upon here – since our interest lies more in how such

computations are performed, rather than performing such computa-

tions – readers can nonetheless use their existing knowledge of

numbers and computations as a basis for gaining new insights into

how such things become elaborated from a sequence of counting

numbers, say, the numbers one through ten.

    



People are enculturated into the numbers of their society from day

one. For example, people in the Western tradition are exposed to

objects that have quantity and can be counted; social behaviors like

counting and finger-counting; social purposes like inventorying that

involve numbers; material representations of numbers like written

symbols and tally marks; and different forms of numbers in language.

This means that most readers will have a considerable knowledge of

numbers, whether or not that knowledge is explicit in the particular

ways used here.

Something to keep in mind about our familiar Western numbers

is that the Western numerical tradition is quite old. Its roots lie deep

in the world’s ancient mathematical traditions, those of Rome,

    
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Greece, India, Egypt, and Babylon, traditions with even deeper tem-

poral roots in counting sequences and practices that would have

developed during the Neolithic and Upper Palaeolithic. The world’s

earliest known unambiguous numbers are numerical impressions in

clay found in Mesopotamia in the mid-fourth millennium BCE.3 Since

Mesopotamian numbers are one of their roots, this makes Western

numbers at least 5000 or 6000 years old. Undoubtedly, Western

numbers are considerably older – perhaps 20,000 or 30,000 years

old – given that the Mesopotamian numbers were already signifi-

cantly elaborated by the time they first appear in the archaeological

record. As if this timespan were not already impressive enough,

Western numbers are likely to be older still, if archaeologists are

correct in interpreting 42,000-year-old notched bones as tallies4

(Fig. 1.2, top) and 77,000-year-old shell beads as rosaries5 (Fig. 1.2,

bottom). This impressive lifespan means that Western numbers have

had a lot of time to change, and indeed, they have become highly

elaborated, acquiring properties that are not necessarily shared by

numbers in other cultural traditions.

. . Possible prehistoric counting devices. (Top) Notched bone from
Border Cave, South Africa, dated to approximately 42,000 years ago.
(Bottom) Shells punched to be strung from Blombos Cave, South Africa,
dated to approximately 77,000 years ago.
Top image adapted from d’Errico et al. (2012, Supporting Information, Fig. 9, top
image). Image © PNAS and used with permission. Bottom image adapted from one
by Christopher Henshilwood and Francesco d’Errico, distributed under a Creative
Commons license.

3 Schmandt-Besserat, 1992a; Nissen et al., 1993; Overmann, 2016b, 2019b.
4 Beaumont, 1973; d’Errico et al., 2012.
5 Henshilwood et al., 2004; d’Errico et al., 2005.

    
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Readers’ knowledge of the highly elaborated Western numerical

concepts produced by this lengthy history and prehistory is a valuable

resource for understanding the numbers of other cultural traditions.

The key is thinking analytically about what is already known: This

can help in understanding the ways in which other cultural number

systems differ from the Western tradition, and in appreciating the

principles of content, organization, and structure illuminated by

the differences.

  ?      

 ?

Most, but not all, human societies have numbers. And while all

societies that have numbers develop ones that are highly similar in

their content, structure, and organization, no two societies develop

identical number systems. We will look at differences and similarities

between numerical traditions and the reasons for these differences

and similarities. A major reason for similarity is that numbers emerge

from the same perceptual experience of quantity and are represented

with the same devices, things like the hands. Another reason, one that

complicates the attempt to understand numerical emergence and

elaboration, is that societies often borrow the numbers developed by

another. Today, many societies have adopted Western numbers, just

as the West once adopted the Hindu–Arabic notations and used them

alongside the Roman numerals that have since become an archaic

system retained for its prestige value.6 The current prevalence of

Western numbers reflects cultural contact, exposure, borrowing, and

transfer through mechanisms like trade, conquest, and education. In

many cases, the societies borrowing Western numbers had numbers

that were similar to them; in other cases, the numbers differed, and

this is one of the things that would have influenced the ease and speed

with which the Western numbers were adopted. These matters would

6 Chrisomalis, 2020.

    
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have been true of number systems coming into contact in ancient

times as well.

