MAXIMA FOR GRAPHS AND A NEW PROOF OF A THEOREM OF TURÁN

T. S. MOTZKIN AND E. G. STRAUS

1. Maximum of a square-free quadratic form on a simplex. The following question was suggested by a problem of J. E. MacDonald Jr. (1):

Given a graph G with vertices $1,2, \ldots, n$. Let S be the simplex in E^{n} given by $x_{i} \geqslant 0, \sum x_{i}=1$. What is

$$
\max _{x \in S} \sum_{(i, j) \in G} x_{i} x_{j} ?
$$

Here $(i, j)=(j, i)$ denotes an edge of G. We denote this maximum by $f(G)$. (The minimum is 0 .) The above-mentioned problem is: Prove that $f(G)=\frac{1}{4}$ for

$$
G=G_{0}=\{(1,2),(2,3), \ldots,(n-1, n)\}, \quad n \geqslant 2 .
$$

The general answer is as follows.
Theorem 1. Let k be the order of the maximal complete graph contained in G. Then

$$
\begin{equation*}
f(G)=\frac{1}{2}\left(1-\frac{1}{k}\right) \tag{1}
\end{equation*}
$$

Proof. Let $1, \ldots, k$ be the vertices of a complete subgraph of G; then setting $x_{1}=\ldots=x_{k}=1 / k$ and $x_{k+1}=\ldots=x_{n}=0$, we get

$$
\begin{equation*}
f(G) \geqslant\binom{ k}{2} \cdot \frac{1}{k^{2}}=\frac{1}{2}\left(1-\frac{1}{k}\right) . \tag{2}
\end{equation*}
$$

To prove the opposite inequality we proceed by induction on n. For $n=1$ we have $k=1$ and $f(G)=0$. Now assume the theorem true for graphs with fewer than n vertices. If $f(G)=F\left(x_{1}, \ldots, x_{n}\right)$ is attained on the boundary of S, then one of the x_{i} vanishes and $f(G)=f\left(G^{\prime}\right)$, where G^{\prime} is obtained from G by deleting the corresponding vertex. Since the theorem holds for G^{\prime} we have

$$
f(G)=f\left(G^{\prime}\right)=\frac{1}{2}\left(1-\frac{1}{k^{\prime}}\right) \leqslant \frac{1}{2}\left(1-\frac{1}{k}\right) .
$$

If $F(x)$ attains its maximum at an interior point of the simplex, we can say that $F(x) / s^{2}(x)$ (with $s(x)=x_{1}+\ldots+x_{n}$) attains this maximum at an interior point of the positive orthant. In other words,

$$
\begin{equation*}
s^{2} F_{i}=2 s s_{i} F \quad \text { or } \quad F_{i}=2 F / s=2 F, \tag{3}
\end{equation*}
$$

[^0]for $i=1, \ldots, n$, where the subscript denotes differentiation with respect to x_{i}. Now if G is not a complete graph, say $(1,2) \notin G$, then
$$
F\left(x_{1}-c, x_{2}+c, x_{3}, \ldots, x_{n}\right)=F(x)-c\left(F_{1}(x)-F_{2}(x)\right)=F(x)
$$
for all c. In particular, for $c=x_{1}$,
$$
F\left(0, x_{1}+x_{2}, x_{3}, \ldots, x_{n}\right)=F(x)
$$
so that the maximum is also attained for the subgraph G^{\prime} obtained from G by deleting the vertex 1 . Thus the contention of the theorem is again true by the induction hypothesis.

