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1. Introduction and notation. The class of order weakly compact operators was
introduced by Dodds [6] on Banach lattices. It contains the subspace of weakly
compact operators as well as AM-compact operators. Next, this class of operators
was studied by Duhoux [7] on locally convex solid lattices and later Ercan [8] gave
some new results relatively to this class. Recently, Nowak [12] considered order weakly
compact operators from a vector-valued function space into a Banach space and gave
a characterization of an order weakly compact operator T in terms of the continuity
of its adjoint relatively to some weak topologies.

Let us recall that an operator T from a Banach lattice E into a Banach space F
is said to be order weakly compact if for each x ∈ E+, the subset T([0, x]) is relatively
weakly compact in F , where E+ = {x ∈ E : 0 ≤ x}.

Contrarily to weakly compact operators [2, 13], the class of order weakly compact
operators satisfies the domination problem. Indeed, if S and T are two operators from
a Banach lattice E into another F such that 0 ≤ S ≤ T and T is order weakly compact,
then S is order weakly compact [3].

Also, the class of order weakly compact operators does not satisfy the duality
property, that is, there exist order weakly compact operators whose adjoints are not
order weakly compact. In fact, the identity operator of the Banach lattice l1 is order
weakly compact, but its adjoint, which is the identity operator of the Banach lattice
l∞, is not order weakly compact. And conversely, there exist operators that are not
order weakly compact but their adjoints are order weakly compact. In fact, the identity
operator of the Banach lattice l∞ is not order weakly compact but its adjoint, which is
the identity operator of the topological dual (l∞)′, is order weakly compact.

In [16], Zaanen investigated the duality problem for semi-compact operators. Also,
in [5] and [16], the duality problem of AM-compact operators on Banach lattices was
studied. They gave sufficient and necessary conditions for which the AM-compactness
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of an operator implies the AM-compactness of its dual and conversely. These results
are natural analogues of Gantmacher’s theorem for weakly compact operators.

In the same direction, the aim of this paper is to resolve the duality problem for
the class of order weakly compact operators. For this, we prove that if E and F are two
Banach lattices and T is any order-bounded operator from E into F , then its adjoint
T ′ from F ′ into E′ is order weakly compact whenever T is order weakly compact if
and only if the norm of E′ or F ′ is order continuous. And conversely, whenever E and
F are order σ -complete, we show that an order-bounded operator T from E into F is
order weakly compact whenever its adjoint T ′ from F ′ into E′ is order weakly compact
if and only if the norm of E or F is order continuous.

To state our results, we need to fix some notation and recall some definitions. A
vector lattice E is an ordered vector space in which sup(x, y) exists for every x, y ∈ E. A
subspace F of a vector lattice E is said to be a sublattice if for every pair of elements a,
b of F the supremum of a and b taken in E belongs to F . A subset B of a vector lattice E
is said to be solid if it follows from |y| ≤ |x| with x ∈ B and y ∈ E that y ∈ B. An order
ideal of E is a solid subspace. Let E be a vector lattice, for each x, y ∈ E with x ≤ y,
the set [x, y] = {z ∈ E : x ≤ z ≤ y} is called an order interval. A subset of E is said to
be order bounded if it is included in some order interval. A vector lattice is said to be
order σ -complete if every non-empty countable subset that is bounded from above has
a supremum. A Banach lattice is a Banach space (E, ‖.‖) such that E is a vector lattice
and its norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|, we
have ‖x‖ ≤ ‖y‖. If E is a Banach lattice, its topological dual E′, endowed with the dual
norm, is also a Banach lattice. A Banach lattice E is said to be an AM-space if for each
x, y ∈ E such that inf(x, y) = 0, we have ‖x + y‖ = max{‖x‖, ‖y‖}. The Banach lattice
E is an AL-space if its topological dual E′ is an AM-space. We refer to Zaanen [16] for
unexplained terminology on the Banach lattice theory.

