
8 

Taming the growth 

So far, this book has been concerned with the behaviour of QCD 
in the leading logarithmic approximation, which should be ap
propriate for large enough centre-of-mass energies and for those 
processes which satisfy the criteria relevant for the use of perturb
ative QCD. In Chapters 2-4, we derived and solved the BFKL 
equation. We were led to think of the Pomeron as the t-channel 
exchange of a pair of (interacting) reggeized gluons. In this chap
ter, we start off by reformulating the results already obtained for 
the elastic-scattering amplitude of two colourless states t in a way 
which suggests that we view the scattering as the incoherent scat
tering of individual colour dipoles whose locations in configuration 
space are frozen over the time of interaction. This approach will 
lead us to a very tangible physical picture of high energy scattering 
in configuration space. 

In Section 8.2 we turn our attention to the undesirable feature 
which afflicts the scattering amplitudes calculated in the lead
ing logarithm approximation. This is the violation of unitarity 
which results from the strong growth of the total cross-section 
with increasing energy. The dipole formalism discussed in Sec
tion 8.1 provides a very elegant framework in which to investigate 
the dominant corrections to the leading logarithm approximation 
which ensure that the theory remains unitary. We begin Section 
8.2 by setting up an operator formalism (due to Mueller (1995)) 
to describe the dipole evolution and interaction. This formalism 
is subsequently used to incorporate the corrections which arise 
due to multiple dipole scattering effects (or, equivalently, the ex
change of more than one Pomeron between the colliding hadrons) 
and ensure the unitarity of the scattering amplitude. 

t We actually consider scattering of states whose leading Fock component 
is a heavy quark-antiquark pair, although our investigation is in principle 
much more general. 
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8.1 Dipole scattering 

Let us start by defining, analogously to Eq.( 4.46), the universal 
BFKL amplitude in impact parameter space, i.e. 

, , , ) 1 2 {}2 J 2 2 2 f(y,bl,b 1 ,b2,b2 = (27r)4{}b1 b I d kId k2d q 

i(kl.bll/-k2.b22/+Q.(bI-b2)) P( s, kll k2' q) 
X e k~(kl _ q)2 

1 J 2 2 2 = (271")4 d kId k 2d q 

i(kl·bll/-k2·b22/+Q.(bI-b2))kip( k k ) xe k 2 s, 1, 2,q, 
2 

(8.1) 

where P( s, kl' k2' q) is the usual BFKL amplitude which deter
mines the scattering of two gluons, of transverse momenta kl and 
k2 respectively, at energy s and with momentum transfer q. It 
is obtained from f( w, kl' k2' q) after inverting the w-plane Mellin 
transform to reveal explicitly the energy, s, dependence. We use 
the notation where y == In(s/k2) and blll == b 1 - b I (and simi
larly for b22/). 

Using Eq.( 4.52) and keeping only the n = 0 term in the sum 
over n we can write 

Equation (4.51) then allows us to write 

j(y, bI, b I, b 2, b2) = ~ f= dv J d2c ~ea.xo(v)y 
71" J-= blll 

X ¢~(bll bI, c)¢~*(b2' b2, c). (8.3) 

N ow let us consider the convolution 

J d2bxd2b~ j(y - y', bll bI, b x, b~)j(y', b x, b~, b 2 , b2)· 

U sing the results (which we quote without proof and for details 
we refer to Lipatov (1986)) 
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and 

one can derive the important result 

J d2bxd2b~ j(y - y', b l , b~, b x, b~)j(y', b x, b~, b 2, b2) 

= j(y, bI, b~, b2, b2)· 

(8.5) 

(8.6) 

This is analogous to the t = 0 convolution of Eq.(5.2) and, as in 
that case, is true for arbitrary y'. 

