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Abstract
Using new explicit formulas for the stationary Gromov–Witten/Pandharipande–Thomas (GW/PT) descendent cor-
respondence for nonsingular projective toric threefolds, we show that the correspondence intertwines the Virasoro
constraints in Gromov–Witten theory for stable maps with the Virasoro constraints for stable pairs proposed in
[18]. Since the Virasoro constraints in Gromov–Witten theory are known to hold in the toric case, we establish the
stationary Virasoro constraints for the theory of stable pairs on toric threefolds. As a consequence, new Virasoro
constraints for tautological integrals over Hilbert schemes of points on surfaces are also obtained.
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1. Introduction

1.1. Stable pairs

Let X be a nonsingular projective threefold. A stable pair (𝐹, 𝑠) on X is a coherent sheaf F on X and a
section 𝑠 ∈ 𝐻0(𝑋, 𝐹) satisfying the following stability conditions:

• F is pure of dimension 1,
• the section 𝑠 : O𝑋 → 𝐹 has cokernel of dimensional 0.

To a stable pair, we associate the Euler characteristic and the class of the support C of the sheaf F,

𝜒(𝐹) = 𝑛 ∈ Z and [𝐶] = 𝛽 ∈ 𝐻2 (𝑋,Z).

For fixed n and 𝛽, there is a projective moduli space of stable pairs 𝑃𝑛 (𝑋, 𝛽). Unless 𝛽 is an effective curve
class, the moduli space 𝑃𝑛 (𝑋, 𝛽) is empty. An analysis of the deformation theory and the construction
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of the virtual cycle [𝑃𝑛 (𝑋, 𝛽)]
𝑣𝑖𝑟 is given in [28]. We refer the reader to [21, 29] for an introduction to

the theory of stable pairs.
Tautological descendent classes are defined via universal structures over the moduli space of stable

pairs. Let

𝜋 : 𝑋 × 𝑃𝑛 (𝑋, 𝛽) → 𝑃𝑛 (𝑋, 𝛽)

be the projection to the second factor, and let

O𝑋×𝑃𝑛 (𝑋,𝛽) → F𝑛

be the universal stable pair on 𝑋 × 𝑃𝑛 (𝑋, 𝛽). Let1

ch𝑘 (F𝑛 −O𝑋×𝑃𝑛 (𝑋,𝛽) ) ∈ 𝐻
∗(𝑋 × 𝑃𝑛 (𝑋, 𝛽)).

The following descendent classes are our main objects of study:

ch𝑘 (𝛾) = 𝜋∗
(
ch𝑘 (F𝑛 −O𝑋×𝑃𝑛 (𝑋,𝛽) ) · 𝛾

)
∈ 𝐻∗(𝑃𝑛 (𝑋, 𝛽))

for 𝑘 ≥ 0 and 𝛾 ∈ 𝐻∗(𝑋). The summand −O𝑋×𝑃𝑛 (𝑋,𝛽) only affects ch0,

ch0(𝛾) = −

∫
𝑋
𝛾 ∈ 𝐻0(𝑃𝑛 (𝑋, 𝛽)) . (1.1)

Since stable pairs are supported on curves, the vanishing

ch1(𝛾) = 0

always holds.
We will study the following descendent series:〈

ch𝑘1 (𝛾1) · · · ch𝑘𝑚 (𝛾𝑚)
〉𝑋,PT

𝛽
=

∑
𝑛∈Z

𝑞𝑛
∫
[𝑃𝑛 (𝑋,𝛽) ]𝑣𝑖𝑟

𝑚∏
𝑖=1

ch𝑘𝑖 (𝛾𝑖) . (1.2)

For fixed curve class 𝛽 ∈ 𝐻2(𝑋,Z), the moduli space 𝑃𝑛 (𝑋, 𝛽) is empty for all sufficiently negative n.
Therefore, the descendent series (1.2) has only finitely many polar terms.

Conjecture 1 ([28]). The stable pairs descendent series〈
ch𝑘1 (𝛾1) · · · ch𝑘𝑚 (𝛾𝑚)

〉𝑋,PT

𝛽

is the Laurent expansion of a rational function of q for all 𝛾𝑖 ∈ 𝐻∗(𝑋) and all 𝑘𝑖 ≥ 0.

For Calabi–Yau threefolds, Conjecture 1 reduces immediately to the rationality of the basic series
〈 1 〉PT

𝛽 proven via wall-crossing in [2, 31]. In the presence of descendent insertions, Conjecture 1 has
been proven for a rich class of varieties [23, 24, 25, 26, 27], including all nonsingular projective toric
threefolds.

For our study of the Gromov–Witten/Pandharipande–Thomas (GW/PT) descendent correspondence
and the Virasoro constraints, modified stable pair descendent insertions will be more suitable for us. Let2

c̃h𝑘 (𝛼) = ch𝑘 (𝛼) +
1

24
ch𝑘−2(𝛼 · 𝑐2),

1We will always take singular cohomology with Q-coefficients.
2We set chℓ (𝛾) = 0 for ℓ < 0.
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where 𝑐2 = 𝑐2 (𝑇𝑋 ) is the second Chern class of the tangent bundle, and let〈
c̃h𝑘1 (𝛾1) · · · c̃h𝑘𝑚 (𝛾𝑚)

〉𝑋,PT

𝛽
=

∑
𝑛∈Z

𝑞𝑛
∫
[𝑃𝑛 (𝑋,𝛽) ]𝑣𝑖𝑟

𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖)

be the corresponding descendent series.

1.2. Virasoro constraints for stable pairs

Let X be a nonsingular projective threefold with only (𝑝, 𝑝)-cohomology.3 Let

𝑐𝑖 = 𝑐𝑖 (𝑇𝑋 ) ∈ 𝐻
∗(𝑋).

The simplest example is P3 with

𝑐1 = 4H , 𝑐1𝑐2 = 24p,

where H and p are the classes of the hyperplane and the point, respectively.
Let D𝑋PT be the commutative Q-algebra with generators{

ch𝑖 (𝛾)
�� 𝑖 ≥ 0 , 𝛾 ∈ 𝐻∗(𝑋)

}
subject to the natural relations

ch𝑖 (𝜆 · 𝛾) = 𝜆 ch𝑖 (𝛾),
ch𝑖 (𝛾 + �̂�) = ch𝑖 (𝛾) + ch𝑖 (�̂�)

for 𝜆 ∈ Q and 𝛾, �̂� ∈ 𝐻∗(𝑋).
In order to define the Virasoro constraints for stable pairs, we require three constructions in the

algebra D𝑋PT:

• Define the derivation R𝑘 on D𝑋PT by fixing the action on the generators:

R𝑘 (ch𝑖 (𝛾)) =

(
𝑘∏
𝑛=0

(𝑖 + 𝑑 − 3 + 𝑛)

)
ch𝑖+𝑘 (𝛾) , 𝛾 ∈ 𝐻2𝑑 (𝑋,Q)

for 𝑘 ≥ −1. In case 𝑘 = −1, the product is empty and

R−1(ch𝑖 (𝛾)) = ch𝑖−1(𝛾).

• Define the element

ch𝑎ch𝑏 (𝛾) =
∑
𝑖

ch𝑎 (𝛾𝐿𝑖 )ch𝑏 (𝛾𝑅𝑖 ) ∈ D𝑋PT

where
∑
𝑖 𝛾

𝐿
𝑖 ⊗ 𝛾𝑅𝑖 is the Künneth decomposition of the product,

𝛾 · Δ ∈ 𝐻∗(𝑋 × 𝑋),

3Our results will be about nonsingular projective toric varieties, but the formulas here are all well-defined when there is no odd
cohomology and the Hodge classes in the even cohomology are all (𝑝, 𝑝) . To write the Virasoro constraints for varieties with
non-(𝑝, 𝑝) cohomology requires the Hodge grading and signs. A treatment is presented in [17] where the Virasoro constraints
are checked in several non-(𝑝, 𝑝) geometries. The theory leads to surprising predictions for vanishings [17].
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with the diagonal Δ . The notation

(−1)𝑑
𝐿𝑑𝑅

(𝑎 + 𝑑𝐿 − 3)!(𝑏 + 𝑑𝑅 − 3)! ch𝑎ch𝑏 (𝛾)

will be used as shorthand for the sum∑
𝑖

(−1)𝑑 (𝛾
𝐿
𝑖 )𝑑 (𝛾𝑅

𝑖 ) (𝑎 + 𝑑 (𝛾𝐿𝑖 ) − 3)!(𝑏 + 𝑑 (𝛾𝑅𝑖 ) − 3)! ch𝑎 (𝛾𝐿𝑖 )ch𝑏 (𝛾𝑅𝑖 ),

where 𝑑 (𝛾𝐿𝑖 ) and 𝑑 (𝛾𝑅𝑖 ) are the (complex) degrees of the classes. All factorials with negative
arguments vanish.

• Define the operator T𝑘 : D𝑋PT → D𝑋PT by

T𝑘 = −
1
2

∑
𝑎+𝑏=𝑘+2

(−1)𝑑
𝐿𝑑𝑅

(𝑎 + 𝑑𝐿 − 3)!(𝑏 + 𝑑𝑅 − 3)! ch𝑎ch𝑏 (𝑐1) +
1
24

∑
𝑎+𝑏=𝑘

𝑎!𝑏! ch𝑎ch𝑏 (𝑐1𝑐2)

for 𝑘 ≥ −1. The sum here is over all ordered pairs (𝑎, 𝑏) satisfying 𝑎 + 𝑏 = 𝑘 + 2 with 𝑎, 𝑏 ≥ 0 (and
all factorials with negative arguments vanish). Written in terms of renormalized descendents, the
formula simplifies to

T𝑘 = −
1
2

∑
𝑎+𝑏=𝑘+2

(−1)𝑑
𝐿𝑑𝑅

(𝑎 + 𝑑𝐿 − 3)!(𝑏 + 𝑑𝑅 − 3)! c̃h𝑎 c̃h𝑏 (𝑐1) . (1.3)

Definition 2. Let LPT
𝑘 : D𝑋PT → D𝑋PT for 𝑘 ≥ −1 be the operator

LPT
𝑘 = T𝑘 + R𝑘 + (𝑘 + 1)! R−1ch𝑘+1(p).

Since X is a nonsingular projective threefold with only (𝑝, 𝑝)-cohomology, Hirzebruch–Riemman–
Roch implies

𝑐1𝑐2
24

= p ∈ 𝐻6(𝑋),

where p ∈ 𝐻6(𝑋) in the point class. Hence, for our paper, we can write

LPT
𝑘 = T𝑘 + R𝑘 + (𝑘 + 1)! R−1ch𝑘+1

( 𝑐1𝑐2
24

)
. (1.4)

The operators for more general varieties X defined in [17] specialize to equation (1.4) when all the
cohomology is (𝑝, 𝑝).

The operators LPT
𝑘 impose constraints on descendent integrals in the theory of stable pairs which are

analogous to the Virasoro constraints of Gromov–Witten theory. We formulate the stable pairs Virasoro
constraints as follows.
Conjecture 3 ([18]). Let X be a nonsingular projective threefold with only (𝑝, 𝑝)-cohomology, and let
𝛽 ∈ 𝐻2 (𝑋,Z). For all 𝑘 ≥ −1 and 𝐷 ∈ D𝑋PT, we have〈

LPT
𝑘 (𝐷)

〉𝑋,PT

𝛽
= 0.

Our main result is a statement about stationary descendents for nonsingular projective toric threefolds.
The subalgebra D𝑋+

PT ⊂ D𝑋PT of stationary descendents is generated4 by{
ch𝑖 (𝛾)

�� 𝑖 ≥ 0 , 𝛾 ∈ 𝐻>0 (𝑋,Q)
}
.

4Equivalently, D𝑋+
PT is generated by

{
c̃h𝑖 (𝛾)

�� 𝑖 ≥ 0 , 𝛾 ∈ 𝐻>0 (𝑋,Q)
}
.
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The operators LPT
𝑘 are easily seen to preserve D𝑋+

PT . Therefore, the stationary Virasoro constraints are
well-defined. We prove that the stationary Virasoro constraints hold in the toric case.

Theorem 1.1. Let X be a nonsingular projective toric threefold, and let 𝛽 ∈ 𝐻2 (𝑋,Z). For all 𝑘 ≥ −1
and 𝐷 ∈ D𝑋+

PT , we have 〈
LPT
𝑘 (𝐷)

〉𝑋,PT

𝛽
= 0.

In the basic case of P3, Theorem 1.1 specializes to the Virasoro constraints for stable pairs announced
earlier in [21] via equation (1.4). A table of data of stable pairs descendent series for P3 is presented in
Section 10. The Virasoro constraints are seen to provide nontrivial relations.

1.3. The Virasoro bracket

For 𝑘 ≥ −1, we introduce the operators

LPT
𝑘 = −

1
2

∑
𝑎+𝑏=𝑘+2

(−1)𝑑
𝐿𝑑𝑅

(𝑎 + 𝑑𝐿 − 3)!(𝑏 + 𝑑𝑅 − 3)! ch𝑎ch𝑏 (𝑐1)

+
1
24

∑
𝑎+𝑏=𝑘

𝑎!𝑏! ch𝑎ch𝑏 (𝑐1𝑐2)

+ R𝑘 ,

where the sum, as before, is over ordered pairs (𝑎, 𝑏) with 𝑎, 𝑏 ≥ 0.
Our conventions with regard to the factorials in the above definition of LPT

𝑘 differ slightly from
those of the definition of LPT

𝑘 . For LPT
𝑘 , all terms with negative factorial vanish except for the term

(−1)! ch1 (𝑐1). For example, we have

LPT
−1 = R−1 + (−1)! ch1(𝑐1)ch0 (p).

The new conventions will play a role in the exceptional cases in our analysis. We extend the action of
R𝑘 by

R𝑘 ((−1)! ch1(𝑐1)) = −(𝑘 − 1)! ch𝑘+1(𝑐1).

We view (−1)!ch1(𝑐1) and

R−1((−1)!ch1(𝑐1)) = −(−2)!ch0(𝑐1)

as formal symbols.
We define an equivalence relation 〈,〉

= for operators A,B : D𝑋PT → D𝑋PT by

A 〈,〉
= B ↔ 〈A(𝐷)〉𝑋,PT

𝛽 = 〈B(𝐷)〉𝑋,PT
𝛽 for all 𝐷 ∈ D𝑋PT and 𝛽 ∈ 𝐻2 (𝑋,Z).

Inside the bracket, ch0 (p) acts as −1, and ch1 (𝛾) acts as 0 for all 𝛾 ∈ 𝐻∗(𝑋). Moreover, the formal
symbols (−1)!ch1 (𝑐1) and (−2)!ch0(𝑐1) are defined to act as 0 inside the bracket.

Using the equivalence relation 〈,〉
= , we obtain the Virasoro bracket and the following bracket with

ch𝑘 (p),

[LPT
𝑛 ,LPT

𝑘 ]
〈,〉
= (𝑘 − 𝑛) LPT

𝑛+𝑘 , [LPT
𝑛 , (𝑘 − 1)! ch𝑘 (p)]

〈,〉
= (𝑛 + 𝑘)! ch𝑛+𝑘 (p).
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The operators LPT
𝑘 are expressed in terms of LPT

𝑘 by

LPT
𝑘

〈,〉
= LPT

𝑘 + (𝑘 + 1)! LPT
−1ch𝑘+1(p).

The occurrences of the negative factorial terms (−1)!ch1 (𝑐1) cancel on the right side. The expressions
LPT
𝑘 will play a role in the proof of Theorem 1.1.

The Virasoro algebra is the unique central extension of the Witt algebra. The Witt algebra is the
algebra of polynomial vector fields on the circle and basis

L𝑛 = −𝑧𝑛+1 𝜕

𝜕𝑧
, 𝑛 ∈ Z.

The relations in the Virasoro algebra Vir are generated by

[L𝑚,L𝑛] = (𝑚 − 𝑛)L𝑚+𝑛 +
𝑐

12
(𝑚3 − 𝑚)𝛿𝑚+𝑛,

5where c is the central element. The elements 𝐿𝑛, 𝑛 ≥ −1 generate a subalgebra Vir≥−1 of Vir. Only the
subalgebra Vir≥−1 appears to be relevant in our geometric constructions. For further discussion of the
full Virasoro algebra in the context of Gromov–Witten theory, the reader may consult [8].

1.4. Virasoro constraints for surfaces

Let S be a nonsingular projective toric surface. As a consequence of the stationary Virasoro constraints
for

𝑋 = 𝑆 × P1 and 𝛽 = 𝑛[P1] , (1.5)

we obtain new Virasoro constraints for the integrals of the tautological classes over Hilbert schemes
of points Hilb𝑛 (𝑆) of surfaces S in Section 7. The case of all simply connected nonsingular projective
surfaces is proven in [17].

As we explain in Section 7, the descendent algebra D(𝑆) for the surface S is generated by the
tautological classes ch𝑘 (𝛾), 𝛾 ∈ 𝐻∗(𝑆). The classes ch𝑘 (𝛾) are defined6 in terms of the universal ideal
sheaf I on 𝑆 ×Hilb𝑛 (𝑆). If X and 𝛽 satisfy equation (1.5), the tautological integrals over [𝑃𝑛 (𝑋, 𝛽)]𝑣𝑖𝑟
can be expressed in terms of integrals of the tautological classes over Hilb𝑛 (𝑆). The Virasoro operators
LPT
𝑘 yield operators L𝑆

𝑘 (see Section 7) on D(𝑆), and we obtain the following result.

Theorem 1.2. Let S be a nonsingular projective toric surface. For all 𝑘 ≥ −1 and 𝐷 ∈ D(𝑆), we have∫
Hilb𝑛 (𝑆)

(
L𝑆
𝑘 + (𝑘 + 1)!R−1ch𝑘+1(p)

)
(𝐷) = 0

for all 𝑛 ≥ 0.

Taking Theorem 1.2 and [17] as a starting point, D. van Bree [32] formulated parallel Virasoro
constraints for the descendent theory of moduli spaces of stable sheaves on surfaces in higher rank (and
has provided many numerical checks).

1.5. Path of the proof

Our proof of Theorem 1.1 relies upon two central results. The first is the Virasoro conjecture in Gromov–
Witten theory which has been proven for nonsingular projective toric varieties [8, 10]. We refer the reader

5Here 𝛿 denotes the 𝛿-function: 𝛿𝑘 = 0 unless 𝑘 = 0, 𝛿0 = 1.
6See formula (7.2).
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to the extensive literature on the subject [3, 7, 8, 10, 19, 20, 30]. The second is the stationary GW/PT
correspondence of [23, 24, 25] which was cast in terms of vertex operators in [18] and has been proven
for nonsingular projective toric threefolds. We show the stationary GW/PT correspondence intertwines
the Virasoro constraints of the two theories. Along the way, we derive a more explicit form for the
stationary GW/PT correspondence. Our proof of Theorem 1.1 yields the following stronger statement.
Theorem 1.3. Let X be a nonsingular projective threefold with only (𝑝, 𝑝)-cohomology for which the
following two properties are satisfied:
(i) The stationary Virasoro constraints for the Gromov–Witten theory of X hold.

(ii) The stationary GW/ PT correspondence holds.
Then, the stationary Virasoro constraints for the stable pairs theory of X hold.

A challenge for the subject is to prove the Virasoro constraints for stable pairs directly using the
geometry of the moduli of sheaves. New ideas will almost certainly be required.

1.6. Gromov–Witten theory

Let X be a nonsingular projective threefold. Gromov–Witten theory is defined via integration over the
moduli space of stable maps.

Let C be a possibly disconnected curve with at worst nodal singularities. The genus of C is defined
by 1 − 𝜒(O𝐶 ). Let 𝑀 ′

𝑔,𝑚(𝑋, 𝛽) denote the moduli space of stable maps with possibly disconnected
domain curves C of genus g with no collapsed connected components of genus greater or equal to 2.
The latter condition7 requires each nonrational and nonelliptic connected component of C to represent
a nonzero class in 𝐻2(𝑋,Z).

Let

ev𝑖 : 𝑀 ′

𝑔,𝑚(𝑋, 𝛽) → 𝑋,

L𝑖 → 𝑀
′

𝑔,𝑚(𝑋, 𝛽)

denote the evaluation maps and the cotangent line bundles associated to the marked points. Let
𝛾1, . . . , 𝛾𝑚 ∈ 𝐻∗(𝑋), and let

𝜓𝑖 = 𝑐1 (L𝑖) ∈ 𝐻
2(𝑀

′

𝑔,𝑚(𝑋, 𝛽)).

The descendent insertions, denoted by 𝜏𝑘 (𝛾) for 𝑘 ≥ 0, correspond to classes 𝜓𝑘
𝑖 ev∗𝑖 (𝛾) on the moduli

space of stable maps. Let〈
𝜏𝑘1 (𝛾1) · · · 𝜏𝑘𝑚 (𝛾𝑚)

〉𝑋,GW

𝑔,𝛽
=

∫
[𝑀

′
𝑔,𝑚 (𝑋,𝛽) ]𝑣𝑖𝑟

𝑚∏
𝑖=1

𝜓𝑘𝑖
𝑖 ev∗𝑖 (𝛾𝑖 )

denote the descendent Gromov–Witten invariants. The associated generating series is defined by〈
𝜏𝑘1 (𝛾1) · · · 𝜏𝑘𝑚 (𝛾𝑚)

〉𝑋,GW

𝛽
=

∑
𝑔∈Z

〈 𝑚∏
𝑖=1

𝜏𝑘𝑖 (𝛾𝑖)
〉𝑋,GW

𝑔,𝛽
𝑢2𝑔−2. (1.6)

Since the domain components must map nontrivially, an elementary argument shows the genus g in
the sum (1.6) is bounded from below. Foundational aspects of the theory are treated, for example, in
[1, 5, 13].

7The exclusion here of collapsed connected components of genus greater or equal to 2 matches the conventions of [18].
The definition of 𝑀 ′

𝑔,𝑚 (𝑋, 𝛽) differs slightly from the definitions of [26, 27], where no collapsed connected components are
permitted. The difference is minor; see Section 3 of [18] for a discussion.
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Using the above definitions, the string equation8 is easily checked:〈
𝜏0 (1)

𝑚∏
𝑖=1

𝜏𝑘𝑖 (𝛾𝑖)
〉𝑋,GW

𝛽
=

〈 𝑚∑
𝑗=1

𝑚∏
𝑖=1

𝜏𝑘𝑖−𝛿𝑖− 𝑗 (𝛾𝑖)
〉𝑋,GW

𝛽
+ collapsed contributions. (1.7)

The Gromov–Witten descendent insertions 𝜏𝑘 (𝛾) in equation (1.6) are defined for 𝑘 ≥ 0. We include
the nonstandard descendent insertions 𝜏−2(𝛾) and 𝜏−1 (𝛾) by the rule:〈

𝜏𝑘 (𝛾)
𝑚∏
𝑖=1

𝜏𝑘𝑖 (𝛾𝑖)
〉𝑋,GW

𝛽
=
𝛿𝑘+2

𝑢2

∫
𝑋
𝛾 ·

〈 𝑚∏
𝑖=1

𝜏𝑘𝑖 (𝛾𝑖)
〉𝑋,GW

𝛽
, for 𝑘 < 0. (1.8)

We impose Heisenberg relations (8.1) on the operators 𝜏𝑘 (𝛾):

[𝜏𝑘 (𝛼), 𝜏𝑙 (𝛽)] = (−1)𝑘
𝛿𝑘+𝑙+1

𝑢2

∫
𝑋
𝛼 · 𝛽 . (1.9)

In particular, the evaluation (1.8) applies only after commuting the negative descendents to the left.
Assume now that X has only (𝑝, 𝑝)-cohomology. Let D𝑋GW be the commutative Q-algebra with

generators {
𝜏𝑖 (𝛾)

�� 𝑖 ≥ 0 , 𝛾 ∈ 𝐻∗(𝑋)
}

subject to the natural relations

𝜏𝑖 (𝜆 · 𝛾) = 𝜆 𝜏𝑖 (𝛾) ,

𝜏𝑖 (𝛾 + �̂�) = 𝜏𝑖 (𝛾) + 𝜏𝑖 (�̂�)

for 𝜆 ∈ Q and 𝛾, �̂� ∈ 𝐻∗(𝑋). The subalgebra D𝑋+
GW ⊂ D𝑋GW of stationary descendents is generated by{

𝜏𝑖 (𝛾)
�� 𝑖 ≥ 0 , 𝛾 ∈ 𝐻>0 (𝑋,Q)

}
.

We will use Getzler’s renormalization 𝔞𝑘 of the Gromov–Witten descendents:9
∞∑

𝑛=−∞

𝑧𝑛𝜏𝑛 = Z0 +
∑
𝑛>0

(𝚤𝑢𝑧)𝑛−1

(1 + 𝑧𝑐1)𝑛
𝔞𝑛 +

1
𝑐1

∑
𝑛<0

(𝚤𝑢𝑧)𝑛−1

(1 + 𝑧𝑐1)𝑛
𝔞𝑛 , (1.10)

Z0 =
𝑧−2𝑢−2

S
( 𝑧𝑢
𝜃

) − 𝑧−2𝑢−2,

where we use standard notation for the Pochhammer symbol

(𝑎)𝑛 =
Γ(𝑎 + 𝑛)
Γ(𝑎)

.

For example,10

𝜏0 (𝛾) = 𝔞1 (𝛾) +
1

24

∫
𝑋
𝛾𝑐2 , (1.11)

𝜏1(𝛾) =
𝚤𝑢

2
𝔞2 (𝛾) − 𝔞1 (𝛾 · 𝑐1) . (1.12)

8The standard correction term for the string equation occurs here since we allow collapsed connected components of genus 0
in our definition of the Gromov–Witten descendent series.

9We use 𝚤 for the square root of −1. The genus variable u will usually occur together with 𝚤.
10The constant term 1

24
∫
𝑋
𝛾𝑐2 in the formula does not contribute unless 𝛾 ∈ 𝐻 2 (𝑋 ) .
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For 𝑘 ≥ 2 and 𝛾 ∈ 𝐻>0 (𝑋), we have the general formula

𝜏𝑘 (𝛾) =
(𝚤𝑢)𝑘

(𝑘 + 1)!
𝔞𝑘+1(𝛾) −

(𝚤𝑢)𝑘−1

𝑘!

(
𝑘∑
𝑖=1

1
𝑖

)
𝔞𝑘 (𝛾 · 𝑐1)

+
(𝚤𝑢)𝑘−2

(𝑘 − 1)!
���
𝑘−1∑
𝑖=1

1
𝑖2

+
∑

1≤𝑖< 𝑗≤𝑘−1

1
𝑖 𝑗

���𝔞𝑘−1 (𝛾 · 𝑐2
1) . (1.13)

1.7. The GW/PT correspondence for essential descendents

The subalgebra

D𝑋�PT ⊂ D𝑋+
PT

of essential descendents is generated by{
c̃h𝑖 (𝛾) | (𝑖 ≥ 3, 𝛾 ∈ 𝐻>0 (𝑋,Q)) or (𝑖 = 2, 𝛾 ∈ 𝐻>2 (𝑋,Q))

}
.

While closed formulas for the full GW/PT descendent transformation of [26] are not known in full
generality, the stationary theory is much better understood [18].11 The transformation takes the simplest
form when restricted to essential descendents.

The GW/PT transformation restricted to the essential descendents is a linear map

ℭ• : D𝑋�PT → D𝑋GW

satisfying

ℭ•(1) = 1

and is defined on monomials by

ℭ•
(
c̃h𝑘1 (𝛾1) . . . c̃h𝑘𝑚 (𝛾𝑚)

)
=

∑
𝑃 set partition of {1,...,𝑚}

∏
𝑆∈𝑃

ℭ◦
( ∏
𝑖∈𝑆

c̃h𝑘𝑖 (𝛾𝑖)
)
.