Western numbers differ from other cultural systems of number.

As noted, they have become adopted by many contemporary societies

on the planet, and they are quite old, so they have become highly

elaborated, the basis for the complex mathematics that have

developed in the West.7 They also tend to be what we think of when

we think about what a number is. Unfortunately, we also tend to

superimpose this Western idea of what a number is onto all the other

numbers we encounter, regardless of whether they are Western or not,

contemporary or ancient, or elaborated or not.

One of the reasons for this “backward appropriation”8 – our

superimposing our idea of number onto all numbers, regardless of

place or time – is that we have been taught to think of number as a

thing that is well defined, fixed, and timeless. This idea goes back to

another of the Greek philosophers, Plato. He thought numbers were

real, by which he meant abstract, immaterial, invisible, intangible,

nonmental, external, and eternal entities of the same kind as those

designated by words like “beauty,” “truth,” and “justice.” While no

one, including Plato himself, has ever convincingly explained how we

might come into contact with entities we can neither see nor touch,

the idea that we somehow did has seemed to explain one of the most

interesting qualities of numbers, their universality. That is, everyone

has the same numbers that everyone else does, not personal or idio-

syncratic systems of numbers. This is even true cross-culturally,

despite the variability that is to be found there. While number is not

a monolithic construct, a number is still recognizably a number, no

matter how the details of its properties might differ.

Numbers also work the same for everyone. If we were to add

several numbers together, we would get the same results that every-

one else does: 2 + 2 equals 4, assuming that everyone performs the

calculation correctly. If we were to prove that an equation or

7 Gowers, 2008. 8 Rotman, 2000, p. 40.

    
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mathematical statement was correct, with a mathematical proof

being an argument showing that the stated assumptions of the math-

ematical statement logically entail its conclusion, everyone would

agree that the proof was indeed evidence that the statement was true,

assuming they understood it. If we were to look for prime numbers,

which are numbers that can be evenly divided only by themselves and

one, everyone would find the identical prime numbers. At least part of

the plausibility of Platonic realism flows from this universal quality:

Not only do numbers work the same way for everyone, whatever we

discover about numbers and regardless of whenever or wherever

we discover it, we all discover the same things and we all agree

that they are the same things. Since we all discover the same things

and agree that they are the same things, there is a very real sense

in which numbers are “out there” somewhere, waiting for us to

discover them.

Another reason we superimpose our Western idea of number

onto all numbers is that we can. We can because numbers are so

highly similar between systems. They are so similar, we can even

understand them in different notations (Roman numerals, for

example) and with different bases (in the numbers used with com-

puters, binary has a base of two, while octal and hexadecimal bases are

eight and sixteen, respectively; Roman decimal numerals have a sub-

base of five that our Western decimal numbers lack). Numbers are so

recognizable as numbers that we can even pick them out of unknown

languages or scripts, like the still-untranslated writing known as

Linear A used in Minos, modern Crete, about 4000 years ago,9 or the

still-mostly-untranslated Proto-Elamite script used in Elam, modern

Iran, about 5000 years ago.10 Numbers can also be recognizable when

they are not written, which is why we understand the numerical

component of the khipu, the Inka device of knotted strings.

Nevertheless, identifiability as numbers depends on the degree of

9 Packard, 1974; Corazza et al., 2020. 10 Englund, 1998a, 2004.

    
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numerical elaboration. Ungrouped parallel linear marks, for example,

are commonly found on prehistoric artifacts, but whether they meant

numbers or something else is debatable.

Compare this accessibility with that of language, where a differ-

ent language can be impenetrable, even when we know which one it

is and even if it is written in the same alphabet we use. For example,

that previous sentence, in Google Translate’s best attempt at Greek,

is “Synkrínete aftín tin prosvasimótita me aftí tis glóssas, ópou mia

diaforetikí glóssa boreí na eínai adiapérasti, akómi kai ótan xéroume

poia eínai kai akóma ki an eínai gramméni sto ídio alfávito pou

chrisimopoioúme.” While at least some combinations of letters are

recognizable as meaningful and at least some words might be pro-

nounceable because of an existing familiarity with the way the Latin

alphabet works, the words themselves would not be intelligible with-

out a knowledge of the Greek language.

