A NOTE ON CONTINUATION PROBLEMS

by RITA NUGARI

(Received 4 December, 1984)

Recently M. Martelli [6] and M. Furi and M. P. Pera [1] proved some interesting results about the existence and the global topological structure of connected sets of solutions to problems of the form:

$$Lx = N(\lambda, x)$$

with $L: E \to F$ a bounded linear Fredholm operator of index zero (where E, F are real Banach spaces), and $N: \mathbb{R} \times E \to F$ a nonlinear map satisfying suitable conditions.

While the existence of solution sets for this kind of problem follows from the Leray-Schauder continuation principle, it is our aim to show in this note that their global topological structure can be obtained as a consequence of the theory developed by J. Ize, I. Massabò, J. Pejsachowicz and A. Vignoli in [3, 4] about parameter dependent compact vector fields in Banach spaces.

Finally we give an example of a boundary value problem which has a connected subset of solutions "looking like" a loop.

1. Let E, F be Banach spaces over \mathbb{R} and let U be an open subset of $\mathbb{R} \times E$. For $\lambda \in \mathbb{R}$, let U_{λ} denote the fibre of U at λ , i.e.

$$U_{\lambda} = \{ x \in E / (\lambda, x) \in U \}.$$

We consider the problem

$$Lx = N(\lambda, x), \quad (\lambda, x) \in U,$$
 (1.1)

where (i) $L: E \to F$ is a linear bounded Fredholm operator of index zero, namely, if Ker L and Im L respectively denote the kernel and the image of L then Im L is a closed subspace of F and

dim Ker
$$L = \text{codim Im } L < +\infty$$
;

- (ii) $N: \overline{U} \to F$ is a continuous map which is bounded (i.e. maps bounded sets onto bounded sets) and satisfies the following assumptions:
 - (N1) N is L-compact (in the sense specified below);
- (N2) there exists $\lambda_0 \in \mathbb{R}$ such that $N(\lambda_0, x) = 0$ for all $x \in \overline{U}_{\lambda_0}$, moreover N has a continuous partial derivative $N'_{\lambda}(\lambda_0, x)$ with respect to λ at λ_0 with

$$N'_{\lambda}(\lambda_0, x_0) \neq 0$$
 for some $x_0 \in \bar{U}_{\lambda_0}$.

Since $N(\lambda_0, x) = 0$ for all $x \in \overline{U}_{\lambda_0}$, any (λ, x) with $\lambda = \lambda_0$ and $x \in \text{Ker } L \cap U_{\lambda_0}$ trivially solves (1.1), and we shall look for *nontrivial solutions* of this problem (a solution will always be seen as a pair $(\lambda, x) \in U$).

Glasgow Math. J. 28 (1986) 55-61.

In the sequel we shall take $\lambda_0 = 0$ for simplicity of notation. Then due to (N2) we can write:

$$N(\lambda, x) = \lambda A(x) + R(\lambda, x),$$

where $A(x) = N'_{\lambda}(0, x)$ (on identifying the linear map $N'(0, x) : \mathbb{R} \to F$ with the corresponding vector of F) is nontrivial and R satisfies $R(\lambda, x)/\lambda \to 0$ as $\lambda \to 0$.

We shall now use the classical Liapunov-Schmidt procedure to reduce the problem (1.1) to an equation of the form:

$$x = H(\lambda, x), (\lambda, x) \in U,$$

with $H: \bar{U} \to E$ a suitable compact map. Indeed let E_1 , F_1 be closed subspaces of E, F respectively such that $E = \operatorname{Ker} L \oplus E_1$, $F = \operatorname{Im} L \oplus F_1$, and let P (resp. Q) denote the corresponding linear projection of F (resp. E) onto F_1 (resp. Ker L). Then $L|_{E_1}$ is a one to one mapping of E_1 onto $\operatorname{Im} L$ and we shall set

$$K = (L|_{E_1})^{-1} : \text{Im } L \to E_1.$$

Then the requirement (N1) of L-compactness on N means that the map $K(I-P)N: \bar{U} \to E_1$ is compact (see e.g. Gaines-Mawhin [2]).