The operations ℭ◦ on D𝑋�PT are

ℭ◦
(
c̃h𝑘1+2(𝛾)

)
=

1
(𝑘1 + 1)!

𝔞𝑘1+1 (𝛾) +
(𝚤𝑢)−1

𝑘1!

∑
|𝜇 |=𝑘1−1

𝔞𝜇1𝔞𝜇2 (𝛾 · 𝑐1)

Aut(𝜇)

+
(𝚤𝑢)−2

𝑘1!

∑
|𝜇 |=𝑘1−2

𝔞𝜇1𝔞𝜇2 (𝛾 · 𝑐2
1)

Aut(𝜇)
+

(𝚤𝑢)−2

(𝑘1 − 1)!

∑
|𝜇 |=𝑘1−3

𝔞𝜇1𝔞𝜇2𝔞𝜇3 (𝛾 · 𝑐2
1)

Aut(𝜇)
, (1.14)

ℭ◦
(
c̃h𝑘1+2(𝛾)c̃h𝑘2+2(𝛾

′)
)
= −

(𝚤𝑢)−1

𝑘1!𝑘2!
𝔞𝑘1+𝑘2 (𝛾𝛾

′) −
(𝚤𝑢)−2

𝑘1!𝑘2!
𝔞𝑘1+𝑘2−1 (𝛾𝛾

′ · 𝑐1)

−
(𝚤𝑢)−2

𝑘1!𝑘2!

∑
|𝜇 |=𝑘1+𝑘2−2

max(max(𝑘1, 𝑘2),max(𝜇1 + 1, 𝜇2 + 1))
𝔞𝜇1𝔞𝜇2

Aut(𝜇)
(𝛾𝛾′ · 𝑐1), (1.15)

ℭ◦
(
c̃h𝑘1+2(𝛾)c̃h𝑘2+2(𝛾

′)c̃h𝑘3+2(𝛾
′′)

)
=

(𝚤𝑢)−2 |𝑘 |

𝑘1!𝑘2!𝑘3!
𝔞 |𝑘 |−1(𝛾𝛾

′𝛾′′) , |𝑘 | = 𝑘1 + 𝑘2 + 𝑘3. (1.16)

11See [14, 15] for an earlier view of descendents and descendent transformations.
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The above sums are over partitions 𝜇 of length 2 or 3. The parts of 𝜇 are positive integers, and we always
write

𝜇 = (𝜇1, 𝜇2) and 𝜇 = (𝜇1, 𝜇2, 𝜇3)

with weakly decreasing parts. In equations 1.14–1.16, we have 𝑘𝑖 ≥ 0, and all occurrences of 𝔞0 and
𝔞−1 are set to 0. The automorphism factor Aut(𝜇) is defined to equal the product

∏
𝑖≥1 𝑚𝑖 (𝜇)!, where

𝑚𝑖 (𝜇) is the multiplicity of occurrence of i in 𝜇.
The above formulas for the GW/PT descendent correspondence are proven here from the vertex

operator formulas of [18] by a direct evaluation of the leading terms. In the toric case, we have the
following explicit correspondence statement.12

Theorem 1.4. Let X be a nonsingular projective toric threefold. Let

𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖) ∈ D
𝑋�
PT .

Let 𝛽 ∈ 𝐻2(𝑋,Z) with 𝑑𝛽 =
∫
𝛽
𝑐1 (𝑋). Then, the GW/PT correspondence defined by formulas (1.14)–

(1.16) holds:

(−𝑞)−𝑑𝛽/2
〈 𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖)
〉𝑋,PT

𝛽
= (−𝚤𝑢)𝑑𝛽

〈
ℭ•

( 𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖)
)〉𝑋,GW

𝛽
,

after the change of variables −𝑞 = 𝑒𝚤𝑢 .

As direct consequence of the formulas (1.14)–(1.16), the correspondence taken essential descendents
on the stable pairs side to stationary descendents on the stable pairs side.

Proposition 4. Let 𝐷 ∈ D𝑋�PT . Under the GW/PT transformation, we have

ℭ•(𝐷) ∈ D𝑋+
GW.

Let S be a nonsingular projective toric surface. As a consequence of the stationary Virasoro constraints
for

𝑋 = 𝑆 × P1 and 𝛽 = 𝑛[P1],

we obtain new Virasoro constraints for the integrals of the tautological classes over Hilbert schemes
of points Hilb𝑛 (𝑆) of surfaces S in Section 7. The case of all simply connected nonsingular projective
surfaces is proven in [17].

1.8. Plan of the paper

The key to our proof of Theorem 1.1 is an intertwining property of ℭ• with respect to Virasoro operators
for stable pairs and the Virasoro operators for stable maps. Via the intertwining property, Theorem 1.1
is a consequence of the stationary GW/PT correspondence of Theorem 1.4 and the Virasoro constraints
for the Gromov–Witten theory of toric threefolds.

The algebra D𝑋PT carries a bumping filtration13

D0
PT ⊂ D1

PT ⊂ D2
PT ⊂ D3

PT ⊂ · · · ⊂ D𝑋PT , (1.17)

12A straightforward exercise using our new conventions is to show the abstract correspondence of Theorem 1.4 is a consequence
of [26, Theorem 4]. The novelty of Theorem 1.4 is the closed formula for the transformation.

13The bumping filtration is a filtration of vector spaces.
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where D𝑘PT is spanned by the monomials14

𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖)

for which 𝛾𝑠1 · · · 𝛾𝑠𝑙 = 0 for all subsets

𝑆 = {𝑠1, . . . , 𝑠𝑙} ⊂ {1, . . . , 𝑚} , 𝑙 > 𝑘.

In general the filtration (1.17) has infinite length. But if we restrict the filtration to D𝑋�PT , the filtration
truncates since

D3
PT ∩ D𝑋�PT = D𝑋�PT .

The correspondence

ℭ• : D𝑋�PT → D𝑋+
GW

respects the analogous bumping filtration D𝑘GW ∩ D𝑋+
GW on D𝑋+

GW with respect to the monomials

𝑚∏
𝑖=1

𝜏𝑘𝑖 (𝛾𝑖)

for which 𝛾𝑠1 · · · 𝛾𝑠𝑙 = 0 for all subsets

𝑆 = {𝑠1, . . . , 𝑠𝑙} ⊂ {1, . . . , 𝑚} , 𝑙 > 𝑘.

Our proof of the intertwining is separated into a calculation for each of the four steps of the restriction
of the bumping filtration on D𝑋�PT .

We discuss the Virasoro constraints for Gromov–Witten theory in Section 2 and for stable pairs in
Section 3. The stationary Virasoro constraints of Theorem 1.1 are proven in Section 3.4 modulo the
intertwining of Theorem 3.1. The proof of the intertwining property is given in four steps:

(0) We start in Section 4 with the special case where 𝐷 ∈ D0
PT ∩ D𝑋�PT is the trivial monomial 1. The

result is Proposition 9 of Section 4.3.
(1) For 𝐷 ∈ D1

PT ∩ D𝑋�PT , the required results are proven in Section 5.3.
(2) Proposition 12 and Proposition 13 of Section 6 imply the intertwining property for 𝐷 ∈ D2

PT∩D
𝑋�
PT .

(3) We treat 𝐷 ∈ D3
PT ∩ D𝑋�PT = D𝑋�PT in Proposition 14 of Section 6 to complete the proof of

Theorem 3.1.

After a review of the GW/PT descendent correspondence from the perspective of [18] in Section 8,
we complete the proof of Theorem 1.4 in Section 9. A list of descendent series in degree 1 for P3 is
given in Section 10.

2. Virasoro constraints for Gromov–Witten theory

2.1. Overview

We will discuss here the Virasoro constraints for stable maps. The constraints are equivalent to a
procedure for removing the descendents of the canonical class. The procedures may be interpreted
as series of the reactions (similar to the reactions discussed in the context of the GW/PT descendent

14Via the empty monomial (𝑚 = 0) , D0
PT is spanned by the unit 1.

https://doi.org/10.1017/fmp.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.4


Forum of Mathematics, Pi 13

correspondence in [18, Section 3]). Our goal is to write the Virasoro constraints for Gromov–Witten
theory in a form which is as close as possible to the Virasoro constraints of Conjecture 3 for stable pairs.

2.2. Gromov–Witten constraints: original form

The Virasoro constraints in Gromov–Witten theory were first proposed15 in [3]. We recall here the
original form following [20]. In Section 2.3, a reformulation which is more suitable for the GW/PT
correspondence will be presented.

In the discussion below, we fix a basis of 𝐻∗(𝑋),

𝛾0, . . . , 𝛾𝑟 , 𝛾𝑖 ∈ 𝐻
𝑝𝑖 ,𝑞𝑖 (𝑋) , (2.1)

for which 𝛾0 = 1, 𝛾1 = 𝑐1 and 𝛾𝑟 = [p]. We assume16 𝑐1 ≠ 0. We also fix a dual basis

𝛾∨0 , . . . , 𝛾
∨
𝑟 ,

∫
𝑋
𝛾𝑖𝛾

∨
𝑗 = 𝛿𝑖 𝑗 .

17The standard method of describing of the Virasoro constraints uses the generating function for the
Gromov–Witten invariants (see [20, section 4]):

𝐹𝑋 =
∑
𝑔≥0

𝑢2𝑔−2
∑

𝛽∈𝐻2 (𝑋,Z)

𝑞𝛽
∑
𝑛≥0

∑
𝑎1 ,...,𝑎𝑛
𝑘1 ,...,𝑘𝑛

𝑡𝑎1
𝑘1
. . . 𝑡𝑎1

𝑘1
. . . 𝑡𝑎𝑛𝑘𝑛

〈
𝜏𝑘1 (𝛾1) . . . 𝜏𝑘𝑛 (𝛾𝑛)

〉𝑋,Con
𝑔,𝛽

,

where
〈
,
〉𝑋,Con
𝑔,𝛽

is the standard integral over stable maps with connected domains (and stable contracted
components of all genera are permitted).

The degree 𝛽 = 0 summand 𝐹𝑋
0 of 𝐹𝑋 does not require knowledge of curves in X. We further split

the degree 0 summand into summands of genus 𝑔 ≤ 1 and genus 𝑔 ≥ 2:

𝐹𝑋
0 = 𝐹𝑋

0,𝑔≤1 + 𝐹
𝑋
0,𝑔≥2 .

The 𝑔 ≤ 1 summand takes the form

𝐹𝑋
0,𝑔≤1 = 𝑢−2

∑
𝑖, 𝑗 ,𝑘

(
𝑡𝑖0𝑡

𝑗
0 𝑡
𝑘
0

3!
+
𝑡𝑖0𝑡

𝑗
0 𝑡
𝑘
1 𝑡

0
0

2!

) ∫
𝑋
𝛾𝑖𝛾 𝑗𝛾𝑘 −

∑
𝑖

(
𝑡𝑖0
24

+
𝑡𝑖1𝑡

0
0

24

) ∫
𝑋
𝛾𝑖𝑐2 + . . . ,

where the dots stand for terms divisible by (𝑡00)
2. The 𝑔 ≥ 2 summand 𝐹𝑋

0,𝑔≥2 is determined by the string
and dilaton equations from the constant maps contributions of [4, Theorem 4].

Let 𝐹𝑋 be the summand of 𝐹𝑋 with 𝛽 ≠ 0. We define

𝑍𝑋0,∗ = exp(𝐹𝑋
0,∗) , 𝑍𝑋 = exp(𝐹).

The Gromov–Witten bracket
〈
,
〉𝑋,GW
𝑔,𝛽

introduced in Section 1.6 corresponds to the partition function

𝑍𝑋0,𝑔≤1 · 𝑍
𝑋 =

∑
𝑔≥Z

𝑢2𝑔−2
∑

𝛽∈𝐻2 (𝑋,Z)

𝑞𝛽
∑
𝑛≥0

∑
𝑎1 ,...,𝑎𝑛
𝑘1 ,...,𝑘𝑛

𝑡𝑎1
𝑘1
. . . 𝑡𝑎1

𝑘1
. . . 𝑡𝑎𝑛𝑘𝑛

〈
𝜏𝑘1 (𝛾1) . . . 𝜏𝑘𝑛 (𝛾𝑛)

〉𝑋,GW
𝑔,𝛽

.

15The full conjecture also involves ideas of S. Katz.
16For Calabi–Yau threefolds, the Virasoro invariants are a consequence of the string and dilaton equations (and there are no

nontrivial stationary invariants).
17Here 𝛿𝑖 𝑗 = 𝛿𝑖− 𝑗 .
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The full partition function

𝑍𝑋 = exp(𝐹𝑋 ) = 𝑍𝑋0,𝑔≤1 · 𝑍
𝑋
0,𝑔≥2 · 𝑍

𝑋

corresponds to the standard disconnected Gromov–Witten bracket
〈
,
〉𝑋,•
𝑔,𝛽

,

𝑍𝑋 =
∑
𝑔≥0

𝑢2𝑔−2
∑

𝛽∈𝐻2 (𝑋,Z)

𝑞𝛽
∑
𝑛≥0

∑
𝑎1 ,...,𝑎𝑛
𝑘1 ,...,𝑘𝑛

𝑡𝑎1
𝑘1
. . . 𝑡𝑎1

𝑘1
. . . 𝑡𝑎𝑛𝑘𝑛

〈
𝜏𝑘1 (𝛾1) . . . 𝜏𝑘𝑛 (𝛾𝑛)

〉𝑋,•
𝑔,𝛽

.

The Virasoro operators L𝑘 , 𝑘 ∈ Z≥−1 are differential operators which satisfy the Witt algebra relations,

[L𝑘 ,Lℓ] = (𝑘 − ℓ)L𝑘+ℓ .

The Virasoro conjecture [3] states that the operators annihilate the partition function

L𝑘 𝑍
𝑋 = 0 . (2.2)

For threefolds X, the operators are defined by

L𝑘 =
∞∑
𝑚=0

𝑘+1∑
𝑖=0

(
[𝑝𝑎 + 𝑚 − 1]𝑘𝑖 (𝐶

𝑖)𝑏𝑎 𝑡
𝑎
𝑚𝜕𝑏,𝑚+𝑘−𝑖

+
𝑢2

2
(−1)𝑚+1 [−𝑝𝑎 + 1 − 𝑚]𝑘𝑖 (𝐶

𝑖)𝑎𝑏𝜕𝑎,𝑚𝜕𝑏,𝑘−𝑚−𝑖−1

)
+
𝑢−2

2
(𝐶𝑘+1)𝑎𝑏𝑡

𝑎
0 𝑡

𝑏
0

−
𝛿𝑘
24

∫
𝑋
𝑐1𝑐2,

where the Einstein conventions for summing over repeated indices are followed,

𝑡𝑎𝑚 = 𝑡𝑎𝑚 − 𝛿𝑎0𝛿𝑚1 , 𝜕𝑎,𝑚 = 𝜕/𝜕𝑡𝑎𝑚,

and [𝑥]𝑘𝑗 = 𝑒𝑘+1− 𝑗 (𝑥, 𝑥+1, . . . , 𝑥+ 𝑘).18 The tensors in the equation are defined in terms of the dual basis

(𝐶𝑖)𝑎𝑏 =
∫
𝑋
𝛾∨𝑎𝑐

𝑖
1𝛾𝑏 , (𝐶𝑖)𝑎𝑏 =

∫
𝑋
𝛾𝑎𝑐

𝑖
1𝛾𝑏 , (𝐶𝑖)𝑎𝑏 =

∫
𝑋
𝛾∨𝑎𝑐

𝑖
1𝛾

∨
𝑏 .

2.3. Gromov–Witten constraints: correspondence form

We rewrite here the Virasoro constraints of Section 2 in the form most natural for the GW/PT descendent
correspondence. Since all of our results are for toric varieties, we specialize our discussion here to the
case where X is a nonsingular projective threefold with only (𝑝, 𝑝)-cohomology.

We start by defining derivations R 𝑗
𝑘 and quadratic differentials B𝑘 on D𝑋GW by fixing the action on

the generators:

• The action of the derivation R 𝑗
𝑘 on 𝜏𝑖 (𝛾) for 𝑘 ≥ −1, 0 ≤ 𝑗 ≤ 3 and 𝛾 ∈ 𝐻2𝑑 (𝑋) is

R 𝑗
𝑘 (𝜏𝑖 (𝛾)) = [𝑖 + 𝑑 − 1]𝑘𝑗 𝜏𝑘+𝑖− 𝑗 (𝛾 · 𝑐

𝑗
1),

18Here 𝑒𝑚 (𝑧1 , . . . , 𝑧𝑘 ) is the elementary symmetric polynomial of degree m.
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where [𝑥]𝑘𝑗 = 𝑒𝑘+1− 𝑗 (𝑥, 𝑥 + 1, . . . , 𝑥 + 𝑘) and all terms 𝜏ℓ<−2 (𝜃) are set to 0. As a special case,

R 𝑗
−1(𝜏𝑖 (𝛾)) = 𝛿 𝑗 𝜏𝑖−1(𝛾) .

We will use the notation R𝑘 =
∑3

𝑗=0 R 𝑗
𝑘 .

• The action of the quadratic differential B𝑘 on 𝜏0(𝛾)𝜏0 (𝛾
′) is

B𝑘 (𝜏0(𝛾)𝜏0 (𝛾
′)) =

∫
𝑋
𝛾𝛾′𝑐𝑘1 .

On all other quadratics terms, B𝑘 acts by 0.

The differential operators LGW
𝑘 , for 𝑘 ≥ −1, are then defined by the formula

LGW
𝑘 = R𝑘 +

𝑢−2

2
B𝑘+1 +

(𝚤𝑢)2

2
T𝑘 −

𝛿𝑘
24

∫
𝑋
𝑐1𝑐2 ,

where T𝑘 =
∑3

𝑗=0 T 𝑗
𝑘 and

T 𝑗
𝑘 =

𝑘− 𝑗+2∑
𝑚=−1

(−1)𝑚+1 [2 − 𝑚 − 𝑑𝐿]
𝑘
𝑗 : 𝜏𝑚−1𝜏−𝑚+𝑘− 𝑗 (𝑐

𝑗
1) : , (2.3)

where 𝑑𝐿 is the degree of the left term in the co-product19 (as in Section 1.2). In formula (2.3), the
symbol :: stands for the normal ordering convention: All negative descendents 𝜏<0 (𝛾) are on the left of
the positive descendents.

A calculation then yields the Virasoro bracket and the following bracket with 𝜏𝑘 (p):

[LGW
𝑛 ,LGW

𝑘 ] = (𝑛 − 𝑘) LGW
𝑛+𝑘 , [LGW

𝑛 , (𝑘 + 1)! 𝜏𝑘 (p)] = (𝑘 + 𝑛 + 2)! 𝜏𝑛+𝑘 (p) . (2.4)

Theorem 2.1 ([8, 10]). Let X be a nonsingular projective toric threefold, and let 𝛽 ∈ 𝐻2(𝑋,Z). For all
𝑘 ≥ −1 and 𝐷 ∈ D𝑋GW, we have 〈

LGW
𝑘 (𝐷)

〉𝑋,•
𝛽

= 0 .

Theorem 2.1, which is exactly equivalent to constraints (2.2) for toric threefolds, was proven by
Givental in two steps:

(i) Using the virtual localization formula of [9], the Gromov–Witten theory of X is expressed in terms
of graphs sums with descendent integrals over the moduli spaces of curves 𝑀𝑔,𝑛 at the vertices.

(ii) The Virasoro constraints, conjectured by Witten [33] for 𝑀𝑔,𝑛 and proven in [12], are then used to
establish the Virasoro constraints for X.

A second proof of Theorem 2.1, via the Givental–Teleman classification20 of semisimple CohFTs, was
given in [30]. For varieties with nonsemisimple Gromov–Witten theory, the Virasoro constraints are
known in very few cases.21

19Define the element
𝜏𝑎𝜏𝑏 (𝛾) =

∑
𝑖

𝜏𝑎 (𝛾
𝐿
𝑖 )𝜏𝑏 (𝛾

𝑅
𝑖 ) ∈ D𝑋

GW ,

where
∑

𝑖 𝛾
𝐿
𝑖 ⊗ 𝛾𝑅

𝑖 is the Künneth decomposition of the product,
𝛾 · Δ ∈ 𝐻 ∗ (𝑋 × 𝑋 ) ,

with the diagonal Δ .
20We refer the reader to [22] for an introduction.
21The main known examples are based on the Virasoro constraints for curves proven in [19].
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2.4. Gromov–Witten constraints: stationary form

We rewrite the Virasoro constraints in Gromov–Witten theory of Section 2.3 in a form which preserves
the algebra of stationary descendents,

D𝑋+
GW ⊂ D𝑋GW .

We fix a basis (2.1) of the cohomology of X which satisfies the following further conventions. Let

𝛾1, . . . , 𝛾𝑠 ∈ 𝐻
2(𝑋)

be a basis with 𝛾1 = 𝑐1. Let

𝛾2𝑠 , . . . , 𝛾𝑠+1 ∈ 𝐻4(𝑋)

be a dual basis with respect to the Poincaré pairing. Let

𝛾0 = 1 ∈ 𝐻0(𝑋) , 𝛾2𝑠+1 = p ∈ 𝐻6(𝑋)

span the rest of the cohomology.22 The Künneth decomposition of the diagonal is

Δ =
2𝑠+1∑
𝑖=0

𝛾𝑖 ⊗ 𝛾2𝑠+1−𝑖 .

Consider the term T𝑘 . The only place for descendents of 1 to appear in the operator LGW
𝑘 is in T0

𝑘 .
As most of the terms of T0

𝑘 vanish by definition, we find

1
2

T0
𝑘 = (𝑘 + 1)! : 𝜏0 (1)𝜏𝑘−1(p) : . (2.5)

We denote the rest of the term by T′
𝑘 ,

T𝑘 = T′
𝑘 + T0

𝑘 .

Inside the bracket 〈, 〉𝑋,•𝛽 , the insertion 𝜏0(1) can be removed by the string equation (1.7). We are
therefore led to define the operator

LGW
𝑘 =

(𝚤𝑢)2

2
T′
𝑘 + R𝑘 +

𝑢−2

2
B𝑘+1 + (𝚤𝑢)2(𝑘 + 1)! R−1𝜏𝑘−1(p) , T′

𝑘 =
∑
𝑗>0

T 𝑗
𝑘 ,

where R𝑘 =
∑3

𝑗=0 R 𝑗
𝑘 and R−1 is the differentiation defined on the generators by

R−1𝜏𝑘 (𝛾) = 𝜏𝑘−1(𝛾) .

Inside the bracket 〈, 〉𝑋,•𝛽 , we have23

LGW
𝑘

〈,〉
= L̃GW

𝑘 + (𝚤𝑢)2(1 − 𝛿𝑘 ) (𝑘 + 1)! L̃GW
−1 𝜏𝑘−1(p) , (2.6)

where we have modified the Virasoro operators to exclude the descendents of 1:

L̃GW
𝑘 = LGW

𝑘 −
(𝚤𝑢)2

2
T0
𝑘 =

(𝚤𝑢)2

2
T′
𝑘 + R𝑘 +

𝑢−2

2
B𝑘+1 −

𝛿𝑘
24

∫
𝑋
𝑐1𝑐2 . (2.7)

22To match with equation (2.1), 𝑟 = 2𝑠 + 1.
23Note LGW

0 = L̃GW
0 .
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Though the operators LGW
𝑘 no longer satisfy the Virasoro bracket, the operators LGW

𝑘 preserve the
subalgebra D𝑋+

GW ⊂ D𝑋GW.
Proposition 5. Let X be a nonsingular projective toric threefold, and let 𝛽 ∈ 𝐻2 (𝑋,Z). For all 𝑘 ≥ −1
and 𝐷 ∈ D𝑋+

GW◦
, we have 〈

LGW
𝑘 (𝐷)

〉𝑋,•
𝛽

= 0.

Proof. The case 𝑘 = 0 follows because

LGW
0 − LGW

0 = T0
0 = 2 : 𝜏0 (1)𝜏−1(p) :

and
〈
T0

0 . . .
〉𝑋,•
𝛽

= 0. For the other case the argument is below.
Using equations (2.6) and (2.7), we have〈

LGW
𝑘 (𝐷)

〉𝑋,•
𝛽

=
〈
LGW
𝑘 (𝐷) + (𝚤𝑢)2(𝑘 + 1)! LGW

−1 (𝜏𝑘−1(p)𝐷)
〉𝑋,•
𝛽

−
(𝚤𝑢)2

2

〈
T0
𝑘 (𝐷) + (𝚤𝑢)2(𝑘 + 1)! T0

−1(𝜏𝑘−1 (p)𝐷)
〉𝑋,•
𝛽

. (2.8)

The first bracket on the right side of equation (2.8) vanishes by Theorem 2.1. We can write the second
bracket on the right as

(𝚤𝑢)2

2

〈
T0
𝑘 (𝐷) + (𝚤𝑢)2(𝑘 + 1)! T0

−1(𝜏𝑘−1(p)𝐷)
〉𝑋,•
𝛽

= (𝚤𝑢)2
〈
(𝑘 + 1)! 𝜏0(1)𝜏𝑘−1(p)𝐷 + (𝚤𝑢)2(𝑘 + 1)! 𝜏0(1)𝜏−2(p)𝜏𝑘−1(p)𝐷

〉𝑋,•
𝛽

using equation (2.5). The right side of the above equation, after applying the commutator (1.8), is

(𝚤𝑢)2
〈
(𝑘 + 1)! 𝜏0(1)𝜏𝑘−1(p)𝐷 + (𝚤𝑢)2(𝑘 + 1)! 𝜏−2(p)𝜏0(1)𝜏𝑘−1(p)𝐷

〉𝑋,•
𝛽

,

which vanishes after applying equation (1.9). �

In our study of the GW/PT descendent correspondence, we are interested in the Gromov–Witten
bracket

〈
,
〉𝑋,GW
𝑔,𝛽

of Section 1.6 instead of the standard disconnected bracket
〈
,
〉𝑋,•
𝑔,𝛽

. Therefore, the
following result is important for our study.
Proposition 6. Let X be a nonsingular projective toric threefold, and let 𝛽 ∈ 𝐻2 (𝑋,Z). For all 𝑘 ≥ −1
and 𝐷 ∈ D𝑋+

GW◦
, we have 〈

LGW
𝑘 (𝐷)

〉𝑋,GW

𝛽
= 0.

Proof. Since LGW
𝑘 preserves D𝑋+

GW, we have

LGW
𝑘 (𝐷) ∈ D𝑋+

GW.