2. Main Results. We use the term operator T : E −→ F between two Banach
lattices to mean a bounded linear mapping. It is positive if T(x) ≥ 0 in F whenever
x ≥ 0 in E. The operator T is regular if T = T1 − T2, where T1 and T2 are positive
operators from E into F . It is well known that each positive linear mapping on a
Banach lattice is continuous. For more information about positive operators, we refer
the reader to the book of Aliprantis and Burkinshaw [3].

Recall that a norm ‖.‖ of a Banach lattice E is order continuous if for each
generalized sequence (xα) such that xα ↓ 0 in E, the sequence (xα) converges to 0 for
the norm ‖.‖, where the notation xα ↓ 0 means that the sequence (xα) is decreasing,
its infimum exists and inf(xα) = 0. For example, the norm of the Banach lattice l1 is
order continuous but the norm of the Banach lattice l∞ is not.

There exist operators that are not order weakly compact. In fact, the identity
operator of the Banach lattice l∞ is not order weakly compact. The following results
give some sufficient conditions under which each operator is order weakly compact:

THEOREM 2.1. Let E and F be two Banach lattices. Then we have the following
assertions:

(1) If the norm of F is order continuous, then each order bounded operator T from E
into F is order weakly compact.

(2) If the norm of E is order continuous, then each operator T from E into F is order
weakly compact.

(3) If E = F, then the following conditions are equivalent:
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(i) Each operator T : E −→ E is order weakly compact.
(ii) The identity operator of E is order weakly compact.

(iii) The norm of E is order continuous.

Proof. (1) For each x ∈ E+, the subset T [0, x] is order bounded. Since the norm
of F is order continuous, it follows from Theorem 22.1 of [1] that T [0, x] is relatively
weakly compact, and then T is order weakly compact.

(2) If the norm of E is order continuous, it follows from Theorem 22.1 of [1] that
for each x ∈ E+, the order interval [0, x] is weakly compact. Hence, T [0, x] is weakly
compact.

(3) (i) =⇒ (ii) is evident.
(ii) =⇒ (iii) Let x ∈ E+, since the identity operator IdE : E −→ E is order weakly

compact, then IdE([0, x]) = [0, x] is relatively compact for the topology σ (E, E′). But
the order interval [0, x] is weakly closed and thus [0, x] is compact for the topology
σ (E, E′). Finally, Theorem 22.1 of [1] implies that the norm of E is order continuous.

(iii) =⇒ (i) It is exactly Theorem 2.1 (2). �
To give some examples, let us recall that a non-zero element x of a vector lattice

E is discrete if the order ideal generated by x equals the subspace generated by x. The
vector lattice E is discrete if it admits a complete disjoint system of discrete elements.

REMARKS 2.2. There exist Banach lattices E and F and a regular operator T from
E into F that is not order weakly compact; however,

(i) the topological dual E′ is discrete. In fact, if we take E = F = c the Banach
lattice of all convergent sequences, then E′ = c′ is discrete, but since the norm of
c is not order continuous, the identity operator Idc is not order weakly compact.

(ii) F is discrete. In fact, if we take E = F = l∞, then F is discrete but the identity
operator Idl∞ is not order weakly compact.

(iii) the norm of E′ is order continuous. In fact, if we take E = F = l∞, the norm
of (l∞)′ is order continuous but the identity operator Idl∞ is not order weakly
compact.

REMARKS 2.3. If E and F are two Banach lattices such that each regular operator
T from E into F is order weakly compact, then

(i) the topological dual E′ is not necessary discrete. In fact, for E = l1, each
operator T : E −→ F is order weakly compact, but the topological dual
E′ = l∞ is not discrete.

(ii) the Banach lattices E and F are not necessary discrete. In fact, for E = F = l1,
each operator T : E −→ F is order weakly compact, but the topological dual
E′ = F ′ = l∞ is not discrete.

