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Recently M. Martelli [6] and M. Furi and M. P. Pera [1] proved some interesting
results about the existence and the global topological structure of connected sets of
solutions to problems of the form:

Lx = N{k,x)

with L : £ - » F a bounded linear Fredholm operator of index zero (where E, F are real
Banach spaces), and N:U x £ - * F a nonlinear map satisfying suitable conditions.

While the existence of solution sets for this kind of problem follows from the
Leray-Schauder continuation principle, it is our aim to show in this note that their global
topological structure can be obtained as a consequence of the theory developed by J. Ize,
I. Massabo, J. Pejsachowicz and A. Vignoli in [3, 4] about parameter dependent compact
vector fields in Banach spaces.

Finally we give an example of a boundary value problem which has a connected subset
of solutions "looking like" a loop.

1. Let E, F be Banach spaces over IR and let U be an open subset of U x E. For
A e U, let Uk denote the fibre of U at A, i.e.

Uk = {xeEt(k,x)eU}.

We consider the problem

Lx=N(k,x), (k,x)eU, (1.1)

where (i) L: E—> F is a linear bounded Fredholm operator of index zero, namely, if Ker L
and 1m L respectively denote the kernel and the image of L then I m l is a closed
subspace of F and

dim Ker L = codim Im L < +°°;

(ii) N:U^>F is a continuous map which is bounded (i.e. maps bounded sets onto
bounded sets) and satisfies the following assumptions:

(Nl) N is L-compact (in the sense specified below);
(N2) there exists AoelR such that N(Xo,x) = 0 for all xe Uko, moreover N has a

continuous partial derivative N'k(X0,x) with respect to A at Ao with

WA(*O. XQ) =£ 0 f o r some x0 e Oko.

Since JV(A0, x) = 0 for all x e UXo, any (A, x) with A = Ao and x e Ker L n Uko trivially
solves (1.1), and we shall look for nontrivial solutions of this problem (a solution will
always be seen as a pair (A,*) e U).

Glasgow Math. J. 28 (1986) 55-61.

https://doi.org/10.1017/S0017089500006339 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006339


56 RITA NUGARI

In the sequel we shall take Ao = 0 for simplicity of notation. Then due to (N2) we can
write:

where A(x) = N'k(0,x) (on identifying the linear map N'(0,x):M—>F with the cor-
responding vector of F) is nontrivial and R satisfies R(X, *)/A-»0 as A-»0.

We shall now use the classical Liapunov-Schmidt procedure to reduce the problem
(1.1) to an equation of the form:

x = H(X,x), (k,x)eU,

with H:U—>E a suitable compact map. Indeed let £,, F, be closed subspaces of E, F
respectively such that £ = KerL©£, , F = lmL®Fu and let P (resp. Q) denote the
corresponding linear projection of F (resp. E) onto Fx (resp. Ker L). Then L\El is a one to
one mapping of E, onto Im L and we shall set

K = (L\El)-
1:1m L-* Et.

Then the requirement (Nl) of L-compactness on N means that the map K(I — P)N: 0—>
Ex is compact (see e.g. Gaines-Mawhin [2]).

Since x = Qx + (I - Q)x and LQx = 0, (1.1) is equivalent to

) (1.1')

which, in turn, is equivalent to the following system obtained by using the complementary
projections P, I — P in F:

+ PR(X,x), |
( I - Q ) x = X K ( I - P ) A ( x ) + K ( I P ) R ( X ) ) '

Next define a continuous map R: £/—> F by

R(k,x) =
10 if A = 0

and consider the modified system

Observe that the solution set of (1.2') is contained in the solution set of (1.2): more
precisely, the two systems are equivalent for A^O; for A = 0 the pair (0, JC) solves (1.2) iff
x e Ker L n Uo while it solves (1.2') iff

jceKerLnf/0 and A(x) e l m L .

Let now / be an isomorphism of F, onto Ker L; if we use / in the first equation of (1.2')
and sum the two equations, we see that (1.2') is equivalent to the problem

) = Q, (1.3)
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where
H(A, x) = Qx + JPA(x) + JPR(X, x) + XK(1 - P)A(x) + K(I - P)R(X, x).

Notice that our assumptions imply that H is a compact map. In this situation we can apply
the results of [3] about the existence and topological properties of connected subsets of
solutions of (1.3). In particular, the following result is an immediate consequence of
Theorem 4.1 in [3]. We shall set, here and henceforth,

G0(x) = G(0, x) = x - (Qx + JPA(x)). (1.4)

THEOREM 1. Let GQ be as above and assume that there exists an open bounded subset
U' <= Uo such that the degree deg(G0, U', 0) is defined (i.e. GQ\0) D U' is compact) and
nonzero. Then problem (1.1) has a closed connected set of solutions 2,

which meets {0} X U' and satisfies one of the following: either Z is unbounded, or
2 fl dU =/= 0 , or £ meets again the fibre A = 0 outside U'. Moreover, any point x at which S
meets the fibre A = 0 satisfies

x eK.tr L and ;4(;c)eImL.