Since the Gromov–Witten invariants corresponding to collapsed connected components of genus at least
2 always vanish in the presence of stationary descendents,〈

LGW
𝑘 (𝐷)

〉𝑋,•
𝛽

= 𝑍𝑋0,𝑔≥2

���
{𝑡𝑖

𝑘
=0}

·
〈
LGW
𝑘 (𝐷)

〉𝑋,GW

𝛽
.

https://doi.org/10.1017/fmp.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.4


18 Miguel Moreira et al.

Since
〈
LGW
𝑘 (𝐷)

〉𝑋,•
𝛽

vanishes by Proposition 5 and

𝑍𝑋0,𝑔≥2

���
{𝑡𝑖

𝑘
=0}

= exp ���
∞∑
𝑔=2

(−1)𝑔𝑢2𝑔−2 𝜒(𝑋)

2

∫
𝑀𝑔

𝜆3
𝑔−1

���
is invertible,24

〈
LGW
𝑘 (𝐷)

〉𝑋,GW

𝛽
also vanishes. �

3. Theorem 1.1: Virasoro constraints for stable pairs

3.1. Intertwining property

We have already defined the operators LPT
𝑘 and LPT

𝑘 on D𝑋PT in Sections 1.2 and 1.3:

LPT
𝑘 = T𝑘 + R𝑘 , LPT

𝑘 = LPT
𝑘 + (𝑘 + 1)! LPT

−1ch𝑘+1(p) ,

for 𝑘 ≥ −1. We also have

[LPT
𝑛 ,LPT

𝑘 ]
〈,〉
= (𝑘 − 𝑛)LPT

𝑛+𝑘 , [LPT
𝑛 , (𝑘 − 1)! ch𝑘 (p)]

〈,〉
= (𝑛 + 𝑘)! ch𝑛+𝑘 (p) . (3.1)

Equations (3.1) are parallel to equations (2.4) in Gromov–Witten theory.
The main computation of the paper is the intertwining property which relates the Virasoro operators

for the stable pairs and Gromov–Witten theories via the descendent correspondence. We separate the
argument into two cases: 𝑘 ≤ 0 and 𝑘 ≥ 1. Proposition 7 covers the 𝑘 ≤ 0 case. The 𝑘 ≥ 1 case treated
in Theorem 3.1 is harder.

Proposition 7 is proven in Section 3.3 except for steps at the end of the proof which will be completed
in the proof of Theorem 3.1 in Sections 4–6. The argument is an intricate calculation based on a strategy
of filtration.
Proposition 7. For 𝑘 = −1, 0 and 𝐷 ∈ D𝑋�PT , we have

ℭ• ◦ LPT
𝑘 (𝐷) = (𝚤𝑢)−𝑘 L̃GW

𝑘 ◦ ℭ•(𝐷)

after the restrictions 𝜏−2(p) = 1 and 𝜏−1(p) = 0.
Theorem 3.1. For all 𝑘 ≥ 1 and 𝐷 ∈ D𝑋�PT , we have

ℭ• ◦ LPT
𝑘 (𝐷) = (𝚤𝑢)−𝑘 L̃GW

𝑘 ◦ ℭ•(𝐷)

after the restrictions 𝜏−2(p) = 1 and 𝜏−1(𝛾) = 0 for 𝛾 ∈ 𝐻>2 (𝑋).
The evaluations of the left sides of the equalities in Proposition 7 and Theorem 3.1 require a slight

generalization of the formulas (1.14)–(1.16) which govern the descendent correspondence on D𝑋�PT .
Additional rules are required for

c̃h0(𝛾), c̃h1(𝛾) for 𝛾 ∈ 𝐻>0 (𝑋) and c̃h2(𝛿) for 𝛿 ∈ 𝐻2 (𝑋). (3.2)

24See [4, Theorem 4] for the evaluation.
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The required rules take a very simple form since LPT
𝑘 (𝐷) is at most linear25 in the classes (3.2) over

D𝑋�GW :

ℭ◦(c̃h0(𝛾)) = −

∫
𝑋
𝛾 , ℭ◦(c̃h0 (𝛾)𝑀) = 0 , (3.3)

ℭ◦(c̃h1(𝛾)) = 0 , ℭ◦(c̃h1(𝛾)𝑀) = 0,

where 𝑀 ∈ D𝑋�PT . For ℭ◦(c̃h2 (𝛿)𝑀) with 𝑀 ∈ D𝑋�PT , formulas (1.14)–(1.16) apply unchanged. The
above rules are compatible with the GW/PT descendent correspondence and will be established in
Section 9.

The restrictions 𝜏−2(p) = 1 and 𝜏−1 (p) = 0 in Proposition 7 are well-defined since both ℭ• ◦LPT
𝑘 (𝐷)

and L̃GW
𝑘 ◦ℭ•(𝐷), 𝑘 = 0,−1 will be seen to lie in the commutative algebra generated by 𝜏−2(p), 𝜏−1 (𝛾)

and D𝑋+
GW. The commutation with 𝜏−2(𝑝) and 𝜏−1(p) follows from equation (1.9).

Similarly, the restrictions 𝜏−2(p) = 1 and 𝜏−1(𝛾) = 0 for 𝛾 ∈ 𝐻>2 (𝑋) in Theorem 3.1 are well-
defined since both ℭ• ◦LPT

𝑘 (𝐷) and L̃GW
𝑘 ◦ℭ•(𝐷), 𝑘 > 0 will be seen to lie in the commutative algebra

generated by 𝜏−2(p), 𝜏−1(𝛾) and D𝑋�GW . The algebra D𝑋�GW is generated by the essential descendents{
𝜏𝑖 (𝛾) | (𝑖 ≥ 0, 𝛾 ∈ 𝐻>0(𝑋,Q)) or (𝑖 = 0, 𝛾 ∈ 𝐻>2(𝑋,Q))

}
.

Again, commutation follows from equation (1.9).

3.2. Conventions for (−1)!ch1(𝒄1)

In order to complete the definitions of the left sides of Proposition 7 and Theorem 3.1, we must also
include the term (−1)!ch1(𝑐1) in the descendent correspondence ℭ• since such terms occur in LPT

𝑘 .

• The first case is

ℭ◦((−1)!ch1(𝑐1)) = 0.

• The nonvanishing bumping term is given by

ℭ◦
(
(−1)!ch1 (𝑐1)c̃h𝑘1+2(𝛾)

)
= −

(𝚤𝑢)−1

𝑘1!

(
𝔞𝑘1−1 (𝑐1𝛾) + (𝚤𝑢)−1𝔞𝑘1−2(𝑐1𝛾 · 𝑐1)

+ (𝚤𝑢)−1𝑘1
∑

|𝜇 |=𝑘1−3

𝔞𝜇1𝔞𝜇2

Aut(𝜇)
(𝑐1𝛾 · 𝑐1)

)
, (3.4)

where 𝑘1 ≥ 2.

• The higher bumping term is

ℭ◦((−1)!ch1(𝑐1)c̃h𝑘1+2(𝛾)c̃h𝑘2+2(𝛾
′)) =

(𝚤𝑢)−2(𝑘1 + 𝑘2 − 1)
𝑘1!𝑘2!

𝔞𝑘1+𝑘2−2(𝑐1𝛾𝛾
′),

𝑘1, 𝑘2 ≥ 0, 𝑘1 + 𝑘2 > 1. There is also an exceptional higher bumping term

ℭ◦((−1)!ch1 (𝑐1)c̃h2(𝛾)c̃h3(𝛾
′)) = 𝜏−2 (𝑐1𝛾𝛾

′).

25LPT
1 (𝐷) has a single quadratic term in the classes (3.2) given by c̃h1 (p) c̃h2 (𝑐1) which causes no difficulty since c̃h1 (p) does

not interact.
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3.3. Proof of Proposition 7

The cases 𝑘 = −1, 0 are special in two ways:
(i) We must use the exceptional cases of the operator ℭ◦, in the analysis for 𝑘 = −1, 0.

(ii) While the operator L̃GW
𝑘 for 𝑘 = −1, 0 has quadratic part 𝑢−2

2 𝐵𝑘+1, L̃GW
𝑘 is a first order operator

acting on the stationary sector of descendent algebra for 𝑘 > 0.
For these reasons, we treat the 𝑘 = −1, 0 cases separately here.

The restrictions in the statement of Proposition 7 allow us freely use

ch0 (p) = −1 , (3.5)

which is compatible with ℭ•. Similarly, we can use

ch1(p) = 0 . (3.6)

Let us write down the corresponding operators explicitly:

LPT
−1 = R−1 − (−1)! ch1(𝑐1), L̃GW

−1 = R−1 +
𝑢−2

2
B0.

LPT
0 = R0 − c̃h2(𝑐1) −

1
2

ch1ch1(𝑐1), L̃GW
0 = R0 +

𝑢−2

2
B1 − 𝜏0(𝑐1) −

1
24

∫
𝑋
𝑐1𝑐2.

We have used equation (3.5) for LPT
−1. For LPT

0 , only the 𝑑𝐿 = 𝑑𝑅 = 2 summand is nonzero by equation
(3.6).

Step 1. We check the statement for 𝐷 = 1.
The left side of the equality of Proposition 7 for 𝑘 = −1 is

ℭ•(LPT
−1 (𝐷)) = −ℭ•((−1)!ch1 (𝑐1)) = 0.

The right side of the equality,

𝚤𝑢 L̃GW
−1 (ℭ•(1)) = 𝚤𝑢 L̃GW

−1 (1) = 0,

matches. For 𝑘 = 0, the left side for 𝐷 = 1 is

ℭ•(LPT
0 (1)) = −ℭ•(c̃h2 (𝑐1)) = −𝔞1 (𝑐1) = −𝜏0(𝑐1) −

1
24

∫
𝑋
𝑐1𝑐2.

The right side,

L̃GW
0 (ℭ•(1)) = L̃GW

0 (1) = −𝜏0 (𝑐1) −
1
24

∫
𝑋
𝑐1𝑐2,

matches.
Step 2. We check the statement for 𝐷 = c̃h𝑘+2(𝛾) with 𝑘 ≥ 0.
We must expand both sides of the equality of Proposition 7 in terms of 𝜏. The following formula will

be used:

(𝚤𝑢)𝑘ℭ◦(c̃h𝑘+2(𝛾)) = 𝜏𝑘 (𝛾) +

(
𝑘∑
𝑖=1

1
𝑖

)
𝜏𝑘−1(𝛾 · 𝑐1) +

���
∑

1≤𝑖< 𝑗≤𝑘

1
𝑖 𝑗

��� 𝜏𝑘−2(𝛾 · 𝑐2
1)

+
∑

|𝜇 |=𝑘−1

𝜇1!𝜇2!
Aut(𝜇)𝑘!

(
𝜏𝜇1−1𝜏𝜇2−1(𝛾 · 𝑐1) +

( 𝜇1−1∑
𝑖=1

1
𝑖

)
𝜏𝜇1−2(𝛾 · 𝑐2

1)𝜏𝜇2−1(p)
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+

( 𝜇2−1∑
𝑖=1

1
𝑖

)
𝜏𝜇1−1(p)𝜏𝜇2−2 (𝛾 · 𝑐2

1)

)
+

∑
|𝜇 |=𝑘−2

𝜇1!𝜇2!
Aut(𝜇)𝑘!

𝜏𝜇1−1𝜏𝜇2−1(𝛾 · 𝑐2
1)

+
∑

|𝜇 |=𝑘−3

𝜇1!𝜇2!𝜇3!
Aut(𝜇) (𝑘 − 1)!

𝜏𝜇1−1𝜏𝜇2−1𝜏𝜇3−1(𝛾 · 𝑐2
1) . (3.7)

We split the analysis of the difference for

ℭ• ◦ LPT
−1 (𝐷) − 𝚤𝑢 L̃GW

−1 ◦ ℭ•(𝐷) (3.8)

in stages according to the 𝜏 degree of terms. The second term of the difference is simpler since

𝚤𝑢 L̃GW
−1 ◦ ℭ•(𝐷) = 𝚤𝑢R−1(ℭ

◦(c̃h𝑘 (𝛾))),

and the latter is a easy modification of equation (3.7). The first term is more involved since there are
two parts: the action of R−1 and the interaction with (−1)!ch1(𝑐1).

• We first study the 𝜏 linear terms of (𝚤𝑢)𝑘−1ℭ• ◦ LPT
−1 (𝐷):(

𝜏𝑘−1(𝛾) +
( 𝑘−1∑
𝑖=1

1
𝑖

)
𝜏𝑘−2(𝛾 · 𝑐1) +

( ∑
1≤𝑖< 𝑗≤𝑘−1

1
𝑖 𝑗

)
𝜏𝑘−3(𝛾 · 𝑐2

1)

)
+

(
(𝚤𝑢)𝑘−2

𝑘!
𝔞𝑘−1 (𝛾 · 𝑐1) +

(𝚤𝑢)𝑘−3

𝑘!
𝔞𝑘−2 (𝛾 · 𝑐2

1)

)
=

(
𝜏𝑘−1(𝛾) +

( 𝑘−1∑
𝑖=1

1
𝑖

)
𝜏𝑘−2(𝛾 · 𝑐1) +

( ∑
1≤𝑖< 𝑗≤𝑘−1

1
𝑖 𝑗

)
𝜏𝑘−3(𝛾 · 𝑐2

1)

)
+

1
𝑘

(
𝜏𝑘−2(𝛾 · 𝑐1) +

( 𝑘−2∑
𝑖=1

1
𝑖

)
𝜏𝑘−3(𝛾 · 𝑐2

1)

)
+

1
𝑘 (𝑘 − 1)

𝜏𝑘−3(𝛾 · 𝑐2
1).

We have used here bumping with (−1)!ch1 (𝑐1) from equation (3.4) to obtain the expression in the second
line and an inversion26 of equation (1.13) to justify the second equality. After collecting together the
coefficients in front of the 𝜏’s in the last expression, we obtain 𝑅−1 (ℭ◦(c̃h𝑘 (𝛾))), exactly as expected.

• We study next the 𝜏-quadratic term of equation (3.8). Consider first the terms that have a co-product
(𝛾 · 𝑐1)

𝐿
𝑖 ⊗ (𝛾 · 𝑐1)

𝑅
𝑖 as argument. Bumping with (−1)!ch1(𝑐1) does not produce such terms—only the

terms of the second line of equation (3.7) contribute to the terms of equation (3.8). These terms cancel
exactly.

• The 𝜏-quadratic terms of difference (3.8) with argument (𝛾 ·𝑐2
1)
𝐿
𝑖 ⊗ (𝛾 ·𝑐2

1)
𝑅
𝑖 are slightly more involved.

The second term of the difference has terms∑
|𝜇 |=𝑘−2

𝜇1!𝜇2!
Aut(𝜇) (𝑘 − 1)!

(( 𝜇1−1∑
𝑖=1

1
𝑖

)
𝜏𝜇1−2 (𝛾 · 𝑐2

1)𝜏𝜇2−1 (p) +
( 𝜇2−1∑
𝑖=1

1
𝑖

)
𝜏𝜇1−1(p)𝜏𝜇2−2(𝛾 · 𝑐2

1)

)
+

∑
|𝜇 |=𝑘−3

𝜇1!𝜇2!
Aut(𝜇) (𝑘 − 1)!

𝜏𝜇1−1𝜏𝜇2−1(𝛾 · 𝑐2
1),

26See equation (5.4) for the full formula for the inversion.
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where the term on the second line is a result of bumping with (−1)!ch1(𝑐1). After simplifying the last
expression, we obtain the corresponding 𝜏-quadratic term of 𝑅−1(ℭ◦(c̃h𝑘+2(𝛾))) as expected.

• The last step is to analyze the 𝜏-cubic terms of the difference (3.8). Since bumping with ch1(𝑐1) is
trivial, the terms match exactly.

Similarly, we must analyze the difference

ℭ• ◦ LPT
0 (𝐷) − L̃GW

0 ◦ ℭ•(𝐷). (3.9)

Since both R0 on the stable pairs side and R0
0 on the Gromov–Witten side scale the descendents by the

complex cohomological degree, the difference (3.9) is equal27 to

−ℭ•
(
(c̃h2 + ch2

1/2) (𝑐1) · 𝐷
)
−

(
R1

0 +
𝑢−2

2
B1 − 𝜏0(𝑐1) −

1
24

∫
𝑋
𝑐1𝑐2

)
◦ ℭ•(𝐷). (3.10)

If 𝐷 = c̃h𝑘+2(𝛾), then B1 ◦ ℭ•(𝐷) = 0. We have already proved that the difference vanishes for 𝐷 = 1.
Since

ℭ•(ch1ch1(𝑐1)c̃h𝑘+2(𝛾)) = 0,

the difference (3.10) is equal to

−ℭ◦(c̃h2 (𝑐1)c̃h𝑘+2(𝛾)) − R1
0 (ℭ

◦(c̃h𝑘+2(𝛾))). (3.11)

Comparing formulas (1.14) and (1.15), we conclude that the latter difference vanishes.
Indeed, let us expand both terms of equation (3.11). First,

ℭ◦(c̃h2 (𝑐1)c̃h𝑘+2(𝛾)) = −
(𝚤𝑢)−1

𝑘!
𝔞𝑘 (𝛾 · 𝑐1) −

(𝚤𝑢)−2

𝑘!
𝔞𝑘−1 (𝛾 · 𝑐2

1) −
(𝚤𝑢)−2

(𝑘 − 1)!

∑
|𝜇 |=𝑘−2

𝔞𝜇1𝔞𝜇2

Aut(𝜇)
(𝛾 · 𝑐2

1)

= −(𝚤𝑢)−𝑘

(
𝜏𝑘−1(𝛾 · 𝑐1) +

(
𝑘−1∑
𝑖=1

1
𝑖

)
𝜏𝑘−2(𝛾 · 𝑐2

1)

)
−

(𝚤𝑢)−𝑘

𝑘
𝜏𝑘−2(𝛾 · 𝑐2

1)

−
(𝚤𝑢)−𝑘+2

(𝑘 − 1)!

∑
|𝜇 |=𝑘−2

𝜇1!𝜇2!
Aut(𝜇)

𝜏𝜇1−1𝜏𝜇2−1(𝛾 · 𝑐2
1).

On the other hand,

ℭ◦(c̃h𝑘+2(𝛾)) =
1

(𝑘 + 1)!
𝔞𝑘+1 (𝛾) +

(𝚤𝑢)−1

𝑘!

∑
|𝜇 |=𝑘−1

𝔞𝜇1𝔞𝜇2

Aut(𝜇)
(𝛾 · 𝑐1) + . . .

= (𝚤𝑢)−𝑘

(
𝜏𝑘 (𝛾) +

(
𝑘∑
𝑖=1

1
𝑖

)
𝜏𝑘−1(𝛾 · 𝑐1)

)
+
(𝚤𝑢)−𝑘+2

𝑘!

∑
|𝜇 |=𝑘−1

𝜇1!𝜇2!
Aut(𝜇)

𝜏𝜇1−1𝜏𝜇2−1 (𝛾 · 𝑐1) + . . . ,

where we have used dots to stand for the terms that are of complex cohomological degree 3. Since

R1
0 (𝜏𝑘 (𝛾)) = 𝜏𝑘−1(𝛾 · 𝑐1),

all the omitted terms are annihilated by R1
0. The remaining terms of the difference (3.11) cancel.

27Note both R2
0 and R3

0 are 0.
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Step 3. We check the statement for 𝐷 = c̃h𝑘1+2(𝛾1)c̃h𝑘2+2(𝛾2) with 𝑘𝑖 ≥ 0.
We start with the difference (3.8):

ℭ◦(R−1 (c̃h𝑘1+2(𝛾1)c̃h𝑘2+2(𝛾2))) − ℭ◦((−1)!c̃h1 (𝑐1)c̃h𝑘1+2(𝛾1)c̃h𝑘2+2(𝛾2))

− (𝚤𝑢)R−1(ℭ
◦(c̃h𝑘1+2 (𝛾1)c̃h𝑘2+2(𝛾2))) − (𝚤𝑢)

𝑢−2

2
B0 (ℭ◦(c̃h𝑘1+2(𝛾1)),ℭ

◦(c̃h𝑘2+2(𝛾2)))). (3.12)

Vanishing of the last expression follows from Proposition 12 and Proposition 13.
The difference (3.9) as above is equivalent to equation (3.10). Since we have already shown the

vanishing for 𝐷 = 1 and 𝐷 = c̃h𝑘+2(𝛾), we need only to check the vanishing of

− ℭ◦(c̃h2(𝑐1)𝐷) −
1
2
ℭ•(ch1ch1 (𝑐1)𝐷) − 𝑅1

0 (ℭ
◦(𝐷))

−
𝑢−2

2
B1 (ℭ◦(c̃h𝑘1+2 (𝛾1)),ℭ

◦(c̃h𝑘2+2 (𝛾2))). (3.13)

The vanishing follows from Propositions 12 and 13.
Step 4. We check the statement for 𝐷 = c̃h𝑘1+2(𝛾1)c̃h𝑘2+2(𝛾2)c̃h𝑘3+2(𝛾3) with 𝑘𝑖 ≥ 0.
The result follows immediately from the triple bumping relation (6.8) which holds in complete

generality. No special cases require extra attention.

3.4. Proof of Theorem 1.1

The vanishings

〈LPT
−1 (𝐷)〉𝑋,PT

𝛽 = 0 and 〈LPT
0 (𝐷)〉𝑋,PT

𝛽 = 0 (3.14)

are simple to prove for all 𝐷 ∈ D𝑋PT. For

LPT
−1 = R−1 + R−1ch0 (p),

the vanishing (3.14) is immediate from the definition of R−1 and equation (1.1). For

L0 = R0 − c̃h2 (𝑐1) −
1
2

ch1ch1 (𝑐1) + R−1ch1(p)

the vanishing (3.14) follows from the definition of R0, the virtual dimension constraints and the divisor
equation: 〈

ch2(𝑐1) ch𝑘1 (𝛾1) · · · ch𝑘𝑚 (𝛾𝑚)
〉𝑋,PT

𝛽
=

∫
𝛽
𝑐1 ·

〈
ch𝑘1 (𝛾1) · · · ch𝑘𝑚 (𝛾𝑚)

〉𝑋,PT

𝛽
.

We now assume 𝑘 ≥ 1. Using the intertwining property of Theorem 3.1, the stationary GW/PT
correspondence of Theorem 1.4 and the Virasoro constraints in Gromov–Witten theory, we can prove
the stationary Virasoro constraints for stable pairs in the toric case.

Let 𝐷 ∈ D𝑋+
PT , so D is a monomial in the operators{

c̃h𝑖 (𝛾) | 𝑖 ≥ 0, 𝛾 ∈ 𝐻>0 (𝑋,Q)
}
.

The first step is to check by hand that the Virasoro constraints〈
LPT
𝑘 (𝐷)

〉𝑋,PT

𝛽
= 0 (3.15)
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of Theorem 1.1 are compatible all with insertions of the form

c̃h0(𝛾), c̃h1(𝛾) for 𝛾 ∈ 𝐻>0 (𝑋) and c̃h2(𝛿) for 𝛿 ∈ 𝐻2 (𝑋). (3.16)

If any of the operators (3.16) appear in D, the Virasoro constraints (3.15) are true if the Virasoro
constraints are true for the monomial obtained by dividing D by the occurring operators (3.16). We can
therefore reduce to the case where D is a monomial in the operators{

c̃h𝑖 (𝛾) | (𝑖 ≥ 3, 𝛾 ∈ 𝐻>0 (𝑋,Q)) or (𝑖 = 2, 𝛾 ∈ 𝐻>2 (𝑋,Q))
}
.

In other words, 𝐷 ∈ D𝑋�PT .
The next step is to apply Theorem 1.4:

(−𝑞)𝑑𝛽/2 〈LPT
𝑘 (𝐷)〉𝑋,PT

𝛽 = (−𝚤𝑢)𝑑𝛽 〈ℭ•(LPT
𝑘 (𝐷))〉𝑋,GW

𝛽 (3.17)

for all 𝑘 ≥ 1. By the construction of the correspondence [26], the descendents of the point class do not
interact with other descendents:

ℭ•(c̃h𝑘+2(p)𝐷) = (𝚤𝑢)−𝑘𝜏𝑘 (p)ℭ•(𝐷) , (3.18)

for every 𝐷 ∈ D𝑋�PT .
By combining equations (3.17) and (3.18) and the intertwining statement of Theorem 3.1, we see

〈ℭ•(LPT
𝑘 (𝐷))〉GW

𝛽 = 〈ℭ•(LPT
𝑘 (𝐷))〉GW

𝛽 + (𝑘 + 1)! 〈ℭ•(LPT
−1 (ch𝑘+1(p)𝐷))〉GW

𝛽

= (𝚤𝑢)−𝑘 〈L̃GW
𝑘 (ℭ•(𝐷))〉GW

𝛽 + (𝚤𝑢)2−𝑘 (𝑘 + 1)! 〈L̃GW
−1 (𝜏𝑘−1(p)ℭ•(𝐷))〉GW

𝛽

= (𝚤𝑢)−𝑘 〈LGW
𝑘 (ℭ•(𝐷))〉GW

𝛽

= 0,

where the last equality is by Proposition 6 which may be applied since

ℭ•(𝐷) ∈ D𝑋+
GW

by Proposition 4. We conclude

〈LPT
𝑘 (𝐷)〉𝑋,PT

𝛽 = 0

as required. �

We could have also used the intertwining property of Proposition 7 to prove the stable pairs vanishings
(3.14) for 𝐷 ∈ D𝑋+

PT , but some additional care must be taken since the insertions ch0 (p) and ch1 (p)
which occur in the terms

(𝑘 + 1)! 〈ℭ•(LPT
−1 (ch𝑘+1(p)𝐷))〉GW

𝛽

for 𝑘 = −1 and 0 are not covered by Proposition 7. We leave the details to the reader.

4. Intertwining I: basic case

4.1. Overview

After an explicit study of various terms of the stationary Gromov–Witten Virasoro constraints in Section
4.2, we prove Theorem 3.1 in the basic case 𝐷 = 1 in Section 4.3.
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4.2. Leading term

We analyze here the stationary Virasoro constraints on the Gromov–Witten side defined in Section 2.4.
The leading term T1

𝑘 of T′
𝑘 is of the form

1
2

T1
𝑘 =

𝑘!
𝑢2 𝜏𝑘 (𝑐1) +

1
2

∑
𝑎+𝑏=𝑘−2

(−1)𝑑
𝐿−1(𝑎 + 𝑑𝐿 − 1)!(𝑏 + 𝑑𝑅 − 1)!𝜏𝑎𝜏𝑏 (𝑐1),

where 𝑎, 𝑏 ≥ 0 in the sum. By the following result, the term T′
𝑘 simplifies if we use the modified

descendents 𝔞𝑖 .

Proposition 8. For all 𝑘 ≥ −1,

T′
𝑘 = −(𝚤𝑢)𝑘−2

∑
𝑎+𝑏=𝑘+2

(−1)𝑑
𝐿𝑑𝑅

(𝑎 + 𝑑𝐿 − 3)!(𝑏 + 𝑑𝑅 − 3)!
𝔞𝑎−1𝔞𝑏−1 (𝑐1)

(𝑎 − 1)!(𝑏 − 1)!
,

where the sum over all 𝑎, 𝑏 ≥ 0 and we use convention 𝔞0 = 0, 𝔞−1/(−1)! = 𝜏−2.

Proof. Using formula (1.13), we expand T′
𝑘 in terms of 𝔞𝑖 to show that the quadratic and cubic in 𝑐1

terms cancel. In the computation, we compare the expressions

[−𝑎]𝑘2 = (−1)𝑎𝑎!(𝑘 − 𝑎)!

(
𝑘−𝑎∑
𝑖=1

1
𝑖
−

𝑎∑
𝑖=1

1
𝑖

)
, 𝑎 ≥ 0 , 𝑘 ≥ 𝑎,

[−𝑎]𝑘3 = (−1)𝑎𝑎!(𝑘 − 𝑎)! ���
∑

1≤𝑖< 𝑗≤𝑘−𝑎

1
𝑖 𝑗

+
∑

1≤𝑖< 𝑗≤𝑎

1
𝑖 𝑗

−

(
𝑘−𝑎∑
𝑖=1

1
𝑖

) (
𝑎∑
𝑖=1

1
𝑖

)��� , 𝑎 ≥ 0, 𝑘 ≥ 𝑎

with the coefficients in equation (1.13).
The transformation (1.13) simplifies if we use the following operators and shorthand notations for

the sums

�̃�𝑘 =
(𝚤𝑢)𝑘−1

𝑘!
𝔞𝑘 , 𝜒𝑘𝑙 =

𝑘∑
𝑗=1

1
𝑗 𝑙
, 𝜒𝑘1,1 =

∑
1≤𝑖< 𝑗≤𝑘

1
𝑖 𝑗
.