(iii) the norms of E′ and F ′ are not necessary order continuous. In fact, for E =
F = l1, each operator T : E −→ F is order weakly compact, but the norm of
the topological dual E′ = F ′ = l∞ is not order continuous.

(iv) the norm of E is not necessary order continuous. In fact, for E = l∞ and F
of finite-dimensional, then each operator T : E −→ F is compact and hence
order weakly compact, but the norm of l∞ is not order continuous.

(v) the Banach lattices E and F are not necessary reflexive. In fact for E = l∞ and
F = c0, each operator from E into F is weakly compact and hence order weakly
compact, but E and F are not reflexive.
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Note that the subspace of order weakly compact operators is a two-sided ideal in
the space of all order-bounded operators on a Banach lattice. But it is not necessary a
right ideal in the space of all operators on a Banach lattice. To give some examples, we
need a lemma.

For this, recall that for every infinite-dimensional Banach space E, there exits a
sequence (x′

n) in E′ such that ‖x′
n‖ = 1 for all n, but x′

n −→ 0 for the weak topology
σ (E′, E) (see Josefson-Nissenzweig theorem [9, 11]). This is equivalent to say that a
Banach space E is either finite-dimensional or there exist a normalized sequence (x′

n)
in E′ such that x′

n(x) −→ 0 for every x ∈ E.

LEMMA 2.4. There exists an operator from c into c0 that is not order weakly compact.

Proof. In fact, it follows from Josefson-Nissenzweig theorem [9, 11] that the
existence of a sequence (x′

n) of the topological dual of c such that ‖x′
n‖ = 1 for all

n and x′
n −→ 0 for the weak topology σ (c′, c). We consider the operator T , which we

can find in Wnuk ([15], p. 170), defined by

T : c −→ c0, x �−→ T(x) = (x′
n(x))∞n=1.

The operator T is not compact. In fact, if T is compact, then its adjoint T ′ defined
by

T ′ : l1 −→ c′, (λn)∞n=1 �−→ T ′((λn)∞n=1

) =
∞∑

n=1

λnx′
n

would be compact. Hence, the sequence (T ′(en)) = (x′
n) has a subsequence that

converges to 0 for the norm where (en) is the canonical basis of l1. But this is in
contradiction with the condition that ‖x′

n‖ = 1 for all n. Therefore, the operator T is
not compact.

On the other hand, according to Wnuk ([15], p. 171), who stated that an operator
from c into c0 is regular if and only if it is compact if and only if it is Dunford-Pettis (i.e.
carries weakly compact subsets of c onto compact subsets of c0), and since c has the
Dunford-Pettis property (i.e. each weakly compact operator defined on c, and taking
its values in another Banach space, is Dunford-Pettis), it follows that T is not weakly
compact. Finally, as c is an AM-space with unit, we deduce that T is not order weakly
compact. �

Now, we are in position to give our examples.

EXAMPLES 2.5. (1) Let T : c −→ c0 be an operator from c into c0 that is not order
weakly compact (this operator exists by Lemma 2.4). Since c0 has an order-continuous
norm, Theorem 2.1 (1) implies that the identity operator Idc0 : c0 −→ c0 is order weakly
compact. But the product Idc0 ◦ T = T is not order weakly compact.

(2) Let E be the Banach lattice c ⊕ c0 and let T : c −→ c0 be an operator from c
into c0 that is not order weakly compact. We consider the operators S1 and S2 from E
into E defined by the following:

S2 =
(

0 0
0 Idc0

)
and S1 =

(
0 0
T 0

)
,
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where Idc0 : c0 −→ c0 is the identity operator of c0. It is clear that S2 is order weakly
compact but S1 is not.

On the other hand, the composed operator

S2 ◦ S1 =
(

0 0
0 Idc0

)
.