Since x = Qx + (I - Q)x and LQx = 0, (1.1) is equivalent to

$$L(I-Q)x = \lambda A(x) + R(\lambda, x) \tag{1.1'}$$

which, in turn, is equivalent to the following system obtained by using the complementary projections P, I - P in F:

$$0 = \lambda PA(x) + PR(\lambda, x),$$

$$(I - Q)x = \lambda K(I - P)A(x) + K(I - P)R(\lambda, x).$$
(1.2)

Next define a continuous map $\hat{R}: \bar{U} \to F$ by

$$\hat{R}(\lambda, x) = \begin{cases} \lambda^{-1} R(\lambda, x) & \text{if } \lambda \neq 0, \\ 0 & \text{if } \lambda = 0 \end{cases}$$

and consider the modified system

$$0 = PA(x) + P\hat{R}(\lambda, x),$$

$$(I - Q)x = \lambda K(I - P)A(x) + K(I - P)R(\lambda, x).$$
(1.2')

Observe that the solution set of (1.2') is contained in the solution set of (1.2): more precisely, the two systems are equivalent for $\lambda \neq 0$; for $\lambda = 0$ the pair (0, x) solves (1.2) iff $x \in \text{Ker } L \cap U_0$ while it solves (1.2') iff

$$x \in \text{Ker } L \cap U_0 \text{ and } A(x) \in \text{Im } L.$$

Let now J be an isomorphism of F_1 onto Ker L; if we use J in the first equation of (1.2') and sum the two equations, we see that (1.2') is equivalent to the problem

$$G(\lambda, x) = x - H(\lambda, x) = 0, \tag{1.3}$$

where

$$H(\lambda, x) = Qx + JPA(x) + JP\hat{R}(\lambda, x) + \lambda K(I - P)A(x) + K(I - P)R(\lambda, x).$$

Notice that our assumptions imply that H is a compact map. In this situation we can apply the results of [3] about the existence and topological properties of connected subsets of solutions of (1.3). In particular, the following result is an immediate consequence of Theorem 4.1 in [3]. We shall set, here and henceforth,

$$G_0(x) = G(0, x) = x - (Qx + JPA(x)).$$
 (1.4)

THEOREM 1. Let G_0 be as above and assume that there exists an open bounded subset $U' \subset U_0$ such that the degree $\deg(G_0, U', 0)$ is defined (i.e. $G_0^{-1}(0) \cap U'$ is compact) and nonzero. Then problem (1.1) has a closed connected set of solutions Σ ,

$$\Sigma \subset \{(\lambda, x) \in U : \lambda \neq 0\} \cup \{\{0\} \times U'\},\$$

which meets $\{0\} \times U'$ and satisfies one of the following: either Σ is unbounded, or $\bar{\Sigma} \cap \partial U \neq \emptyset$, or $\bar{\Sigma}$ meets again the fibre $\lambda = 0$ outside U'. Moreover, any point x at which $\bar{\Sigma}$ meets the fibre $\lambda = 0$ satisfies

$$x \in \text{Ker } L \quad and \quad A(x) \in \text{Im } L.$$

REMARK. Clearly the result of Theorem 1 holds true when (N2) is replaced by (N2') there exists an integer $s \ge 1$ such that N is s times continuously differentiable with respect to λ at λ_0 and

$$N(\lambda_0, x) = \dots = \partial^{s-1} N(\lambda_0, x) / \partial \lambda^{s-1} = 0 \quad \forall x \in \bar{U}_{\lambda_0},$$

$$A(x) := \partial^s N(\lambda_0, x) / \partial \lambda^s \neq 0 \quad \text{for some} \quad x \in \bar{U}_{\lambda_0}.$$

2. Let us now show how Theorem 1 describes in a unified way the results contained in Furi-Pera [1] and Martelli [6].

COROLLARY 1 [1]. Assume that the operators L, N are as described in §1 and moreover (N2') holds. Define $v: \operatorname{Ker} L \cap U' \to F_1$ by v = PAi, where i is the inclusion map of $\operatorname{Ker} L \cap \bar{U}'$ into \bar{U}' . Assume that $\deg(v, \operatorname{Ker} L \cap U', 0)$ is defined and nonzero. Then the conclusion of Theorem 1 holds true.