In the formulas below, all operators �̃�0 are set to be 0. We apply transformation to T1
𝑘 to obtain

𝑘+1∑
𝑚=−1

(−1)𝑑𝐿−1(𝑚 + 𝑑𝐿 − 2)!(𝑘 − 𝑚 − 𝑑𝐿 + 2)!

×

(
�̃�𝑚�̃�−𝑚+𝑘 (𝑐1) −

(
𝜒𝑚1 − 𝜒𝑘−𝑚−1

1

)
�̃�𝑚�̃�−𝑚+𝑘−1(𝑐

2
1)

+
(
𝜒𝑚1 𝜒

𝑘−𝑚−2
1 + 𝜒𝑚2 + 𝜒𝑚1,1 + 𝜒

−𝑚+𝑘−2
2 + 𝜒−𝑚+𝑘−2

1,1

)
�̃�𝑚�̃�−𝑚+𝑘−2(𝑐

3
1)

)
. (4.1)

To write the transformation of T2
𝑘 , we split the sum for T2

𝑘 into two subsums, the first with 𝑑𝐿 = 2 and
the second with 𝑑𝐿 = 3:

𝑘∑
𝑚=−1

(−1) (𝑚)!(𝑘 − 𝑚)!(𝜒𝑘−𝑚1 − 𝜒𝑚1 )
(
�̃�𝑚 (𝑐

2
1)�̃�−𝑚+𝑘−1(p) − 𝜒𝑚−1

1 �̃�𝑚−1�̃�−𝑚−𝑘−1(𝑐
3
1)

)
+ (𝑚 + 1)!(𝑘 − 𝑚 − 1)!(𝜒𝑘−𝑚−1

1 − 𝜒𝑚−1
1 )

(
�̃�𝑚 (p)�̃�−𝑚+𝑘−1(𝑐

2
1) − 𝜒𝑘−𝑚−2

1 �̃�𝑚�̃�−𝑚−𝑘−2(𝑐
2
1)

)
.

https://doi.org/10.1017/fmp.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.4


26 Miguel Moreira et al.

Finally, the transformation of T3
𝑘 to 𝔞 variables is

𝑘∑
𝑚=−1

(𝑚 + 1)!(𝑘 − 𝑚 − 1)!
(
𝜒𝑚−1

1,1 + 𝜒𝑘−𝑚−1
1,1 − 𝜒𝑚−1

1 𝜒𝑘−𝑚−1
1

)
�̃�𝑚�̃�−𝑚+𝑘−2(𝑐

3
1).

After summing the terms T 𝑗
𝑘 for 𝑗 = 1, 2, 3, we find that only the first term in equation (4.1) does not

cancel. �

4.3. Intertwining for 𝑫 = 1

For the most of computations in Section 4, we will require the simplest case of the stationary GW/PT
transformation ℭ• of Section 1.7,

ℭ◦(c̃h𝑘+2(𝛾)) =
1

(𝑘 + 1)!
𝔞𝑘+1 (𝛾) +

(𝚤𝑢)−1

𝑘!

∑
|𝜇 |=𝑘−1

𝔞𝜇1𝔞𝜇2 (𝛾 · 𝑐1)

Aut(𝜇)

+
(𝚤𝑢)−2

𝑘!

∑
|𝜇 |=𝑘−2

𝔞𝜇1𝔞𝜇2 (𝛾 · 𝑐2
1)

Aut(𝜇)
+

(𝚤𝑢)−2

(𝑘 − 1)!

∑
|𝜇 |=𝑘−3

𝔞𝜇1𝔞𝜇2𝔞𝜇3 (𝛾 · 𝑐2
1)

Aut(𝜇)
. (4.2)

Our first result is the simplest case of Theorem 3.1.

Proposition 9. For all 𝑘 ≥ 1, we have

ℭ•(LPT
𝑘 (1)) = (𝚤𝑢)−𝑘 L̃GW

𝑘 (1).

Proof. Since the operators R𝑘 annihilate 1, we must prove

ℭ•(T𝑘 ) = (𝚤𝑢)−𝑘
(
(𝚤𝑢)2

2
T′
𝑘

)
. (4.3)

From Section 1.2, we have the following formula on the stable pairs side:

T𝑘 = −
1
2

∑
𝑎+𝑏=𝑘+2

(−1)𝑑
𝐿𝑑𝑅

(𝑎 + 𝑑𝐿 − 3)!(𝑏 + 𝑑𝑅 − 3)! c̃h𝑎 c̃h𝑏 (𝑐1).

On the Gromov–Witten side, we have

T′
𝑘 = −(𝚤𝑢)𝑘−2

∑
𝑎+𝑏=𝑘+2

(−1)𝑑
𝐿𝑑𝑅

(𝑎 + 𝑑𝐿 − 3)!(𝑏 + 𝑑𝑅 − 3)!
𝔞𝑎−1𝔞𝑏−1 (𝑐1)

(𝑎 − 1)!(𝑏 − 1)!

by Proposition 8. Using equation (4.2), the quadratic term in the 𝔞-insertions of ℭ•(T𝑘 ) exactly matches
the full right side of equation (4.3). We will prove the other terms of ℭ•(T𝑘 ) all vanish.

The stable pairs term T𝑘 is the sum of three subsums:

1
2

∑
𝑎+𝑏=𝑘+2

(
(𝑎 − 2)!𝑏! c̃h𝑎 (𝑐1)c̃h𝑏 (p) + 𝑎!(𝑏 − 2)! c̃h𝑎 (p)c̃h𝑏 (𝑐1)

− (𝑎 − 1)!(𝑏 − 1)!
∑

𝑠+1≤•,★≤2𝑠
𝛼•★ c̃h𝑎 (𝛾•)c̃h𝑏 (𝛾★)

)
, (4.4)
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where last term uses28

𝑐1 · 𝛾2𝑠+1−• =
∑
★

𝛼•★𝛾★.

After applying ℭ• to equation (4.4) we obtain quadratic, cubic and quartic monomials in 𝔞. We will
show the cubic and quartic terms vanish.

We start with the analysis of the quartic term of ℭ•(T𝑘 ). The first term (4.4) yields the quartic part:

1
2

∫
𝑋
𝑐3

1 ·
∑

𝑎+𝑏=𝑘+2

(
(𝑎 − 2)!𝑏! ·

𝔞𝑏−1 (p)
(𝑏 − 1)!

·
(𝚤𝑢)−2

(𝑎 − 3)!

∑
|𝜇 |=𝑎−5

𝔞𝜇1 (p)𝔞𝜇2 (p)𝔞𝜇3 (p)
Aut(𝜇)

+(𝑏 − 2)!𝑎! ·
𝔞𝑎−1 (p)
(𝑎 − 1)!

·
(𝚤𝑢)−2

(𝑏 − 3)!

∑
|𝜇 |=𝑏−5

𝔞𝜇1 (p)𝔞𝜇2 (p)𝔞𝜇3 (p)
Aut(𝜇)

)
.

The last term of equation (4.4) yields the following quartic part (with the sum over the same range of a
and b as above):

−
1
2

∫
𝑋
𝑐3

1 · (𝑎 − 1)!(𝑏 − 1)! ·
(𝚤𝑢)−1

(𝑎 − 2)!

∑
|𝜇′ |=𝑎−3

𝔞𝜇′1 (p)𝔞𝜇′2 (p)
Aut(𝜇′)

·
(𝚤𝑢)−1

(𝑏 − 2)!

∑
|𝜇′′ |=𝑏−3

𝔞𝜇′′1 (p)𝔞𝜇′′2 (p)
Aut(𝜇′′)

,

where, in both formulas, we have used convention |𝜇 | =
∑
𝑖 𝜇𝑖 .

These two quartic parts cancel each other. Indeed, let us analyze the factor in front of

1
2(𝚤𝑢)2

∫
𝑋
𝑐3

1 · 𝔞𝜆1 (p)𝔞𝜆2 (p)𝔞𝜆3 (p)𝔞𝜆4 (p)

in both expressions. For simplicity, let us assume | Aut(𝜆) | = 1. Then, the factor in the first quartic part
is a sum with four terms:

4∑
𝑖=1

(𝜆𝑖 + 1)

(∑
𝑗≠𝑖

(𝜆 𝑗 + 1)

)
. (4.5)

The factor in the second formula is a sum with three terms:

−
∑

(𝜆𝑖1 + 𝜆𝑖2 + 2) (𝜆 𝑗1 + 𝜆 𝑗2 + 2) , (4.6)

where the sum is over all splittings

{1, 2, 3, 4} = {𝑖1, 𝑖2} ∪ { 𝑗1, 𝑗2}.

The factors (4.5) and (4.6) are sums of 12 monomials of 𝜆𝑖 + 1 and are opposites of each other. The case
when | Aut(𝜆) | > 1 is analogous.

Finally, we analyze the cubic terms. Let us first analyze the cubic terms of the form 𝔞𝑖 (p)𝔞 𝑗 (p)𝔞𝑙 (p).
Since

ch𝑘+2(𝑐1)ch0 (p) = (−1)ch𝑘+2(𝑐1),

the cubic part of the first term of equation (4.4) with 𝑏 = 0 is:

−𝑘

∫
𝑋

𝑐3
1

2(𝚤𝑢)2

∑
|𝜇 |=𝑘−1

𝔞𝜇1 (p)𝔞𝜇2 (p)𝔞𝜇3 (p)
Aut(𝜇)

. (4.7)

28We use the subscripts • and ★ in order to avoid 𝑖, 𝑗 , 𝑎, 𝑏 which are already taken.
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A similar cubic part is produced by the second term of equation (4.4) with 𝑎 = 0.
The other cubic parts of the first term of equation (4.4) are∫

𝑋
𝑐3

1

∑
𝑎+𝑏=𝑘+2

𝑏

2(𝚤𝑢)2𝔞𝑏−1 (p)
∑

|𝜇 |=𝑎−4

𝔞𝜇1 (p)𝔞𝜇2 (p)
Aut(𝜇)

+
𝑏

2𝚤𝑢
𝔞𝑏−1 (p)

∑
|𝜇 |=𝑎−3

𝔞𝜇1𝔞𝜇2 (𝑐
2
1)

Aut(𝜇)
. (4.8)

A similar term is yielded by the second term of equation (4.4).
If Aut(𝜇) = 1, then the factor in front of monomial

1
2(𝚤𝑢)2𝔞𝜆1 (p)𝔞𝜆2 (p)𝔞𝜆3 (p)

of equation (4.8) is the sum of three terms

(𝜆1 + 1) + (𝜆2 + 1) + (𝜆3 + 1)

and, hence, cancels with corresponding monomial from equation (4.7).
The cubic part of the last term of equation (4.4) is

−
(𝑎 − 1)

2𝚤𝑢

∑
•,★

𝛼•★ 𝔞𝑏−1 (𝛾★)
∑

|𝜇 |=𝑎−3

𝔞𝜇1𝔞𝜇2 (𝑐1 · 𝛾•)

Aut(𝜇)

−
(𝑏 − 1)

2𝚤𝑢

∑
•,★

𝛼•★ 𝔞𝑎−1 (𝛾★)
∑

|𝜇 |=𝑏−3

𝔞𝜇1𝔞𝜇2 (𝑐1 · 𝛾•)

Aut(𝜇)
,

over all 𝑎, 𝑏 ≥ 0 satisfying 𝑎 + 𝑏 = 𝑘 + 2. The sum cancels with the last term of equation (4.8). �

5. Intertwining II: noninteracting insertions

5.1. Overview

The main result of Section 5 is a proof of Theorem 3.1 for

𝐷 ∈ D1
PT ∩ D𝑋�PT◦ , (5.1)

where D is a product of c̃h𝑘𝑖 (𝛾𝑖) satisfying

𝛾𝑖 · 𝛾 𝑗 = 0 for 𝑖 ≠ 𝑗 .

We treat the singleton 𝐷 = c̃h𝑘 (p) in Proposition 10. An intricate computation is required for
Proposition 11 which settles the cases 𝐷 = c̃h𝑘 (𝛾), where

𝛾 ∈ 𝐻𝑖 (𝑋) for 𝑖 = 2 and 4.

Finally, in Section 5.3, the general case (5.1) is formally deduced from the singletons.

5.2. Intertwining shift operators

We first relate the operators Rk appearing in the Virasoro constraints on the stable pairs and Gromov–
Witten sides. Recall,

c̃h𝑘 (𝛼) = ch𝑘 (𝛼) +
1

24
ch𝑘−2(𝛼 · 𝑐2) , (5.2)

so c̃h𝑘 (p) = ch𝑘 (p).
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Proposition 10. For all 𝑘 ≥ 1 and all 𝑖 ≥ 2, we have

ℭ•(R𝑘 (ch𝑖 (p))) = (𝚤𝑢)−𝑘 R𝑘 (ℭ
•(ch𝑖 (p))).

Proof. The left side of the equation is

ℭ•(R𝑘 (ch𝑖 (p))) = ℭ•

(
(𝑖 + 𝑘)!
(𝑖 − 1)!

ch𝑖+𝑘 (p)
)
=

(𝑖 + 𝑘)!
(𝑖 − 1)!

𝔞𝑖+𝑘−1(p)
(𝑖 + 𝑘 − 1)!

=
(𝑖 + 𝑘)

(𝑖 − 1)!
𝔞𝑖+𝑘−1(p),

where we have used the definition of R𝑘 for stable pairs and equation (1.14) for the correspondence.
The right side of the equation is

R𝑘 (ℭ
•(ch𝑖 (p))) = R𝑘

(
𝔞𝑖−1(p)
(𝑖 − 1)!

)
= R𝑘

(
𝜏𝑖−2(p)
(𝚤𝑢)𝑖−2

)
=

(𝑖 + 𝑘)!
(𝑖 − 1)!

𝜏𝑖+𝑘−2(p)
(𝚤𝑢)𝑖−2

=
(𝑖 + 𝑘)

(𝑖 − 1)!
(𝚤𝑢)𝑘 𝔞𝑖+𝑘−1(p),

where we have used equation (1.14) for the correspondence, equation (1.13) and the definition of R𝑘 for
Gromov–Witten theory. The two sides match. �

Proposition 11. For all 𝑘 ≥ 1, c̃h𝑖 (𝛾) ∈ D�𝑋
PT , 𝛾 ∈ 𝐻≥2(𝑋), we have

ℭ•(LPT
𝑘 (c̃h𝑖 (𝛾))) = (𝚤𝑢)−𝑘 L̃GW

𝑘 (ℭ•(c̃h𝑖 (𝛾))).

Proof. We start with the easiest case and proceed to the hardest case.

Case 𝛾 ∈ 𝐻6 (𝑋). The case 𝛾 = p follows immediately from the previous results:

ℭ•(LPT
𝑘 (ch𝑖 (p))) = ℭ•(T𝑘 ch𝑖 (p) + R𝑘 (ch𝑖 (p)))

= ℭ•(T𝑘 )ℭ
•(ch𝑖 (p)) + (𝚤𝑢)−𝑘R𝑘 (ℭ

•(ch𝑖 (p))

= (𝚤𝑢)−𝑘 L̃GW
𝑘 (ℭ•(ch𝑖 (p))).

The second equality follows from Proposition 10 and equation (3.18). The third equality uses equation
(4.3).

Case 𝛾 ∈ 𝐻4 (𝑋). We compute the difference

(𝚤𝑢)𝑘ℭ•(R𝑘 (c̃h𝑖 (𝛾))) − R𝑘 (ℭ
•(c̃h𝑖 (𝛾))) . (5.3)

Since 𝛾 · 𝑐2 = 0, we have c̃h𝑘 (𝛾) = ch𝑘 (𝛾) by (5.2).
We start by expanding the first term of the difference:

ℭ◦(R𝑘 (ch𝑖 (𝛾))) = ℭ◦

(
(𝑖 + 𝑘 − 1)!
(𝑖 − 2)!

ch𝑘+𝑖 (𝛾)
)

=
(𝑖 + 𝑘 − 1)!
(𝑖 − 2)!

��� 𝔞𝑖+𝑘−1(𝛾)

(𝑖 + 𝑘 − 1)!
+

(𝚤𝑢)−1

(𝑖 + 𝑘 − 2)!

∑
𝜇1+𝜇2=𝑖+𝑘−3

𝔞𝜇1𝔞𝜇2

2
(𝛾 · 𝑐1)

��� .
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To proceed, we invert the correspondence (1.13):

(𝚤𝑢)𝑘𝔞𝑘+1
(𝑘 + 1)!

(𝛾) = 𝜏𝑘 (𝛾) +

(
𝑘∑
𝑖=1

1
𝑖

)
𝜏𝑘−1(𝛾 · 𝑐1) +

���
∑

1≤𝑖< 𝑗≤𝑘

1
𝑖 𝑗

��� 𝜏𝑘−2(𝛾 · 𝑐2
1) . (5.4)

We then obtain

(𝚤𝑢)𝑘ℭ◦(R𝑘 (ch𝑖 (𝛾))) =
(𝑖 + 𝑘 − 1)!
(𝑖 − 2)!

���𝜏𝑖+𝑘−2(𝛾)

(𝚤𝑢)𝑖−2 +
���
𝑖+𝑘−2∑
𝑗=1

1
𝑗

��� 𝜏𝑖+𝑘−3(𝛾 · 𝑐1)

(𝚤𝑢)𝑖−2

+
(𝚤𝑢)−𝑖+4

(𝑖 + 𝑘 − 2)!

∑
𝜇1+𝜇2=𝑖+𝑘−3

𝜇1!𝜇2!
𝜏𝜇1−1𝜏𝜇2−1

2
(𝛾 · 𝑐1)

��� . (5.5)

We write the second term of the difference as

R𝑘 (ℭ
◦(ch𝑖 (𝛾))) = R𝑘

���𝔞𝑖−1 (𝛾)

(𝑖 − 1)!
+

(𝚤𝑢)−1

(𝑖 − 2)!

∑
𝜇1+𝜇2=𝑖−3

𝔞𝜇1𝔞𝜇2

2
(𝛾 · 𝑐1)

��� . (5.6)

After applying the inversion (5.4), we have

R𝑘
���𝜏𝑖−2(𝛾)

(𝚤𝑢)𝑖−2 +
���
𝑖−2∑
𝑗=1

1
𝑗

��� 𝜏𝑖−3(𝛾 · 𝑐1)

(𝚤𝑢)𝑖−2 +
(𝚤𝑢)4−𝑖

(𝑖 − 2)!

∑
𝜇1+𝜇2=𝑖−3

𝜇1!𝜇2!
𝜏𝜇1−1𝜏𝜇2−1

2
(𝛾 · 𝑐1)

��� .
We expand the above expression fully to obtain

(𝑖 + 𝑘 − 1)!𝜏𝑖+𝑘−2(𝛾)

(𝚤𝑢)𝑖−2(𝑖 − 2)!

+
(𝑖 + 𝑘 − 1)!

(𝚤𝑢)𝑖−2(𝑖 − 2)!
���
𝑘+𝑖−1∑
𝑗=𝑖−1

1
𝑗

��� 𝜏𝑖+𝑘−3(𝛾 · 𝑐1) +
(𝑖 + 𝑘 − 1)!

(𝚤𝑢)𝑖−2(𝑖 − 2)!
���
𝑖−2∑
𝑗=1

1
𝑗

��� 𝜏𝑖−𝑘+3(𝛾 · 𝑐1)

+
(𝚤𝑢)−𝑖+4

(𝑖 − 2)!

∑
𝜇1+𝜇2=𝑖−3

(
(𝜇1 + 𝑘 + 1)!𝜇2!

𝜏𝜇1+𝑘−1𝜏𝜇2−1

2
(𝛾 · 𝑐1) + 𝜇1!(𝜇2 + 𝑘 + 1)!

𝜏𝜇1−1𝜏𝜇2+𝑘−1

2
(𝛾 · 𝑐1)

)
,

(5.7)

where we have used formula

[𝑖]𝑘1 =
(𝑖 + 𝑘)!
(𝑖 − 1)!

𝑖+𝑘∑
𝑗=𝑖

1
𝑗

in the expansion of R𝑘 (𝜏𝑖−2(𝛾)).
To complete our computation of the difference (5.3), we observe several cancellations. The first term

of equation (5.5) cancels with first term of equation (5.7). The second term of equation (5.5) almost
cancels with the sum of the second and third terms of equation (5.7); the only term that does not cancel is

−
(𝑖 + 𝑘 − 2)!

(𝚤𝑢)𝑖−2(𝑖 − 2)!
𝜏𝑖+𝑘−3(𝛾 · 𝑐1). (5.8)
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Finally, we rewrite the last term of equation (5.5) as

(𝚤𝑢)−𝑖+4

(𝑖 − 2)!

∑
𝜇1+𝜇2=𝑖+𝑘−3

(𝜇1 + 1)!𝜇2!
𝜏𝜇1−1𝜏𝜇2−1

2
(𝛾 · 𝑐1) + 𝜇1!(𝜇2 + 1)!

𝜏𝜇1−1𝜏𝜇2−1

2
(𝛾 · 𝑐1).

Then, we see that the last term of equation (5.6) cancels with the last term of equation (5.5) if 𝜇1 ≥ 𝑘 +1
and 𝜇2 ≥ 𝑘 + 1. Thus, the difference (5.3) equals

(𝚤𝑢)−𝑖+4

(𝑖 − 2)!
���

∑
𝜇1+𝜇2=𝑖+𝑘−3, 𝜇1≤𝑘

(𝜇1 + 1)!𝜇2!
𝜏𝜇1−1𝜏𝜇2−1

2
(𝛾 · 𝑐1)

+
∑

𝜇1+𝜇2=𝑖+𝑘−3, 𝜇2≤𝑘

𝜇1!(𝜇2 + 1)!
𝜏𝜇1−1𝜏𝜇2−1

2
(𝛾 · 𝑐1)

��� . (5.9)

We now include the T𝑘 and T′
𝑘 terms in the difference. We have

(𝚤𝑢)𝑘ℭ•(LPT
𝑘 (ch𝑖 (𝛾))) − L̃GW

𝑘 (ℭ•(ch𝑖 (𝛾)))

= (𝚤𝑢)𝑘ℭ•(R𝑘 (ch𝑖 (𝛾))) − R𝑘 (ℭ
•(ch𝑖 (𝛾))) + (𝚤𝑢)𝑘ℭ•(T𝑘 (ch𝑖 (𝛾))) −

(𝚤𝑢)2

2
T′
𝑘 (ℭ

•(ch𝑖 (𝛾))).

(5.10)

Using equation (4.3), the T𝑘 and T′
𝑘 terms in equation (5.10) simplify to

(𝚤𝑢)𝑘

2

∑
𝑎+𝑏=𝑘+2

(𝑎 − 2)!𝑏!ℭ◦

(
c̃h𝑎 (𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)𝑏−2

)
𝜏𝑏−2(p)

(𝚤𝑢)𝑘

2

∑
𝑎+𝑏=𝑘+2

𝑎!(𝑏 − 2)!𝜏𝑎−2(p)ℭ◦

(
c̃h𝑏 (𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)𝑎−2

)
. (5.11)

To complete our proof, we require the bumping formula (1.15):

ℭ◦(c̃h𝑘1+2 (𝑐1)c̃h𝑘2+2 (𝛾)) = −
1

𝑘1!𝑘2!
(𝚤𝑢)−1𝔞𝑘1+𝑘2 (𝑐1𝛾) . (5.12)

Since 𝛾 ∈ 𝐻4 (𝑋), all the other terms of equation (1.15) vanish. We apply the bumping formula (5.11).
In particular, the first term of equation (5.11),

(𝑎 − 2)!𝑏!ℭ◦

(
c̃h𝑎 (𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)𝑏−2

)
𝜏𝑏−2(p) = −(𝚤𝑢)−𝑎−𝑏−𝑖+6 (𝑎 + 𝑖 − 2)!𝑏!

(𝑖 − 2)!
𝜏𝑎+𝑖−3(𝛾 · 𝑐1)𝜏𝑏−2(p)

cancels with the first term of equation (5.9). Similarly, the second term of equation (5.11) cancels with
the second term of equation (5.9).

Let us observe that the term of last expression with 𝑎 = 1 by the exceptional bumping (3.4) turns
into the terms of equation (5.9) with 𝜇1 = 𝑘 or 𝜇2 = 𝑘 . Similarly, the term with 𝑏 = 0 cancels out with
the term (5.8).

Also, the assumption c̃h𝑖 (𝛾) ∈ D𝑋�PT implies that 𝑖 ≥ 2; thus, no negative factorials appear in the
above computations.
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Case 𝛾 ∈ 𝐻2(𝑋). If 𝛾 ∈ 𝐻2(𝑋), the T𝑘 and T′
𝑘 terms of the formula (5.10) acquires extra summands:

(𝚤𝑢)𝑘ℭ•(LPT
𝑘 (c̃h𝑖 (𝛾))) − L̃GW

𝑘 (ℭ•(c̃h𝑖 (𝛾)))

= (𝚤𝑢)𝑘ℭ•(R𝑘 (c̃h𝑖 (𝛾))) − R𝑘 (ℭ
•(c̃h𝑖 (𝛾)))

+
(𝚤𝑢)𝑘

2

[ ∑
𝑎+𝑏=𝑘+2

(𝑎 − 2)!𝑏!ℭ◦

(
c̃h𝑎 (𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)𝑏−2

)
𝜏𝑏−2 (p) + 𝑎!(𝑏 − 2)!𝜏𝑎−2(p)ℭ◦

(
c̃h𝑏 (𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)𝑎−2

)
−

∑
𝑎+𝑏=𝑘+2

(𝑎 − 1)!(𝑏 − 1)!
∑

0<•,★<2𝑠+1
𝛼•★

(
ℭ◦(c̃h𝑎 (𝛾•) · ch𝑖 (𝛾))ℭ◦(c̃h𝑏 (𝛾★))

+ℭ◦(c̃h𝑎 (𝛾•))ℭ◦(c̃h𝑏 (𝛾★) · ch𝑖 (𝛾))
) ]
, (5.13)

where we have used29 𝑐1 · 𝛾2𝑠+1−• =
∑
★ 𝛼•★𝛾★. Nevertheless, the strategy used in the previous case

can be pursued also for 𝛾 ∈ 𝐻2(𝑋). The computation, which is carried out below, is of course more
complicated.

We will study the difference

(𝚤𝑢)𝑘ℭ•(R𝑘 (c̃h𝑖 (𝛾))) − R𝑘 (ℭ
•(c̃h𝑖 (𝛾))) (5.14)

with 𝛾 ∈ 𝐻2(𝑋). The expansion of the first term is

(𝚤𝑢)𝑘ℭ◦(R𝑘 (c̃h𝑖 (𝛾))) = (𝚤𝑢)𝑘
(𝑘 + 𝑖 − 2)!
(𝑖 − 3)!

ℭ◦(c̃h𝑖+𝑘 (𝛾))

= (𝚤𝑢)𝑘
(𝑘 + 𝑖 − 2)!
(𝑖 − 3)!

��� 𝔞𝑖+𝑘−1(𝛾)

(𝑖 + 𝑘 − 1)!
+

(𝚤𝑢)−1

(𝑖 + 𝑘 − 2)!

∑
|𝜇 |=𝑖+𝑘−3

𝔞𝜇1𝔞𝜇2

Aut(𝜇)
(𝛾 · 𝑐1)

+
(𝚤𝑢)−2

(𝑖 + 𝑘 − 2)!