We can use Eq.(8.6) to factorize the BFKL amplitude in such 
a way that it can be absorbed into the definitions of the external 
impact factors. In particular, we can show (the details are included 
in Appendix A to this chapter) that 

F( s, kl' k2' q) 1 J d2b d2b d2b xx' d2byy ' 
k~(kl - q)2 (271")6 11' 22' bxx,2 b yy,2 

1 J d21 (' , ) 
X 4 F(I-q)2N bll"ba:a:"y,q) N(b 22"byy"y-y ,q 

xe-i(kl -q/2).b11, e-(k2 -q/2).b22, 

X k(q-l).bxx, /2 _ e-i(q-l).bxx' /2] [ei(q-l).byy , /2 _ e -i(q-l).byy' /2] 

(8.7) 

Again, non-boldface is used to denote the modulus of a two-vector. 
The dipole number density is defined by 

(ex; dv _ () ro 
N(ro,r,y,q) == Lex; 271" V;*(ro)V;(r)easxo l/ y--;:, (8.8) 

where 

Vl/ - 2w d2R iq.R r • [ 2 ]l/2+il/ 
q (r) = ---;;: J e (R + r/2)2(R - r/2)2 (8.9) 
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It will soon become clear why we referred to N(ro, r, y, q) as the 
dipole number density, for now we take Eq.(8.8) as a definition of 
N. 

To compute physical scattering amplitudes we need to perform 
the convolution with the appropriate impact factors, e.g. as in 
Eq.( 4.36). For simplicity let us suppose that the external particles 
each contain only a single quark-anti quark pair, e.g. as would be 
the case for elastic photon-photon scattering. 

In Chapter 7, we showed that the photon impact factor for 
t = 0 can be written in terms of the (light-cone) wavefunction of 
the photon, e.g. see Eqs.(7.25) and (7.27). In particular we derived 
the relation 

<p(k) = 16~2o:s 101 dz J d2rlw(z,rW(1- eikor ). (8.10) 

The wavefunction, w( z, r), specifies the probability that the pho
ton has fluctuated into the q-ij pair of transverse size r and with 
their momentum partitioned in the ratio z : (1 - z). 

Equation (8.10) is quite general. By this we mean that for any 
impact factor, which describes the interaction of a q-ij pair with 
the two gluons of the Pomeron, we can always write down the cor
responding wavefunction and factorize off the factor (1- eikor ). We 
shall subsequently refer to the generic q-ij system as an onium 
state. Let us recall the origin of the (1 - eik-r) factor in Eq.(8.10). 
From Eqs.(7.23), (7.24) and (7.25) we see that the factor of unity 
arises from those two graphs where the gluons couple to the same 
quark (or ant i quark ) in the onium. The second, exponential, factor 
derives from the coupling to both the quark and antiquark of the 
onium. The cancellation between these two types of graph, which 
occurs whenever one of the two gluons goes on shell (and hence 
ensures the finiteness of the scattering amplitude), has been ex
plicitly displayed in this factor. The above discussion was specific 
to the case of zero momentum transfer (Le. q = 0). For non-zero 
momentum transfer we have the following general relation between 
the impact factor and the onium wavefunction: 

<p(k) = 87r:O:s 101 dz J d2rlw(z,rW 

X (eikor/2 _ e-ik-r/2)(ei(q-k)or/2 _ e-i(q-k)or/2). (8.11) 

To re-iterate, by working in the co-ordinate space representation 
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the formation of the onium state is determined by the wavefunc
tion factor 1 w ( z, r) 12 and this can be cleanly factorized from the 
coupling of the q-ij pair to the Pomeron (contained in the ex
ponential factors). This is consistent with the space-time picture 
presented in the preceding chapter (see Section 7.3). We say that 
the dependence on the onium wavefunction factorizes from the 
coupling of the dipole (q-ij pair of fixed size r) to the two gluons 
of the Pomeron. 

The elastic-scattering amplitude of two onium states, with 
wavefunctions wl(zl,rl) and w2(z2,rl), respectively, can now be 
written: 
'-SmA( s, t) 

s 

x N(rI, bxx" y', q) N(r2, byy l , y - y', q) 
X [ei (q-l)obxxl/2 _ e- i (q-l)obxxl/2] [ei (Q-l)obYY I/2 _ e- i (Q-l)obYY I/2] 

X [eilobxxl/2 _ e-ilobxxl/2] [eilobYYI/2 _ e-ilobYYI/2] . (8.12) 

This is obtained from Eqs.( 4.36) and (8.7) by substituting the 
defining relation Eq.(8.11) for each impact factor and integrating 
over kl and k2 (these integrals just yield delta functions which 
fix the size of the parent dipole plus terms which vanish since 
N(O, r, y, q) = 0). The colour factor 9 = N2G~1) = 2. 