If G is a complete graph, then

$$
\begin{gathered}
F(x)=\frac{1}{2}\left[\left(x_{1}+\ldots+x_{n}\right)^{2}-x_{1}{ }^{2}-\ldots-x_{n}{ }^{2}\right]=\frac{1}{2}\left(1-\|x\|^{2}\right) \\
\leqslant \frac{1}{2}\left(1-\min _{\left|x_{1}\right|+\ldots+\left|x_{n}\right|=1}\|x\|^{2}\right)=\frac{1}{2}\left(1-\frac{1}{n}\right)
\end{gathered}
$$

This completes the proof.
Corollary. If l is the order of the maximal empty subgraph of G and

$$
g(G)=\min _{S}\left\{\frac{1}{2}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)+\sum_{(i, j) \in G} x_{i} x_{j}\right\}
$$

then $g(G)=1 /(2 l)$.
Proof. If \bar{G} is the complementary graph of G, then

$$
f(\bar{G})=\frac{1}{2}-g(\bar{G})=\frac{1}{2}(1-1 / l)
$$

2. Homomorphic graphs.

Definition. A graph G_{1} is homomorphic to a graph G if G_{1} can be mapped onto G so that the edges of G are exactly the images of those of G_{1}. If, in addition, every pair mapped on an edge of G is an edge of G_{1}, then G_{1} is completely homomorphic to G.

Let G_{1} with vertices $1, \ldots, n$ be homomorphic to G with vertices $1^{*}, \ldots, m^{*}$. As before we define

$$
F_{1}(x)=\sum_{(i, j) \in G_{1}} x_{i} x_{j}, \quad F(y)=\sum_{\left(k^{*}, l^{*}\right) \in G} y_{i^{*}} y_{i^{*}}
$$

Then

$$
F\left(\sum_{1} x_{i}, \ldots, \sum_{m} x_{i}\right) \geqslant F_{1}(x)
$$

where \sum_{j} is extended over all pre-images of j^{*}, and therefore $f(G) \geqslant f\left(G_{1}\right)$. Hence, we do not need induction to prove Theorem 1 for graphs homomorphic to a complete graph of order k (that is, k-colourable graphs) which contain a complete subgraph of order k. But even for such graphs there need not be a maximum of $F(x)$ in the interior of S. In fact, the following result obtains.

Theorem 2. The form $F(x)$ has a maximum in the interior of S if and only if G is completely homomorphic to a complete k-graph (that is, G is a maximal k-colourable graph).

Proof. If G is completely homomorphic to the complete graph with vertices $1^{*}, \ldots, k^{*}$, then all x with $\sum_{j} x_{i}=1 / k\left(x_{i}>0, j=1, \ldots, k\right)$ give interior maxima. If, conversely, $F(x)$ has an interior maximum $F(x)=(1-1 / k) / 2$, then $n \geqslant k$. For $n=k$ the contention is trivial. Assume that $n>k$ and the contention is true for $n-1$. Let $(1,2) \notin G$; then as in the proof of Theorem $1, F^{\prime}(x)$ belonging to G^{\prime} (G with 1 deleted) has an interior maximum. Hence G^{\prime} is completely homomorphic to the complete graph with vertices $1^{*}, \ldots, k^{*}$. If 1 were connected with pre-images of each $j^{*}, j=1, \ldots, k$, then G would contain a complete graph of order $k+1$. Hence we may assume that 1 is not connected with any pre-image of 1^{*}. Let i be a pre-image of 1^{*}. Then by the induction hypothesis, the set H of all j with $(i, j) \in G$ is the set of all vertices of G that are not pre-images of 1^{*}. But

$$
\sum_{(1, j) \in G} x_{j}=\sum_{(i, j) \in G} x_{j}
$$

and all $x_{j}>0$, so every vertex in H is connected to 1 in G. This completes the proof.

Any local maximum in the interior of S is also a (global) maximum. More generally the following theorem is valid.

Theorem 3. The point $x \in S$ yields a local maximum of $F(x)$ if and only if
(1) the restriction of G to those j for which $x_{j}>0$ is completely homomorphic to a complete k-graph (with vertices, say, $1^{*}, \ldots, k^{*}$), and $\sum_{i} x_{j}=1 / k$ for $i=1, \ldots, k$;
(2) no two vertices of G that are connected with all pre-images of the same $k-1$ vertices among $1^{*}, \ldots, k^{*}$ are connected with each other;
(3) for every vertex i connected with at least one pre-image of each of $1^{*}, \ldots, k^{*}$, we have $\sum_{(i, j) \in G} x_{j}<1-1 / k$.