∑
|𝜇 |=𝑖+𝑘−4

𝔞𝜇1𝔞𝜇2

Aut(𝜇)
(𝛾 · 𝑐2

1)

+
(𝚤𝑢)−2

(𝑖 + 𝑘 − 3)!

∑
|𝜇 |=𝑖+𝑘−5

𝔞𝜇1𝔞𝜇2𝔞𝜇3

Aut(𝜇)
(𝛾 · 𝑐2

1)
��� . (5.15)

The second term of the difference (5.14) is more involved since we must transform the descendents
𝔞 to the standard descendents 𝜏 before applying the shift operator R𝑘 :

R𝑘 (ℭ
◦(c̃h𝑖 (𝛾))) = $𝚤𝑢)−(𝑖−2)R𝑘

���𝜏𝑖−2(𝛾) +
���
𝑖−2∑
𝑗=1

1
𝑗

��� 𝜏𝑖−3(𝛾 · 𝑐1) +
���

∑
1≤ 𝑗<𝑙≤𝑖−2

1
𝑗 𝑙

��� 𝜏𝑖−4(𝛾 · 𝑐2
1)

���
+ (𝚤𝑢)−(𝑖−5)R𝑘

��� (𝚤𝑢)−1

(𝑖 − 2)!
���

∑
|𝜇 |=𝑖−3

𝜇1!𝜇2!
Aut(𝜇)

���𝜏𝜇1−1𝜏𝜇2−1(𝛾 · 𝑐1) +

⎡⎢⎢⎢⎢⎣���
𝜇1∑
𝑗=1

1
𝑗

��� 𝜏𝜇1−2𝜏𝜇2−1

+
���
𝜇2−1∑
𝑗=1

1
𝑗

��� 𝜏𝜇1−1𝜏𝜇2−2

⎤⎥⎥⎥⎥⎦ (𝛾 · 𝑐2
1)

������
+

1
(𝑖 − 3)!

∑
|𝜇 |=𝑖−5

𝜇1!𝜇2!𝜇3!
Aut(𝜇)

𝜏𝜇1−1𝜏𝜇2−1𝜏𝜇3−1(𝛾 · 𝑐2
1)

��� . (5.16)

29In equation (5.13), the elements 𝛾• , 𝛾★ are of complex cohomological degree 2.
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Notice the upper limits in the first harmonic sum is 𝜇1; the terms with 𝑗 = 𝜇1 correspond to the third
term of equation (1.14).

We will study the right-hand side of equation (5.13) using equations (5.15) and (5.16) in three steps
corresponding to the 𝜏-degree.

• Consider first the 𝜏-linear terms. The 𝜏-linear terms of equation (5.15) are

(𝚤𝑢)𝑘
(𝑖 + 𝑘 − 2)!
(𝑖 − 3)!

��� 1
(𝚤𝑢)𝑖+𝑘−2

���𝜏𝑖+𝑘−2(𝛾) +
���
𝑖+𝑘−2∑
𝑗=1

1
𝑗

��� 𝜏𝑖+𝑘−3(𝑐1 · 𝛾)

+
���

∑
1≤ 𝑗<𝑙≤𝑖+𝑘−2

1
𝑗 𝑙

��� 𝜏𝑖+𝑘−4(𝑐
2
1 · 𝛾)

������ . (5.17)

The 𝜏-linear terms of equation (5.16) are more complicated:

(𝚤𝑢)−𝑖+2 (𝑖 + 𝑘 − 2)!
(𝑖 − 3)!

���𝜏𝑖+𝑘−2(𝛾) +
���
𝑖+𝑘−2∑
𝑗=𝑖−2

1
𝑗

��� 𝜏𝑖+𝑘−3(𝛾 · 𝑐1)

+
���

∑
𝑖−2≤ 𝑗<𝑙≤𝑖+𝑘−2

1
𝑗 𝑙

��� 𝜏𝑖+𝑘−4(𝛾 · 𝑐2
1) +

���
𝑖−2∑
𝑗=1

1
𝑗

���
⎡⎢⎢⎢⎢⎣𝜏𝑖+𝑘−3(𝛾 · 𝑐1) +

���
𝑖+𝑘−2∑
𝑗=𝑖−2

1
𝑗

��� 𝜏𝑖+𝑘−4(𝛾 · 𝑐2
1)

⎤⎥⎥⎥⎥⎦
+

���
∑

1≤ 𝑗<𝑙≤𝑖−2

1
𝑗 𝑙

��� 𝜏𝑖+𝑘−4(𝛾 · 𝑐2
1)

��� . (5.18)

The 𝜏𝑖+𝑘−2(𝛾) terms of equations (5.17) and (5.18) match so cancel in the difference (5.14). The
𝜏𝑖+𝑘−3(𝛾 · 𝑐1) terms in equations (5.17) and (5.18) almost cancel: The difference is

(𝚤𝑢)−𝑖+2 (𝑖 + 𝑘 − 2)!
(𝑖 − 2)!

𝜏𝑖+𝑘−3(𝛾 · 𝑐1) . (5.19)

For the 𝜏𝑖+𝑘−4(𝛾 · 𝑐2
1) terms, we split the prefactor in equation (5.18) as

𝑖−2∑
𝑗=1

1
𝑗
=

1
𝑖 − 2

+

𝑖−3∑
𝑗=1

1
𝑗

and the last coefficient of equation (5.18) as∑
1≤ 𝑗<𝑙≤𝑖−2

1
𝑗 𝑙

=
∑

1≤ 𝑗<𝑙≤𝑖−3

1
𝑗 𝑙

+
1

𝑖 − 2

∑
1≤ 𝑗≤𝑖−3

1
𝑗
.

Then, we see the difference of the 𝜏𝑖+𝑘−4(𝛾 · 𝑐2
1) terms in equations (5.17) and (5.18) is

(𝚤𝑢)−𝑖+2 (𝑖 + 𝑘 − 2)!
(𝑖 − 2)!

���
𝑖+𝑘−2∑
𝑗=1

1
𝑗

��� 𝜏𝑖+𝑘−4(𝑐
2
1 · 𝛾) . (5.20)

On the right-hand side of equation (5.13), the 𝜏-linear terms (5.19) and (5.20) of the difference (5.14)
are canceled with

(𝚤𝑢)𝑘

2

[
𝑘!0!ℭ◦

(
c̃h𝑘+2(𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)−2

)
𝜏−2(p) + 0!𝑘!𝜏−2 (p)ℭ◦

(
c̃h𝑘+2(𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)−2

) ]
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using 𝜏−2(p) = 1. In fact, after applying equation (1.15), we find

(𝚤𝑢)𝑘
𝑘!

(𝚤𝑢)−2ℭ
◦(c̃h𝑘+2(𝑐1)c̃h𝑖 (𝛾))

= −
(𝚤𝑢)𝑘+1

(𝑖 − 2)!

(
𝔞𝑘+𝑖−2(𝑐1𝛾) + (𝚤𝑢)−1𝔞(𝑐2

1𝛾)

)
+ . . .

= −
(𝚤𝑢)2−𝑖

(𝑖 − 2)!

(
(𝑘 + 𝑖 − 2)!

(
𝜏𝑘+𝑖−3(𝛾 · 𝑐1) + (

𝑘+𝑖−3∑
𝑖=1

1
𝑖
)𝜏𝑘+𝑖−4(𝛾 · 𝑐2

1)

)
+ (𝑘 + 𝑖 − 3)!𝜏𝑘+𝑖−4(𝛾 · 𝑐2

1)

)
+ . . . .

where the dots stand for the 𝜏-quadratic terms. The second equality follows from the formula (5.4).

• Consider next the 𝜏-quadratic terms. We start with the quadratic terms of complex cohomological
degree 2. The corresponding terms from equation (5.15) are

(𝚤𝑢)𝑘
(𝑘 + 𝑖 − 2)!
(𝑖 − 3)!

∑
|𝜇 |=𝑖+𝑘−3

(𝚤𝑢)−𝜇1−𝜇2+2𝜇1!𝜇2!
(𝚤𝑢) (𝑖 + 𝑘 − 2)! Aut(𝜇)

𝜏𝜇1−1𝜏𝜇2−1 (𝛾 · 𝑐1) . (5.21)

The computation of the corresponding terms in equation (5.16) are more involved since the action of
the shift operator R𝑘 depends on the complex cohomological degree of the descendent:

(𝚤𝑢)−𝑖+4 1
(𝑖 − 2)!

∑
|𝜇 |=𝑖−3

𝜇1!𝜇2!
Aut(𝜇)

(
(𝜇1 + 𝑘)!
(𝜇1 − 1)!

𝜏𝜇1+𝑘−1(𝛾 · 𝑐1)𝜏𝜇2−1(p)

+
(𝜇2 + 𝑘 + 1)!

(𝜇2)!
𝜏𝜇1−1 (𝛾 · 𝑐1)𝜏𝜇2−1+𝑘 (p)

)
. (5.22)

The linear combination of the first term of equation (5.22) with 𝜇1 + 𝑘 − 1 = 𝑎 and second term with
𝜇1 −1 = 𝑎 is equal to the corresponding term of eqiatopm (5.21) with 𝜇1 −1 = 𝑎. Hence, these cancel in
the difference. Similar cancellations happen with rest of the terms. The resulting difference of equations
(5.21) and (5.22) is

(𝚤𝑢)−𝑖+4

(𝑖 − 3)!
���

∑
|𝜇 |=𝑖+𝑘−3, 𝜇1≤𝑘

𝜇1!𝜇2!
𝜏𝜇1−1𝜏𝜇2−1

Aut(𝜇)
(𝛾 · 𝑐1) +

∑
|𝜇 |=𝑖+𝑘−3, 𝜇2≤𝑘

𝜇1!𝜇2!
𝜏𝜇1−1𝜏𝜇2−1

Aut(𝜇)
(𝛾 · 𝑐1)

��� .
(5.23)

We will cancel equation (5.23) with the 𝜏-quadratic terms of complex cohomological degree 2 in the
sum

(𝚤𝑢)𝑘

2

[ ∑
𝑎+𝑏=𝑘+2

(𝑎 − 2)!𝑏!ℭ◦

(
c̃h𝑎 (𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)𝑏−2

)
𝜏𝑏−2(p) + 𝑎!(𝑏 − 2)!𝜏𝑎−2(p)ℭ◦

(
c̃h𝑏 (𝑐1)ch𝑖 (𝛾)

(𝚤𝑢)𝑎−2

)
−

∑
𝑎+𝑏=𝑘+2

(𝑎 − 1)!(𝑏 − 1)!
∑
•,★

𝛼•★

(
ℭ◦(c̃h𝑎 (𝛾•) · ch𝑖 (𝛾))ℭ◦(c̃h𝑏 (𝛾★))

+ℭ◦(c̃h𝑎 (𝛾•))ℭ◦(c̃h𝑏 (𝛾★) · ch𝑖 (𝛾))
) ]

.

(5.24)
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More precisely, the first and second terms of the last expression yield

(𝚤𝑢)−𝑖+4

2

[
𝑏
(𝑎 + 𝑖 − 4)!(𝑏 − 1)!

(𝑖 − 2)!
𝜏𝑎+𝑖−5(𝛾 · 𝑐1)𝜏𝑏−2(p) + 𝑎

(𝑎 − 1)!(𝑏 + 𝑖 − 4)!
(𝑖 − 2)!

𝜏𝑎−2 (p)𝜏𝑏+𝑖−5(𝛾 · 𝑐1)

]
,

and the last two terms yield30

−
(𝚤𝑢)−𝑖−4

2

[
(𝑎 − 1)

(𝑎 + 𝑖 − 4)!(𝑏 − 1)!
(𝑖 − 2)!

𝜏𝑎+𝑖−5(𝛾• · 𝛾)𝜏𝑏−2(𝛾★)

+ (𝑏 − 1)
(𝑎 − 1)!(𝑏 + 𝑖 − 4)!

(𝑖 − 2)!
𝜏𝑎−2(𝛾• · 𝛾)𝜏𝑏+𝑖−5(𝛾★)

]
.

The cancellation then follows from∑
•,★

𝛼•★ (𝛾• · 𝛾) ⊗ 𝛾★ = p ⊗(𝛾 · 𝑐1) and
∑
•,★

𝛼•★ 𝛾• ⊗ (𝛾★ · 𝛾) = (𝛾 · 𝑐1) ⊗ p .

We have cancelled all 𝜏-quadratic terms of complex cohomological degree 2 in equation (5.13).
Let us also observe that the terms of equation (5.24) with 𝑎 = 1 and with 𝑏 = 1 cancel out by

exceptional bumping with equation (3.4) with the term of equation (5.23) with 𝜇1 = 𝑘 or 𝜇2 = 𝑘 .
A longer computation is needed to deal with 𝜏-quadratic terms of complex cohomological degree 3.

Since all such terms have 𝛾 · 𝑐2
1 as an argument, we drop the cohomology insertion from the notation.

The corresponding terms from equation (5.15) are:

(𝚤𝑢)𝑘
(𝑘 + 𝑖 − 2)!
(𝑖 − 3)!

∑
|𝜇 |=𝑖+𝑘−4

(𝚤𝑢)−𝜇1−𝜇2

Aut(𝜇) (𝑖 + 𝑘 − 2)!
���𝜇1!𝜇2! + (𝜇1 + 1)!𝜇2! ���

𝜇1∑
𝑗=1

1
𝑗

���
+𝜇1!(𝜇2 + 1)! ���

𝜇2∑
𝑗=1

1
𝑗

������ 𝜏𝜇1−1𝜏𝜇2−1 . (5.25)

The corresponding terms from equation (5.16) are:

(𝚤𝑢)−𝑖+4

(𝑖 − 2)!

∑
|𝜇 |=𝑖−3

𝜇1!𝜇2!
Aut(𝜇)

[
(𝜇1 + 𝑘)!
(𝜇1 − 1)!

(
𝜇1+𝑘∑
𝑗=𝜇1

1
𝑗

)
𝜏𝜇1+𝑘−2𝜏𝜇2−1

+
(𝜇2 + 𝑘)!
(𝜇2 − 1)!

(
𝜇2+𝑘∑
𝑗=𝜇2

1
𝑗

)
𝜏𝜇1−1𝜏𝜇2+𝑘−2 +

���
𝜇1∑
𝑗=1

1
𝑗

���
(
(𝜇1 + 𝑘)!
(𝜇1 − 1)!

𝜏𝜇1+𝑘−2𝜏𝜇2−1

+
(𝜇2 + 𝑘 + 1)!

𝜇2!
𝜏𝜇1−2𝜏𝜇2+𝑘−1

)
+

���
𝜇2−1∑
𝑗=1

1
𝑗

���
(
(𝜇2 + 𝑘)!
(𝜇2 − 1)!

𝜏𝜇1−1𝜏𝜇2+𝑘−2

+
(𝜇1 + 𝑘 + 1)!

𝜇1!
𝜏𝜇1+𝑘−1𝜏𝜇2−2

)]
. (5.26)

The expression (5.26) is simplified by the following strategy. We number the six 𝜏-quadratic terms
by their order of occurrence in equation (5.26). The first term of equation (5.26) combines with the third
term. The second term combines with the fifth term. We also split off the summands with 𝑗 = 𝜇1 + 𝑘

30The sum over •, ★ with coefficient 𝛼•★ is implicit.
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and 𝑗 = 𝜇2 + 𝑘 from the first and second terms, respectively, as well as the summand with 𝑗 = 𝜇1 from
the third term. Then, equation (5.26) equals

(𝚤𝑢)−𝑖+4

(𝑖 − 2)!

(∑
𝜇1

(𝜇1 + 𝑘 − 1)!𝜇2!
Aut(𝜇)

𝜏𝜇1+𝑘−2𝜏𝜇2−1 + 𝜇2
𝜇1!(𝜇2 + 𝑘 − 1)!

Aut(𝜇)
𝜏𝜇1−1𝜏𝜇2+𝑘−2

+𝜇1
(𝜇1 + 𝑘)!𝜇2!

Aut(𝜇)
���
𝜇1+𝑘−1∑
𝑗=1

1
𝑗

��� 𝜏𝜇1+𝑘−2𝜏𝜇2−1 + 𝜇2
𝜇1!(𝜇2 + 𝑘)!

Aut(𝜇)
���
𝜇2+𝑘−1∑
𝑗=1

1
𝑗

��� 𝜏𝜇1−1𝜏𝜇2+𝑘−2

+(𝜇2 + 𝑘 + 1)
𝜇1!(𝜇2 + 𝑘)!

Aut(𝜇)
���
𝜇1−1∑
𝑗=1

1
𝑗

��� 𝜏𝜇1−2𝜏𝜇2+𝑘−1

+(𝜇1 + 𝑘 + 1)
(𝜇1 + 𝑘)!𝜇2!

Aut(𝜇)
���
𝜇2−1∑
𝑗=1

1
𝑗

��� 𝜏𝜇1+𝑘−1𝜏𝜇2−2

+
(𝜇1 + 𝑘)!𝜇2!

Aut(𝜇)
𝜏𝜇1+𝑘−2𝜏𝜇2−1 +

(𝜇1 − 1)!(𝜇2 + 𝑘 + 1)!
Aut(𝜇)

𝜏𝜇1−2𝜏𝜇2+𝑘−1

)
, (5.27)

where the sum is over 𝜇1 ≥ 𝜇2, |𝜇 | = 𝑖 − 3.
Let us fix an integer a satisfying 𝑎 > 𝑘 − 2. We observe that the sum of the first term from the first

line of equation (5.27) with 𝜇1 = 𝑎 + 2 − 𝑘 and the second term in the last line with 𝜇2 = 𝑎 + 1 − 𝑘 will
cancel with the first term of equation (5.25) with 𝜇1 = 𝑎 + 1. Also, the sum of the second term from the
first line with 𝜇2 = 𝑎 + 2 − 𝑘 and the first term of the last line with 𝜇1 = 𝑎 + 1 − 𝑘 will cancel with the
first term of equation (5.25) with 𝜇2 = 𝑎 + 1.

Similarly, the sum of the first term for the second line of equation (5.27) with 𝜇1 = 𝑎 + 2 − 𝑘 and the
first term from the third line of equation (5.27) with 𝜇1 = 𝑎 +2 cancels with the second term of equation
(5.25) with 𝜇1 = 𝑎 + 1. Finally, the sum of the second term from the second line of equation (5.27) with
𝜇1 = 𝑎 + 1 and the last term from the last line of equation (5.27) with 𝜇1 = 𝑎 + 1 − 𝑘 cancels with the
last term of equation (5.25) with 𝜇1 = 𝑎 + 1.

After all of these cancellations, we are left with

∑ (𝚤𝑢)−𝑖+4𝜇1!𝜇2!
Aut(𝜇) (𝑖 − 3)!

���1 + (𝜇1 + 1) ���
𝜇1∑
𝑗=1

1
𝑗

��� + (𝜇2 + 1) ���
𝜇2∑
𝑗=1

1
𝑗

������ 𝜏𝜇1−1𝜏𝜇2−1 , (5.28)

where
∑

is the sum of two subsums: The first is over 𝜇1 + 𝜇2 = 𝑖 + 𝑘 − 4, 𝜇1 ≤ 𝑘 , and the second is over
𝜇1 + 𝜇2 = 𝑖 + 𝑘 − 4, 𝜇2 ≤ 𝑘 .

In the difference (5.13), the expression (5.28) is canceled by the corresponding 𝜏-quadratic terms
of complex cohomological degree 3 of equation (5.24). More precisely, the first and second terms of
equation (5.24) yield

(𝚤𝑢)−𝑖+4

2

[
𝑏
(𝑎 + 𝑖 − 4)!(𝑏 − 1)!

(𝑖 − 2)!
𝜏𝑎+𝑖−6(𝛾 · 𝑐2

1)𝜏𝑏−2(p) + 𝑎
(𝑎 − 1)!(𝑏 + 𝑖 − 4)!

(𝑖 − 2)!
𝜏𝑎−2 (p)𝜏𝑏+𝑖−6(𝛾 · 𝑐2

1)

]
,

after we apply equation (1.15) to these terms and drop 𝜏-cubic terms and the terms of cohomological
degree other than 3. In particular, the factors in first and second terms are produced by the 𝔞-linear term
of equation (1.15) proportional to 𝑐1.
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The last two terms of equation (5.24) yield31

−
(𝚤𝑢)−𝑖+4

2

[
(𝑎 − 1)

(𝑎 + 𝑖 − 4)!(𝑏 − 1)!
(𝑖 − 2)!

𝜏𝑎+𝑖−6(𝛾• · 𝛾)𝜏𝑏−2(𝛾★ · 𝑐1)

+ (𝑏 − 1)
(𝑎 − 1)!(𝑏 + 𝑖 − 4)!

(𝑖 − 2)!
𝜏𝑎−2(𝛾• · 𝛾)𝜏𝑏+𝑖−6(𝛾★ · 𝑐1)

]
,

after we apply only the parts of equations (1.14) and (1.15) that are not 𝑐1-proportional, then we use
the 𝔞 to 𝜏 the transition formula (5.4) and drop the 𝜏 cubic terms and the terms of homological degree
other than 3.

Together these two sums combine and cancel the first term of equation (5.28). To cancel the last two
terms of equation (5.28), we follow the same pattern. We first apply 𝑐0

1-part of equation (1.15) to the
first and second terms of equation (5.24) and then apply 𝑐1-part of the 𝔞 to 𝜏 transition formula (5.4).
Next, we apply the 𝑐0

1-parts of equations (1.14) and (1.15) and the 𝑐1
1-part of equation (5.4) to the last

two terms of equation (5.24). After dropping the 𝜏-cubic terms and the terms of complex cohomological
degree other than 3, we exactly cancel the remaining terms of equation (5.28).

• Consider finally the 𝜏-cubic terms. The cohomological arguments of these terms are 𝑐2
1 · 𝛾, so as in

the previous computation, we drop the cohomology insertion from the notation.
After expanding the corresponding terms of equation (5.15), we obtain

(𝚤𝑢)−𝑖 (𝑖 + 𝑘 − 2)
(𝑖 − 3)!

∑
|𝜇 |=𝑖+𝑘−5

𝜇1!𝜇2!𝜇3!
Aut(𝜇)

𝜏𝜇1−1𝜏𝜇2−1𝜏𝜇3−1 . (5.29)

On the other hand, the corresponding terms from equation (5.16) are more complicated:

(𝚤𝑢)−𝑖

(𝑖 − 3)!

∑
|𝜇 |=𝑖−5

𝜇1!𝜇2!𝜇3!
Aut(𝜇)

(
(𝜇1 + 𝑘 + 1)!

𝜇1!
𝜏𝜇1+𝑘−1𝜏𝜇2−1𝜏𝜇3−1

+
(𝜇2 + 𝑘 + 1)!

𝜇2!
𝜏𝜇1−1𝜏𝜇2+𝑘−1𝜏𝜇3−1 +

(𝜇3 + 𝑘 + 1)!
𝜇3!

𝜏𝜇1−1𝜏𝜇2−1𝜏𝜇3+𝑘−1

)
.

In equation (5.29), we have 𝑖 + 𝑘 − 2 =
∑3

𝑗=1 (𝜇 𝑗 + 1). Therefore, the difference between the last two
expressions is the sum of the monomials

���
∑

𝑗 ,𝜇 𝑗 ≤𝑘−2
(𝜇 𝑗 + 2)��� (𝚤𝑢)−𝑖𝜇1!𝜇2!𝜇3!

(𝑖 − 3)! Aut(𝜇)
𝜏𝜇1−1𝜏𝜇2−1𝜏𝜇3−1 . (5.30)

Let us restrict our attention to the case when i is bigger than k; the other cases are analogous. After
applying the reaction from the last line of equation (1.15), we obtain a formula for the expressions in
the second line of equation (5.13):

(𝑎 − 2)!𝑏!ℭ◦

(
c̃h𝑎 (𝑐1)c̃h𝑖 (𝛾)

(𝚤𝑢)𝑏−2

)
𝜏𝑏−2 (p) = 𝜏-quadratic terms

+
(𝚤𝑢)−𝑘−𝑖𝑏!
(𝑖 − 2)!

���
∑

|𝜇 |=𝑎+𝑖−6
max(max(𝜇1 + 1, 𝜇2 + 1), 𝑖 − 2)

𝜇1!𝜇2!
Aut(𝜇)

𝜏𝜇1−1𝜏𝜇2−1
��� 𝜏𝑏−2 , (5.31)

31The sum over •, ★ with coefficient 𝛼•★ is implicit.
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𝑎!(𝑏 − 2)!𝜏𝑎−2(p)ℭ◦

(
c̃h𝑏 (𝑐1)c̃h𝑖 (𝛾)

(𝚤𝑢)𝑎−2

)
= 𝜏-quadratic terms

+
(𝚤𝑢)−𝑘−𝑖𝑎!
(𝑖 − 2)!

���
∑

|𝜇 |=𝑏+𝑖−6
max(max(𝜇1 + 1, 𝜇2 + 1), 𝑖 − 2)

𝜇1!𝜇2!
Aut(𝜇)

𝜏𝜇1−1𝜏𝜇2−1
��� 𝜏𝑎−2 . (5.32)

The terms of equations (5.31) and (5.32) with max(𝜇1 + 1, 𝜇2 + 1) ≤ 𝑖 − 2 contribute the monomials

(𝚤𝑢)−𝑖𝑏 ·
𝜇1!𝜇2!(𝑏 − 1)!

(𝑖 − 3)!
𝜏𝜇1−1𝜏𝜇2−1𝜏𝑏−2 , (𝚤𝑢)−𝑖𝑎 ·

𝜇1!𝜇2!(𝑎 − 1)!
(𝑖 − 3)!

𝜏𝜇1−1𝜏𝜇2−1𝜏𝑎−2 . (5.33)

Note 𝑎 + 𝑏 = 𝑘 + 2 in equation (5.13). Since max(𝜇1 + 1, 𝜇2 + 1) ≤ 𝑖 − 2 and |𝜇 | = 𝑎 + 𝑖 − 2 or
|𝜇 | = 𝑏 + 𝑖 − 2, we imply that 𝜇1 + 1, 𝜇2 + 1 ≥ 𝑘 − 1. Thus, the corresponding terms of equations (5.31)
and (5.32) cancel with the monomials (5.30) such that there is only one j with 𝜇 𝑗 ≤ 𝑘 − 2.

The terms in equations (5.31) and (5.32) with max(𝜇1 + 1, 𝜇2 + 1) > 𝑖 − 2 yield terms

(𝚤𝑢)−𝑖𝑏(𝜇′ + 1) ·
𝜇1!𝜇2!(𝑏 − 1)!

(𝑖 − 2)!
𝜏𝜇1−1𝜏𝜇2−1𝜏𝑏−2 , (𝚤𝑢)−𝑖𝑎(𝜇′ + 1) ·

𝜇1!𝜇2!(𝑎 − 1)!
(𝑖 − 2)!

𝜏𝜇1−1𝜏𝜇2−1𝜏𝑎−2,

where 𝜇′ = max(𝜇1, 𝜇2). Both of these terms are of the form

(𝚤𝑢)−𝑖 (𝜇1 + 1) (𝜇2 + 1) ·
𝜇1!𝜇2!𝜇3!
(𝑖 − 2)!

𝜏𝜇1−1𝜏𝜇2−1𝜏𝜇3−1 , (5.34)

with 𝜇1 +1 > 𝑖−2 and |𝜇 | = 𝑖 + 𝑘 −4. Since we assumed that 𝑖 > 𝑘 , we have 𝜇1 + 𝜇2 < 𝑘 −4 in equation
(5.34). The discussed terms therefore combine to yield the sum of monomials

(𝚤𝑢)−𝑖 (𝜇1 + 𝜇2 + 2) (𝜇3 + 1) ·
𝜇1!𝜇2!𝜇3!
(𝑖 − 2)!