Proof. Recall that

$$G_0(x) = x - (Qx + JPA(x))$$

and observe that Q + JPA maps E into the finite dimensional subspace Ker L; therefore, by well-known properties of the Leray-Schauder degree (see e.g. Lloyd [5]),

$$\deg(G_0, U', 0) = \deg(G_0|_{\mathrm{Ker}L}, \mathrm{Ker}\, L \cap U', 0)$$

and, since x = Qx on Ker L,

$$deg(G_0, U', 0) = deg(-JPA, Ker L \cap U', 0)$$
$$= \pm deg(v, Ker L \cap U', 0)$$

because $J: F_1 \rightarrow \text{Ker } L$ is an isomorphism. The result now follows.

REMARK. In [1], U' is taken to be the whole fibre U_0 : evidently, this particular case rules out the third possibility in Theorem 1, i.e. that Σ "curls back" to the fibre $\lambda = 0$ outside U'.

On the other hand, in [1] the result is improved to show that each one of the sets Σ^+ , Σ^- defined by

$$\Sigma^{+} = \{(\lambda, x) \in \Sigma / \lambda > 0\}, \qquad \Sigma^{-} = \{(\lambda, x) \in \Sigma / \lambda < 0\}$$

is either unbounded or meets ∂U . However this can also be obtained as an easy consequence of Proposition 3.2 in [3], which in this context states that both $\Sigma^+ \cap \partial V$ and $\Sigma^- \cap \partial V$ are nonempty whenever V is an open bounded set such that $\Sigma_0 \subset V \subset \bar{V} \subset U$, where

$$\Sigma_0 = \{(\lambda, x) \in \Sigma / \lambda = 0\}.$$

COROLLARY 2 [6]. Assume that $N(\lambda, x) = \lambda A(x)$ and that the following conditions are satisfied:

- (i) there exists $x_0 \in \text{Ker } L \text{ such that } A(x_0) \in \text{Im } L$;
- (ii) A is of class C^1 on some neighborhood \hat{U} of x_0 ;
- (iii) $PA'(x_0)|_{KerL}$: Ker $L \to F_1$ is an isomorphism.

Then the conclusion of Theorem 1 holds true and moreover

$$\Sigma \subset \{(\lambda, x) \in U : \lambda \neq 0\} \cup \{(0, x_0)\}. \tag{2.1}$$

Proof. By (i),

$$G_0(x_0) = x_0 - Qx_0 - JPN(x_0) = 0$$

and the Fréchet derivative of G_0 at x_0 ,

$$G_0'(x_0) = I - Q - JPA'(x_0),$$

is an isomorphism, for it is injective by (iii) and of the form I - K, K linear and compact (I is the identity map in E). Therefore, by the inverse mapping theorem, G_0 is a diffeomorphism of an open neighborhood $U' \subset \hat{U}$ of x_0 onto an open neighborhood V of $G_0(x_0) = 0$, which implies that the Leray-Schauder degree $\deg(G_0, U', 0)$ is defined and nonzero.

The inclusion (2.1) is an obvious consequence of the fact that, in this case,

$$\Sigma \cap \{\{0\} \times U'\} = \{(0, x_0)\}.$$

3. We end this note with a simple example in which the third case in Theorem 1 occurs and, moreover, the solution set contains a "loop" around a point (λ_0, x_0) , i.e. a connected subset containing (λ_0, x_0) which is locally, but not globally, disconnected on removing the point (λ_0, x_0) . More general boundary value problems will be considered in a forthcoming paper.

Consider the problem

$$\dot{x} = \lambda(x^2 - (1 - \lambda^2)h),
 x(0) = x(T)$$
(3.1)

with $\lambda \in \mathbb{R}$, T > 0 and h a continuous function on [0, T] with positive mean value

$$\bar{h} = (1/T) \int_0^T h(t) dt > 0.$$

Let

$$E = \{x \in C^1([0, T]) / x(0) = x(T)\},\$$

$$F = C^0([0, T])$$

with the usual norms $||x||_F = \sup\{|x(t)|: t \in [0, T]\}$, $||x||_E = ||x||_F + ||\dot{x}||_F$. Define $L: E \to F$ by $Lx = \dot{x}$; then L is a bounded linear Fredholm operator of index zero and

 $Ker L = \{x \in E \mid x \text{ is a constant function}\},\$

$$\operatorname{Im} L = \left\{ y \in F \left/ \int_0^T y(t) \, dt = 0 \right\}.$$

Let F_1 be the subspace of constant functions in F and $P: F \to F_1$ be defined by

$$Py = (1/T) \int_0^T y(t) dt.$$

Let moreover $N: \mathbb{R} \times E \to F$ be defined by $N(\lambda, x) = \lambda(x^2 - (1 - \lambda^2)h)$; then N is compact (and therefore L-compact) and satisfies (N2) with $\lambda_0 = 0$,

$$A(x) = x^2 - h$$
 and $R(\lambda, x) = \lambda^3 h$.

