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NUMERICAL INVARIANTS IN HOMOTOPICAL
ALGEBRA, 1

K. VARADARAJAN

Introduction. Classically CW-complexes were found to be the best suited
objects for studying problems in homotopy theory. Certain numerical invariants
associated to a CW-complex X such as the Lusternik-Schnirelmann Category
of X, the index of nilpotency of Q(X), the cocategory of X, the index of co-
nilpotency of Z(X) have been studied by Eckmann, Hilton, Berstein and
Ganea, etc. Recently D. G. Quillen [6] has developed homotopy theory for
categories satisfying certain axioms. In the axiomatic set up of Quillen the
duality observed in classical homotopy theory becomes a self-evident phenome-
non, the axioms being so formulated. In addition to the category of based
topological spaces there are at least two other familiar categories which satisfy
the axioms of Quillen. For any ring A4 the category C;(4) of chain complexes
over A which are bounded below is known to satisfy the axioms of Quillen [6].
The category of semi-simplicial sets also satisfies the axioms of Quillen. This
paper is devoted to the development of the theory of Lusternik-Schnirelmann
Category and Cocategory etc. in the axiomatic set up of Quillen.

Part of §1 deals with some known facts about categories which we need
later. A reference for this is [5]. For the sake of completeness we include them here
without proofs.

1. Preliminaries about categories. Let % be an arbitrary category.
Recall that a map 7 € Hom (X, Y) is called monic if ¢, 8 € Hom (4, X),
joe =jo8= ¢ = 6. By a subobject of X in € we mean a pair (E, 7) where
E is an object in % and i : E — X is monic.

1.1 LEMMA. Suppose

El’__"E2

\ /-

Diagram 1

is a commutative diagram in € with i, 1, monic. Then ¢ is unique and monic.
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Let f: X — ¥ be a given map in €. Let # be the family of subobjects
(E, 7) of Y satisfying the condition that there exists a map g : X — E with
10 g = f. Since 7 is monic it follows that whenever such a g exists it is unique.
For any (Ej, ;) and (E,, 15) in # a map of (E,, 4;) into (Es, 5) is defined to be
a map ¢: E, — E, in % satisfying 120 ¢ = 4, From 1.1 it follows that ¢,
whenever it exists, is unique and monic.

1.2 LEMMA. Let (Ey, 1) and (E,, 12) be objects in F and ¢ : Ey — Es be a map
in F . Suppose g1 : X — Ey and g, : X — E, are the unique maps satisfying
11081 =f =1,0gs Then oo g, = go.

Proof. We have 1,0 (pog1) = (120¢) 0g1) =14, 0g1 =f = 12 0 go. The fact
that 7, is monic now yields ¢ 0 g; = g,.

1.3 Definition. The image of f is defined to be a universal objectin .% , that is
to say it is an object (D, j) in % with the property that if (E, 4) is any other
object in % there exists a map 6 of (D, j) into (E, 7).

Such a 6 is necessarily unique by (1.1). Also the image of f when it exists is
unique up to an isomorphism in the category % since it is defined by a universal
property. We denote the image of f by Im f.

1.4. Definition. Let (E,, 1,) and (Ei, i2) be subobjects of X in & . By their
union (in X) we mean a subobject (E, ) of X having the following properties:

(a) There exist maps j, : E, = E, j»: E; — E satisfying 707, = 7; and
10Js = 1a.

(b) If (F, k) is any subobject of X with maps k1 : E; — F, ks : Es —> F
satisfying ko ky = 1,, k 0 ks = i, then there exists a unique map /: E > F
satisfying kol = 1.

1.5. Definition. Two subobjects (E, 7) and (E’, ¢) of X are said to be iso-
morphic as subobjects of X if there exists an isomorphism 8 : E — E’ in ¥
satisfying " 0 6 = 1.

The union of subobjects (Ei, 1), (E2, 12) of X being defined by a universal
property, it follows that whenever there is a union it is unique up to an iso-
morphism as a subobject of X.

Let A4,, A; denote the following axioms.

(A;) Any map f: X — Y in % admits an Imf.
(4,) Any twosubobjects (E1, 7;), (Es, 72) of any object X of € have a union.

1.6. Remark. It is clear that in Definition 1.4 the roles of (E, ,i;) and (E,, 72)
can be interchanged. Thus if (E, 7) is the union of (E;, 7;) and (E,, 19) it
follows that (E, 7) is also the union of (E,, 72) and (E,, 7,).

We denote the union of the subobjects (Ej, 71), (Es, 72) of X by (E4, 4;) U
(Eoq, 12).

1.7. ProrosiTION. Let (E,, 1,) ¢ = 1, 2, 3 be any three subobjects of X. Let
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(E,1) = (E1,01) Y (Ey, 12); (F,]) = (E, 1) \J (Ey,13) and (E',1") = (Ea, 12) U
(Es, 13); (F',§') = (E1, 1) \J (E', 7). Then (F, j) and (F’,j') are isomorphic as
subobjects of X.

1.8. THEOREM. Let € be any category satisfying axioms A, and A,. Let
fi

B—— X,

le lﬂ 1
M2

Xo—Y
Diagram 2

be a push-out diagram in €. Let (E, 1,) = Im p,(q¢ = 1, 2) and (E, 1) =
(Eq, 1) J (Eq, 13). Then i : E — Y is an 1somorphism.

Proof. Let o, : X, — E, be the map satisfying 1, 0 ¢, = p, (¢ = 1, 2). Since
(E,1) = (Eq, 11) \J (Es, E.) there exist maps j, : E, — E such that 1 0j, = 7,.
Write 6, for j, oa,. Thento6,0f, =10j,0a,0f, = 4,0a,0f, = p, 0 f,.
The commutativity of Diagram 2 gives 7 0 6, o fi = 7 0 6; © f,. Since 7 is monic,
61 0 f1 = 62 o f. Hence

BLXI

le l@l
(2

Xy———E
Diagram 3

is a commutative diagram. Since by assumption Diagram 2 is a push-out
diagram it follows that there exists a unique map \ : ¥ — E such that

X, P
/% Ki and X, J)\
Vv ——>)\ E k E
Diagram 4 Diagram 5

are commutative. From o Xou =106, = 70 jioy = 43 0 oy = u; and
TO0NOuy =100, =107 0as = 12 0as = g We see that

X, V
I“‘/ Xﬁ X2 \ 10 A
y—to A % Mo v
Diagram 6 Diagram 7
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are commutative. From the fact that Diagram 2 is a push-out diagram it
follows immediately that 20 A = Idy.

Also o0 (Noi) = 1oAX) ot =1Idyoi =1 =140Ildg Since 7 is monic we
get Aot = Idg.

Thus 7 : E — Y is an isomorphism with A : ¥ — E as its inverse.

1.9. Definition. Suppose f : X — Yisa mapin % and (E, 7) a subobject of Y.
The inverse image of (E, 7) by f is defined to be a subobject (F, j) of X satisfy-
ing the following conditions:

(1) f oj factors through 1, i.e. there exists a map ¢ : F— E such that
10¢ =f0].

(it) If (F’,4') is any other subobject of X with the property that there exists
amap ¢’ : F'— E with 70 ¢ = f 07’ then there exists a unique map u : F' —
F satisfying jou = j'.

Remarks. (a) Since 7: E — Y is monic, whenever a map ¢: F — E exists
satisfying 7 0 ¢ = f o j then it has to be unique.

(b) The inverse image being defined by a universal property is unique up to
an isomorphism as a subobject of X, whenever it exists.

(c) The map p : F/ — F postulated to exist in (ii) above is monic by (1.1).

Axiom A;. For every map f : X — Y in % and every subobject (E, ¢) of ¥
there exists an inverse image by f.

1.10. LEMMA. Let € be a category satisfying axioms Ay and A;. Let f : X > ¥V
be any map in € and (E,i) = Imf. Let (F, j) be the inverse image of (E, 1) by f.
Then j: F— X is an isomorphism.