REMARK. Clearly the result of Theorem 1 holds true when (N2) is replaced by
(N2') there exists an integer s^l such that N is s times continuously differentiate

with respect to A at Ao and
JV(A0,x) = . . . = a*-W(A0,x)ldV =0 toe t / v

A(x):=dsN(X0,x)l3Xsj=Q for some x e f/Ao.

2. Let us now show how Theorem 1 describes in a unified way the results
contained in Furi-Pera [1] and Martelli [6].

COROLLARY 1 [1]. Assume that the operators L, N are as described in §1 and
moreover (N2') holds. Define v : Ker L n U' —* F} by v = PAi, where i is the inclusion map
of Ker LC\ 0' into 0'. Assume that deg(u, Ker L C\ U', 0) is defined and nonzero. Then
the conclusion of Theorem 1 holds true.

Proof. Recall that
G0(x)=x-(Qx+JPA(x))

and observe that Q +JPA maps E into the finite dimensional subspace Ker L; therefore,
by well-known properties of the Leray-Schauder degree (see e.g. Lloyd [5]),

deg(G0, (/', 0) = deg(G0|Keri, Ker LMJ',0)

and, since x = Qx on Ker L,

deg(G0, U',0) = deg(-JPA, Ker LMJ',0)

= ±deg(u,KerLnt/ ' ,0)

because / :F , -»KerL is an isomorphism. The result now follows.
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REMARK. In [1], U' is taken to be the whole fibre Uo: evidently, this particular case
rules out the third possibility in Theorem 1, i.e. that 2 "curls back" to the fibre A = 0
outside U'.

On the other hand, in [1] the result is improved to show that each one of the sets Z+,
2~ defined by

2 + = {(A, x) e 2 / A > 0}, 2~ = {(A, x) e 2 / A < 0}

is either unbounded or meets d(J. However this can also be obtained as an easy
consequence of Proposition 3.2 in [3], which in this context states that both 2 + n dV and
2~ D dV are nonempty whenever V is an open bounded set such that "EQCV cV c U,
where

Z0={(k,x)e2/X = 0}.

COROLLARY 2 [6]. Assume that N(k, x) = kA{x) and that the following conditions are
satisfied:

(i) there exists XQ e Ker L such that A(XQ) e Im L;
(ii) A is of class C1 on some neighborhood U of x$;
(iii) iM'(jCo)|KerL:KerL—»Fi is an isomorphism.

Then the conclusion of Theorem 1 holds true and moreover

2cz{(X,x)eU:k±0}U{(0,x0)}. (2.1)

Proof. By (i),

and the Fr6chet derivative of Go at XQ,

Gi(xo) = I-Q-JPA'(xo),

is an isomorphism, for it is injective by (iii) and of the form I - K, K linear and compact
(/ is the identity map in E). Therefore, by the inverse mapping theorem, Go is a
diffeomorphism of an open neighborhood U' a U of xQ onto an open neighborhood V of
Go(xo) = 0, which implies that the Leray-Schauder degree deg(Go, U',0) is defined and
nonzero.

The inclusion (2.1) is an obvious consequence of the fact that, in this case,

3. We end this note with a simple example in which the third case in Theorem 1
occurs and, moreover, the solution set contains a "loop" around a point (A0,j^), i.e. a
connected subset containing (Ao, x0) which is locally, but not globally, disconnected on
removing the point (A0,A:0). More general boundary value problems will be considered in
a forthcoming paper.

Consider the problem
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with A e OS, T > 0 and h a continuous function on [0, T] with positive mean value

h = (l/T)\ h(t)dt>0.
Jo

Let
E = {xeO([0,T])/x(0) =

F = C°([0,T])

with the usual norms ||JE||F = sup{|*(r)| :t e [0, T]}, \\x\\E= \\x\\F + \\x\\F. Define L:E->F
by Lx = x; then L is a bounded linear Fredholm operator of index zero and

Ker L = {x e E I x is a constant function},

lmL = lyeF I \ y(t)dt = o\.