𝜏𝜇1−1𝜏𝜇2−1𝜏𝜇3−1 , (5.35)

where 𝜇3 + 1 > 𝑖 − 2 and 𝜇1, 𝜇2 ≤ 𝑘 − 2.
The terms (5.35) combine with the terms from the expansion of the last two lines of equation (5.13).

Indeed, since 𝛾•, 𝛾★ in the last two lines of equation (5.13) are of complex cohomological degree 2,
the 𝜏-terms result from use of the 𝑐1

1-part of equation (1.14) and of the 𝑐0
1-part of equation (1.15). The

expansion of these terms is a sum of monomials

−(𝚤𝑢)−𝑖 (𝑏 − 1) (𝑎 − 1)
(𝑎 + 𝑖 − 4)!𝜇1!𝜇2!

(𝑖 − 2)!
𝜏𝑎+𝑖−5𝜏𝜇1−1𝜏𝜇2−1 , (5.36)

where |𝜇 | = 𝑏 − 3.
The combination of equation (5.36) with 𝑎 = 𝜇3 − 𝑖 + 4, 𝑏 = 𝜇1 + 𝜇2 + 3 and equation (5.35) matches

equation (5.30), since, in equation (5.36), we have

(𝑏 − 1) (𝑎 − 1) = (𝜇1 + 𝜇2 + 2) (𝜇3 − 𝑖 + 3) = (𝜇1 + 𝜇2 + 2) (𝜇3 + 1) − (𝜇1 + 𝜇2 + 2) (𝑖 − 2).

We have cancelled all 𝜏-cubic terms.
The assumption c̃h𝑖 (𝛾) ∈ D𝑋�PT implies 𝑖 ≥ 3. Therefore, in the above computations, we do not see

negative factorials in denominators. �
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5.3. Proof of Theorem 3.1 for D1
PT ∩ D𝑿�

PT

Theorem 3.1, for all 𝐷 ∈ D1
PT ∩D𝑋�PT , is an immediate consequence of Proposition 11 for singletons by

the following simple argument. Let

𝐷 =
𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖) ∈ D
1
PT ∩ D𝑋�PT ,

where 𝛾𝑖𝛾 𝑗 = 0 ∈ 𝐻∗(𝑋) for all 𝑖 ≠ 𝑗 .
By definition, for 𝑘 ≥ 1,

ℭ•
(
LPT
𝑘 (𝐷)

)
= ℭ•

(
LPT
𝑘

( 𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖)
) )

= ℭ•

(
T𝑘

𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖) +
𝑚∑
𝑗=1

R𝑘 (c̃h𝑘 𝑗 (𝛾 𝑗 ))
∏
𝑖≠ 𝑗

c̃h𝑘𝑖 (𝛾𝑖)

)
.

Since 𝛾𝑖𝛾 𝑗 = 0 for 𝑖 ≠ 𝑗 ,

ℭ•
(
T𝑘

𝑚∏
𝑖=1

c̃h𝑘𝑖 (𝛾𝑖)
)
= (−𝑚 + 1)ℭ•(T𝑘 )

𝑚∏
𝑖=1

ℭ•(c̃h𝑘𝑖 (𝛾𝑖)) +
𝑚∑
𝑗=1

ℭ•(T𝑘 c̃h𝑘 𝑗 (𝛾 𝑗 ))
∏
𝑖≠ 𝑗

ℭ•(c̃h𝑘𝑖 (𝛾𝑖)).

By Proposition 11,

(𝚤𝑢)−𝑘 L̃GW
𝑘 (ℭ•(c̃h𝑖 (𝛾𝑖))) = ℭ•

(
LPT
𝑘 (c̃h𝑖 (𝛾𝑖))

)
= ℭ• (T𝑘 ) ℭ

• (c̃h𝑖 (𝛾𝑖)
)
+ ℭ• (T𝑘 c̃h𝑖 (𝛾𝑖)

)
+ ℭ•

(
R𝑘

(
c̃h𝑘𝑖 (𝛾𝑖)

) )
.

We conclude

ℭ•
(
LPT
𝑘 (𝐷)

)
=

𝑚∑
𝑗=1

(𝚤𝑢)−𝑘 L̃GW
𝑘 (ℭ•(c̃h 𝑗 (𝛾 𝑗 )))

∏
𝑖≠ 𝑗

ℭ•(c̃h𝑘𝑖 (𝛾𝑖)) − (𝑚 − 1)ℭ•(T𝑘 )

𝑚∏
𝑖=1

ℭ•(c̃h𝑘𝑖 (𝛾𝑖)).

On the other hand,

(𝚤𝑢)−𝑘 L̃GW
𝑘 (ℭ•(𝐷))

=
𝑚∑
𝑗=1

(𝚤𝑢)−𝑘 L̃GW
𝑘 (ℭ•(c̃h 𝑗 (𝛾 𝑗 )))

∏
𝑖≠ 𝑗

ℭ•(c̃h𝑘𝑖 (𝛾𝑖)) − (𝑚 − 1) (𝚤𝑢)−𝑘
(
(𝚤𝑢)2

2

)
T𝑘

𝑚∏
𝑖=1

ℭ•(c̃h𝑘𝑖 (𝛾𝑖)).

The proof is completed by applying equation (4.3). �

6. Intertwining III: interacting insertions

6.1. Overview

We complete here the proof of Theorem 3.1. Since noninteracting insertions have already been treated
in Section 5, we must address the interacting cases. In the desired equation,

ℭ• ◦ LPT
𝑘 (𝐷) = (𝚤𝑢)−𝑘 L̃GW

𝑘 ◦ ℭ•(𝐷) , (6.1)
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the stable pairs descendent insertions of 𝐷 ∈ D𝑋�PT can interact with each other via the GW/PT
descendent correspondence on both sides of equation (6.1). In addition, the stable pairs descendents can
also interact with constant term of the Virasoro constraints on the left side. We must control all of these
interactions.

6.2. Interactions among two insertions

We start with results which control the interactions of two descendent insertions.

Proposition 12. Let 𝛾′ ∈ 𝐻2(𝑋), 𝛾′′ ∈ 𝐻4(𝑋), and let 𝑖 ≥ 3, 𝑗 ≥ 2. Then, for 𝑘 ≥ −1, we have

(𝚤𝑢)𝑘 ℭ◦(R𝑘 (c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾
′′))) = R𝑘 (ℭ

◦(c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾
′′))).

Proof. We first compute the left side of the equation. After applying the shifts, we obtain

R𝑘 (c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾
′′)) =

(𝑖 + 𝑘 − 2)!
(𝑖 − 3)!

c̃h𝑖+𝑘 (𝛾′)c̃h 𝑗 (𝛾
′′) +

( 𝑗 + 𝑘 − 1)!
( 𝑗 − 2)!

c̃h𝑖 (𝛾′)c̃h 𝑗+𝑘 (𝛾
′′).

We apply the correspondence to the both terms:

ℭ◦(R𝑘 (c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾
′′))) = (𝚤𝑢)−1

(
1

(𝑖 − 3)!( 𝑗 − 2)!
+

( 𝑗 + 𝑘 − 1)
(𝑖 − 2)!( 𝑗 − 2)!

)
𝔞𝑖+ 𝑗+𝑘−4(𝛾

′𝛾′′)

= (𝚤𝑢)−𝑖− 𝑗−𝑘+4 (𝑖 + 𝑗 + 𝑘 − 3)!
(𝑖 − 2)!( 𝑗 − 2)!

𝜏𝑖+ 𝑗+𝑘−5(𝛾
′𝛾′′).

The right side of the equation is

R𝑘 (ℭ
◦(c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾

′′))) = R𝑘

(
(𝚤𝑢)−1

(𝑖 − 2)!( 𝑗 − 2)!
𝔞𝑖+ 𝑗−4 (𝛾

′𝛾′′)

)
= (𝚤𝑢)−𝑖− 𝑗+4 (𝑖 + 𝑗 − 4)!

(𝑖 − 2)!( 𝑗 − 2)!)
R𝑘 (𝜏𝑖+ 𝑗−5(𝛾

′𝛾′′))

= (𝚤𝑢)−𝑖− 𝑗+4 (𝑖 + 𝑗 + 𝑘 − 3)!
(𝑖 − 2)!( 𝑗 − 2)!

𝜏𝑖+ 𝑗+𝑘−5(𝛾
′𝛾′′),

which matches the left side. �

Proposition 13. Let 𝛾′, 𝛾′′ ∈ 𝐻2(𝑋), and let 𝑖, 𝑗 ≥ 3. Then, for 𝑘 ≥ −1, we have

(𝚤𝑢)𝑘 ℭ◦(R𝑘 (c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾
′′))) − R𝑘 (ℭ

◦(c̃h𝑖 (𝛾′)ch 𝑗 (𝛾
′′)))

=
∑

𝑎+𝑏=𝑘+2
(𝑎 − 2)!𝑏!ℭ◦(c̃h𝑖 (𝛾′) · c̃h 𝑗 (𝛾

′′) · c̃h𝑎 (𝑐1)) ℭ
◦(ch𝑏 (p))

+ 𝑎!(𝑏 − 2)!ℭ◦(c̃h𝑖 (𝛾′) · c̃h 𝑗 (𝛾
′′) · c̃h𝑏 (𝑐1)) ℭ

◦(ch𝑎 (p))

−
∑

𝑎+𝑏=𝑘+2
(𝑎 − 1)!(𝑏 − 1)!

∑
•,★

𝛼•★

(
ℭ◦(c̃h𝑎 (𝛾•) · c̃h𝑖 (𝛾′))ℭ◦(c̃h𝑏 (𝛾★)c̃h 𝑗 (𝛾

′′))

+ℭ◦(c̃h𝑎 (𝛾•)c̃h 𝑗 (𝛾
′′))ℭ◦(c̃h𝑏 (𝛾★) · c̃h𝑖 (𝛾′))

)
. (6.2)

Proof. We follow the same strategy as in the proof of Proposition 11. We first compute

R𝑘 (c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾
′′)) =

(𝑘 + 𝑖 − 2)!
(𝑖 − 3)!

c̃h𝑖+𝑘 (𝛾′)c̃h 𝑗 (𝛾
′′) +

(𝑘 + 𝑗 − 2)!
( 𝑗 − 3)!

c̃h𝑖 (𝛾′)c̃h 𝑗+𝑘 (𝛾
′′).
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After applying the correspondence, we obtain

ℭ◦(R𝑘 (c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾
′′))) = −

1
(𝑖 − 3)!( 𝑗 − 2)!

[
𝔞𝑖+ 𝑗+𝑘−4(𝛾

′𝛾′′)

𝚤𝑢
+
𝔞𝑖+ 𝑗+𝑘−5(𝛾

′𝛾′′ · 𝑐1)

(𝚤𝑢)2 +

(𝚤𝑢)−2
∑

|𝜇 |=𝑖+ 𝑗+𝑘−6

𝑓 (𝑖 + 𝑘, 𝑗 ; 𝜇1, 𝜇2)

Aut(𝜇)
𝔞𝜇1𝔞𝜇2 (𝛾

′𝛾′′ · 𝑐1)

⎤⎥⎥⎥⎥⎦ −
1

(𝑖 − 2)!( 𝑗 − 3)!

[
𝔞𝑖+ 𝑗+𝑘−4(𝛾

′𝛾′′)

𝚤𝑢
+

𝔞𝑖+ 𝑗+𝑘−5(𝛾
′𝛾′′ · 𝑐1)

(𝚤𝑢)2 + (𝚤𝑢)−2
∑

|𝜇 |=𝑖+ 𝑗+𝑘−6

𝑓 (𝑖, 𝑗 + 𝑘; 𝜇1, 𝜇2)

Aut(𝜇)
𝔞𝜇1𝔞𝜇2 (𝛾

′𝛾′′ · 𝑐1)

⎤⎥⎥⎥⎥⎦ , (6.3)

where 𝑓 (𝑖, 𝑗 ; 𝜇1, 𝜇2) = max(max(𝑖 − 2, 𝑗 − 2),max(𝜇1 + 1, 𝜇2 + 1)).
The second term of the difference is easier:

R𝑘 (ℭ
◦(c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾

′′))) = −
(𝚤𝑢)−𝑖− 𝑗+4

(𝑖 − 2)!( 𝑗 − 2)!
R𝑘

(
(𝑖 + 𝑗 − 4)!

(
𝜏𝑖+ 𝑗−5(𝛾

′𝛾′′)

+

(
𝑖+ 𝑗−4∑
𝑠=1

1
𝑠

)
𝜏𝑖+ 𝑗−6(𝛾

′𝛾′′ · 𝑐1)

)
+ (𝚤𝑢)−2

∑
|𝜇 |=𝑖+ 𝑗−6

𝑓 (𝑖, 𝑗 ; 𝜇1, 𝜇2)

Aut(𝜇)
𝔞𝜇1𝔞𝜇2 (𝛾

′𝛾′′ · 𝑐1)

)
. (6.4)

We now analyze the difference. The 𝜏-linear terms of complex cohomological degree 2 in (𝚤𝑢)𝑘 times
equations (6.3) and (6.4) are matching sums of the monomials:

(𝚤𝑢)−𝑖− 𝑗+4 (𝑖 + 𝑗 + 𝑘 − 4)!
(𝑖 − 2)!( 𝑗 − 2)!

(𝑖 + 𝑗 − 4)𝜏𝑖+ 𝑗+𝑘−5(𝛾
′𝛾′′).

The 𝜏-linear terms of cohomological degree 3 almost match. To be precise, the corresponding terms in
equation (6.3) are sums the monomials:

(𝚤𝑢)−𝑖− 𝑗+4 (𝑖 + 𝑗 + 𝑘 − 4)!
(𝑖 − 2)!( 𝑗 − 2)!

(𝑖 + 𝑗 − 4)

(
𝑖+ 𝑗+𝑘−4∑
𝑠=1

1
𝑠

)
𝜏𝑖+ 𝑗+𝑘−6(𝛾

′𝛾′′ · 𝑐1).

Respectively, the corresponding terms in equation (6.4) are sums of the same monomials plus an extra
term

(𝚤𝑢)−𝑖− 𝑗+4 (𝑖 + 𝑗 + 𝑘 − 4)!
(𝑖 − 2)!( 𝑗 − 2)!

𝜏𝑖+ 𝑗+𝑘−6(𝛾
′𝛾′′ · 𝑐1).

This extra term gets canceled by the term from the second line of equation (6.2) with 𝑏 = 0 because
of equation (3.5).

Therefore, the difference of (𝚤𝑢)𝑘 times equations (6.3) and (6.4) consists only of the 𝜏-quadratic
terms of complex cohomological degree 3. We omit cohomological classes since all the cohomological
arguments are 𝛾′𝛾′′ · 𝑐1. The corresponding part of equation (6.3) is

(𝚤𝑢)−𝑖− 𝑗+2

(𝑖 − 2)!( 𝑗 − 2)!

∑
|𝜇 |=𝑖+ 𝑗+𝑘−6

𝜇1!𝜇2!
Aut(𝜇)

[(𝑖 − 2) 𝑓 (𝑖 + 𝑘, 𝑗 ; 𝜇) + ( 𝑗 − 2) 𝑓 (𝑖, 𝑗 + 𝑘; 𝜇)] 𝜏𝜇1−1𝜏𝜇2−1 , (6.5)

where we assume that f vanishes whenever one of the argument is negative.
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We must compare equation (6.5) with the expansion of the last four lines of equation (6.2). The first
two of the last four lines of (6.2) expand to

−
(𝚤𝑢)−𝑖− 𝑗+2

(𝑖 − 2)!( 𝑗 − 2)!

∑
𝑎+𝑏=𝑘+2

(𝑖 + 𝑗 + 𝑎 − 6)𝑏
(𝑖 + 𝑗 + 𝑎 − 7)!(𝑎 − 1)!

2
𝜏𝑖+ 𝑗+𝑎−8𝜏𝑏−2

+ (𝑖 + 𝑗 + 𝑏 − 6)𝑎
(𝑖 + 𝑗 + 𝑏 − 7)!(𝑎 − 1)!

2
𝜏𝑖+ 𝑗+𝑏−8𝜏𝑎−2.

The last two lines of the last four lines of equation (6.2) expand to

(𝚤𝑢)−𝑖− 𝑗+2

(𝑖 − 2)!( 𝑗 − 2)!

∑
𝑎+𝑏=𝑘+2

(𝑎 − 1) (𝑏 − 1)
(
(𝑎 + 𝑖 − 4)!(𝑏 + 𝑗 − 4)!𝜏𝑎+𝑖−5𝜏𝑏+ 𝑗−5

+ (𝑎 + 𝑗 − 4)!(𝑏 + 𝑖 − 4)!𝜏𝑎+ 𝑗−5𝜏𝑏+𝑖−5

)
.

These last two expressions are the 𝜏-cubic contribution to equation (6.2) which results from the
bumping of c̃h𝑖 (𝛾′)c̃h 𝑗 (𝛾

′′) with the constant term T𝑘 . The corresponding coefficient in front of 𝜏-
cubic monomial is given by the formula (6.7) below.

To complete the proof, we must match the coefficients in front of the terms in sums above. That is,
we need to compare two expressions below for all 𝜇 satisfying |𝜇 | = 𝑖 + 𝑗 + 𝑘 − 6:

(𝑖 − 2) 𝑓 (𝑖 + 𝑘, 𝑗 ; 𝜇) + ( 𝑗 − 2) 𝑓 (𝑖, 𝑗 + 𝑘; 𝜇) − (𝜇1 + 1) 𝑓 (𝑖, 𝑗 ; 𝜇1 − 𝑘, 𝜇2)

− (𝜇2 + 1) 𝑓 (𝑖, 𝑗 ; 𝜇1, 𝜇2 − 𝑘) , (6.6)

[𝜇1 + 1]≤𝑘 (𝜇2 + 1) + (𝜇1 + 1) [𝜇2 + 1]≤𝑘 − [𝜇1 − 𝑖 + 3]≥0 [𝜇2 − 𝑗 + 3]≥0

− [𝜇1 − 𝑗 + 3]≥0 [𝜇2 − 𝑖 + 3]≥0 , (6.7)

where [𝑎]≤𝑏 and [𝑎]≥𝑏 are cut off functions which equal a if a satisfies inequalities 𝑎 ≥ 𝑏 and 𝑎 ≤ 𝑏,
respectively (and are zero otherwise). The matching now is a long and routine check. We give some
details.

We can always assume 𝜇1 ≥ 𝜇2 and 𝑖 ≥ 𝑗 . Let us further assume k is small and 𝜇1 ≥ 𝑖 + 𝑘 . If 𝜇2 ≥ 𝑘 ,
then the function (6.6) equals

(𝑖 + 𝑗 − 4) (𝜇1 + 1) − (𝜇1 + 1) (𝜇1 − 𝑘 + 1) − (𝜇2 − 1) (𝜇1 + 1) = 0.

The assumed inequalities force all terms in equation (6.7) to vanish.
Next, we assume all but last inequality are true, that is 𝜇2 < 𝑘 . Then the expression (6.6) becomes

(𝑖 + 𝑗 − 4) (𝜇1 + 1) − (𝜇1 + 1) (𝜇1 − 𝑘 + 1) = (𝜇1 + 1) (𝜇2 + 1).

On the other hand, in equation (6.7), only the second expression does not vanish – the second expression
matches equation (6.6). Rest of the case can be treated analogously. �

6.3. Interactions among three insertions

The last interaction to consider is among three descendent insertions. Because of the stationary assump-
tion, there is only one case to control.

Proposition 14. Let 𝛾′, 𝛾′′, 𝛾′′′ ∈ 𝐻2(𝑋), and let 𝑖1, 𝑖2, 𝑖3 ≥ 3, Then, for 𝑘 ≥ −1, we have

(𝚤𝑢)𝑘 ℭ◦
(
R𝑘 (c̃h𝑖1 (𝛾

′)c̃h𝑖2 (𝛾
′′)c̃h𝑖3 (𝛾

′′′))
)
− R𝑘

(
ℭ◦ (c̃h𝑖1 (𝛾

′)c̃h𝑖2 (𝛾
′′)c̃h𝑖3 (𝛾

′′′)
) )

= 0.
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For the proof, we will use the explicit correspondence formula (1.16) for the triple interaction

ℭ◦(c̃h𝑖1 c̃h𝑖2 c̃h𝑖3) (𝛾) =
(|𝑖 | − 6) (𝚤𝑢)−2

(𝑖1 − 2)!(𝑖2 − 2)!(𝑖3 − 2)!
𝔞 |𝑖 |−7(𝛾), (6.8)

where |𝑖 | = 𝑖1 + 𝑖2 + 𝑖3.

Proof of Proposition 14. We first compute the left side of the equation. To start,

R𝑘 (c̃h𝑖1 (𝛾
′)c̃h𝑖2 (𝛾

′′)c̃h𝑖3 (𝛾
′′′)) =

(𝑖1 + 𝑘 − 2)!
(𝑖1 − 3)!

c̃h𝑖1+𝑘 (𝛾
′)c̃h𝑖2 (𝛾

′′)c̃h𝑖3 (𝛾
′′′)

+
(𝑖2 + 𝑘 − 2)!
(𝑖2 − 3)!

c̃h𝑖1 (𝛾
′)c̃h𝑖2+𝑘 (𝛾

′′)c̃h𝑖3 (𝛾
′′′)

+
(𝑖3 + 𝑘 − 2)!
(𝑖3 − 3)!

c̃h𝑖1 (𝛾
′)c̃h𝑖2 (𝛾

′′)c̃h𝑖3+𝑘 (𝛾
′′′).

After applying the triple bumping and the transition from 𝔞 descendents to 𝜏 descendents, we obtain

ℭ◦(R𝑘 (c̃h𝑖1 (𝛾
′)c̃h𝑖2 (𝛾

′′)c̃h𝑖3 (𝛾
′′′))) = (|𝑖 | + 𝑘 − 6) (𝚤𝑢)−2

(
1

(𝑖1 − 3)!(𝑖2 − 2)!(𝑖3 − 2)!

+
1

(𝑖1 − 2)!(𝑖2 − 3)!(𝑖3 − 2)!
+

1
(𝑖1 − 2)!(𝑖2 − 2)!(𝑖3 − 3)!

)
𝔞 |𝑖 |+𝑘−7(𝛾

′𝛾′′𝛾′′′)

= (𝚤𝑢)−|𝑖 |−𝑘+6(|𝑖 | − 6)
(|𝑖 | + 𝑘 − 6)!

(𝑖1 − 2)!(𝑖2 − 2)!(𝑖3 − 2)!
𝜏|𝑖 |+𝑘−8(𝛾

′𝛾′′𝛾′′′) . (6.9)

On the other hand, the right side of the equation equals

R𝑘 (ℭ
◦(c̃h𝑖1 (𝛾

′)c̃h𝑖2 (𝛾
′′)c̃h𝑖3 (𝛾

′′′))) =
(𝚤𝑢)−2(|𝑖 | − 6)

(𝑖1 − 2)!(𝑖2 − 2)!(𝑖3 − 2)!
R𝑘 (𝔞 |𝑖 |−7(𝛾

′𝛾′′𝛾′′′))

= (𝚤𝑢)−|𝑖 |+6(|𝑖 | − 6)
(|𝑖 | + 𝑘 − 6)!

(𝑖1 − 2)!(𝑖2 − 2)!(𝑖3 − 2)!
𝜏|𝑖 |+𝑘−8(𝛾

′𝛾′′𝛾′′′),

which matches (𝚤𝑢)𝑘 times equation (6.9). �

6.4. Proof of Theorem 3.1

Let 𝑘 ≥ 1, and let 𝐷 ∈ D𝑋�PT . To prove the equality

ℭ• ◦ LPT
𝑘 (𝐷) = (𝚤𝑢)−𝑘 L̃GW

𝑘 ◦ ℭ•(𝐷),

after the restrictions 𝜏−2 (p) = 1 and 𝜏−1(𝛾) = 0 for 𝛾 ∈ 𝐻>2 (𝑋), we will expand both sides. The
noninteracting case was already proven in Section 5.3. Equality in the general case will use Propositions
9, 10, 11, 12, 13 and 14.

In the formulas below, we will use shorthand notation for the constant term of LPT
𝑘 :

T𝑘 =
∑
𝑗

T𝐿
𝑘, 𝑗T

𝑅
𝑘, 𝑗 ,

where L and R denote the left and right sides in equation (1.3).
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For 𝐷 =
∏ℓ

𝑖=1 𝐷𝑖 ∈ D
𝑋�
PT , we have

ℭ•(LPT
𝑘 (𝐷)) = ℭ•(T𝑘𝐷 + R𝑘 (𝐷)) (6.10)

=
∑
𝑃′

∑
𝑗

∏
𝑆∈𝑃′

ℭ◦(T𝑆
𝑘, 𝑗𝐷

𝑆) +
∑
𝑃′′

ℓ (𝑃′′)∑
𝑡=1

ℭ◦(R𝑘 (𝐷
𝑆𝑡 ))

∏
𝑆∈𝑃′′, 𝑆≠𝑆𝑡

ℭ◦(𝐷𝑆) .

The first sum is over partitions 𝑃′ of {1, . . . , ℓ, 𝐿, 𝑅} and

𝐷𝑆 =
∏

𝑖∈𝑆∩{1,...,ℓ }
𝐷𝑖 , T𝑆

𝑘, 𝑗 =
∏

𝛾∈𝑆∩{𝐿,𝑅}

T𝛾
𝑘, 𝑗 .

The second sum is over partitions 𝑃′′ of {1, . . . , ℓ} and 𝑃′′ = {𝑆1, . . . , 𝑆ℓ (𝑃′′) }.
We must compare equation (6.10) with (𝚤𝑢)−𝑘 times

LGW
𝑘 (ℭ•(𝐷)) = LGW

𝑘 (
∑
𝑃

∏
𝑆∈𝑃

ℭ◦(𝐷𝑆)) (6.11)

=
∑
𝑃′

T𝑘

∏
𝑆∈𝑃′

ℭ◦(𝐷𝑆) +
∑
𝑃′′

ℓ (𝑃′′)∑
𝑡=1

R𝑘 (ℭ
◦(𝐷𝑆𝑡 ))

∏
𝑆∈𝑃′′, 𝑆≠𝑆𝑡

ℭ◦(𝐷𝑆) .

where both sums run over partitions 𝑃′, 𝑃′′ of {1, . . . , ℓ}.
Since we only work with the stationary descendents, we can assume that the parts of partitions in

the formulas have at most three elements. We will match the terms of equation (6.10) and (𝚤𝑢)−𝑘 times
equation (6.11) depending on the size of 𝑆𝑡 .

• If |𝑆𝑡 | = 3, then the terms in equations (6.10) and (6.11) with𝑃′′ = �̃��𝑆𝑡 are matched by Proposition 14.

• If |𝑆𝑡 | = 2 with 𝑆𝑡 = {𝑝, 𝑞}, then we use Propositions 12 and 13 to match the terms of equation (6.10)
with 𝑃′′ = �̃� � 𝑆𝑡 and with 𝑃′ equal to

�̃� � {𝑆𝑡 , 𝐿} � {𝑅} , �̃� � {𝑆𝑡 , 𝑅} � {𝐿} , �̃� � {𝑝, 𝑅} � {𝑞, 𝐿} , �̃� � {𝑝, 𝐿} � {𝑞, 𝑅},

with the terms of equation (6.11) with 𝑃′′ = �̃� � 𝑆𝑡 .