Proof. Obviously, condition (1) is necessary because of Theorem 2 and the remark preceding Theorem 3. If (1) holds and if we compare $F(x)$ and $F(x+\epsilon)$, then already a consideration of the first-order variation gives (3) with $\leqslant 1-1 / k$ instead of $<1-1 / k$. If these two conditions hold, then the first-order variation is $\leqslant 0$, and we need only non-positivity of the secondorder variation for vanishing first-order variation. However, if

$$
\sum_{(i, j) \in G} x_{j}=1-1 / k
$$

in (3), then there exist two pre-images j_{1} and j_{2} of different elements of $\left(1^{*}, \ldots, k^{*}\right)$ that are not connected with i, and by setting $\epsilon_{i}>0, \epsilon_{j_{1}}=\epsilon_{j_{2}}=-\epsilon_{i} / 2$, all other $\epsilon_{j}=0$, we obtain a positive second-order variation. Now if (2) does not hold, say for i_{1}, i_{2}, and i^{*}, then by (3) i_{1} and i_{2} are not connected with
any pre-image i_{3} of i^{*}; setting $\epsilon_{i_{1}}=\epsilon_{i_{2}}=-\epsilon_{i_{3}} / 2>0$, all other $\epsilon_{i}=0$, we again obtain a positive second-order variation. The sufficiency is now trivially assured.
3. Non-square-free forms. The above discussion can be extended to the case

$$
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{(i, j) \in G} q\left(x_{i}, x_{j}\right)
$$

where $q(x, y)$ is a general binary quadratic form. Since the summation is symmetric, we may assume that $q(x, y)=q(y, x)$ so that $q(x, y)=a\left(x^{2}+y^{2}\right)$ $+b x y$. The case $a=0$ has been discussed already; so we may assume that $|a|=1$, and since a change of sign only interchanges maxima and minima, we may restrict attention to $q(x, y)=x^{2}+y^{2}+b x y$.

Theorem 4. Let v_{i} denote the valence of the vertex i and let $v(G)=\max _{G} v_{i}$. If $v(G)>b / 2$, then $f(G)=\max _{S} F(x)=v(G)$ and this maximum is attained only by setting $x_{i}=1$ where $v_{i}=v(G)$ and $x_{j}=0$ for $j \neq i$.

If $v(G)=b / 2$, then $f(G)=v(G)$ and the maximum is attained by setting $x_{j}=0$ except for the vertices of a complete subgraph all of whose vertices have valence $v(G)$.

If $v(G)<b / 2$, then $f(G)=b / 2-c / 2$, where $1 / c=\max _{G^{\prime}} \sum_{G^{\prime}}\left(b-2 v_{i}\right)^{-1}$ as G^{\prime} ranges over the complete subgraphs of G. This maximum is attained by setting $x_{i}=c /\left(b-2 v_{i}\right)$ for $i \in G^{\prime}$ and $x_{j}=0$ for $j \notin G^{\prime}$. Whenever $F(x)$ has a local maximum the subgraph G^{\prime} whose vertices are the points with $x_{i}>0$ is complete.

Note that, as $b \rightarrow \infty$, the value $f(G) / b$ tends to that obtained in Theorem 1. However, in contrast to Theorems 2 and 3 , the maximum is only attained for x so that the points i with $x_{i}>0$ form a complete graph.

Proof. Let $f(G)=F\left(x_{1}, \ldots, x_{n}\right)$ and let G^{\prime} be the subgraph whose vertices are the points i with $x_{i}>0$. As in the proof of Theorem 1, we have

$$
\begin{equation*}
F_{i}=2 v_{i} x_{i}+b \sum_{(i, j) \in G^{\prime}} x_{j}=2 f(G) \quad \text { for all } i \in G^{\prime} \tag{4}
\end{equation*}
$$