Axiom A4 Let f: X — ¥V be any map in € and Im f = (E, j). For any
subobject (F, 7) of E there exists a subobject (D, u) of X satisfying

(00) Imfou= (F,joz1).

1.11. PROPOSITION. Let € be a category satisfying axioms A1, Ay and A4 and
f:X - Yanymap in €. Let Im f = (E, ©) and (F, j) any subobject of E. Let
(C, v) be the inverse image of (F,jo1) by f. Then Im fov = (F, jo1).

1.12. PROPOSITION. Let € be a category for which axioms A, As and A; are
valid. Let f: X — ¥ be any map in €. Let (Ex, 1) be subobjects of X and
(Bx, jx) subobjects of Y (for k =1, 2). Let (E, 1) = (Ei, 11) \J (E,, 12) and
(B, 7) = (B, 71) Y (Bz, j2) with N\ : Ey = E, py : By — B the unique maps
satisfying 1 0 N, = 1y, j O py = Jx(k = 1, 2). Suppose there exists maps 6 : Ex —
By satisfying fow = jro0(k =1, 2). Then there exists a« map 6 : E— B
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(necessarily unique) such that the following diagram is commutative.

/ \
02

Diagram 8

1.13. LEMMA. Let € be a category satisfying axiom As. Let f: X — Y and
g: X — Z be any two maps in €. Let (E, 1) be any subobject of Z. Let (F, j) be
the inverse image of (E, 1) by g and (C, v) the inverse image of (F, j) by f. Then
(C, v) 1is the inverse image of (E, 1) by g of.

2. Some propositions on model categories. In this section % denotes
a model category in the sense of D. G. Quillen [6]. The notations and the
terminology we follow are those of [6]. In particular by a trivial fibration we
mean a fibration which is also a weak equivalence. We use the abbreviation
w.e. to denote a weak equivalence. We briefly recall the definition of a model
category.

Definition. By a model category we mean a category % together with three
classes of maps in %, called fibrations, cofibrations and weak equivalences,
satisfying the following axioms.

My: € is closed under finite limits and colimits.
M,: Given a solid arrow diagram

A—>X

. /x
lz ,// lp
,’
B——

Diagram 9

where 7 is a cofibration, p a fibration and where either 7 or pisaw.e.,
then the dotted arrow exists.

M,: Any map f may be factored f = pz where ¢ isa cofibration and w.e. and
p is a fibration. Also f = ¢j where j is a cofibration and p a fibration
and w.e.
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Mj,: Fibrations are stable under composition, base change, and any iso-
morphism is a fibration. Cofibrations are stable under composition,
cobase change and any isomorphism is a cofibration.

M 4: The base extension of a map which is both a fibration and aw.e. isa
w.e. The cobase extension of a map which is both a cofibration and

a w.e. is a w.e.
Ms: Let

xLvdz
be maps in . Then if two of the maps f, g and g o f are weak

equivalences then the third is. Any isomorphism is a w.e.

2.1. ProrosiTION. Let f, g € Hom (X, Y) and f ~'g. Let p : E — X be any
trivial fibration. Then fop ~'go p.

Proof. Let X X I be a cylinder object for X such that there exists a left
homotopy & : X X I — I between f and g. Let

do + 91
_—

XVvX XX [—X

be such that 9o + 9;is a cofibration, ¢ aw.e., ¢ 0 (dp + 9;) = Vxand Diagram
9(a) below commutative.

XVvX /te 24
e
X+ 2 X X1
Diagram 9(a)
Let
P o >E
| |
X X1 2 > X
Diagram 10

denote the pull-back of p by ¢. Since p is a w.e. and a fibration by axioms M3
and M, for model categories [6] it follows that p’ is a trivial fibration. By
axiom Ms, c 0p’ is a w.e. But s 0p’ = poo’. Hence p oo’ is a w.e. Since
p is a w.e. again by axiom M; ¢’ is a w.e.
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In Diagram 11 below we have s 0 (dp0p + d10p) = po V.

X X [—2—X
Diagram 11

Since the inner square in Diagram 11 is a pull-back diagram there exists a
unique map 9y’ 4+ 9’ : E V E — P along the dotted arrow making Diagram
11 commutative. Let &’ = hop’ : P — Y. Then

¢y JFod/ =hopod) =hodop=fop
Wod/ =hop'o0d/ =hodop=gop.

From the commutativity of the triangle marked (a) in Diagram 11 and the
equations (*) we see immediately that

Ev p—JoPteor
J,”

VEl 74071’ h
E<« , P
a
Diagram 12

is a commutative diagram. In here ¢’ is a w.e. Hence fop ~'go p.

2.2. Remark. Proposition 2.1 can be contrasted with the following facts already
proved in [6)].

(1) If f, g € Hom (B, C) satisfy f~'g then uof~'uog for any map
u:C—oDin¥.

ii() If further C is fibrant then fov ~'gov foranyv: A — B in €.

2.3. ProPOSITION. Let f, g € Hom (X, V) be such that f ~" g. Let1i: ¥ — Y’
denote any trivial cofibration. Theniof ~"1 0 g.

This is precisely the dual of 2.1.

2.4. PROPOSITION. Let YV, Z be fibrant and ©: Y — Z a w.e. If f, g € Hom
(X, Y) are such that 1o f ~"1 0 g then f ~" g.
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Proof. Let Z' be a path object for Z with a right homotopy k2: X — Z*
between 72 0 fand 7 0 g. Let

VA J’%J%zxz

be such that 7 is a w.e., (dy, d:) is a fibration, (dy, d1) o 7 = V z and Diagram 13
below commutative.

T

k

X———Z!
»
(iof,iog)l WS T
ZX 2+ 7
Diagram 13
Let
B @
N —>7 1 M >N
(@0, ¢1) (do, dv) and (vo, 1) (¢0, 1)
1 X 1 ]
.____X—Z).Z N4 Y X Y&__}(_i__)y' X Z
Diagram 14 Diagram 15

be pull-back diagrams. If § = 8 0 a then it follows that Diagram 16 below is a
pull-back diagram.

M Y
l(”oy Vl) (do, dl)
1 X 1
Y X Y——-—Z X Z
Diagram 16

We have (dy, d1) o707 = (1 X 1) 0 Ay in Diagram 17 below.

M—2 3z

(v, v1) (do, dv)
X V—22 7%z
Diagram 17
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Since the inner square is a pull-back diagram it follows that there exists a
unique map p : ¥ — M along the dotted arrow making Diagram 17 commuta-
tive. Clearly

Y X Z.LIZ_,Z X Z
l?r lpl
Y L A

Diagram 18

where p1: Z X Z—> Z, py : ¥ X Z — Y are projections to the first factors, is
a pull-back diagram. This together with the fact that Diagram 14 is a pull-back
immediately yields that Diagram 19 below is a pull-back.

N— 77

lmi ldo

Y— 7

Diagram 19

Now, dy : Z? — Z is a trivial fibration since Z is fibrant. Hence by axioms M;
and M, it follows that ¢y : N — Y isa trivial fibration. In particular ¢, is a w.e.
Moreover 7 0 ¢y = dy 0 8 and 2, dy, ¢o are weak equivalences. By axiom M; we
see immediately that 8isa w.e. From d; o B = ¢; (Diagram 14) and the fact that
d;is a w.e. it follows that ¢; is a w.e.

Similarly it is possible to show that

a

M— N

Y—mZ

Diagram 20

is a pull-back. Since Y is fibrant the projection ps: ¥ X Z — Z to the second
factor is a fibration. Moreover ¢; = p2 0 (po, ¢1). Hence by axiom Mj; the
map ¢ is a fibration. We have earlier shown that ¢; is a w.e. Thus ¢, is a
trivial fibration. By axiom My, v1: M — YV is a w.e. From v; o u = 1y (Dia-
gram 17) and axiom M; we immediately see that u is a w.e.
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In Diagram 21 we have (dy, d1) 0k = (i X 7) o (f, g).