(
0 0
T 0

)
=

(
0 0
Idc0 ◦ T 0

)
=

(
0 0
T 0

)
= S1

is not order weakly compact.
Let us recall that if an operator T : E −→ F between two Banach lattices is

positive, then its adjoint T ′ : F ′ −→ E′ is likewise positive, where T ′ is defined by
T ′(f )(x) = f (T(x)) for each f ∈ F ′ and for each x ∈ E.

As we have discussed in the introduction, the class of order weakly compact
operators does not satisfy the duality property. The following result gives sufficient
and necessary conditions under which an order weakly compact operator has an
adjoint that is order weakly compact:

THEOREM 2.6. Let E and F be two Banach lattices and let T be an order-bounded
operator from E into F . The following conditions are equivalent:

(1) The adjoint T ′ from F ′ into E′ is order weakly compact whenever T is order weakly
compact.

(2) One of the following assertions is valid:
(i) The norm of E′ is order continuous.

(ii) The norm of F ′ is order continuous.

Proof. 2 =⇒ 1. It is just a consequence of Theorem 2.4 (1) and (2).
1 =⇒ 2. Assume that the norms of E′ and F ′ are not order continuous. Then

Theorem 2.4.14 and Proposition 2.3.11 of Meyer-Nieberg [10] imply that E (resp. F)
contains a sublattice isomorphic to l1 and there exists a positive projection P1 : E −→ l1

(resp. P2 : F −→ l1).
Since F ′ is order σ -complete, it follows from Corollary 2.4.3 of Meyer-Neiberg

[10] that F ′ contains a sublattice isomorphic to l∞.
We denote by i1 : l1 −→ E (resp. i2 : l1 −→ F) the canonical injection of l1 into E

(resp. l1 into F). We consider the composed operator

i2 ◦ P1 : E −→ l1 −→ F.

It is an order weakly compact operator because i2 ◦ P1 = i2 ◦ Idl1 ◦ P1 and the
identity operator Idl1 is order weakly compact. But the operator P′

1 ◦ i′2 is not order
weakly compact. If not, that is, if

P′
1 ◦ i′2 : F ′ −→ l∞ −→ E′

is order weakly compact, then the composed operator

i′1 ◦ P′
1 ◦ i′2 : F −→ l∞

would be order weakly compact and hence its restriction to l∞, which is just the identity
operator Idl∞ , would be order weakly compact. But this is impossible. �

REMARKS 2.7. Let E and F be two Banach lattices and let T be an operator from
E into F . Then the adjoint T ′ is not necessary order weakly compact whenever T is
order weakly compact in the following situations:

https://doi.org/10.1017/S0017089508004576 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004576


106 BELMESNAOUI AQZZOUZ AND JAWAD HMICHANE

(1) If the topological bidual F ′′ has an order-continuous norm (in particular if
F has an order-continuous norm). In fact, for F = l1, the topological bidual
F ′′ = (l∞)′ has an order-continuous norm. However, the identity operator Idl1 :
l1 −→ l1 is order weakly compact but its adjoint Idl∞ : l∞ −→ l∞ is not.

(2) If E has an order-continuous norm. In fact, for E = l1, the identity operator
Idl1 : l1 −→ l1 is order weakly compact but its adjoint Idl∞ : l∞ −→ l∞ is not.

(3) If E′ is discrete. In fact, for E = l1, the topological dual E′ = l∞ is discrete.
However, the identity operator Idl1 : l1 −→ l1 is order weakly compact but its
adjoint Idl∞ : l∞ −→ l∞ is not.

Now, we study the converse whenever E and F are two order σ -complete Banach
lattices. In fact, the following result gives a sufficient and necessary conditions under
which an operator is order weakly compact if its adjoint is order weakly compact:

THEOREM 2.8. Let E and F be order σ -complete Banach lattices and let T be an
operator from E into F. The following conditions are equivalent:

(1) The operator T is order weakly compact whenever its adjoint T ′ from F ′ into E′

is order weakly compact.
(2) One of the following assertions is valid:

(i) The norm of E is order continuous.
(ii) The norm of F is order continuous.