We shall now find some easy a priori bounds for the solutions of (3.1) with $\lambda \neq 0$. First observe that, if (λ, x) solves (3.1) then, on integrating both sides and using the boundary conditions x(0) = x(T), we get

$$0 = \lambda \int_0^T [x^2(t) - (1 - \lambda^2)h(t)] dt;$$

therefore, if $\lambda \neq 0$,

$$\int_{0}^{T} x^{2}(t) dt = (1 - \lambda^{2}) \int_{0}^{T} h(t) dt$$

which shows that $|\lambda| \le 1$, due to the assumption on h.

To find a priori bounds for x, let $t_0 \in [0, T]$ be such that $x(t_0) = \max\{x(t) : t \in [0, T]\}$. If $t_0 \in (0, T)$ then $\dot{x}(t_0) = 0$ and so, if $\lambda \neq 0$, $x^2(t_0) = (1 - \lambda^2)h(t_0)$ which implies $x(t_0) \leq ||h||_F^{1/2}$. If the maximum is achieved at the endpoints then $\dot{x}(0)\dot{x}(T) \leq 0$, i.e.

$$[x^{2}(0) - (1 - \lambda^{2})h(0)][x^{2}(T) - (1 - \lambda^{2})h(T)] \leq 0$$

which implies $x(0) = x(T) \le ||h||_F^{1/2}$. We can bound x(t) from below in a similar way and conclude that

$$||x||_F \le ||h||_F^{1/2}$$
.

Using again the equation, we have

$$|\dot{x}(t)| \le |\lambda| (x^2(t) + (1 - \lambda^2)h) \le ||h||_F + ||h||_F = 2 ||h||_F;$$

whence finally

$$||x||_F = ||x||_F - ||\dot{x}||_F \le 2 ||h||_F + ||h||_F^{1/2}.$$

In order to apply Theorem 1, we need to find an open bounded subset U' of E such that $\deg(G_0, U', 0)$ is defined and nonzero, where G and G_0 are as in (1.3), (1.4). As already remarked, $x \in E$ solves $G_0(x) = 0$ iff $x \in \operatorname{Ker} L$ and $A(x) \in \operatorname{Im} L$; therefore in our case

$$x = \text{const} = \bar{x},$$

 $0 = P(x^2 - h) = \bar{x}^2 - Ph = \bar{x}^2 - \bar{h}.$

Hence $G_0^{-1}(0) = \{x^+, x^-\}$ with $x^{\pm} = \pm \alpha$, where $\alpha = \bar{h}^{1/2}$. Therefore, if B^+ denotes a sufficiently small ball in E around x^+ , the Leray-Schauder degree $\deg(G_0, B^+, 0)$ is defined. As in the proof of Corollary 1,

$$deg(G_0, B^+, 0) = deg(-JPA|_{KerL}, Ker L \cap B^+, 0)$$

and $JPA(x) = JP(x^2 - h) = J(\bar{x}^2 - \alpha^2)$ for $x \in \text{Ker } L$. Therefore, on identifying Ker L with \mathbb{R} , the above degree equals $\pm \deg(g, I^+, 0)$, where $g(s) = s^2 - \alpha^2$ $(s \in \mathbb{R})$ and I^+ is a small interval around α . Finally, by definition of degree for C^1 maps,

$$deg(g, I^+, 0) = sign g'(\alpha) = sign 2\alpha = 1.$$

Now apply Theorem 1 with U = E, $U' = B^+$. This gives the existence of a connected subset Σ of solutions of (3.1),

$$\Sigma \subset \{(\lambda, x) : \lambda \neq 0\} \cup \{(0, x^+)\}$$

which, due to a priori bounds in λ and x found before, must satisfy the third possibility in Theorem 1, and therefore necessarily contains x^- in its closure.