By comparison, it is easy to understand that the Roman

numeral XVII means 17, and this understanding occurs regardless

of whether we also know that the word seventeen in Latin is sep-

temdecim. This ability to understand different number systems is

asymmetric. That is, when we look at other cultural systems of

number, it is from the perspective of knowing and thinking in

numbers that are highly elaborated, which means that they have

acquired a lot of properties over their lifespan – discreteness,

ordering, relatedness, manipulability, productive grouping, and con-

ciseness. This elaboration enables us to recognize numbers in other

cultural systems, regardless of whether they have the same proper-

ties or fewer. But the converse is unlikely to be true. For example,

some indigenous number systems in South America are relatively

unelaborated: The numbers might count no higher than two or three,

and they might not be discrete, ordered, related, manipulable, pro-

ductively grouped, or concise. This means that these numbers

cannot provide a similar basis for recognizing the properties of other

number systems. We will look at these matters in greater detail in

later chapters.

    
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    

Over thousands of years, Western numbers have become quite differ-

ent from their counterparts in other cultural systems. For example,
� Numbers in the Western tradition are infinite, while numbers in many

cultural systems are finite: They count to a certain point and then stop.

Example: The Desana of the Amazonian Upper Rio Negro region count only

as high as twenty.11

� Western numbers are entities defined by their relations, and they are not as

meaningful in isolation as they are in relation to each other, just like the

relations between notes are what make music music and the relations

between sounds are what make speech speech.12 In comparison, numbers in

other cultural systems are equivalences or collections with fewer relations

between them. Example: The Abipónes, a people who once inhabited the

lowland Gran Chaco region in Argentina, expressed four as “the toes of an

emu,”13 an equivalence used to exemplify collections with the property of

having four members. This number followed three in counting but would

not necessarily have been understood as one-more than three, two-more

than two, or three-more than one.

� Western numbers are discrete, while numbers in other systems can be

approximate. Example: The Mundurukú of Amazonian Brazil count one,

two, about three, and about four.14

� Western numbers can be used to count anything, while in other cultural

systems, numbers might not be used to count animate beings like people,

herd animals, and deities. Different types of objects might also be counted

with different numbers. Example: The Nuer of Africa know their herd

animals as individuals, and so they do not count them.15 The Polynesian

people of Tonga count 100 sugarcane as au, 100 coconuts as fua, 100 pieces

of yam as fuhi, and 100 fish as fulu.16

� Western numbers count one thing each, while in other number systems, a

single number might count a pair of objects together, so that counting to

ten enumerates twenty objects. Example: Tongans count many objects one

by one, but they count sugarcane, coconuts, pieces of yam, and fish in

pairs.17

11 Miller, 1999; Silva, 2012. 12 Plato, 1892. 13 Dobrizhoffer, 1822.
14 Pica & Lecomte, 2008; Rooryck et al., 2017. 15 Evans-Pritchard, 1940.
16 Bender & Beller, 2007. 17 Bender & Beller, 2007.

    
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� Western numbers include zero, a concept that many cultural systems do not

include. Zero emerged relatively late in the Western cultural tradition;

about 4000 years ago, it began as a blank space used to align columns of

numbers to maintain their place value.18 Example: The Romans lacked a

concept of zero, a characteristic for which their numerals are famous. One of

the most interesting aspects of this “lack” is the idea that the number

system was somehow impaired by it. On the contrary, Roman numerals

were perfectly fitted to the abacus and counting boards in use at the time.19

� Western numbers are grouped by tens, and such productive grouping is

known as a number system’s base. Decimal organization is very common

among the world’s many number systems, though number systems can also

be grouped by twenty (vigesimal), five (quinary), twelve (duodecimal), four

(quaternary), six (senary), and eight (octal).20 While these are not all the

known bases, all of them appear to be based on the human hand. Example:

The number system of the Yuki of California was organized by eights,

which is understood as the effect of counting the spaces between the fingers,

rather than the digits themselves, and using both hands.21

� Western numbers do not have a subbase, though many number systems do.