If G^{\prime} were not complete, it would contain vertices i, j with $(i, j) \notin G^{\prime}$. Then, replacing x_{i} by $x_{i}+\epsilon$ and x_{j} by $x_{j}-\epsilon$ would increase F by $\left(v_{i}+v_{j}\right) \epsilon^{2}$ contrary to the assumption that F was a (local) maximum. Thus

$$
\sum_{(i, j) \in G^{\prime}} x_{j}=1-x_{i}
$$

and (4) becomes

$$
\begin{equation*}
\left(2 v_{i}-b\right) x_{i}=2 f(G)-b . \tag{5}
\end{equation*}
$$

If $v(G)>b / 2$, then $f(G) \geqslant v(G)>b / 2$ and (5) implies $v_{i}>b / 2$ for each $i \in G^{\prime}$. If G^{\prime} contained two vertices i, j, then replacing x_{i} by $x_{i}+\epsilon$ and x_{j} by
$x_{j}-\epsilon$ would increase F by $\left(v_{i}+v_{j}-b\right) \epsilon^{2}>0$, a contradiction. Thus G^{\prime} consists of a single vertex in this case.

If $v(G)=b / 2$, then $f(G) \geqslant b / 2$, and therefore again $v_{i} \geqslant b / 2$ for each $i \in G^{\prime}$, which means $v_{i}=b / 2$ for each $i \in G^{\prime}$. The choice of x_{i} is then arbitrary and leads to $f(G)=b / 2=v(G)$.

If $v(G)<b / 2$, set $2 f(G)-b=-c$. Then according to (5) we have $x_{i}=c /\left(b-2 v_{i}\right)$ so that $\sum x_{i}=c \sum\left(b-2 v_{i}\right)^{-1}=1$ or $c=\left(\sum\left(b-2 v_{i}\right)^{-1}\right)^{-1}$ and $f(G)=b / 2-c / 2$. This completes the proof.

For the general quadratic form $q(x, y)$ the evaluation of $\min _{S} F(x)=\phi(G)$ is also non-trivial. Partial results are contained in the following theorem.

Theorem 5. (i) $\phi(G)<0$ if $b<-2, v(G)>0 ; ~ \phi(G)=0$ if $b<-2$, $v(G)=0$, or $b=-2$, or $b>-2, \min _{G} v_{i}=0 ; \phi(G)>0$ if $b>-2$, $\min _{G} v_{i}>0$. (ii) If G has no isolated vertex and if

$$
b>\max _{(i, j) \in G}\left(v_{i}+v_{j}\right)
$$

then

$$
\begin{equation*}
\phi(G)=\left(\max _{G^{\prime}} \sum_{G^{\prime}} \frac{1}{v_{i}}\right)^{-1} \tag{6}
\end{equation*}
$$

where G^{\prime} is any empty subgraph of G. This minimum is attained by setting $x_{i}=2 \phi(G) / v_{i}$ for $i \in G^{\prime}$ and $x_{j}=0$ for $j \notin G^{\prime}$. Whenever $F(x)$ has a local minimum in this case, the subgraph G^{\prime} whose vertices are the points i with $x_{i}>0$ is empty.

Proof. The first statement is easily verified. Assume now that

$$
b>\max _{(i, j) \in G}\left(v_{i}+v_{j}\right)
$$

and $\phi(G)=F\left(x_{1}, \ldots, x_{n}\right)$. Let G^{\prime} be the subgraph whose vertices are the points i with $x_{i}>0$. If G^{\prime} is non-empty, then there are two vertices i, j with $(i, j) \in G^{\prime}$. Now $F_{i}(x)=F_{j}(x)$ and therefore replacing x_{i} by $x_{i}+\epsilon$ and x_{j} by $x_{j}-\epsilon$ changes F by $\left(v_{i}+v_{j}-b\right) \epsilon^{2}<0$, contrary to the hypothesis of (local) minimality of F. Thus G^{\prime} is empty and $F(x)=\sum v_{i} x_{i}{ }^{2}$, so that $F_{i}=2 v_{i}$ $x_{i}=2 \phi(G)$ for $i \in G^{\prime}$. In other words, either $v_{i}=0$ for all $i \in G^{\prime}$, or $x_{i}=\phi(G) / v_{i}$ and $\phi(G) \sum_{G^{\prime}} 1 / v_{i}=1$. This completes the proof.
4. Proof of a theorem of Turán and generalizations. Turán (2) proved the following result.