(do, dv)

1 X1
VY X YV———Z X Z

Diagram 21

Since the inner square is a pull-back, there exists a unique map ¢’ : X - M
along the dotted arrow making Diagram 21 commutative.

From the commutativity of the triangle marked (a) in Diagram 17 and of
the triangle marked (b) in Diagram 21 we immediately see that Diagram 22 be-
low is commutative.

x—F _ u
D
(f, 9 uw% "

V % y4__AL__

Diagram 22

Moreover p is a w.e. This proves that f ~7 g.

2.5. COROLLARY. Let YV, Z be fibrant and i : ¥ — Z a w.e. Then i, : (X, V)
— II"(X, Z) 1s a set theoretic injection for any X in €.

2.6. PROPOSITION. Let A, B be cofibrant and h: 4 — B any w.e. If f, g €
Hom (B, C) are such that foh ~'go h then f ~'g.

This is the dual of Proposition 2.4.

2.7. COROLLARY. Let A, B be cofibrant and h : A — B any w.e. Then
h* . v (B, C) — 7'(4, C) 1s a set theoretic injection for any C in €.

Asin [6] for any object A of €, p4 : Q(4) — A (respectively i, : A — R(4))
will denote a trivial fibration (respectively a trivial cofibration) with Q(4)
cofibrant (respectively R(4) fibrant). Then as explained in [6] given any map
f:A— Bin % itis possible to find a map Q(f) : Q(4) — Q(B) (respectively
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R(f):R(A) > R(B))such thatfop, = pp o Q(f) (respectively R(f) o1,
= 15 0f ). Moreover such a Q(f) (respectively R(f)) is unique up to left-
homotopy (respectively right homotopy).

2.8. LemMA. Let f, g € Hom (4, B). Then RQ(f) ~ RQ(g) if and only if
1pOfO Py ~130g0Pa4.

Proof. Diagram 23 below is clearly a commutative diagram for any
¢ € Hom (4, B).

RO (o)
RQ(A) =25 RQ(B)

To(4) 1(B)

0(4) =22, 0(8) 22, ro(B)
Pa Py _ R(ps)

) )
A — B——— 5 R(B)

Diagram 23

Since RQ(B) is fibrant and 744y : Q(4) — RQ(A) is a trivial cofibration, by
the dual of Lemma 7, § 1, Chapter I of [6] it follows that

tow* 1 7" (RQ(4), RQ(B)) — ="(Q(4), RQ(B))

is a set theoretic bijection. Since both Q(4) and RQ(4) are cofibrant and
RQ(B) is fibrant we have

7" (RQ(4), RQ(B)) = 7'(RQ(4), RQ(B)) = =(RQ(4), RQ(B)) and
77(Q(4), RQ(B)) = =" (Q(4), RQ(B)) = =(Q(4), RQ(B)).

Thus 29* : T(RQ(4), RQ(B)) — m(Q(4), RQ(B)) is a set theoretic bijec-
tion. From the commutativity of the upper square in Diagram 23 for f and g
separately in place of ¢ we now get

(5)  RQ(f) ~ RQ(g) = toum 0 Q(f) ~ dowm 0 Q(g).

Let us assume that RQ(f) ~ RQ(g). Then igwm 0 Q(f) ~ iqwm 0 Q(g).
From (i) of Remark 2.2 we immediately get R(p5) 019 © Q(f ) ~'R(ps) o
19(s) 0 Q(g). However, since Q(4) is cofibrant and R(B) is fibrant #*(Q(4),
R(B)) = 77(Q(4), R(B)) = 7(Q(4), R(B)). Hence R(p5) 0iqum 0 Q(f) ~
R(pp) 019w 0 Q(g). From Diagram 23 we see that R(pp) 0w 0 Q(f) =
ip 0 f o pa and R(pp) 0t 0 Q(g) = 150 g0 pa. Hence RQ(f) ~ RQ(g) =
1O0fOpPs~10g0Pa.

Conversely, assume 1 0 f 0 p4 ~ 153 0 g 0 p4. Then R(pp) 019 0 Q(f) ~
R(pp) 01gm 0 Q(g). Since RQ(B) and R(B) are fibrant and R(pp) : RQ(B) —
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R(B) is a w.e. from Proposition 2.4 we get 49 0 Q(f) ~" 29 © Q(g). Again
since 7"(Q(B), RQ(B)) = n(Q(B), RQ(B)) it follows that igwm 0 Q(f) ~
10 0 Q(g). Now (5) gives RQ(f) ~ RQ(g). This completes the proof of
Lemma 2.8.

From now on we will assume that the model category % in addition to
satisfying the axioms M, M., M3, M4, M5 of Quillen also satisfies the axiom W
mentioned below.

(W) If f: A— B, g: C— D are weak equivalences then f X g: 4 X
B—CXDandfVg:4V B—CV D are also weak equivalences.

2.9. LEMMA. Letf,, g, € Hom (4, By) and f; ~'g;(i = 1,2). Then f1 X fo ~'
g1 X geand f1 V fa~tgr Vg

There exist commutative diagrams

h
All—;—>Bl
o,
0
b
01 9, fi+a
A1<—~'—-A1 Vv A] A24—A2 Vv AZ
1 Va4,
Diagram 24 Diagram 25

with o; and o, weak equivalences. It follows that Diagrams 26 and 27 below
are commutative.

hy X hy

A X A » B1 X B,

f1 ><f2+g1><g2

A1 X Ag——— (A1 X A2) V (41 X A4,)
A1XA2
Diagram 26

AV A4 5> B,V B,

fHVit+a Vg

Al V A2<—_"— (Al \/ Ag) V (Al \/ Ag)

A1VA2
Diagram 27
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From axiom (W) we see that ¢; X ¢sand ¢; V o3 are weak equivalences. Hence
fiXfa~vtgr X goand fi V fa~tgr Vg

2.10. LEMMA. Letfi, g1 S Hom (A iy Bi) andfi ~T g1(1 = 1, 2) Then fl X
fo~Tgr X geand fi V fa~Tg1 V oga.

Proof. There exist commutative diagrams

k1 ks R
A1 —> Bll A2 4 B2,
N
w S
(fly gl) @Q* Ti (f?y g2) @& ) To
B; X B« B, By X B« B,
ABl AB?
Diagram 28 Diagram 29
with 7; and 7, weak equivalences. It follows that Diagrams 30 and 31 below are
commutative.
kl X k2
A3 X 4, > By X BY
A
(f1 X fa, g1 X g2) 71 X 74
A 4
(B1 X Bg) X (B1 X By) % A B1 X B,
B1XB2
Diagram 30
ki V ke
A,V A, >B, V By
A
(fiVfugV g) 1V Ty
A 4
(B1 Vv Bg) X (Bl Vv Bg) < B1 Vv Bz
AB;VB2
Diagram 31
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By axiom (W) r; X 72 and 7; V 7, are weak equivalences. Hence f; X fa ~7
g1 X gzand fi1 V fa~"g1 V g

2.11. Remark. The three categories which we mentioned in the introduction
do satisfy axiom (W) also. Hence our results apply to all these three categories.

2.12 PROPOSITION. Let f, g € Hom (Ay, By) (kB = 1, 2) be such that RQ( fy) ~
RQ(gy). Then

(@) RQ(fi X f2) ~ RQ(g1 X g2), and

(b) RQ(f1 V f2) ~ RQ(g1 V g2).

Proof of (a). By hypothesis, RQ(fi) ~ RQ(g). Lemma 2.8 gives
18, O fx O Pay ~ ip;, O g O pa,. Lemma 2.10 now yields

(1 0f10Pa;) X (4B, 0f20 Pay) ~7 (45, 010 pay) X (82 O 20 Pas).
In other words,
(6)  (im X 18) © (f1 X f2) 0 (pay X pas) ~" (15, X 5,) O (&1 X g2) ©
(Par X Paa)-

Since p4, and p4, are fibrations it follows that p4, X pa, : Q(41) X Q(42) —
A, X A.isafibration. By axiom (W), p4, X pa,isalsoa w.e. Since Q(A4: X A3)
is cofibrant it follows from axiom M, that there existsa map A : Q(4; X 4.) —
Q(41) X Q(4.) along the dotted arrow in Diagram 32 making it commutative.