Example: Roman numerals had a base of ten (X [10], C [100], M [1000]) and a

subbase of five (V [5], L [50], D [500]), making them a quinary-decimal

system. The numbers of Sumer, an ancient civilization in Mesopotamia,

had a base of ten and a subbase of six, giving them productive cycles of sixty,

a sexagesimal system.22

� Western numbers are added to produce the next higher number. Not all

counting sequences add to produce the next number. Example: Some

subtract: In Latin, the language of the Roman empire, nineteen (undeviginti)

is one from twenty. Some overcount: In Ainu, the language of an East Asian

group indigenous to Japan, twenty-six is four from ten with twenty.23 And

some anticipate: In Kakoli, a language of Papua New Guinea, eighteen is

two [in the next group of four above sixteen] toward twenty.24

� Western numbers can be represented and/or manipulated with a variety of

material forms, including the fingers, tallies, abacus beads, and written

notations. While finger-counting appears to be a universal behavior – most

18 Rotman, 1987; Kaplan, 2000. 19 Pullan, 1968; Schlimm & Neth, 2008.
20 Comrie, 2011, 2013. 21 Dixon & Kroeber, 1907.
22 Thureau-Dangin, 1939; Lewy, 1949; Powell, 1972. 23 Menninger, 1992.
24 Bowers & Lepi, 1975.
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societies count on their fingers – not everyone uses the same devices.

Today, Western numbers are commonly represented with Hindu–Arabic

notations, but this was not always the case, as we will see, and we still use

all the other forms just mentioned (like tally marks: 卌) and more. Example:

The Oksapmin of Papua New Guinea count to 27 using their body as a tally;

traditionally, the Oksapmin did not use an abacus or notations, though

Western education and currency have introduced notations and decimal

organization in the last decades.25

� Western numbers are often envisioned as being arranged on a linear

continuum, something also known as the mental number line (MNL; see

Fig. 1.3). It is an open question as to whether an MNL is innate or learned,

and whether it is characteristic of all cultural systems of number. Example:

Some investigations have found no evidence of the MNL in humans,26

while other scholars have found evidence of the MNL in other species.27

It is worth noting that language does not readily distinguish

between any of these numbers, regardless of the properties they have.

So for example, a word is translated as three regardless of whether it

concerns the fuzzy Mundurukú about three; the discrete and ordi-

nally sequenced Oksapmin three; the Polynesian three that is related

. . The mental number line is a construct that envisions numbers as
falling along a linear continuum. Opinions are divided on whether the
mental number line represents a cultural invention or an innate biological
disposition. Image by the author.

25 Saxe, 2012. 26 Núñez, 2011; Pitt et al., 2021. 27 Rugani et al., 2015.
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to other numbers by twos, fours, and tens; or the infinitely related,

notationally mediated Western three; and all the other variants

described here and more. This lack of descriptiveness on the part of

language has the effect of flattening the cross-cultural variability,

reinforcing the impression that numbers are more similar than they

actually are.

 - 

Historically, the cross-cultural variability in number systems has

been difficult to explain. This is because the brain has been considered

to be the only place where conceptualization occurs, the brain-

centered or neurocentric model of numerical cognition. When the

brain is considered to perform all the work in conceiving numbers,

cross-cultural variability of structure and organization are taken to

indicate the range of things that the brain can potentially do.

Nevertheless, why the brain does things differently in some cases

but not in others has been difficult to explain in the neurocentric

model, particularly when some societies have many highly elaborated

numbers and others very few. For reasons that are similarly unclear in

the neurocentric model, at some point, the brain decides to external-

ize its internal mental concepts onto external material forms like

tallies and notations, with these devices acting as passive recipients

of that mental content.