Theorem 6. A graph with n vertices which contains no complete subgraph of order k has no more than

$$
\begin{align*}
e(n, k)=m^{2}\binom{k-1}{2}+m(k-2) r & +\binom{r}{2} \tag{7}\\
& n=(k-1) m+r, 0 \leqslant r<k-1
\end{align*}
$$

edges. This maximum is attained only for a graph in which the vertices are divided into $k-1$ classes of which r contain $m+1$ vertices and the remainder contain m vertices with two vertices connected if and only if they belong to different classes.

We derive this theorem from Theorems 1 and 2.
If we set $x_{i}=1 / n, i=1, \ldots, n$, then according to Theorem 1

$$
\frac{1}{2}\left(1-\frac{1}{k-1}\right) \geqslant f(G) \geqslant F(x)=\frac{e}{n^{2}}
$$

thus

$$
\begin{equation*}
e \leqslant \frac{n^{2}}{2}\left(1-\frac{1}{k-1}\right) \tag{8}
\end{equation*}
$$

which proves (7) for the case $r=0$. In order to prove the remainder of the theorem for the case $r=0$, we observe that in this case the point $x_{i}=1 / n$ represents an interior maximum, so that by Theorem 2 the graph G is completely homomorphic to a complete $(k-1)$-graph, C. Since $F_{i}=2 F$, each vertex is joined to

$$
2 n F=n(1-1 /(k-1))=(m-1)(k-1)
$$

vertices, and the number of vertices in each pre-image of a vertex of C is m.
We now proceed by induction on r. Assume the contention true for $r-1$. According to (8), the average valence does not exceed $n-n /(k-1)$, so for $r>0$ there must be a vertex with no more than

$$
n-m-1=m(k-2)+r-1
$$

edges. By the induction hypothesis, (7) holds for the graph G^{\prime} obtained by deleting such a vertex, and hence

$$
\begin{aligned}
e & \leqslant m^{2}\binom{k-1}{2}+m(k-2)(r-1)+\binom{r-1}{2}+m(k-2)+r-1 \\
& =m^{2}\binom{k-1}{2}+m(k-2) r+\binom{r}{2}=e(n, k)
\end{aligned}
$$

Thus equality is possible in (7) only if it holds for G^{\prime} and, by the induction hypothesis, this means that the vertices of G^{\prime} are divided into $k-1$ classes with $m+1$ or m elements each so that two vertices are connected if and only if they belong to different classes. Now, if the additional vertex were connected to elements in each class, then G would contain a complete k-graph. We can therefore adjoin it to one of the classes of G^{\prime}. If that class already contained $m+1$ elements, then the number of edges at the vertex could be no greater than $m(k-2)+r-2$. This completes the proof.

If instead of Theorem 2 we use Theorems 4 and 5 , we can obtain generalizations which combine information about the number of edges with information about valences. For example, using Theorem 5, we have

Theorem 7. Let G be a graph with n vertices, e edges, maximal valence v, and minimal valence w. If G contains no empty subgraph of order k, then

$$
\begin{equation*}
(1+v) e \geqslant \frac{n^{2}}{2} \frac{w}{k-1} . \tag{9}
\end{equation*}
$$

Or, equivalently, if G contains no complete subgraph of order k, then

$$
\begin{equation*}
e \leqslant\binom{ n}{2}-\frac{n^{2}}{2} \quad \frac{n-v-1}{(k-1)(n-w)} . \tag{10}
\end{equation*}
$$