¢ > Q(A1) X Q(4y)
P4
~
N

7

e pAl X PA?

~
~
e
Q(4; X Ay) > A; X 4,
pALXAz

Diagram 32

From (6) and the dual of (i), Remark 2.2 we get

(18, X 18y) O (f1 X f2) 0 (pay X Pas) ON~7 (ip, X ip,) O (g1 X ga) O

(PA: X PA:) oA
But (PAl X PA:) O\ = PAlez. Hence

(7) (Zp, X 18,) © (f1 X f2) O paixas ~7 (1, X ip,) O (g1 X g2) O Parxas-

Since 1z,x5, is a trivial cofibration and R(B;) X R(B.) is fibrant by axiom
M, there exists a map p: R(By X B;) — R(B;) X R(B;) along the dotted
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arrow in Diagram 33, making it commutative.

i, X 1p
B, X B, — + R(B1) X R(By)
s
~
~
~
i Lo
B1XB2 -~
~
—
-~
-~ A 4
R(B:1 X B») > *
Diagram 33

By axiom (W) i, X ip, is a w.e. It follows from axiom M; that u is a w.e.
Now, relation (7) is the same as

(8) 1 Oipxsy O (fi X f2) O Parxas ~" 1O ipxms O (g1 X g2) O Parxcas

Also, both R(By X B,) and R(B;) X R(B.) are fibrant. Hence Proposition 2.4
yields

(8)  imixm: 0 (f1 X f2) O parxas ~ ipyxms O (g1 X €2) O Paixas.
Since Q(4; X A4,) is cofibrant and R(By X B,) is fibrant (8) gives

i51xps O (f1 X f2) O Parxar ~ tmixms O (€1 X g2) O Parxcas-
Lemma 2.8 now gives RQ(f1 X f2) ~ RQ(g1 X g2).
Proof of (b). Asin (a),
RQ(fi) ~ RQ(g) » 15, Ofi O pay ~ ip, O g O pay
The second part of Lemma 2.10 yields
(is0f10pa1) V (15, 0f2 0 pas) ~' (i, 0210 pay) V (ip, 0 g2 0 pay).
In other words,

(9) (s Vi) 0 (J1 V f2) 0 (pay V pas) ~' (in, V i5,) 0 (g1 V g2) ©
(pAl \ PAz)-

Since

?
04, \/Az)_é_{lﬁl,

is a trivial fibration and Q(41) V Q(4.) is cofibrant, by axiom M, there exists
amapea: Q(4:) V Q(4:) — Q(4: V A4.) along the dotted arrow in Diagram

AlvA?
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34 below making it commutative.

¢ > Q(4:1 V 4,)
el
7
7~
¢ - DParvas
-
-
~
v
Ap) VvV QM4 > A,V 4
QD) V Q(ds) ——— = LV 4,
Diagram 34

By axiom (W), p4, V pa,is a w.e. Since p,,va, is a w.e. it follows from M; that
aisaw.e. Also p4, V pay = pa,va. O a together with (9) yields
(7;81 \% iBz) o (fl V fZ) O pPava, O ~! (7:31 \% iB2) o (gl V g2) o
Parva, Oa.

Both Q(4:) V Q(4:) and Q(4, V A,) are cofibrant and « is a w.e. Hence
Proposition 2.6 yields

(631 V i8y) O (/1 V f2) O pasvas ~" (35, V 45,) 0 (81 V £5) O pasvae-
From (i), Remark 2.2 we now get

tr(ay VR O (18, V 18,) O (f1 V f2) O paivas ~"'irmyVrsn O

(48, V 13,) 0 (g1 V g2) O Payvas
Writing 6 for the composite gz, vam (25, V 78,) the above relation can be
written as
(10) 60 (fiV f2) 0pava, ~"00 (g1 V g2) O Pasvas.
By axiom (W) i3, V ip,is a w.e. Hence 6 is also a w.e. by M.
Since R(R(B;) V R(B.)) is fibrant and

B,V B
Bi1 V B, ‘V—_%R(BIVBQ)

is a trivial cofibration it follows by axiom M, that there exists a map 7 :
R(B;1 V B;) = R(R(B1) V R(B)) along the dotted arrow in Diagram 35
making it commutative.

6
By V B, —> R(R(B1) V R(B»))
el
~
~
-~
N~
-~
~
~
~
~
R(B: V B,) > *
Diagram 35
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Since 6 and 1z,vp, are weak equivalences by M; we see that v is a w.e. Since
0 = v i v, relation (10) is the same as

Y 015,vE: O (f1 V f2) O Parvas ~" ¥ 01p1ves O (g1 V £2) O pusva.
Since Q(4: V A4.) is cofibrant, Lemma 5.1, § 1, Chapter I of [6] gives

Y O 'i81VBz o (fl \% f2) O Da1Vay ~7 Y © 1'191\’)32 o (gl \% g2) o pAIVAZ'
Both R(B; V B;) and R(R(B,) V R(B.)) are fibrant and v a w.e. From Propo-
sition 2.4 we now get

ipvBs O (f1 V f2) O Paivas ~" ipve, O (g1 V g2) O Pa1vas.

The fact that Q(A4; V A4s) is cofibrant and R(B; V B,) is fibrant now gives

18,VEs O (f1 V f2) O Payvas ~ 15,vE; O (€1 V g2) O Payva,-

An application of Lemma 2.8 now yields

RQ(f1V f2) ~ RQ(g1 V g2).

2.13. Definition. Let A, X be objects of 4. We say that X dominates 4 (or
X dominates 4 in homotopy) if there exist maps f: 4 — X, g: X — 4 such
that RQ(g Of) ~ IRQ(A)-

Since RQ(gof) ~ RQ(g) o RQ(f) the above condition is equivalent to
RQ(g) o RQ(f) ~ lgreuy. By Lemma 2.8, the condition RQ(g of ) ~ lgrg) is
equivalent to 7, 0 (gof ) 0pa ~1i40ps. We write X > 4 (or 4 < X) to
denote that X dominates 4. If .7 is the model category of topological spaces,
every object in .7 is fibrant. CW-complexes are also cofibrant. When X and 4
are CW-complexes the concept of homotopy domination introduced here agrees
with the classical concept introduced by J. H. C. Whitehead [8]. When X and
A are not CW-complexes, in general the concept of homotopy domination
introduced by us differs from the concept introduced by J. H. C. Whitehead.
But it appears that Definition 2.13 is the best suited for our purposes.

2.14. PropPoSITION. Let X > A and Y > B. Then
()X XY>AXB
i) XvY>A4vVvB.

Proof. Let

A5x2 4 and BLYEB
be such that RQ(gof) ~ lrew) and RQ(p 0 6) ~ lzee.
Consider the diagrams
AxBIXY x x v X4 4 x Band

AxBIY Ol x«vEV S 4 xB
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Now, 1geu) ~ RQ(14) and 1gem ~ RQ(15) and hence
RQ(gof) ~RQ(1s), RQ(¢o08) ~RQ(1z).
By Proposition 2.12 we get

RQ((gof) X (¢08)) ~RQ(14 X 15) = RQ(Laxs) ~ lrouxm and
RQ((gof) V (¢08)) ~RQ(1, V 15) = RQ(lavs) ~ lrouavm-

In other words,

RQ((g X ¢) 0 (f X 8)) ~ lgouaxw and
RQ((g V @) o (fV 6))~ lgeuave-

This completes the proof of 2.14.
2.15. PROPOSITION. If A > B and B > Cthen A > C.

Proof. Let

BLatp and cbBbC
be such that RQ(g of ) ~ lgrgwm and RQ(¢ 0 8) ~ lgg). Consider

cla%c
We have
RQ((¢g) 0 (f8)) = RQ(¢0 (gof)0b)
~ RQ(¢) o RQ(gof) o RQ()
~ RQ(¢) o RQ(6) (since RQ(gof) ~ lrowm)
~ RQ(0 o ¢)
~ lroc-

This proves 4 > C.