What is the alternative to the neurocentric view? The non-

neurocentric model promoted in this book explains cross-cultural

variation as simply the consequence of using different material forms

to represent and manipulate numbers. The material forms used for

these purposes are then considered to precede and inform the resul-

tant numerical concepts and to act as an integral component of numer-

ical thinking. In this model, the brain has less to do; rather than being

responsible for all conceptualizing, its role becomes largely one of

recognizing relations and patterns in the material forms used for

representing and manipulating numbers. The brain remains a critical

component of the cognitive system for numbers, and it is still very

    

https://doi.org/10.1017/9781009361262.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009361262.003


important in an evolutionary sense because leveraging material forms

for cognitive purposes to the degree that humans do is unique among

animal species.28

The non-neurocentric model starts with the visual experience of

quantity and symbolic notations, recognizing both as involving

material forms that are engaged manuovisually – that is, by means

of the hands and eyes. The model then seeks to connect the dots

between these two forms. Bridging the gulf between perceptual

experience and symbolic notations are devices like fingers and tallies

that are also engaged manuovisually to represent and manipulate

number.29 Rather than being the passive recipients of mental content,

external representations have a constitutive role. Their material sub-

stance can be altered in ways that bring forth new meaning.30 Cross-

cultural variability in number systems – including the difference

between highly elaborated and very few numbers – then becomes a

relatively straightforward matter of whether material devices are used

in counting, which ones are used, and how they are used.

     

Numbers also change over time within any particular cultural trad-

ition. For now, we will stick with the one we know best, the Western

tradition. We need not go back as far as their Mesopotamian roots to

see that they have changed a lot over time. In fact, we will look at four

changes that have occurred within just the last thousand years,

selected from among many changes because they are relatively easy

to understand and were likely to have made a difference to the average

person using numbers:

� Zero became a number. About 4000 years ago, Babylonian mathematicians

inserted blank spaces to align the values of columnar numbers. In India

2500 years later, these spaces became a metasign that meant the absence of

any number (“no number goes here!”), and over the last 1000 years in the

28 Overmann & Wynn, 2019a, 2019b; Overmann, 2021f; Wynn et al., 2021.
29 Overmann, 2018a. 30 Malafouris, 2010a.
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West, this metasign acquired a new meaning as a sign for a number with a

specified value, one less than one; a specific place in the ordinal sequence,

exactly between the positive and negative integers; and unique

characteristics, like its inability to divide any other number.31

� One became a number. The ancient Greeks certainly did not consider one to

be a number. Instead, one represented the unity, which was not just the

source of all numbers: It was the source of existence itself. As for numbers,

they began with plurality, which effectively started with two. Be that as it

may, the mathematician Nicomachus apparently doubted whether two was

a number: Just like one was the unity, two represented the dyad, another

metaphysical notion.32 As recently as 1728 CE – only 300 years ago! – the

encyclopedist Ephraim Chambers would observe that the status of one as a

number was still a matter of debate. It did not help matters that any number

multiplied by one yielded the very same number; this unique property likely

reinforced the impression that one somehow differed from all the other

numbers.33

� Hindu–Arabic notations (0 through 9) replaced the Roman ones (I, II, III. . .).

This transition was neither easy nor quick. Merchants and bankers were

initially suspicious of the new notations, particularly of zero, since it

seemed to make falsifying values far too easy: 10 could become 100 by

simply adding another of the dodgy signs.35 In comparison, Roman

’Tis difputed among Mathematicians, whether or no Unity be a Number. –

The generality of Authors hold the Negative; and make Unity to be only

inceptive of Number, or the Principle thereof; as a Point is of Magnitude,

and Unifon of Concord.

Stevinus[34] is very angry with theMaintainers of this Opinion: and yet, if

Number be defin’d a Multitude of Unites join’d together, as many Authors

define it,’tis evident Unity is not a Number.

(Chambers, 1728, p. 323)

31 Rotman, 1987; Kaplan, 2000. 32 Nicomachus, 1926; Evans, 1977.
33 Nicomachus, 1926.
34 Stevinus refers to the mathematician Simon Stevin, who helped influence the

reconceptualization of one as a number in the sixteenth century CE.
35 Ifrah, 1985; Rotman, 1987; Kaplan, 2000.
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numerals were harder to falsify, as it would be impossible to turn X [10]

into C [100] by adding a zero.