• If |𝑆𝑡 | = 1 with 𝑆𝑡 = {𝑝}, then we use Proposition 10 and Proposition 11 to identify the terms of
equation (6.10) with 𝑃′′ = �̃� � 𝑆𝑡 and with 𝑃′ equal to

�̃� � {𝑝, 𝐿} � {𝑅} , �̃� � {𝑝, 𝑅} � {𝐿}

with the terms of equation (6.11) with 𝑃′′ = �̃� � 𝑆𝑡 .

• The terms of equation (6.10) with 𝑃′ = {𝐿} � {𝑅} � �̃� are equal to the terms of equation (6.11) with
𝑃′ = �̃� by Proposition 9.

The above four cases match all the terms in equations (6.10) and (6.11).

7. Virasoro constraints for Hilbert schemes of points of surfaces

Let S be a nonsingular projective toric surface, and let

𝑋 = 𝑆 × P1.
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As an immediate consequence of Theorem 1.1 applied to the toric variety X, we obtain the following
Virasoro constraints:

∀𝑘 ≥ −1 ,
〈
LPT
𝑘

𝑟∏
𝑖=1

ch𝑚𝑖 (𝛾𝑖 × p)
〉𝑋,PT

𝑛 [P1 ]
= 0 , (7.1)

where 𝛾𝑖 ∈ 𝐻∗(𝑋), p ∈ 𝐻2 (P1) is the point class, and [P1] ∈ 𝐻2 (𝑋) is the fiber class.
We can specialize the constraints (7.1) further to the case of the minimal possible Euler characteristic,

𝑃𝑛 (𝑆 × P
1, 𝑛[P1]) � Hilb𝑛 (𝑆).

The above isomorphism of schemes is defined as follows. A point 𝜉 ∈ Hilb𝑛 (𝑆) corresponds to a
0-dimensional subscheme of S of length n. Then,

𝜉 × P1 ⊆ 𝑆 × P1

is a curve embedded in 𝑆×P1 with Euler characteristic n and curve class 𝑛[P1]. The isomorphism sends
𝜉 to the corresponding stable pair

O𝑆×P1 → O𝜉×P1 .

Since the moduli space of stable pairs is nonsingular of expected dimension∫
𝑛 [P1 ]

𝑐1 (𝑆 × P
1) = 2𝑛,

the virtual class is the standard fundamental class here. The result is a new set of Virasoro constraints
for tautological classes on Hilb𝑛 (𝑆).

To write the Virasoro constraints for Hilb𝑛 (𝑆) explicitly, we first define the corresponding descendent
insertions. Let

0 → I → OHilb𝑛 (𝑆)×𝑆 → O𝑍 → 0

be the universal sequence associated to the universal subscheme

𝑍 ⊂ 𝑆 × Hilb𝑛 (𝑆).

For 𝛾 ∈ 𝐻∗(𝑆), let

ch𝑘 (𝛾) = −𝜋∗
(
ch𝑘 (I) · 𝛾

)
, (7.2)

where 𝜋 is the projection to Hilb𝑛 (𝑆). We follow as closely as possible the descendent notation for
threefolds in Section 1.1.

Let D(𝑆) be the commutative algebra with generators{
ch𝑖 (𝛾) | 𝑖 ≥ 0 , 𝛾 ∈ 𝐻∗(𝑆)

}
following Section 1.2. We define derivations R𝑘 by their actions on the generators:

R𝑘 (ch𝑖 (𝛾)) =

(
𝑘∏
𝑛=0

(𝑖 + 𝑑 − 2 + 𝑛)

)
ch𝑖+𝑘 (𝛾) , 𝛾 ∈ 𝐻2𝑑 (𝑆).
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For 𝑘 ≥ −1, we define differential operators

L𝑆
𝑘 = −

∑
𝑎+𝑏=𝑘+2

(−1) (𝑑
𝐿+1) (𝑑𝑅+1) (𝑎 + 𝑑𝐿 − 2)!(𝑏 + 𝑑𝑅 − 2)!ch𝑎ch𝑏 (1)

+
1

12

∑
𝑎+𝑏=𝑘

𝑎!𝑏!ch𝑎ch𝑏 (𝑐2
1 + 𝑐2) + R𝑘 ,

where the sum is over ordered pairs (𝑎, 𝑏) with 𝑎, 𝑏 ≥ 0.

Theorem 5. For all 𝑘 ≥ −1 and 𝐷 ∈ D(𝑆), we have∫
Hilb𝑛 (𝑆)

(
L𝑆
𝑘 + (𝑘 + 1)!R−1ch𝑘+1(p)

)
(𝐷) = 0

for all 𝑛 ≥ 0.

Proof. For clarity, we will use superscripts chHilb
𝑖 and chPT

𝑖 here to indicate whether we are referring
to descendents on the Hilbert scheme of S as defined above or to stable pairs descendents on 𝑆 × P1 as
defined in Section 1.1.

The universal stable pair of 𝑃𝑛 (𝑆 × P1, 𝑛[P1]) is F = O𝑍×P1 . Hence,

ch𝑖 (F −O𝑆×P1×Hilb𝑛 (𝑆) ) = (𝜌 × id)∗ch𝑖 (−I),

where 𝜌 is the projection 𝜌 : 𝑆 × P1 → 𝑆. By the push-pull formula, for 𝛿 ∈ 𝐻∗(𝑆 × P1), we have

chPT
𝑖 (𝛿) = 𝜋∗ ((𝜌 × id)∗ (ch𝑖 (−I) · 𝛿))

= 𝜋∗ (ch𝑖 (−I) · 𝜌∗𝛿)
= chHilb

𝑖 (𝜌∗𝛿).

So, chPT
𝑖 (𝛾 × 1) = 0, and chPT

𝑖 (𝛾 × p) = chHilb
𝑖 (𝛾).

Since we have the Virasoro constraints (7.1), we must only check that the composition

D(𝑆) ↩→ D𝑋+
PT

LPT
𝑘
→ D𝑋+

PT → D(𝑆) (7.3)

is precisely

L𝑆
𝑘 + (𝑘 + 1)!R−1ch𝑘+1(p).

The first inclusion in equation (7.3) is determined by sending generators chHilb
𝑖 (𝛾) to chPT

𝑖 (𝛾 × p), and
the last map of equation (7.3) sends chPT

𝑖 (𝛿) to chHilb
𝑖 (𝜌∗𝛿).

The analysis of the composition is straightforward. For the diagonal terms, we note that

𝑐1 (𝑋) = 2(1 × p) + 𝑐1 (𝑆) × 1

and

𝑐1𝑐2
24

(𝑋) = td3(𝑋) = td2 (𝑆) × td2 (P
1) =

1
12

(𝑐1 (𝑆)
2 + 𝑐2 (𝑆)) × p .

We write the Künneth decomposition of the diagonal as

Δ · 1 =
∑
𝑖

𝜃𝐿𝑖 ⊗ 𝜃𝑅𝑖 ∈ 𝐻∗(𝑆 × 𝑆).
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Then, the Künneth decomposition of Δ · 𝑐1 ∈ 𝐻∗(𝑋 × 𝑋) is

2
∑
𝑖

(𝜃𝐿𝑖 × p) ⊗ (𝜃𝑅𝑖 × p) + · · · ,

where the remaining terms in the dots are killed by 𝜌∗. The matching of operators then follows from the
definition of LPT

𝑘 . �

8. GW/PT descendent correspondence: review

8.1. Vertex operators

Our goal here is to review the results of [18] and to explain how Theorem 1.4 can be derived from [18].
The full derivation is postponed to Section 9.

To state the main result of [18], we require negative descendents {𝔞𝑘 } for 𝑘 ∈ Z<0 which are defined
to satisfy the Heisenberg relations with positive descendents

[𝔞𝑘 (𝛼), 𝔞𝑚 (𝛾)] = 𝑘𝛿𝑘+𝑚

∫
𝑋
𝛼 ∪ 𝛾 . (8.1)

The descendents {𝔞𝑘 } for 𝑘 ∈ Z \ {0} generate the 𝐻∗(𝑋)-algebra Heis𝑋 .
For curve class 𝛽 ∈ 𝐻2 (𝑋), there is a geometrically defined Gromov–Witten evaluation 〈·〉𝛽 map on

the algebra generated by the nonnegative descendents. We can extend the evaluation map to the whole
algebra Heis𝑋 by defining〈

𝔞𝑘 (𝛾)Φ
〉𝑋,GW
𝛽

=

[∫
𝑋

(
− 𝑐1𝛿𝑘+1 + 𝛿𝑘+2𝑖𝑢

)
· 𝛾

] 〈
Φ

〉𝑋,GW
𝛽

, 𝑘 < 0.

We assemble the operators 𝔞𝑘 in the following generating function:

𝜙(𝑧) =
∑
𝑛>0

𝔞𝑛
𝑛

( 𝚤𝑧𝑐1
𝑢

)−𝑛
+

1
𝑐1

∑
𝑛<0

𝔞𝑛
𝑛

( 𝚤𝑧𝑐1
𝑢

)−𝑛
. (8.2)

The main objects of study in [18] are the vertex operators

HGW (𝑥) =
∞∑
𝑘=0

HGW
𝑘 𝑥𝑘+1 = Res𝑤=∞

(√
𝑑𝑦𝑑𝑤

𝑦 − 𝑤
: 𝑒𝜃 𝜙 (𝑦)−𝜃 𝜙 (𝑤) :

)
, (8.3)

where y, w and x satisfy the constraints

𝑦𝑒𝑦 = 𝑤𝑒𝑤𝑒−𝑥/𝜃 , 𝜃−2 = −𝑐2 (𝑇𝑋 ) . (8.4)

Here, Res𝑤=∞ denotes 1
2𝜋𝚤 times the integral along a small loop around 𝑤 = ∞.

Normally ordered monomials

𝔞𝑖1𝔞𝑖2 . . . 𝔞𝑖𝑘 , 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑘

form a linear basis of Heis. Respectively, we use : · : for the normal ordering operation

:
∏
𝑗

𝔞𝑖 𝑗 : = 𝔞𝑖1𝔞𝑖2 . . . 𝔞𝑖𝑘 , 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑘 .

Extended 𝐻∗(𝑋)-linearly to the whole algebra Heis𝑋 .
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Let us notice that the equation (8.4) as well as the vertex operator (8.3) have symmetry

𝑦 ↦→ 𝑤, 𝑤 ↦→ 𝑦, 𝜃 ↦→ −𝜃, 𝑥 ↦→ 𝑥.

This symmetry implies that the only even powers of 𝜃 appear in the expansion of equation (8.3) (see
Lemma 15 from [18] for more discussions and further properties of the vertex operator).

The operators HGW
𝑘 are mutually commutative. To obtain explicit formulas for HGW

𝑘 , we use the
Lambert function to solve equation (8.4) and express y in terms of 𝑥, 𝑤. The integral in the definition of
HGW
𝑘 can be interpreted as an extraction of the coefficient of 𝑤−1. The descendent classes

HGW
𝑘 (𝛾) ∈ Heis𝑋

are then obtained using the Sweedler coproduct. We also use the Sweedler coproduct conventions in

HGW
�𝑘

(𝛾) =
𝑚∏
𝑖=1

HGW
𝑘𝑖

(𝛾) , �𝑘 = (𝑘1, . . . , 𝑘𝑚) . (8.5)

In the Sweedler conventions [11], we abbreviate notation for the intersection with the small diagonal
Δ𝑛 ⊂ 𝑋𝑛 with the pull-back of a class 𝛾 ∈ 𝐻∗(𝑋):

𝐻∗(𝑋𝑛) � [Δ𝑛] · 𝛾 =
∑
𝑘

𝛾𝑘1 ⊗ . . . 𝛾𝑘𝑛 = 𝛾(1) ⊗ · · · ⊗ 𝛾(𝑛) .

Thus, the formula (8.5) expands as

𝑚∏
𝑖=1

HGW
𝑘𝑖

(𝛾) =
𝑚∏
𝑖=1

HGW
𝑘𝑖

(𝛾(𝑖) ).

8.2. Stable pairs

The stable pairs analogues of the operators HGW
�𝑘

(𝛾) are products of HPT
𝑘 (𝛾) defined as follows.

The classes HPT
𝑘 (𝛾) are linear combinations of descendents on the moduli spaces of stable pairs. Let

HPT
𝑘 (𝛾) = 𝜋∗

(
HPT
𝑘 · 𝛾

)
∈

⊕
𝑛∈Z

𝐻∗(𝑃𝑛 (𝑋, 𝛽)),

where the classes HPT
𝑘 ∈

⊕
𝑛∈Z 𝐻

∗(𝑋 × 𝑃𝑛 (𝑋, 𝛽)) are defined by

HPT(𝑥) =
∞∑
𝑘=0

𝑥𝑘+1HPT
𝑘

= S−1
( 𝑥
𝜃

) ∞∑
𝑘=0

𝑥𝑘ch𝑘 (F −O),

where

𝜃−2 = −𝑐2 (𝑇𝑋 ) , S (𝑥) = 𝑒𝑥/2 − 𝑒−𝑥/2

𝑥
.

In particular, we have

HPT
𝑘 = ch𝑘+1(F) +

𝑐2
24

ch𝑘−1(F) +
7𝑐2

2
5760

ch𝑘−3(F) + . . . .
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8.3. Equivariant correspondence

All the definitions and construction introduced in Section 8.1 have canonical lifts to the equivariant
setting with respect to a group action on the variety X. We review here the equivariant GW/PT descendent
correspondence [26].

The most natural setting is the capped vertex formalism of [16, 26] which we review briefly here.
Let the three-dimensional torus

T = C∗ × C∗ × C∗

act on P1 × P1 × P1 diagonally. The tangent weights of the T-action at the point

p = 0 × 0 × 0 ∈ P1 × P1 × P1

are 𝑠1, 𝑠2, 𝑠3. The T-equivariant cohomology ring of a point is

𝐻T (•) = C[𝑠1, 𝑠2, 𝑠3] .

We have the following factorization of the restriction of class 𝑐1𝑐2 − 𝑐3 of X to p:

𝑐1𝑐2 − 𝑐3 = (𝑠1 + 𝑠2) (𝑠1 + 𝑠3) (𝑠2 + 𝑠3),

where 𝑐𝑖 = 𝑐𝑖 (𝑇𝑋 ).
Let 𝑈 ⊂ P1 × P1 × P1 be the T-equivariant threefold obtained by removing the three T-equivariant

lines 𝐿1, 𝐿2, 𝐿3 passing through the point ∞ × ∞ × ∞. Let 𝐷𝑖 ⊂ 𝑈 be the divisor with 𝑖𝑡ℎ coordinate
∞. For a triple of partitions 𝜇1, 𝜇2, 𝜇3, let〈 ∏

𝑖

𝜏𝑘𝑖 (p)
��� 𝜇1, 𝜇2, 𝜇3

〉GW,T

𝑈,𝐷
,

〈 ∏
𝑖

ch𝑘𝑖 (p)
��� 𝜇1, 𝜇2, 𝜇3

〉PT,T

𝑈,𝐷
(8.6)

denote the generating series of the T-equivariant relative Gromov–Witten and stable pairs invariants of
the pair

𝐷 = ∪𝑖𝐷𝑖 ⊂ 𝑈

with relative conditions 𝜇𝑖 along the divisor 𝐷𝑖 .
The stable maps spaces are always taken with no contracted connected components of genus great

than or equal to 2. The series (8.6) are the capped descendent vertices following the conventions of [18].

Theorem 8.1 ([18]). After the change of variables −𝑞 = 𝑒𝑖𝑢 the following correspondence between the
two-leg capped descendent vertices holds:〈 ∏

𝑖

HGW
𝑘𝑖

(p)
��� 𝜇1, 𝜇2, ∅

〉GW,T

𝑈,𝐷
= 𝑞−|𝜇1 |− |𝜇2 |

〈 ∏
𝑖

HPT
𝑘𝑖
(p)

��� 𝜇1, 𝜇2, ∅
〉PT,T

𝑈,𝐷

mod (𝑠1 + 𝑠3) (𝑠2 + 𝑠3).

The result of Theorem 8.1 has two defects. Since the third partition is empty, the result only covers
the two-leg case. Moreover, the equality of the correspondence is not proven exactly, but only mod
(𝑠1 + 𝑠3) (𝑠2 + 𝑠3). For the one-leg vertex with partitions (𝜇1, ∅, ∅), Theorem 8.1 can be restricted in two
ways to obtain the equality of the correspondence

mod (𝑠1 + 𝑠3) (𝑠1 + 𝑠2) (𝑠2 + 𝑠3).
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8.4. Nonequivariant limit

By following the arguments of [26], a nonequivariant GW/PT descendent correspondence for stationary
insertions is derived in [18]. For our statements, we will follow as closely as possible the notation of
[18, 26].

Let Heis𝑐 be the Heisenberg algebra with generators 𝔞𝑘∈Z\{0}, coefficients C[𝑐1, 𝑐2] and relations

[𝔞𝑘 , 𝔞𝑚] = 𝑘𝛿𝑘+𝑚𝑐1𝑐2.

Let Heis𝑐+ ⊂ Heis𝑐 be the subalgebra generated by the elements 𝔞𝑘>0, and define the C[𝑐1, 𝑐2]-linear
map

Heis𝑐 → Heis𝑐+ , Φ ↦→ Φ̂ (8.7)

by �̂�𝑘 = 𝔞𝑘 for 𝑘 > 0 and

𝔞𝑘Φ = (−𝑐1𝛿𝑘+1 + 𝛿𝑘+2𝑖𝑢)Φ̂ , for 𝑘 < 0 . (8.8)

When restricted to the subalgebra Heis𝑐+, the C[𝑐1, 𝑐2]-linear map (8.7) is an isomorphism.
For a nonsingular projective threefold X and classes 𝛾1, . . . , 𝛾𝑙 ∈ 𝐻

∗(𝑋), the hat operation make no
difference inside the Gromov–Witten bracket,

〈HGW
�𝑘

(𝛾)〉𝑋,GW
𝛽 = 〈ĤGW

�𝑘
(𝛾)〉GW

𝛽 (8.9)

because the treatment of the negative descendents on the left side is compatible with the treatment of
the negative descendents by the hat operation.

Let �𝑘 = (𝑘1, . . . , 𝑘𝑙) be a vector of nonnegative integers. Following [26], we define the following
element of Heis𝑐+:

H̃�𝑘
=

1
(𝑐1𝑐2)𝑙−1

∑
set partitions 𝑃 of {1,..., l}

(−1) |𝑃 |−1(|𝑃 | − 1)!
∏
𝑆∈𝑃

ĤGW
�𝑘𝑆
,

where HGW
�𝑘𝑆

=
∏

𝑖∈𝑆 HGW
𝑘𝑖

and the element HGW
𝑘 ∈ Heis𝑐 is a linear combination of monomials of 𝔞𝑖; the

expression is given by equation (8.3).
For classes 𝛾1, . . . , 𝛾𝑙 ∈ 𝐻

∗(𝑋) and a vector �𝑘 = (𝑘1, . . . , 𝑘𝑙) of nonnegative integers, we define

H𝑘1 (𝛾1) . . .H𝑘𝑙 (𝛾𝑙) =
∑

set partitions 𝑃 of {1,..., l}

∏
𝑆∈𝑃

H̃�𝑘𝑆
(𝛾𝑆),

where 𝛾𝑆 =
∏

𝑖∈𝑆 𝛾𝑖 .

Theorem 8.2 ([18]). Let X be a nonsingular projective toric threefold, and let 𝛾𝑖 ∈ 𝐻≥2(𝑋,C). After
the change of variables −𝑞 = 𝑒𝑖𝑢 , we have〈

H𝑘1 (𝛾1) . . .H𝑘𝑙 (𝛾𝑙)
〉GW

𝛽
= 𝑞−𝑑/2

〈
HPT
𝑘1
(𝛾1) . . .HPT

𝑘𝑙
(𝛾𝑙)

〉PT

𝛽
,

where 𝑑 =
∫
𝛽
𝑐1.
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8.5. Examples for 𝑿 = P3

The prefactor S−1 (
𝑥
𝜃

)
in front of

∑∞
𝑘=0 𝑥

𝑘ch𝑘 (F−O) in the formula for HPT(𝑥) has an expansion which
the following initial terms:

1 +
𝑐2
24
𝑥2 +

7𝑐2
2

5760
𝑥4 + . . . .

Therefore, the nonequivariant limit of HPT
𝑘 (𝛾) is(

ch𝑘+1(𝛾) +
1

24
ch𝑘−1(𝛾 · 𝑐2)

)
.

On the Gromov–Witten side of the correspondence, we have

〈HGW
1 (𝛾)Φ〉 = 〈𝔞1 (𝛾)Φ〉 , 〈HGW

2 (𝛾)Φ〉 =
1
2
〈𝔞2 (𝛾)Φ〉,

〈HGW
3 (𝛾)Φ〉 =

1
6
〈𝔞3 (𝛾)Φ〉 +

1
24𝑢2 〈𝑐

2
1𝑐2 · Φ〉,

〈HGW
4 (𝛾)Φ〉 =

1
24

〈𝔞4 (𝛾)Φ〉 −
𝑖

12𝑢
〈𝔞2

1 (𝑐1 · 𝛾)Φ〉 −
5𝑖

144𝑢3 〈𝑐
3
1𝑐2 · Φ〉,

〈HGW
5 Φ〉 =

1
120

〈𝔞5 (𝛾)Φ〉 −
𝑖

24𝑢
〈𝔞1𝔞2 (𝑐1 · 𝛾)Φ〉 −

1
48𝑢2 〈𝔞

2
1 (𝑐

2
1 · 𝛾)Φ〉

+
1

24𝑢2 〈𝔞1 (𝑐
2
1𝑐2 · 𝛾)Φ〉 −

1
64𝑢4 〈𝑐

4
1𝑐2 · Φ〉.

The operators 𝔞𝑘 are expressed in terms of standard descendents32

𝔞1 = 𝜏0 −
𝑐2
24

, (8.10)

𝑖𝑢𝔞2/2 = 𝜏1 + 𝑐1 · 𝜏0 ,

−𝑢2𝔞3/3 = 2𝜏2 + 3𝑐1 · 𝜏1 + 𝑐
2
1 · 𝜏0 ,

−𝑖𝑢3𝔞4/4 = 6𝜏3 + 11𝑐1 · 𝜏2 + 6𝑐2
1𝜏1 + 𝑐

3
1 · 𝜏0 ,

𝑢4𝔞5/5 = 24𝜏4 + 50𝑐1 · 𝜏3 + 35𝑐2
1 · 𝜏2 + 10𝑐3

1 · 𝜏1 + 𝑐
4
1 · 𝜏0 .

The descendent correspondence of Theorem 8.2 implies relations for stable pairs and Gromov–Witten
invariants of P3. For example, for 𝛽 of degree 1,

−𝑖𝑞−2〈ch5 (L)〉 =
(

1
𝑢3 〈𝜏3 (L)〉 +

22
3𝑢3 〈𝜏2(p)〉 −

1
3𝑢

〈𝜏0𝜏0(p)〉
)
, (8.11)

𝑞−2
(
〈ch6 (H)〉 +

1
4
〈ch4 (p)〉

)
=

(
1
𝑢4 〈𝜏4 (H)〉 +

25
3𝑢4 〈𝜏3 (L)〉 +

70
3𝑢4 〈𝜏2 (p)〉

−
1

3𝑢2 〈𝜏0𝜏1(L)〉 +
5

3𝑢2 〈𝜏0𝜏0 (p)〉
)
.

Here, p is the class of point, L is the class of line and H is the class of hyperplane.33

32For 𝔞1 (𝛾) , the term −
𝑐2
24 on the right is the constant − 1

24
∫
𝑋
𝑐2𝛾.

33We can also check the relations (8.11) numerically up to 𝑢8 with the help of Gathmann’s code on the Gromov–Witten side
and previously known computations for stable pairs [21].
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8.6. Residues

To complete our proof of Theorem 1.4, we will compute the residues (8.3). More precisely, we will
prove the following result.

Proposition 15. For 𝑘𝑖 ∈ Z≥0 and 𝛾𝑖 ∈ 𝐻≥2(𝑋) such that c̃h𝑘𝑖+2(𝛾𝑖) ∈ D
𝑋�
PT , we have

H̃𝑘1+1(𝛾1) = ℭ◦(c̃h𝑘1+2(𝛾1)) ,

H̃𝑘1+1,𝑘2+1(𝛾1 · 𝛾2) = ℭ◦(c̃h𝑘1+2(𝛾1)c̃h𝑘2+2(𝛾2)) ,

H̃𝑘1+1,𝑘2+1,𝑘3+1 (𝛾1 · 𝛾2 · 𝛾3) = ℭ◦(c̃h𝑘1+2(𝛾1)c̃h𝑘2+2(𝛾2)c̃h𝑘3+2(𝛾3)),

where the right side is defined by equations 1.14–1.16.

9. Residue computation

9.1. Preliminary computations

Before starting the proof of the Proposition 15, we compute the expansion of the terms of the residue
formula (8.3).

Consider first the constraint equation (8.4). Solutions of the equation are formal power series in the
variable

𝑟 = 1/𝜃 , 𝜃−2 = −𝑐2 (𝑇𝑋 ).

We can solve the constraint equation iteratively in powers of r. Indeed, modulo 𝑟1, the constraint equation
implies 𝑤 = 𝑦, and we start the expansion by

𝑤(𝑥, 𝑦) = 𝑦 +𝑂 (𝑟).

To find the next term of r in the expansion of 𝑤(𝑥, 𝑦), we substitute

𝑤(𝑥, 𝑦) = 𝑦 + 𝑓1 (𝑥, 𝑦)𝑟

into equation (8.4) and expand the result of the substitution in powers of r. The coefficient of 𝑟1 in the
expansion gives a linear equation which determines 𝑓1. After iterating the above procedure three times,
we obtain

𝑤(𝑥, 𝑦) = 𝑦 − 𝑥𝑟
𝑦

𝑦 + 1
+ (𝑥𝑟)2 𝑦

2(𝑦 + 1)3 + (𝑥𝑟)3 2𝑦 − 1
6(𝑦 + 1)5 +𝑂 (𝑟4) . (9.1)

To see the expansion of the residue (8.3) has positive powers of 𝑡 = 𝑐1, we use a change of variables:

𝑦 = 𝑣/𝑡 . (9.2)

The residue with respect to w on the right side of equation (8.3) is converted to a residue with respect
to y via equation (9.1). Using equation (9.2), we will compute the residue with respect to v.

In the new variables, we have√
𝑑𝑤𝑑𝑦 =

(
1 −

𝑥𝑟𝑡

2(𝑣 + 𝑡)
−

(𝑥𝑟)2𝑡3(4𝑣 − 𝑡)
8(𝑣 + 𝑡)4

)
𝑑𝑣

𝑡
+𝑂 (𝑟3).

After we normal order the elements of the Heisenberg algebra in the expression for the vertex
operator HGW (𝑥), the negative Heisenberg operators end up next to the vacuum 〈 | inside the bracket
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〈·〉GW. Relation (8.8), which governs interaction with 〈 |, yields the following factor in the expression
under the residue:

E = exp
(
−
𝑡

2𝑢

(
𝑤(𝑦)2 − 𝑦2

𝑟

)
−
𝑡

𝑢

(
𝑤(𝑦) − 𝑦

𝑟

))
(9.3)

= exp
( 𝑥𝑣
𝑢

) (
1 −

𝑡𝑟𝑥2𝑣

2𝑢(𝑣 + 𝑡)
+
𝑡2𝑟2 (3𝑥𝑣2 + 3𝑡𝑥𝑣 + 4𝑡2𝑢)

24𝑢(𝑣 + 𝑡)3

)
+𝑂 (𝑟3) .