As in [6] we will write (X, V] for the set #(RQ(X), RQ(Y)) of homotopy
classes of maps of RQ(X) into RQ(Y). Recall that a model category ¥ is
called a pointed model category if the initial object ¢ is isomorphic to the
final object *. In particular one can take ¢ = *. From now on we will be con-
sidering a pointed model category % satisfying axiom W in addition to the
axioms My, Ms, ..., M;s of Quillen.

2.16. Definition. An object X of ¥ is said to be contractible if [X, X] = 0.

Given any map a : RQ(X) — RQ(Y) we denote the homotopy class of «
by [a]. Given any f : X — Y we denote the homotopy class of RQ(f ) : RQ(X)
— RQ(Y) by (f). Clearly (1x) = [lrowx)]- The following are trivial to see.

(i) X is contractible if and only if (1x) = 0.
(ii) X is contractible < [X, V) = 0 (respectively [V, X] = 0) for every
Ye%.
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(iii) X is contractible & X is dominated by =*.

Let H o % denote the homotopy category of €. In § 2, Chapter I of [6] a
functor from (H o0 €)° X (H o &) to the category of groups, denoted, by [,];
is constructed and further it is proved that there exist functors 2 (called the

suspension functor) and Q (called the loop functor) from Ho % to H o € and
canonical isomorphisms [ZA4, B] >~ [4, B], >~ [4, QB].

2.17. LEMMA. If A 1s contractible so are ZA and QA.
Proof.

A contractible = [4, B] = 0 forall B¢ ¥
=[4,9C] =0 forallC€ ¥
=[24,C] =0 forallC€ ¥
= 24 contractible.

Similarly,

A contractible = [B, 4] = 0 forall B¢ %
=[2C, 4] =0 foralC€ ¥
=[C, Q4] =0 forall C¢ ¥
= QA contractible.

Let A € €. (ie. A is a cofibrant object in %) and 4 X I any cylinder
object for 4. Let

do + 01
—

A4V A AxXIT—2 4

be such that d, + 9, is a cofibration, ¢ a w.e and ¢ 0 (d¢ + 91) = V4. Since 4
is cofibrant the maps do: 4 > A X I and 9;:: A — A X I are cofibrations.
The cofibre CA of 3y will be called a cone object for A. Letv: 4 X I — CA
be the natural map. Then by the very definition of the cofibre of 9, Diagram 36
below is a push-out diagram.

A — =

Sy

AXI——CA

Diagram 36

By axiom M,, ¢ — CA is a cofibration. Thus C4A € ¥ ..
2.18. LEMMA. For any A € €. any cone object CA of A is contractible.

Proof. The Puppe exact sequence corresponding to the cofibration sequence

A8 ax1bca
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yields the following exact sequence

(204 x 1), B Z9% 54, 8]0, [ca, B - (4 x I, B]
0" 14, B)

for every B € €. Since 8y is a w.e. it follows that 9,* and (Zd¢)* are isomor-
phisms ((Z£d¢)* isan isomorphism of groups and 8,* is an isomorphism of pointed
sets). By a standard argument we get [CA, B] = 0. Here B is an arbitrary
object of %. Hence CA is contractible.

3. Lusternik-Schnirelmann category and cocategory. From now on
unless otherwise mentioned % will denote a pointed model category in the
sense of Quillen satisfying further axioms A4;, 4,, A3, A4 mentioned in § 1,
axiom W mentioned in § 2 and axiom 45 below.

As. Letf: X — Ybeany mapin €, (E, i) (B =1,2,...,7) a finite
number of subobjects of Yand (E, 1) = the union of the subobjects
(Ex, %) (R = 1,2, ..., r), which is well-defined up to an iso-
morphism as a subobject of ¥ because of Remark 1.6 and Proposi-
tion 1.7.
Let (Fy, jx) be the inverse image of (Ey, 1;) by f and (F, j) = the union of
(Fx,jx) (B =1,2,...,7). Under these conditions axiom A ; states that (F, j) is
the inverse image of (E, 1) by f.

All the three categories mentioned in the introduction do satisfy all these
axioms.

For any integer £ = 0 the diagonal map X — X**! will be denoted by
Ayi1x (on Ay when there is no possibility of confusion). Let E; ;. for
1<7=%k+1bedefined by E;j;; =X X ... XX X*+XXX...XX
with # at the 7th place and X at other places. Let p; z41.x (Or py41) be the map
of E; ;41 to X*! given by

pigrr = 1y X ... X 1y X O X 1x X ... X 1x

with 0 at the ¢-th place and 1x at all other places. Then (E; 1, pirr1) is a
subobject of X**1, Let (T*(X), jr.x) {or (I*(X), j) when there is no possibility
of confusion} be the union of (E; xy1, pirx1) for 1 <4 < k 4+ 1. Motivated by
G. W. Whitehead’s definition [7] we introduce the notion of Lusternik-
Schnirelmann Category of an object X, denoted by Cat X (or W- cat X) in
the following way. (W stands for Whitehead.)

3.1. Definition. Let k be any integer = 0. We say that Cat X < k if there
exists a map ¢ : X — T%(X) satisfying RQ(A;11) ~ RQ(jo ¢).

3.2. LEMMA. Cat X = k & thereexistmapsa;: X > X for 1 <4 <k + 1

satisfying
(i) RQ(a:) ~ lrow;
(i) (a1, ..., op41) : X — X can be written as j o ¢ for some ¢ : X — TH(X).
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Proof. Let Cat X < k. Then there exists a map ¢ : X — T*(X) such that
RQ(Ap41) ~RQ(jo ). Leta; = p; (joy) : X *— X where p; : X*1 > X is
the ¢-th projection. Then

RQ(as) = RQ(p10 (jo o)) ~ RQ(ps) oRQ(jo¢)

~ RQ(p) o0 RQ(Ags1)
~ RQ(p:0 Apy1)

~ RQ(1x)
~ lrow-
Clearly a1, . . .,a541) = jO .

Conversely, assume there exist maps a; : X — X with RQ(a;) ~ 1gox) and
(@1, ..., arp1) = jo o for some ¢ : X — T*(X). By Proposition 2.12 (a) we
get RQ(ar X ... X ayr1) ~ RQ(1x X ... X 1x) = RQ(1xx41). Hence

RQ(a1, ..., ax1) = RQ((ar X ... X ags1) O Agqr)
~ RQa1 X ... X ar1) RQ(Axs1)
~ RQ(Ag41)-

This shows that Cat X =< k.
To make sure that Definition 3.1 makes sense we have to prove the following:
33.LEMMA. Cat X £ k=Cat X £k + 1.

Proof. Leta;: X > X (1 =1 < k + 1) be maps satisfying
(i) RQ(as) ~ lrox) and

(ii) there exists a map ¢ : X — T*(X) such that (a1, ..., ..., ogy1) =
Jx © ¢ where we write j; for ji x.

Let \;: Ejppn— T%(X) (1 £ ¢ =k 4+ 1) be the maps satisfying j, o \; =
Wisr1. By Lemma 1.1 the N\/'s are monic. Let (F;, /;) be the inverse image of
(E{x+1, Mi) by . Then by axiom A4; the union of (Fy, [;) for1 =22k +1
isX.Let6;: F;— E; ;41 satisfy \;o8; = pol,. Then p;p41060; = jroN; 086,
= j, 0 ¢ 0 l;. Writing ¢ for the map (ai, ..., axt1) We see that p;x1 06 =
Y ol Define 41 = 1x. Then RQ(auy2) ~ lrowx) clearly E; pv1 X X = Ejpq2
and wipr1 X lx = pippe. If €0 Fi— E; 1 X X is the map given by ¢; =
(04, 1,), then p;sr0e; = (¥, axye) 01, Hence by Proposition 1.12, there exists
a map

e: X—-T
where (T, ») is the union of (E;xye, #exs2) for 1 <4 < k + 1 satisfying
voe= (Y,oprs) = (a1, a9 ..., ap0).
However T*t1(X) = the union of E; ;2 for 1 < 7 < k 4 2. Hence there exists
amap A : I' = Tt (X) satisfying jx41 0 X = ». Thenv 0 € = jxy1 0 N 0 e. Thus
if we define o : X — T**1(X) by @ = X\ 0 e then

(aly Oy o v vy ak+2) = jk+1 oe.
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Hence Cat. X <k + 1.