Next we prove that the solution set of (3.1) contains a loop around $(0, x^+)$. To be precise, we shall prove that if C denotes the connected component of $G^{-1}(0)$ containing $(0, x^+)$ then there exists a neighborhood W of $(0, x^+)$ such $C \setminus W$ is connected while $C \cap W \setminus \{(0, x^+)\}$ is disconnected. To do this we shall follow the arguments given in [4, Prop. 4.4].

First observe that, on using the implicit function theorem, we can find an $\varepsilon > 0$, a neighborhood B_0 of $x_0 = x^+$ (we can take $B_0 = B^+$ without loss of generality) and a continuous function $x = x(\lambda)$ defined on $(-\varepsilon, \varepsilon)$ with $x(0) = x_0$ such that

$$G^{-1}(0)\cap B=\{(\lambda,x(\lambda)): -\varepsilon<\lambda<\varepsilon\},$$

where $B = (-\varepsilon, \varepsilon)xB_0$. From part (c) of [3, Theorem 4.1], it follows easily that

$$\Sigma \cap B = \{(\lambda, x(\lambda)) : -\varepsilon < \lambda < \varepsilon\}.$$

Now let C^{\pm} be the two pieces of C emanating at $(\pm \varepsilon, x(\pm \varepsilon))$. We claim that $C^- \cap C^+$ is nonempty and hence $C \setminus B = C^- \cup C^+$, being the union of two intersecting connected subsets, is connected. Indeed suppose that $C^- \cap C^+ = \emptyset$. Then, since C^- and C^+ are compact, by a standard argument (see e.g. Whyburn [7]) it follows that there exist open

disjoint bounded sets V^- , V^+ such that $C^{\pm} \subset V^{\pm}$,

$$0 \subset V = V^- \cup V^+ \cup B$$

and $G^{-1}(0) \cap \partial V = \emptyset$.

Now define a continuous map $g: V \to \mathbb{R}$ by

$$g(\lambda, x) = \begin{cases} \lambda & \text{on } B, \\ +\varepsilon & \text{on } V^{\pm}. \end{cases}$$

On using the excision, homotopy and product properties of the Leray-Schauder degree, we get the following chain of equalities:

$$deg((G,g), V, 0) = deg((G,g), B, 0)$$

$$= deg((G_0, g), B, 0)$$

$$= deg(g, (-\varepsilon, \varepsilon), 0) deg(G_0, B_0, 0)$$

$$= deg(G_0, B_0, 0).$$

Therefore the first degree is nonzero; this implies, taking into account that $G^{-1}(0) \cap \partial V = \emptyset$, and the map $(G, g - 2\varepsilon)$ has nonzero degree in V, a contradiction since $|g(\lambda, x)| \le \varepsilon$ on V. Moreover $C \cap B$ is disconnected on removing the point $\{(0, x_0)\}$ by the continuity of the function $x = x(\lambda)$. Hence we can conclude that $G^{-1}(0)$ contains a subset which looks like a loop.

ACKNOWLEDGMENT. The author wishes to thank J. Mawhin and I. Massabò for helpful suggestions.

REFERENCES

- 1. M. Furi and M. P. Pera, Co-bifurcating branches of solutions for nonlinear eigenvalue problems in Banach spaces, *Ann. Mat. Pura Appl.* (4) 135 (1983), 119–131.
- 2. R. E. Gaines and J. L. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Mathematics no. 568 (Springer, 1977).
- 3. J. Ize, I. Massabò, J. Pejsachowicz and A. Vignoli, Nonlinear multiparameteric equations: structure and topological dimension of global branches of solutions, Rapporto no. 6 (1983), Dipartimento di Matematica, Università della Calabria.
- 4. J. Ize, I. Massabò, J. Pejsachowicz and A. Vignoli, Structure and dimension of global branches of solutions to multiparametric nonlinear equations, to appear in the Proceedings of the AMS Conference held in Berkeley, July 1983.
- 5. N. G. Lloyd, *Degree theory*, Cambridge Tracts in Mathematics, 73 (Cambridge University Press, 1978).
- 6. M. Martelli, Large oscillations of forced nonlinear differential equations, *Contemporary Mathematics* 21, (Amer. Math. Soc., 1983).
 - 7. G. T. Whyburn, Topological analysis (Princeton University Press, 1958).

Dipartimento di Matematica Università della Calabria 87036 Arcavacata di Rende (CS)