The inverse of 𝑦 − 𝑤 in equation (8.3) becomes the factor

D = −
𝑟

𝑤(𝑦) − 𝑦
=
𝑣 + 𝑡

𝑣

(
1 +

𝑡2𝑟𝑥

2(𝑣 + 𝑡)2 +
𝑡3𝑟2𝑥2 (4𝑣 + 𝑡)

12(𝑣 + 𝑡)4

)
+𝑂 (𝑟3) . (9.4)

The elements of the Heisenberg algebra that participate in the residue formula are packed into the
vertex operator

V = V+ · V− , V+(𝑥, 𝑦) = exp

(
1
𝑟

∑
𝑛>0

𝔞𝑛
𝑛(𝚤𝑢𝑡)𝑛

(𝑦−𝑛 − 𝑤(𝑦)−𝑛)

)
,

V−(𝑥, 𝑦) = exp

(
1
𝑟𝑡

∑
𝑛<0

𝔞𝑛
𝑛(𝚤𝑢𝑡)𝑛

(𝑦−𝑛 − 𝑤(𝑦)−𝑛)

)
.

Thus, we need to compute the difference of powers in the expression for the vertex operators. Using
formula for 𝑤(𝑦) (9.1), we obtain:

(𝑦𝑡)−𝑛 − (𝑤(𝑦)𝑡)−𝑛

𝑡𝑛𝑟
=

𝑛𝑥𝑡

𝑣𝑛 (𝑣 + 𝑡)
+ 𝑛𝑥2𝑟𝑡2

((𝑛 + 1)𝑣 + 𝑛𝑡)
𝑣𝑛 (𝑣 + 𝑡)3

+ 𝑛𝑥3𝑟2𝑡3
𝑛((𝑛 + 1) (𝑛 + 2)𝑣2 + (2𝑛2 + 3𝑛 − 1)𝑡𝑧 + 𝑛2𝑡2)

6𝑣𝑛 (𝑣 + 𝑡)5 +𝑂 (𝑟3) . (9.5)

The above calculations yield the leading terms of all algebraic expressions occurring in formula
(8.3) for the vertex operator HGW (𝑥). As we will see in Section 9.2, the knowledge of these leading
terms almost immediately leads to the simplest case of the descendent correspondence (1.14). For the
other two cases, equations (1.15) and (1.16), we must analyze the interaction of two and three vertex
operators HGW(𝑥). We apply standard vertex operator techniques to complete the proof of Proposition
15 in Section 9.2.

9.2. Proof of Proposition 15

9.2.1. Case ˜H𝒌1+1(𝜸1)
We start with the proof of the formula for the self-reaction. We must analyze the r expansion of the
residue

H̃(𝑥) = ĤGW (𝑥) = Res𝑣=∞
1
𝑡

E · D · V+ . (9.6)

More precisely, we must compute the coefficients of

𝑟 𝑖𝑡 𝑗 , 𝑖 + 𝑗 ≤ 2.
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By the argument of [18, Section 3.2], the coefficient of 𝑟𝑡 𝑗 vanishes. From the computations of the v
expansions (9.1), (9.3), (9.4) and (9.5), the terms in front of 𝑟 𝑖 , 𝑖 > 0 are proportional to t. The expression
under the residue sign becomes

exp
( 𝑥𝑣
𝑢

) (
𝑣 + 𝑡

𝑡
+ 𝑥Σ +

𝑥2𝑡

𝑣 + 𝑡
Σ2 +

𝑥3𝑡2

(𝑣 + 𝑡)2 Σ
3
)
+𝑂 (𝑡3) + 𝑡𝑂 (𝑟2) , Σ =

∑
𝑛>0

𝔞𝑛
(𝚤𝑢𝑣)𝑛

.

After applying the residue operation to the last expression, we obtain the terms of formula (1.14) in the
coefficients of the x-expansion.

9.2.2. Case ˜H𝒌1+1,𝒌2+1(𝜸1 · 𝜸2)
We show next that the double interaction term yields formula (1.15). The new computation that is
needed for understanding the interaction term is Ĥ𝑘1 ,𝑘2 . It is convenient to assemble the expressions into
a generating series Ĥ(𝑥1, 𝑥2).

To compute Ĥ(𝑥1, 𝑥2), we must move all negative Heisenberg operators in the product of the vertex
operators HGW(𝑥1)HGW(𝑥2) to the left, next to the vacuum 〈 |. We use the standard vertex operator
commutation relation to perform this reshuffling:

V+(𝑥1, 𝑦1)V−(𝑥2, 𝑦2) = B(𝑥1, 𝑦1, 𝑥2, 𝑦2)V−(𝑥2, 𝑦2)V+(𝑥1, 𝑦1) , (9.7)

B =
(𝑤2 − 𝑦1) (𝑦2 − 𝑤1)

(𝑦2 − 𝑦1) (𝑤2 − 𝑤1)
,

where 𝑤𝑖 = 𝑤(𝑥𝑖 , 𝑦𝑖). Using the computations of Section 9.1, we derive the following expansion:

B = 1 −
𝑟2𝑦1𝑦2𝑥1𝑥2

(𝑦1 − 𝑦2)2(𝑦1 + 1) (𝑦2 + 1)
+𝑂 (𝑟3).

The negative Heisenberg operators interact with the vacuum 〈 |. We obtain

Ĥ(𝑥1, 𝑥2) = Res𝑦1=∞(Res𝑦2=∞(V(1)
+ V(2)

+ D(1)D(2)E(1)E(2)B(12) )),

where V(𝑖)
+ = V+(𝑥𝑖 , 𝑦𝑖), D(𝑖) = D(𝑥𝑖 , 𝑦𝑖), E(𝑖) = E(𝑥𝑖 , 𝑦𝑖).

From equation (9.6), we see

Ĥ(𝑥1)Ĥ(𝑥2) =

(
Res𝑦1=∞ E(1) · D(1) · V(1)

+

) (
Res𝑦2=∞ E(2) · D(2) · V(2)

+

)
= Res𝑦1=∞(Res𝑦2=∞(V(1)

+ V(2)
+ D(1)D(2)E(1)E(2) )),

where the second equality holds because 𝑉 (𝑖)
+ commute. We conclude, after the change of variables, the

generating function H̃(𝑥1, 𝑥2) for H̃𝑘1 ,𝑘2 is given by

H̃(𝑥1, 𝑥2) =
1
𝑟2𝑡

(
Ĥ(𝑥1, 𝑥2) − Ĥ(𝑥1)Ĥ(𝑥2)

)
= Res(V(1)

+ V(2)
+ D(1)D(2)E(1)E(2) B̃(12) )/(𝑟2𝑡3),

where Res = Res𝑣1=∞ Res𝑣2=∞ and B̃(12) = B(12) − 1. By expanding the scalar factor

D(1)D(2)E(1)E(2) B̃(12) /(𝑟2𝑡3)
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in the operator inside the residue operation, we obtain

𝑡𝑣1𝑣2𝑥1𝑥2

(𝑣1 − 𝑣2)2(𝑣1 + 𝑡) (𝑣2 + 𝑡)
exp

( 𝑥1𝑣1 + 𝑥2𝑣2
𝑢

) (
𝑣1 + 𝑡

𝑡
+ 𝑥1Σ

(1) +
𝑥2

1𝑡

𝑣2 + 𝑡
Σ (1)Σ (1)

)
(
𝑣2 + 𝑡

𝑡
+ 𝑥2Σ

(2) +
𝑥2

2𝑡

𝑣2 + 𝑡
Σ (2)Σ (2)

)
+𝑂 (𝑡2) +𝑂 (𝑟2). (9.8)

The residue of the coefficient in front of 𝑡−1 in equation (9.8) vanishes. The coefficient in front of 𝑡0 is

exp
( 𝑥1𝑣1 + 𝑥2𝑣2

𝑢

) 𝑥1𝑥2

(𝑣1 − 𝑣2)2

(
𝑣2 (1 + 𝑥1Σ

(1) ) + 𝑣1 (1 + 𝑥2Σ
(2) )

)
.

After applying the Res operation, we obtain

Res𝑣1=∞ Res𝑣2=∞ exp
( 𝑥1𝑣1 + 𝑥2𝑣2

𝑢

) 𝑥2
1𝑥2𝑣2

(𝑣1 − 𝑣2)2 Σ
(1) .

The coefficient in front of 𝑥𝑘1+2
1 𝑥𝑘2+2

2 in the last expression matches with the 𝔞-linear terms of the right
side of equation (1.15) that are proportional to 𝑐0

1.
Finally, we compute the coefficient in front of 𝑡1 in equation (9.8):

𝑥1𝑥2

(𝑣1 − 𝑣2)2 exp
( 𝑥1𝑣1 + 𝑥2𝑣2

𝑢

) [
𝑥1𝑥2Σ

(1)Σ (2) + 𝑥2
1𝑣2Σ

(1)Σ (1) + 𝑥2
2𝑣1Σ

(2)Σ (2)

+

(
1
𝑣 1

+
1
𝑣 2

) (
𝑣2(1 + 𝑥1Σ

(1) ) + 𝑣1 (1 + 𝑥2Σ
(2) )

) ]
.

The residue of the terms from the first line of the last expression form the generating function of the
𝔞-quadratic terms of the right-hand side of equation (1.15). The residue of the terms from the second
line of the last expression form the generating function of the 𝑐1-proportional 𝔞-linear terms of the right
side of equation (1.15).

9.2.3. Case ˜H𝒌1+1,𝒌2+1,𝒌3+1(𝜸1 · 𝜸2 · 𝜸3)
Finally, we must analyze the triple interaction. The computation here is parallel to computations in
Sections 9.2.1 and 9.2.2. The new ingredient for the triple bumping reaction is the residue formula

Ĥ(𝑥1, 𝑥2, 𝑥3) = Res
(
V(1)
+ V(2)

+ V(3)
+ D(1)D(2)D(3)E(1)E(2)E(3)B(12)B(23)B(13) /(𝑟4𝑡5)

)
for the generating function of the operators Ĥ𝑘1 ,𝑘2 ,𝑘3 . Here and below, Res stands for the triple residue

Res𝑣1=∞ Res𝑣2=∞ Res𝑣3=∞ .

The generating function H̃(𝑥1, 𝑥2, 𝑥3) for the operators H̃𝑘1 ,𝑘2 ,𝑘3 is given by

Ĥ(𝑥1, 𝑥2, 𝑥3) − Ĥ(𝑥1, 𝑥2)Ĥ(𝑥3) − Ĥ(𝑥1, 𝑥3)Ĥ(𝑥2) − Ĥ(𝑥2, 𝑥3)Ĥ(𝑥1) + 2Ĥ(𝑥1)Ĥ(𝑥2)Ĥ(𝑥3) .
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We expand the above as

1
𝑟4𝑡5

Res
(
V(1)
+ V(2)

+ V(3)
+ D(1)D(2)D(3)E(1)E(2)E(3)(

B̃(12) B̃(23) B̃(13) + B̃(12) B̃(23) + B̃(12) B̃(13) + B̃(23) B̃(13)
))
.

Since B̃(12) B̃(23) B̃(13) is proportional to 𝑟6, we can write the last expression as

1
𝑟4𝑡5

Res
(
V(1)
+ V(2)

+ V(3)
+ D(1)D(2)D(3)E(1)E(2)E(3)

(
B̃(12) B̃(23) + B̃(12) B̃(13) + B̃(23) B̃(13)

))
up to 𝑂 (𝑟2).

After expanding the expression inside Res, including the prefactor 1
𝑟4𝑡5 , we obtain

𝑡2
( 𝑣1 + 𝑡

𝑡
+ 𝑥1Σ

(1)
) ( 𝑣2 + 𝑡

𝑡
+ 𝑥2Σ

(2)
) ( 𝑣3 + 𝑡

𝑡
+ 𝑥3Σ

(3)
)

× exp
( 𝑥1𝑣1 + 𝑥2𝑣2 + 𝑥3𝑣3

𝑢

)
·
(
𝑓 (12; 23) + 𝑓 (23; 31) + 𝑓 (31; 12)

)
+ 𝑂 (𝑡) ,

where

𝑓 (𝑖 𝑗 ; 𝑗 𝑘) =
𝑣𝑖𝑣

2
𝑗𝑣𝑘𝑥𝑖𝑥

2
𝑗𝑥𝑘

(𝑣𝑖 − 𝑣 𝑗 )2(𝑣 𝑗 − 𝑣𝑘 )2(𝑣𝑖 + 𝑡) (𝑣 𝑗 + 𝑡)2(𝑣𝑘 + 𝑡)
.

The application of Res to the coefficient in front of 𝑡−1 in the last expression yields 0. On the other
hand, the coefficient in front of 𝑡0 equals

𝑥1𝑥2𝑥3

(
𝑣2𝑣3(1 + 𝑥1Σ

(1) ) + 𝑣1𝑣3 (1 + 𝑥2Σ
(2) ) + 𝑣1𝑣2 (1 + 𝑥3Σ

(3) )
)

× exp
( 𝑥1𝑣1 + 𝑥2𝑣2 + 𝑥3𝑣3

𝑢

)
×

(
𝑥2

(𝑣1 − 𝑣2)2(𝑣2 − 𝑣3)2 +
𝑥3

(𝑣1 − 𝑣3)2(𝑣3 − 𝑣2)2 +
𝑥1

(𝑣3 − 𝑣1)2(𝑣1 − 𝑣2)2

)
.

The result of application of Res is therefore equal to the generating function of the right side of equation
(1.16). �

10. Degree 1 series for P3

10.1. Stationary descendent series

We provide a complete table of the stationary stable pair descendent series for projective P3 in degree
1. Our notation is given by three vectors 𝑉p, 𝑉L, 𝑉H of nonnegative integers which specify the stationary
descendents with cohomology insertions

p, L,H ∈ 𝐻∗(P3)

corresponding to the point, line and hyperplane classes respectively. For example, the data
[1, 2], [4, 9], [6] correspond to the descendent

ch3 (p)ch4(p)ch6(L)ch11 (L)ch8(H).
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In the table below, the full descendent series is given as rational function in q.

[], [0, 1], [1] 𝑞(3𝑞2 − 5 𝑞 + 3)

[1], [0], [] 𝑞(𝑞2 − 1)/2

[0], [0, 0], [] 𝑞(𝑞 + 1)2

[0], [1], [] 3𝑞(𝑞2 − 1)/2

[], [0, 0, 1], [] 2𝑞(𝑞2 − 1)

[], [1, 1], [] 5𝑞(𝑞 − 1)2/2

[], [0, 2], [] 𝑞(5𝑞2 − 14𝑞 + 5)/6

[1], [], [1] 3𝑞(𝑞 − 1)2/4

[], [0, 0, 0], [1] 3𝑞(𝑞2 − 1)

[], [2], [1] 5𝑞 (𝑞−1)3

4(1+𝑞)

[0], [], [1, 1] 3𝑞(3𝑞2 − 2𝑞 + 3)/4

[], [0, 0], [1, 1] 𝑞(9𝑞2 − 10𝑞 + 9)/2

[], [1], [1, 1] 𝑞 (𝑞−1) (9𝑞2−2𝑞+9)
2(1+𝑞)

[], [0], [1, 1, 1] 𝑞 (𝑞−1) (27𝑞2+14𝑞+27)
4(1+𝑞)

[0], [], [2] 𝑞(5𝑞2 − 2𝑞 + 5)/4

[], [0, 0], [2] 2𝑞(𝑞2 − 𝑞 + 1)

[], [1], [2] 𝑞 (𝑞−1) (9𝑞2−2𝑞+9)
4(1+𝑞)

[], [], [1, 1, 2] 𝑞(9𝑞2 − 14𝑞 + 9)/2

[], [], [2, 2] 𝑞(17𝑞2 − 30𝑞 + 17)/8

[], [0], [3] 𝑞 (𝑞−1) (9𝑞2−2𝑞+9)
12(1+𝑞)

[], [], [1, 3] 𝑞(9𝑞2 − 22𝑞 + 9)/8

[0], [0], [1] 3𝑞(𝑞2 − 1)/2

[], [], [4] 𝑞(𝑞2 − 5𝑞 + 1)/6

[], [3], [] 𝑞 (𝑞−1) (𝑞2−8𝑞+1)
6(1+𝑞)

[2], [], [] 𝑞(𝑞2 − 10𝑞 + 1)/12

[], [0], [1, 2] 𝑞 (𝑞−1) (3𝑞2+𝑞+3)
(1+𝑞)

[0, 0], [], [] 𝑞(𝑞 + 1)2

[], [0, 0, 0, 0], [] 2𝑞(𝑞 + 1)2

[], [], [1, 1, 1, 1] 𝑞(81𝑞2 − 102𝑞 + 81)/2

The symmetry in the above series is a consequence of the functional equation; see [21, Section 1.7].
In the stationary case, the stable pairs series are equal to the corresponding descendent series for the
Donaldson–Thomas theory of ideal sheaves; see [18, Theorem 22].
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10.2. Descendents of 1

We tabulate here descendent series of P3 in degree 1 with descendents of the identity 1 ∈ 𝐻∗(P3)
together with stationary descendents specified as before by a triple of vectors.

• With ch4 (1) and the rest stationary:

[], [1], [1] 𝑞(21 𝑞4+37 𝑞3−88 𝑞2+37 𝑞+21)
6(1+𝑞)2

[], [0, 1], [] 7 𝑞 (𝑞 − 1) (1 + 𝑞) /3

[], [], [1, 2] 𝑞 (𝑞−1) (21 𝑞4+79 𝑞3+86 𝑞2+79 𝑞+21)
6(1+𝑞)3

[0], [], [1] 7 𝑞 (𝑞 − 1) (1 + 𝑞) /4

[], [0, 0], [1] 7 𝑞 (𝑞 − 1) (1 + 𝑞) /2

[], [0], [1, 1] 𝑞(63 𝑞4+116 𝑞3−134 𝑞2+116 𝑞+63)
12(1+𝑞)2

[0], [0], [] 𝑞
(
7 𝑞2 + 2 𝑞 + 7

)
/6

[1], [], [] 7 𝑞 (𝑞 − 1) (1 + 𝑞) /12

[], [0, 0, 0], [] 𝑞
(
7 𝑞2 + 2 𝑞 + 7

)
/3

[], [2], [] 𝑞(35 𝑞4+56 𝑞3−318 𝑞2+56 𝑞+35)
36(1+𝑞)2

[], [], [3] 𝑞 (𝑞−1) (63 𝑞4+232 𝑞3+218 𝑞2+232 𝑞+63)
72(1+𝑞)3

[], [0], [2] 𝑞(7 𝑞4+13 𝑞3−18 𝑞2+13 𝑞+7)
3(1+𝑞)2

• With ch5 (1) and the rest stationary:

[0], [], [] 3 𝑞 (𝑞 − 1) (1 + 𝑞) /4

[], [0, 0], [] 4 𝑞 (𝑞 − 1) (1 + 𝑞) /3

[], [1], [] 𝑞(17 𝑞4+24 𝑞3−106 𝑞2+24 𝑞+17)
12(1+𝑞)2

[], [], [1, 1] 𝑞 (𝑞−1) (9 𝑞4+31 𝑞3+14 𝑞2+31 𝑞+9)
3(1+𝑞)3

[], [], [2] 𝑞 (𝑞−1) (33 𝑞4+112 𝑞3+38 𝑞2+112 𝑞+33)
24(1+𝑞)3

[], [0], [1] 𝑞 (3 𝑞+1) (𝑞+3) (4 𝑞2−7 𝑞+4)
6(1+𝑞)2

• With ch4 (1)ch4(1) and the rest stationary:

[], [0], [1] 𝑞 (𝑞−1) (49 𝑞4+196 𝑞3+534 𝑞2+196 𝑞+49)
12(1+𝑞)3

[0], [], [] 𝑞
(
49 + 2 𝑞 + 49 𝑞2) /36

[], [0, 0], [] 𝑞
(
49 + 2 𝑞 + 49 𝑞2) /18

[], [1], [] 𝑞 (𝑞−1) (49 𝑞4+196 𝑞3+654 𝑞2+196 𝑞+49)
18(1+𝑞)3

[], [], [1, 1] 𝑞(441+1754 𝑞+4007 𝑞2−3252 𝑞3+4007 𝑞4+1754 𝑞5+441 𝑞6)
72(1+𝑞)4

[], [], [2] 𝑞(49+195 𝑞+459 𝑞2−454 𝑞3+459 𝑞4+195 𝑞5+49 𝑞6)
18(1+𝑞)4
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• With ch6 (1) and the rest of stationary:

[], [0], [] 𝑞(17 𝑞4+20 𝑞3−114 𝑞2+20 𝑞+17)
36(1+𝑞)2

[], [], [1] 𝑞 (𝑞−1) (17 𝑞4+48 𝑞3−58 𝑞2+48 𝑞+17)
24(1+𝑞)3

• With ch4 (1)ch4(1)ch4(1) and the rest stationary:

[], [0], [] 𝑞(343 𝑞6+1374 𝑞5+249 𝑞4+11396 𝑞3+249 𝑞2+1374 𝑞+343)
108(1+𝑞)4

[], [], [1] 𝑞 (𝑞−1) (343 𝑞6+2058 𝑞5+3705 𝑞4+29900 𝑞3+3705 𝑞2+2058 𝑞+343)
72(1+𝑞)5

• With ch5 (1)ch4(1) and the rest stationary:

[], [], [1] 𝑞(84+331 𝑞+928 𝑞2−1878 𝑞3+928 𝑞4+331 𝑞5+84 𝑞6)
36(1+𝑞)4

[], [0], [] 2𝑞 (𝑞−1) (7+28 𝑞+87 𝑞2+28 𝑞3+7 𝑞4)
9(1+𝑞)3

• Without stationary descendents:

ch7(1)
𝑞 (𝑞−1) (2+3 𝑞−28 𝑞2+3 𝑞3+2 𝑞4)

18(1+𝑞)3

ch5(1)ch5(1)
5𝑞(13+50 𝑞+179 𝑞2−580 𝑞3+179 𝑞4+50 𝑞5+13 𝑞6)

72(1+𝑞)4

ch4(1)ch6(1)
𝑞(119+462 𝑞+1737 𝑞2−5852 𝑞3+1737 𝑞4+462 𝑞5+119 𝑞6)

216(1+𝑞)4

ch4(1)ch4(1)ch5 (1)
𝑞(−49−245 𝑞−81 𝑞2−6365 𝑞3+6365 𝑞4+81 𝑞5+245 𝑞6+49 𝑞7)

27(1+𝑞)5

ch4(1)ch4(1)ch4 (1)ch4 (1)
𝑞(2401+14405 𝑞+55690 𝑞2−594229 𝑞3+1834570 𝑞5−594229 𝑞5+55690 𝑞6+14405 𝑞7+2401 𝑞8)

648(1+𝑞)6

10.3. Examples of the Virasoro relations

10.3.1. LPT
2

Examples of the Virasoro relations for LPT
1 were given in [21, Section 3]. We consider here the operator

LPT
2 for 𝑋 = P3.

The Chern classes of the tangent bundle of P3 are

𝑐1 = 4H , 𝑐1𝑐2 = 24p.

The constant term for 𝑘 = 2 is

T2 = −
1
2

∑
𝑎+𝑏=4

(−1)𝑑
𝐿𝑑𝑅

(𝑎 + 𝑑𝐿 − 3)!(𝑏 + 𝑑𝑅 − 3)! ch𝑎ch𝑏 (𝑐1) +
1

24

∑
𝑎+𝑏=2

𝑎!𝑏! ch𝑎ch𝑏 (𝑐1𝑐2)

= −8ch4(H) + 8ch2 (H)ch2 (p) − 2ch2 (L)2 − 4ch2(p),

where we used the evaluation ch0 (𝛾) = −
∫
𝑋
𝛾 and dropped all the terms with ch1. The Virasoro operator

for 𝑘 = 2 is then

LPT
2 = T2 + R2 + 3!R−1ch3 (𝑝)

= −8ch4 (H) + 8ch2(H)ch2(p) − 2ch2(L)2 − 4ch2 (p) + R2 + 3!R−1ch3(p).
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Since our examples will be for curves of degree 1 in P3 and since

ch2 (H) = H · 𝛽,

we can simplify the operator even further:

LPT
2,𝛽=L = −8ch4 (H) + 10ch2(p) − 2ch2(L)2 + R2 + 6ch3 (p)R−1.

10.3.2. Stationary example
Let us check the Virasoro constraints of Theorem 1.1 for 𝑘 = 2 and

𝐷 = ch3(H)ch2(L).

The constant term part of the relation has three summands:

−8〈ch4(H)ch3(H)ch2 (L)〉L = −
8𝑞(𝑞 − 1) (3𝑞2 + 𝑞 + 3)

1 + 𝑞
,

10〈ch2(p)ch3(H)ch2 (L)〉L = 15𝑞(𝑞2 − 1) ,
−2〈ch2(L)2ch3(H)ch2 (L)〉L = −6𝑞(𝑞2 − 1).

The rest of the relation can be divided into two parts. The first part is R2 (𝐷) which has two terms:

6〈ch3(H)ch4(L)〉L =
15𝑞(𝑞 − 1)3

2(1 + 𝑞)
,

6〈ch5(H)ch2(L)〉L =
𝑞(𝑞 − 1) (9𝑞2 − 2𝑞 + 9)

2(1 + 𝑞)
.

The second part is

6〈ch3(p)R−1(𝐷)〉L = 6〈ch3(p)ch2 (H)ch2 (L)〉L + 6〈ch3(p)ch3 (H)ch1 (L)〉L

= 6〈ch3(p)ch2 (L)〉L

= 3𝑞(𝑞2 − 1).

Using the cancellation of poles

−8〈ch4 (H)ch3(H)ch2(L)〉L + 6〈ch3(H)ch4(L)〉L + 6〈ch5 (H)ch2(L)〉L = −12𝑞(𝑞2 − 1),

we easily verify the Virasoro relation〈
LPT

2 (ch3 (H)ch2(L))
〉𝑋,PT

L
= 0.

10.3.3. Nonstationary example
Let us check the Virasoro relation LPT

2,𝛽=L for

𝐷 = ch5(1),

a nonstationary case (not covered by Theorem 1.1, but implied by Conjecture 3).
The constant term part of the relation has three summands:

−8〈ch4(𝐻)ch5 (1)〉L = −
𝑞 (𝑞 − 1)

(
33 𝑞4 + 112 𝑞3 + 38 𝑞2 + 112 𝑞 + 33

)
3 (1 + 𝑞)3 ,
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10〈ch2(p)ch5 (1)〉L =
15
2
𝑞 (𝑞 − 1) (1 + 𝑞) ,

−2〈ch2
2(L)ch5 (1)〉L = −

8
3
𝑞 (𝑞 − 1) (1 + 𝑞) .

The rest of the relation can be divided into two parts:

24〈ch7 (1)〉L =
4𝑞 (𝑞 − 1)

(
2 + 3 𝑞 − 28 𝑞2 + 3 𝑞3 + 2 𝑞4)

3 (1 + 𝑞)3 ,

6〈ch3(p)ch4 (1)〉L =
7
2
𝑞 (𝑞 − 1) (1 + 𝑞) .

After a remarkable cancellation of poles,

−8〈ch4 (𝐻)ch5(1)〉L + 24〈ch7(1)〉L = −
25
3
𝑞(𝑞 − 1) (1 + 𝑞),

we verify the Virasoro relation 〈
LPT

2 (ch5 (1))
〉𝑋,PT

L
= 0.
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