Let Fj be the subspace of constant functions in F and P:F-*FX be defined by

Py = {\IT)\ y{t)dt.
Jo

Let moreover N: U x E-* F be defined by N(A, x) = X(x2 - (1 - A2)/i); then Â  is compact
(and therefore L-compact) and satisfies (N2) with Ao = 0,

A(x)=x2-h and
We shall now find some easy a priori bounds for the solutions of (3.1) with A^O. First

observe that, if (A,JC) solves (3.1) then, on integrating both sides and using the boundary
conditions x(0) = x(T), we get

O = lfT[x2{t)-(l-k2)h(t)]dt;
Jo

therefore, if A^O,

x2(t)dt = (l-X2)\ h{t)
Jo Jo

which shows that |A| § 1, due to the assumption on h.
To find a priori bounds for x, let ^ e [0, T] be such that xfa) = max{x(t): t e [0, T]}.

If toe(0,T) then x(to) = 0 and so, if k=j=O, x2(t0) = (I - X2)h{t0) which implies
jc(fo) = IHIF2 . If the maximum is achieved at the endpoints then x(0)x(T)^0, i.e.

[*2(0) - (1 - X2)h(0)][x2{T) - (1 - X2)h{T)] ̂  0

which implies x(0) =x(T) ^ ||/i||}/2. We can bound x(t) from below in a similar way and
conclude that

dt

I I -HIF = \\'l\\F

Using again the equation, we have
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whence finally

\\x\\E=\\x\\F-\\x\\F^2\\h\\F+\\h\\]P.

In order to apply Theorem 1, we need to find an open bounded subset U' of E such
that deg(G0, U',0) is defined and nonzero, where G and Go are as in (1.3), (1.4). As
already remarked, x e E solves G0(x) = 0 iff x e Ker L and A(x) e Im L; therefore in our
case

x = const = x,

0 = P(x2 -h)=x2-Ph=x2-h.

Hence GQ '(O) = {x+,x~} with x± = ±a, where a = hm. Therefore, if B+ denotes a
sufficiently small ball in E around x+, the Leray-Schauder degree deg(G0, B

+,0) is
defined. As in the proof of Corollary 1,

deg(G0, B
+, 0) = deg(-JPA\KerL, Ker L n B+, 0)

and JPA(x) = JP(x2 - h) = J(x2 - a2) for x e Ker L. Therefore, on identifying Ker L with
U, the above degree equals ±deg(g, / + , 0), where g(s) = s2 — a2 (s e U) and /+ is a small
interval around a. Finally, by definition of degree for C1 maps,

deg(g, / + , 0) = sign g'(a) = sign 2a = 1.

Now apply Theorem 1 with U = E, U' = B+. This gives the existence of a connected
subset 2 of solutions of (3.1),

which, due to a priori bounds in A and x found before, must satisfy the third possibility in
Theorem 1, and therefore necessarily contains x~ in its closure.

Next we prove that the solution set of (3.1) contains a loop around (0,x+). To be
precise, we shall prove that if C denotes the connected component of G~'(0) containing
(O,JC+) then there exists a neighborhood W of (0,x+) such C\W is connected while
Cfl WA{(0,*+)} is disconnected. To do this we shall follow the arguments given in [4,
Prop. 4.4].

First observe that, on using the implicit function theorem, we can find an £>0 , a
neighborhood Bo of xo = x+ (we can take B0 = B+ without loss of generality) and a
continuous function x =x(A) defined on (—e, e) with x(0) =XQ such that

G~\0) DB = {(A,x(A)):-e<A< e},

where B - ( -£ , e)xBQ. From part (c) of [3, Theorem 4.1], it follows easily that

Now let C* be the two pieces of C emanating at (±£, x{±e)). We claim that C~ D C+ is
nonempty and hence C\B = C~ U C+, being the union of two intersecting connected
subsets, is connected. Indeed suppose that C ~ n C + = 0 . Then, since C~ and C+ are
compact, by a standard argument (see e.g. Whyburn [7]) it follows that there exist open
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disjoint bounded sets V~, V+ such that C* a V±,

OczV = V-\JV+\JB

and G~\O)ndV = 0.
Now define a continuous map g: V —* U by

A o n S ,

L±e on V*.

On using the excision, homotopy and product properties of the Leray-Schauder
degree, we get the following chain of equalities:

= deg((Go,g),fl,0)

= deg(g,(-e,£),0)deg(Go,BO)0)

= deg(Go,Bo,0).

Therefore the first degree is nonzero; this implies, taking into account that
G~'(O)n3V = 0 , and the map (G, g — 2e) has nonzero degree in V, a contradiction
since |g(A, x)\ = e on V. Moreover C fl B is disconnected on removing the point {(0, x0)}
by the continuity of the function x =x(X). Hence we can conclude that G~'(0) contains a
subset which looks like a loop.
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