3.4. Definition. The category of an object X of € is defined to be kif Cat X <
k and it is not true that Cat. X <k — 1.

It is clear from the definition that Cat. X = 0 < X is contractible.
3.5. LEMMA, If X > A then Cat A < Cat X.
Proof. Suppose Cat X < k. Let

Al x84
be such that RQ(gof) ~ 1geu) and a;: X > X (1 £4 =k + 1) satisfy
(i) RQ(al) ~ lRQ(X) and
(ii) there exists ¢ : X —» T4(X) with jex 090 = (a1, .. ., Aks1)-
Let 8,: A — A4 be given by 8, = goa;0f. Then

RB51) ~ RQ(g) 0 RQ(ae) 0 RQ(f) ~ RQ(g) 0 RQ(f) ~ Lroca

Moreover it is clear from Proposition 1.12 that there exists a map 6 : 7*(X) —
T*(A) satisfying

Jraob=(gX Xg ojx (kE+1factorsyg).
I'tis now easy to see thatj, s 0 (fopof) = (B, ..., Brs1). Hence Cat 4 = k.
3.6. COROLLARY. For any two objects X, YV in, Cat X < Cat (X X V).
Proof. This is because X X ¥V > X.

3.7. Definition. Two objects X and ¥ of % are defined to be of the same
“homotopy type’ if there exist maps f: X — ¥V, g: ¥V — X satisfying
RQ(gof )~ 1reu RQ(fog) ~ lraw.

3.8. Remarks. (a) If X and Y are of the same homotopy type withf: X — ¥,
g: YV — X satisfying RQ(gof) ~ lrou), RQ(fog) ~ lroy) theny(f): X
—Y is an isomorphism in H o ¥. However X, YV being isomorphic in H o 4
in general does not imply that X, ¥V are of the same homotopy type in the
above sense.

(b) The usual definition of homotopy type in the category of based topologi-
cal spaces differs from the above definition given by us. But for our purposes
Definition 3.6 appears to be the best suited.

(c) Suppose X € %, Then clearly X*+1 is fibrant. In this case W-Cat
X = k & there exists a map ¢ : X — T%(X) such that A;1 ~ j; 0 ¢. Actually
in this case Q(X**!) is also fibrant and hence RQ(X**+!) = Q(X*+!). From the
definition of W-Cat X we have W-Cat X =< k < there exists a map ¢ : X —
T*(X) such that RQ(ji 0 ¢) ~ RQ(Ax41). Since RQ((X**1) = Q(X*+1) this
condition is equivalent to Q(jx 0 ¢) ~ Q(Ax41). Since X is cofibrant and both
Q(X**1) and X*! are fibrant and pgr+1 : Q(X*+!) — X*+1is a trivial fibration
it follows from Lemma 7, § 1, Chapter I of [6] that Q(ji 0 ¢) ~ Q(Av1) &
Je O @~ Agqr.
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3.9. ProposiTION. If X and Y are of the same homotopy type then Cat X =
Cat 7.

Proof. This follows immediately from Lemma 3.5.

Following Ganea [1; 2; 3] we would like to introduce the concept of inductive
category of an object X € % . Before doing this we will recall certain facts.
Let 4, Y € %, (ie. 4 and Y are cofibrant) and f: 4 — ¥ a cofibration. Let
u : ¥ — C denote the cofibre of f. By the very definition of the cofibre of f
Diagram 37 below is a push-out.

7,

~

* e
—
*

—

o

Diagram 37

By axiom M3, * — Cis a cofibration. Thus C € % .. Let Diagram 38 below

AV A > A / > *

o + all j ) l# © l

AXI L S LN
Diagram 38

be such that each of the squares (a), (b), (c) is a push-out, where 4 X I is
a given cylinder object for 4.
Since

A——— %

]
041

AV A—— A

Diagram 39

is a push-out diagram it follows (from the fact that (a) is push-out) that

44—

%
A ><I————>L

Diagram 40
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is a push-out. Hence L is a cone object CA for 4. Also

AV A———

do + 01

AX]———N
Diagram 41

is a push-out. Hence N is a suspension object ZA4 for A. We denote M by
YU, CA. We will refer to ¥ \U, CA as got from ¥ by attaching a cone object
of 4 by means of f. Now, Diagram 38 can be written as follows:

0+1
AV A > 4 / % —
do + 01 (a) l” (b) u ©)
AXI v >4 —L Ssyu,ca—T s34
Diagram 38’

The fact that (b) is a push-out gives a unique map ¢ : ¥'\U,; CA — C making
Diagram 42 below commutative.

f

Diagram 42

If we write (¢ ) for the homotopy class of RQ(¢) in Homye (Y \U, C4, C) =
T(RQ(Y\U,CA), RQ(C)) = [Y\U,CA, C], then the dual of Proposition 3 in
§ 3, Chapter I of [6] can be summarized as follows:

https://doi.org/10.4153/CJM-1975-097-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-097-5

NUMERICAL INVARIANTS [ 925

Let d : C — ZA denote the composition of the maps

c " cvzadtlsy

where n: C — C V ZA is the right co-action of ZA4 on C constructed in § 3,
Chapter I of [6]. Then

v (u) ,C (9) 4
(o)

v (m) ) () )
Diagram 43

is a commutative diagram in H o € with (¢ ) an isomorphism in H o %.
The inductive category of an object X in %, denoted by Ind Cat X is
defined inductively as follows.

3.10. Definition. Ind Cat X = 0 if and only if X is contractible. Ind Cat
X £ E if there exists a cofibration 47— ¥ with 4, ¥ € %, satisfying the
following conditions:

(i) Ind Cat Y £k —1 and

(ii) The cofibre C of f dominates X.

3.11. Remarks. (1) Since (a) and (b) are push-outs in Diagram 38’ it follows
that » and u are cofibrations. Since 4, ¥ lie in %, it follows that C4 and
YU, CA4 also lie in € ..

(2) Suppose in the category € every object is fibrant. Then ¢ : Y\U,C4 —
C is a homotopy equivalence. In fact, in this case ¥\U, CA and C both lie
in € .,. Hence (¢ )~ 'is represented byamapf: C— YU, CA. Thenfo ¢ =
RQBo¢) ~1yy,ca and o0 8 = RQ(p 08) ~ 1¢. Also in this case, condi-
tion (ii) in Definition 3.10 can be replaced by (ii)’ below:

(i)’ YU, CA4 dominates X.

Incidentally, it also follows in this case that (ii)’ is independent of the
cylinder object A X I chosen.

(3) Let J 4 denote the pointed model category of based topological spaces
and C;(A) the category of chain complexes over A which are bounded below,
where A is a given ring. The zero chain complex is the initial and the final
object in C.(A). Serre fibrations are by definition the fibrations in .7 4 and
epimorphisms are by definition the fibrations in C;(A) [6]. Thus in .7 4 and
C.(A) all the objects are fibrant.

In the category of based semi-simplicial complexes the fibrations are by
definition those maps which are also Kan fibrations. Thus not all objects are
fibrant in this category.
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3.12. LEmMA. If X > Z then Ind Cat Z < Ind Cat X.

Proof. This is an immediate consequence of Proposition 2.15.

3.13. PrOPOSITION, If in the category € every object is fibrant then W-Cat
X <IndCat X forall X € ¥.

Proof. The proposition is trivially true when Ind Cat X = 0. Assume the
proposition valid whenever Ind Cat X < k — 1.