Equation (8.12) has a very appealing physical interpretation. To 
see this let us first consider the amplitude in the approximation 
that the onia interact through the exchange of two gluons. In this 
case we have 
JmA(s,t) 2 J d21 

(271")4 F(l- q)2 <PI (I, q)<p2(1, q) s 

~a; J dz1dZ2 J d2rld2r2Iwl(ZI,7'lWlw2(Z2,7'2W 

J d21 [eil-r1 /2 _ e-ilorl/2] [e i ( Q-l)orl /2 _ e- i ( q-l)orl /2] 
F(I- q)2 

[eilor2/2 _ e-ilor2/2] [ei(q-l)or2 /2 _ e-i(Q-l)or2 /2] . (8.13) 

This equation is shown graphically in Fig. 8.1, where the factoriza-
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Zl 

==(Er 
1 - Zl 

1 
r 1! ~ ~ ~ ~ 

~ ~ ~ ~ ~ ~ ~ ~ 

[ ~ ~ ~ ~ ~ ~ ~ ~ 
1 r 2! ~ @ @ @ 

Z2 

==(Er 
1 - Z2 

Fig. S.1. Diagrammatic illustration of the dipole factorization ex
plicit in Eq.(S.13). 

tion of the onia wavefunctions from the dipole-dipole interaction 
cross-section is illustrated. 

Comparing Eq.(8.13) with Eq.(8.12) we see some striking sim
ilarities. The only new factors are those associated with what we 
have termed the dipole number densities, N. In particular, the 
exponential factors are equivalent. This similarity means that we 
can interpret the elastic scattering of the two onia in terms of the 
scattering of individual dipoles in each onium state off those in the 
other state (since the dipole-dipole interaction cross-section is ex
plicit in Eq.(8.12)). The number density of dipoles is then indeed 
given by the function N(b, r, y, q). It specifies the number density 
of dipoles of size r inside an onium whose primary dipole (i.e. the 
q-ij pair) has size b and which lie within y units of rapidity of 
the parent onium. The q-dependence is present since the number 
density depends upon the angle through which the onia scatter. 
Equivalently, we could take the Fourier transform with respect to 
q and obtain the number densities as a function of their displace-
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ment from the parent onia (indeed, we shall do this at the end of 
this section). The normalization has been chosen such that 

J d2r 
--2N(b, r, y, q) 
27rr 

is the total number of dipoles inside the parent dipole. 
Note that the dipole number density at q = ° and large enough 

y is the familiar looking expression (e.g. see Eq.( 4.34)): 

b eWoY ( In 2(b2/r2)) 
N(b,r,y,O) ~ ~ (7ra2y)1/2exp - 4a2y . (8.14) 

In addition, we note that it is not meaningful to associate in a 
unique way the dipoles with the colliding onia. By picking y' = 0, 
N (rl' bxx" 0, q) = rl /j (rl - bxx') and all the dipoles are identified 
as being radiated from the parent dipole of size r2 (i.e. from the 
onium which has wavefunction "iJi 2 ). By picking y' = y/2 we have 
the democratic scenario where the dipoles are 'shared' between 
the colliding onia. 