Proof. 2 =⇒ 1. It is just a consequence of Theorem 2.1 (1) and (2).
1 =⇒ 2. Assume that the norms of E and F are not order continuous. Then, it

follows from the proof of Theorem 1 of Wickstead [14] that E (resp. F) contains a
sublattice isomorphic to l∞ and there exists a positive projection P1 : E −→ l∞ (resp.
P2 : F −→ l∞) . We denote by i : l∞ −→ F the canonical injection of l∞ into F , and
we consider the operator T defined by

T = i ◦ P1 : E −→ l∞ −→ F.

Since (l∞)′ is an AL-space, its norm is order continuous and hence Theorem 2.4
(2) implies that the identity operator Id(l∞)′ : (l∞)′ −→ (l∞)′ is order weakly compact.
Now, as the subspace of order weakly compact operators is a two-sided ideal, the
adjoint

T ′ = P′
1 ◦ i′ = P′

1 ◦ Id(l∞)′ ◦ i′ : F ′ −→ (l∞)′ −→ (l∞)′ −→ E′

is order weakly compact. However, the operator

T = i ◦ P : E −→ l∞ −→ F

is not order weakly compact. If not, that is, if T is order weakly compact, then the
composed operator

P2 ◦ i ◦ P1 : E −→ l∞ −→ F −→ l∞

would be order weakly compact. Hence, its restriction to l∞, which is just the identity
operator of l∞, would be order weakly compact. But this is false. Then, the norm of E
is order continuous or the norm of F is order continuous. �

REMARKS 2.9. Let E and F be two Banach lattices and let T be an operator from
E into F . Then, T is not necessary order weakly compact whenever its adjoint T ′ from
F ′ into E′ is order weakly compact in the following situations:

https://doi.org/10.1017/S0017089508004576 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004576


DUALITY PROBLEM FOR ORDER WEAKLY COMPACT OPERATORS 107

(1) if E′ has an order-continuous norm. In fact, if we take E = l∞, its topological
dual E′ = (l∞)′ has an order-continuous norm. But the identity operator Idl∞ :
l∞ −→ l∞ is not order weakly compact, however, its adjoint Id(l∞)′ : (l∞)′ −→
(l∞)′ is order weakly compact.

(2) if E′ is discrete. In fact, if we take E = c the Banach lattice of all convergent
sequences, the topological dual E′ = c′ is discrete and the identity operator Idc′

is order weakly compact (because c′ has an order-continuous norm), but the
identity operator Idc, of the Banach lattice c, is not order weakly compact since
the norm of c is not order continuous.

REMARKS 2.10. Let us recall that if G is an order σ -complete Banach lattice such
that its topological dual G′ is discrete, then the norm of G is order continuous ([4],
Proposition 3.7). Hence, it is natural to ask the following question: if the Banach
lattices E and F are not necessary order σ -complete in Theorem 2.8, is an operator
T from E into F order weakly compact whenever its adjoint T ′ from F ′ into E′ order
weakly compact if E′ is discrete or F ′ is discrete and conversely. The answer is no in
general. In fact,

(i) there exist Banach lattices E and F such that E′ and F ′ are discrete and there
exists an operator T from E into F that is not order weakly compact but
its operator adjoint T ′ from F ′ into E′ is order weakly compact. In fact, for
E = F = c, we have E′ = F ′ = c′ is discrete, but the identity operator of c is not
order weakly compact; however, its adjoint that is the identity operator of c′ is
order weakly compact.

(ii) conversely, there exist Banach lattices E and F such that E′ and F ′ are not
discrete, but each operator from E into F is order weakly compact whenever
its operator adjoint T ′ from F ′ into E′ is order weakly compact. In fact, for
E = F = L2[0, 1] , we have E′ = F ′ = L2[0, 1] is discrete, but each operator
T : E −→ F is order weakly compact whenever its adjoint T ′ : F ′ −→ E′ is
order weakly compact.
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