Let Ind Cat X = k. Then there exist a cofibration f: 4 — ¥V with 4, ¥V €
¢,IndCat Y <k —1land YU,C4 > X.

By the inductive assumption W-Cat ¥ < k — 1. Hence there exist maps
ay: YV — Yiorl =1 £ ksatisfying (i) and (ii) below:

(i) a; ~ 1y (observe that RQ(Y) = ¥)

(ii) there existsa map ¢ : ¥ — T*"1(Y) satisfying js—1.y 0 ¢ = (a1, ..., o).
Since u: ¥ — Y \U,; CA4 is a cofibration and ¥ \U, CA4 is fibrant, by the homo-
topy extension theorem (dual to the corollary of Lemma 2, § 1, Chapter I of
[6]) we get maps B,: YU, CA — YU, CA for 1 £ 1 < k satisfying (iii) and
(iv) below:

(iii) B~ 1y Ursca

(iv) Biop =poay

Alsoj: CA — Y \U, CA is a cofibration (since (b) is a push-out in Diagram
38’). Since CA is contractible we have j ~ 0. By the homotopy extension
theorem there exists a map 8: YU, C4 — Y U, CA such that B ~ 1y ,ca

and Boj = 0.
Define Bx+1 = B. Consider the map
(61,---yﬁk+l): YU,CA'—)(YUICA))H_I

Since Byr10j = Boj =0 it follows that there exists a map 6 : CA —
T%(Y \JU,; CA) such that Diagram 44 below is commutative.

(Br0J, ..., Brr107)
y > (V\U, CA)

0 R, Y U,CA
THY\U,CA)
Diagram 44
Also (Biom, ..., Brpiom): YU, CA — (YU, CA)*! is the same as the
composition of the maps
% (alv ey O, lY) , YV k+1

uX...XupX (ﬁk+1O#L (YU,CA)HI.
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From the proof of Lemma 3.3 it follows that there exists a map ¢ : ¥ — T*(Y)
such that

(011, coey Qpy ly) =jk,y0<ﬁ-

Also from Proposition 1.12 it follows immediately that there exists a map
6:T*(Y)—>T*(Y\U,CA) such that {p X ... XuX Brr1iow)}ofy =
Ji.vusca 08 In other words, Diagram 45 below is commutative. Define
¢ =00¢. Thenji,y u,ca 06 = (Br1Op, ..., B10w).

(YU, Ca)ret

pX oo X p X Braop

THY I, C)y = 17V, Cd) TRV AT
’ ! <

Diagram 45

Let the inverse image of (7*(Y \J, CA), jx,v U ,c4) by the map
(81, . e ey ﬂk+1) . YUf C4 — (YU, CA)k+1
be denoted by (T, 7). Since
By, oooyoo oy Bry)op = (Bron...,B410m) =jk,YU/CA ot
it follows that the inverse image of
(Tk(YU.r C4), jk,YU/(,'A) by Bry ...y Brsr) Op
is (¥, 1y). Hence by Lemma 1.13, the inverse image of (T, z) by pis (Y, 1y).
Similarly it follows that the inverse image of (T',7) by j: CA — Y U, CA4 is
(CA, 1¢,4). It follows that there exists maps ¢; : ¥ — T, ea : C4 — T such that
10 = pand 10 e = J.
Let (Ly, %) = Im wand (Ls, 72) = Im j. Because of the existence of ¢ and e,

satisfying 7 0 ¢, = p (respectively 7 0 e2 = j) it follows that there exists a map
M : Ly — T' (respectively \o: Ly — I') satisfying 20\ = 7; (respectively
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iO )\2 = ’Lg) Since

a—IL sy
v "

caA—l vy, ca

Diagram 46

is a push-out, it follows from Theorem 1.8 that (Y\J, CA, 1y y,ca) = (L1, %1)
\U (Ls, 15). (up to an isomorphism). The existence of \; and A, satisfying
10N = 13,20\, = 42 now givesa map A : Y'\U, C4A — T such that

YU,CA—2 51

N

Y\U,CA

Diagram 47

is commutative. Thus 20N = lyy,ca. Also 70 (N0i) = (oA oz =
(Iy ysea) 0t =12 =101 Since 7 is injective Ao7 = 1p. Thus 7: ' —
YU, CA isanisomorphism. Thisshows that the inverse image of (7*(Y\J,CA4),
Jevuysca) by By, ooy Bieyr) is (YU, CA, 1y y ,ca). Hence there exists a map
vy: YU, CA - THY U, CA) satisfying (B1, ..., Bet1) = Jr, vy Usca- Thus
W-Cat YU, CA < k. Since Y \U,; C4 dominates X it follows from Lemma 3.5
that W-Cat X = k. This completes the proof of Proposition 3.13.

3.14. LEMMA. Ind Cat 2X £ 1 forany X € ¥ ..

Proof. v: A — CA is a cofibration with cofibre £A (refer to Diagram 38').
Since CA is contractible we get Ind Cat £4 < 1.

The definition of inductive cocategory (or simply the cocategory) of an
object X in % is exactly dual to the definition of inductive category. The
cocategory of X denoted by Cocat X is defined as follows:

3.15. Definition. Cocat X = 0 if and only if X s contractible. Cocat X < k
if there exists a fibration EP — B with E, B in € , satisfying the following conditions

(i) Cocat E £ k — 1;

(i) F > X where 1 : F — E 1is the fibre of p.

3.16. LEMMA. If X > Z then Cocat Z < Cocat X. If X and Y are of the
same homotopy type then Cocat X = Cocat Y.

Proof. This is immediate consequence of Proposition 2.15.

3.17. Remark. For defining the invariants Ind Cat X and Co-cat X for an
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object X in % it is not necessary that the pointed model category ¥ satisfy
axioms A4, to 4; introduced by us and 3.10, 3.12, 3.15 and 3.16 are all valid
for pointed model categories satisfying axiom W.

4. The invariants Nil X and Conil X. In this section 4 will denote a
pointed model category in the sense of Quillen. We do not assume anything
more (% need not satisfy axioms 4, to 45 and W). Following Ganea we will
introduce two invariants nil X and conil X. These will be invariants associated
to an object X in H o % and will depend only on the isomorphism class of X
in H o %. We denote the product of two objects A and Bin H o % by A X y B.
All the maps and diagrams in this section will be in H o .

For any X € H o % it is known that QX is a group object in H o €. For
any object A4 in H o € we write A2 for A X4 A and for any map f: 4 — B
in Ho % we write f2 for f Xy f. Let ¢ : (2X)2 — QX be the composition of
the maps

@) 200 ox) x @)t X2, @x)t x, (@)

EXE L ox xp0X — P L ax

where p: QX X QX — QX is the “multiplication” and »: QX — QX the
“inversion’’ under which QX is a group object in H o % .
Write 0 X 1 for the map

ox xzox 22X L ox %, 0x = @x)

which is 0 on the first factor and lqx on the second factor.
4.1.LEMMA. o0 (0 X 1) = 0 [QX Xy QX, QX].
Proof. Since Agyxy = (1%, 12) where 1 = lgx we have
¢ =po (kX p) o (12 X »?) o (1% 12).
Also
(X u)yo (12X »2)o(12,12) 0 (0 X 1)
=@®ko(1X1)o(@lX1)o(0X1),
po(@Xrv)o(l1X1)o (0 X 1))
= (o (0X1),uo((0Xvw)).
po (0 X 1): 09X XygQX — QX is the same as p,, the second projection in
[QX X QX, QX] = Hompyee (QX X g QX, QX)

and
wo(OXv)=po(@X1)o(l Xv)=ps0(l Xv)=vro0pa.

Hence ¢ 0 (0 X 1) = po (p2, vops) =po (1, X)ops But po(1,») =0
(u is the “‘multiplication’ in X and » the inversion and 0 the neutral element
for the group object 2X). Hence o0 (0 X 1) = 0.
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The commutator map ¢; : (2X)* — QX of weight k (for any integer £ = 1)
is defined by induction on k as follows.