Proof. Set

$$
q(x, y)=x^{2}+y^{2}+(2 v+2 \epsilon) x y, \quad \epsilon>0
$$

and let $w>0$ so that Thorem 5 applies to yield

$$
\begin{aligned}
F\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)>\phi(G)=\left(\max _{G^{\prime}} \sum_{G^{\prime}} v_{i}^{-1}\right)^{-1} & \\
& \geqslant((k-1) / w)^{-1}=w /(k-1) .
\end{aligned}
$$

On the other hand $F(1 / n, \ldots, 1 / n)=(2+2 v+2 \epsilon) e / n^{2}$, so that

$$
(1+v+\epsilon) e>\frac{n^{2}}{2} \quad \frac{w}{k-1} .
$$

Since this inequality holds for every $\epsilon>0$, we get (9). Inequality (10) is obtained by considering the complementary graph \bar{G} for which

$$
\bar{n}=n, \quad \bar{e}=\binom{n}{2}-e, \quad \bar{v}=n-1-\bar{w}, \quad \text { and } \quad \bar{w}=n-1-v .
$$

5. Theorems of Rademacher type. It is easy to see from Theorem 6 that a graph G with n vertices and $e(n, k)+1$ edges contains more than one complete k-graph. For either the deletion of some edge reduces G to the graph described in Theorem 6, in which case G contains at least

$$
(m+1)^{r-1} m^{k-1-r} \quad(\text { if } r>0)
$$

or m^{k-2} (if $r=0$) complete subgraphs of order k, or the deletion of any edge from G yields a graph which already contains a complete k-graph. In other words, the intersection of the complete k-subgraphs of G is empty, so that G contains at least two such subgraphs. However, we can state this more precisely:

Theorem 8. A graph G with n vertices which contains exactly one complete k-subgraph has no more than

$$
\begin{equation*}
e^{\prime}(n, k)=e(n-1, k)+k-1 \tag{11}
\end{equation*}
$$

edges. This bound is sharp.

Proof. Let $1, \ldots, k$ be the vertices of the complete k-subgraph. Then there are $\binom{k}{2}$ edges (i, j) with $1 \leqslant i, j \leqslant k$, and no vertex $l>k$ is joined to more than $k-2$ of the vertices $1, \ldots, k$. Thus there are no more than $(k-2)(n-k)$ edges (i, l) with $1 \leqslant i \leqslant k<l \leqslant n$. Hence

$$
e^{\prime}(n, k) \leqslant\binom{ k}{2}+(k-2)(n-k)+e(n-k, k)=e(n-1, k)+k-1
$$

To see that this bound is sharp, we consider a graph G^{\prime} with $n-1$ vertices of the type described in Theorem 6 and adjoin one vertex which is joined to exactly one vertex in each of the $k-1$ classes of G^{\prime}.

It would not be difficult to give similar bounds under the assumption that the graph contains no more than some fixed number of complete k-subgraphs.

In view of Theorem 2 we can state the following result.
Theorem 9. If the function $F\left(x_{1}, \ldots, x_{n}\right)$ attains its maximum $(1-1 / k) / 2$ at an interior point of the simplex S, then G contains at least $(k-1)(n-k / 2)$ edges and at least $n-k+1$ complete k-graphs.

Proof. According to Theorem 2 the graph G is completely homomorphic to a complete k-graph. Let the elements of the k-graph have $n_{1}, n_{2}, \ldots, n_{k}$ pre-images. Then $n_{1}+\ldots+n_{k}=n$ and the number of edges is

$$
e=\sum n_{i} n_{j} \geqslant(k-1)(n-k / 2)
$$

where the minimum is attained by setting $n_{1}=\ldots=n_{k-1}=1$ and $n_{k}=n-k+1$. The number of complete k-subgraphs is

$$
\Pi n_{i} \geqslant n-k+1
$$

where the minimum is again attained for the above choice of n_{i}.

References

1. J. E. MacDonald Jr., Problem E1643, Amer. Math. Monthly, 70 (1963), 1099.
2. P. Turán, On the theory of graphs, Colloq. Math., 3 (1954), 19-30.

University of California, Los Angeles

[^0]: Received February 17, 1964. Presented to the American Mathematical Society, Notices, 11 (1964), 382.