� Calculating with algorithms involving learned relations, mental judgments,

and handwritten notations supplanted the mechanical exchange of values

on abaci and counting boards. This transition too was neither easy nor

quick. The debate over whether it was better to calculate by means of

knowledge-based algorithms, rather than by moving beads on an abacus or

the counters known as jettons on a counting board, took centuries to

resolve. The transition also involved contests like the one shown in Fig. 1.4,

something that has persisted to recent decades as contests of speed and

accuracy between the abacus and electronic calculators or computers.36

If we look further back in time, say, another thousand years or

so, Greek philosophical ideas about numbers and other matters were

even more influential. The idea of zero was inhibited by metaphysical

ideas about being (existence, which was good) and non-being (non-

existence, which was a horrifying possibility).37 “Irrational” numbers

like π and √2, which we know today as fractions that neither termi-

nate nor repeat, so greatly challenged conceptions of what numbers

were and how they were supposed to behave that the mathematician

Hippasus, possibly their discoverer, is said to have drowned. Reports

of the incident differ greatly regarding what really happened. Some

accounts have Hippasus punished by the gods for impious behavior;

others say his fellow mathematicians did him in. Some say he per-

ished because he divulged the existence of irrational numbers, others

because he told the secret of how they might be calculated to men

who were not initiates of the philosophers’ guild. One account has

Hippasus throwing himself into the sea, driven incurably mad by the

irrational nature of the numbers in question. Considering that

numbers were foundational to Greek concepts of existence, the idea

that numerical irrationality could be so thoroughly confounding at

least has the virtue of consistency, if a trifle over-exacting of enthusi-

astic devotion.

36 Pullan, 1968; Stone, 1972; Evans, 1977; Reynolds, 1993. 37 Rotman, 1987.
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. . Woodcut from Margarita Philosophica [Pearl of Wisdom],
originally published in 1503 as one of the first printed encyclopedias of
general knowledge. To the left, the Roman mathematician Boethius
calculates with algorithms and notations, while to the right, the Greek
philosopher Pythagoras uses a counting board. Arithmetic personified as a
lady looks on, turned to the left apparently to favor the algorithmic
approach. Image in the public domain.
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    ,   ,
    ?

Despite all this variability between cultural traditions and within any

particular tradition over time, numbers are astonishingly similar. For

one thing, they all have the same cardinality. For another, they all

have the same ordinal sequencing and ordering by increasing magni-

tude. Thirdly, each next number increases over the previous number

by one, though the way in which each next number is derived can be

quite variable, as shown earlier with examples from Latin, Ainu, and

Kakoli. And all numbers demonstrate the same patterns: For example,

the prime numbers are the prime numbers for everyone.

Another of those patterns is an anatomically derived base

number. The ten in decimal comes from the fingers of both hands;

the twenty in vigesimal comes from all the fingers and toes; and the

five in quinary comes from the fingers of one hand.38 A base of four

(quaternary) might indicate counting the spaces between the fingers,

rather than the digits themselves,39 or considering the fingers separ-

ately (counted) from the thumb (not counted). A base of eight (octal)

might simply double the method of counting by fours, much as deci-

mal doubles quinary. A base of six (senary) might emerge from includ-

ing the thumb joint along with the fingers, with twelve (duodecimal)

emerging from its doubling or from using the three segments on each

of the four fingers while omitting the thumb. A base of fourteen uses

the three segments per finger and includes the thumb with its two

segments. As for sexagesimal or the base sixty number system of

Mesopotamia, no one really knows the reason for it. It had a base of

ten and a subbase of six. While ten most likely was related to the

fingers,40 the reason for six as the next higher base has simply been

lost to the passage of time.

Why consider all this variability between cultural traditions and

within any particular cultural tradition over time? While we are

38 Epps, 2006. 39 Dixon & Kroeber, 1907. 40 Overmann, 2019b.
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interested in what changes, we are even more interested in why and

how things change, as these can illuminate aspects of the processes

whereby numbers emerge and become elaborated. And in the process

of learning about these things, we will get an overview of how

numbers work for human societies in all sorts of places and at a lot

of different times: contemporary, historical, and prehistoric.
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