4.2. Definmition. The commutator map ¢; of weight 1 is defined to be the
identity map lgx of QX. For k£ = 2 the commutator map ¢, of weight & is
the composite

@X) = (@X)** x ax =2 X

where ¢ is the map in (11).
4.3. LEMMA. If ¢, = 014n [(QX)*, QX] then ¢x1 = 010 [(RX)*1, QX].

X X ox —¥ s ox

Proof. When ¢, = 0 we have
o1 = @0 (pr X1) =90 (0 X 1) =0 by Lemma 4.1.

4.4. Definition. For any X € Ho % we define nil X to be the smallest
integer £ = 0 such that ¢;4; = 0 (if such an integer exists). If no such integer
exists nil X is defined to be .

Lemma 4.3 is needed to see that Definition 4.4 makes sense.

The definiton of conil X is completely dual to the definition of nil X. We
omit it.

For any group = let nil 7= denote the index of nilpotence of the group .

4.5. PROPOSITION. For any Y € H o € we have

nil ¥ = Sup nil [ZX, V].

XEH%
Proof. We have [ZX, V] ~ [X, QY] (as groups) and the commutator of any
k elements fi, . . ., f; in [X, QY] is given by the composite
D Ay kalX oo X fx @r)* ®x Qv

This immediately gives nil [EX, V] < nil V.

Conversely, suppose nil [X, QY] < k — 1 forall X € Ho % . In particular
nil [(QV)5, QY] =k — 1. Letp,;: (QY)* — QY be the 7-th projection. (1 £ 17 <
k). Then the composite

Ay, (QY) k Pr X X Pk

@v)* (@¥)") @v)*
is clearly the identity element in [(2Y)*, (QY)*]. Hence
e = @0 (p X ... X pi) 0Ar@nk in[(QY) QY]

Since ¢; (p1 X ... X pr) 0 Ay @k denotes the commutator of the elements
P, ooy Dk in [(QY)k, QY] we have ©¢r O (pl X ... X p,) o A;:'(Qy)k = 0.
Hence ¢, = 0. Hence nil ¥ < & — 1. This completes the proof of Proposition
4.5.
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4.6. PROPOSITION. For any X € H o € we have
ConilX = Sup nil [X, QY].

YEHE
Proof. This is the dual of Proposition 4.5.

It is clear that nil X and conil X depend only on the isomorphism class of
XinHo%.

For any two objects 4, B in Ho % we denote their union in Ho % by
A Vg B. (Actually R(RQ()A V RQ(B)) where V denotes the union in %
gives the union of 4 and B in H o €). It is known that forany X € Ho ¥,
=X is a cogroup object in Ho %. We write ' : ZX — X Vg ZX for the
comultiplication in ZX.

4.7. LEMMA. Let oo : ZX — ZX Xz ZX and B: X — ZX Xy ZX denote
the maps (1sx, 0) and (0, 1sx) respectively. Then in [ZX, ZX Xy ZX] we have
a-B =P8 a

Proof. a - B is given by the composite

’
sx L sx vy sx 218 sx x, =X

and B - « is given by the composite

sx * L sx v, sx BT sx %, ox.

Let p1: ZX Xy ZX — ZX and p2: ZX Xy ZX — ZX be the first and
second projections. Then
pl (¢] (a * B) = Pl o) ((IEXy O) + (09 IEX)) O[l-’
= (Izx +0)ou' = 13x sincep : ZX — ZX Vg ZX

is the comultiplication for the co-group structure on £X in H o €. Similarly,

p20(@-B) = p20 ((13x,0) + (0, 1sx)) op’ = (0 4 1sx) op' = Isx
P10 (B a) = p1o ((0,1zx) + (1sx,0)) on’ = (0 + 1zx) o’
p20 (B-a) = p20 ((0, 1zx) + (1:3x,0)) ou’ = (Izx + 0) o’

Since (pix, pox) : [ZX, ZX Xg ZX] — [ZX, 2X] X [ZX, ZX] is an iso-
morphism we geta -8 = 8- a.

Il

1:x

IEX-

4.8. PROPOSITION. Let

12) FHELB, Fx,eBBF
be a fibration sequence in Ho €. Let A € Ho € and

24,082 24, 1B 34, E] > . ..
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be part of the “‘Eckmann-Hilton" exact sequence corresponding to the fibration
sequence (12). Then the image of 9 : [ZA, QB] — (ZA, F] lies in the centre of
[Z4, F].

Proof. Let g € [ZA, F]land M € [Z4, QB] be artitrary. Then ox € [Z4, F]
is given by the composite

A A L oB (O’IQBLFXHQB_’”_.»F.

Let 7: £4 — 24 denote the inversion in the co-group object Z4. We want to
prove that the commutator of g and 9\ in the group [Z4, F] is the neutral
element 0 € [4, F]. The commutator of g and 9\ is given by the composite

sd— ¥ L sav,sa £FN p

where ¢ is the co-commutator map given by the composition of

’ ’ ’
34 » s SA Vg ZA BV R ,

(TVT)V(TVT))

(ZA Vg ZA) Vg (24 Vg 24)
v

Consider the following diagram

a+ B
—_—

X 1s4

sS4 Xy 34 82X 14 e XA

(13) =4 vy Z4 F Xy ZA

FxyoB—" L F
where @ = (134, 0) and 8 = (0, 1s4). We have
mo (lp X \)o(gX 1s4)oa=mo (1p X \) o (g X l1ss) 0 (Iz4,0)
=mo (g0)
=g
since m is a right action of the group object @B on F.
Also
mo (lp X N)o(gX 1zs)0op=mo (1r X N\) o (g X 1z4) 0 (0, 154)
m o (0, \)
= m o (0, lgz) O A
= 9\
Thus the composition of the maps in (13) is g + dX. Denoting m o (1 X \) o
(g X 1z4) by ¥ we have g + o\ = v o (a + B).
Hence (g + 0X\) oy = v o (@ + B) o¢. The composite (« + 8) oy : T4 —
ZA Xy ZA gives the commutator of e and Bin [Z4, A X4 ZA]. By Lemma

4.7 this is the neutral element 0 € (24, Z4 X4 ZA]. Hence (g + 0\) oy =
yo0 =0in[Z4, F].
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This completes the proof of Proposition 4.8.
4.9. Remark. In the case of 9 Proposition 4.8 has been proved by Hilton.
A proof can be found in [4].

4.10. PROPOSITION. Let

14) FHEL B, Fxy0B™%F
be a fibration sequence in H o €. Then
nil F <1+ nil E.
Proof. Consider the part

> [X, 0B X, 1B 2X, E]— . . .

of the “Eckmann-Hilton” exact sequence corresponding to the fibration se-
quence (14) where X € H o is arbitrary. From Proposition 4.8 we see that
d[ZX, @B] C centre of the group [ZX, F]. It follows immediately that

nil [2X, F] < 1 + nil [2X, E).

Since

nil F = Sup nil [2X, F]

X€EHE
we get
nil # £ 1 4 nil E.

4.11. PROPOSITION. Let

15) 4Lbxbc nicocvza
be a cofibration sequence in H o 6. Then
Conil C £ 1 4 Conil X.
Proof. This is the dual of Proposition 4.10.

If € is a pointed model category satisfying axiom W in addition to the
axioms of Quillen we have already observed (Remark 3.17) that for every
X € % we can define Ind Cat X and Cocat X (= the inductive cocategory
of X). Since X is also an object of H o € nil X, conil X are defined.

4.13. THEOREM. Let & be a pointed model category satisfying axiom W. Then
for any X € €,
(16) nil X £ Cocat X, and
Conil X = Ind Cat X.

Proof. If X is contractible nil X = 0 = conil X and so the inequalities (16)
are trivially valid. The general case follows from the definition of Cocat X
(respectively Ind Cat X') and Proposition 4.10 (respectively Proposition 4.11).
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Finally we want to comment that all the results in § 4 of this paper are
generalizations of results obtained by Ganea [3]. Ganea dealt with pointed
CW-complexes. Our results are valid in the general set-up of Quillen.
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