So, we have been forced into the interpretation of onium-onium 
scattering in terms of the interaction between 'child' dipoles (the 
parents being the q-ij pairs of the onia); the interaction being none 
other than the two-gluon exchange between the two child dipoles. 
It is natural to ask how these dipoles originate. We know from the 
above that we have succeeded in factorizing the BFKL physics as
sociated with the ladder ofreggeized gluons into the dipole density 
functions. What has happened? Let us think in a frame where the 
two onia are colliding in their centre of mass. We can then iden
tify a left-moving onium and a right-moving onium. Now consider 
the left-moving onium. The parent dipole is created a long time 
before the interaction with a dipole in the other onium. This par
ent dipole can then radiate a soft gluon. In terms of its colour 
structure the emitted gluon can be viewed as a 3 :3 state (i.e. 
like a quark-antiquark pair). This view of the gluon is appropri
ate in the formal limit where the number of colours, N, is large. 
This means that the leading logarithm approximation is also the 
leading N approximation - indeed we can see this by noting that 
the relevant coupling for soft gluon emission is as (i.e. the strong 
coupling is always accompanied by a factor of N). The quark line 
from this gluon and the antiquark line of the parent dipole then 
form a secondary dipole, and similarly for the quark line of the 
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gluon and the antiquark line of the parent. So the emission of a 
gluon corresponds to the annihilation of the parent dipole and the 
creation of two new secondary dipoles. This branching continues 
until there is no more rapidity for further emission and so the 
parent left-moving onium can be viewed as a collection of colour 
dipoles. The same can be said about the right-moving onium: it, 
too, is an assembly of dipoles. The onia then interact with each 
other through the scattering of their constituent dipoles which, 
in the one Pomeron exchange approximation (which is the BFKL 
approximation), scatter via exchange of two gluons. The left and 
right-moving dipoles then re-assemble to generate the final state 
onia. In this way we are able to understand the origin of the dipole 
factorization which is explicit in Eq.(8.12). 

Before leaving this section, let us first re-cast Eq.(8.12) so that 
it explicitly exhibits the dependence of the scattering amplitude 
on the impact parameter of the collision (i.e. we take a Fourier 
transform to eliminate the q-dependence). 

Defining the scattering amplitude for collisions between two 
onia at impact parameter b via 

A(b )=/ d2q _iq.bA(S,t) 
, y (271" )2 e 2s (8.15) 

allows us to write 

A(b, y) = -i~ / dz1dz2 / d2qd2r2 1"iJ.i 1 (Zl' rlWI"iJ.i 2(Z2, r2W 

X F(Tl' r2, b, y), (8.16) 

where F(rb r2, b, y) is the amplitude for the elastic scattering of a 
pair of dipoles of respective sizes rl and T2 at an impact parameter 
b. Explicitly it is given by 
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where 

( ) a; J d2q -iq·R J d21 
f R, b, c 2 (27r)2e P(l- q)2 

X [ei(q-l).b/2 _ e-i (q-l).b/2] [ei(q-l)'C/2 _ e- i(Q-l)'C/2] 

X [ei1 .b / 2 _ e-i1.b / 2] [ei1,c/ 2 _ e-i1.c/ 2] . (8.18) 

The number density of dipoles, of size x within a parent dipole 
of size Xo within the rapidity y and at a distance r of the parent 
is n(xo,x,y,r), where 

( ) -J d2q -iq.rN( ) n Xo,x,y,r - (27r)2e Xo,X,y,q. (8.19) 

Representing the amplitude exclusively in terms of the positions 
and sizes of the dipoles will be convenient when we come to discuss 
the multiple scattering corrections in the next section. For now, 
let us express the optical theorem in terms of A(b, y); it is simply 

O'tot(Y) = 27r J db 2 ~mA(b, y). (8.20) 

Our normalization of the amplitude is such that:smA(b, y) = 
B( bo - b) in the black disc limit (i.e. totally absorbtive scattering). 

To close this section, we note that by taking Eqs.(8.8) and (8.9), 
expanding Xo(v) up to quadratic order in v and integrating over 
v using the saddle point approximation we arrive at the approxi
mation 

n(xo,x,y,r) ~ 

(8.21 ) 

provided r ~ x, Xo and a2y ~ In (r2 /xxo). Compare this with the 
result of the preceding chapter, Eq. (7.14). The diffusion properties 
of the BFKL equation are manifest as diffusion in the dipole sizes 
with increasing rapidity. The displacement of the child dipole from 
the parent acts as an effective cut-off on the size of the largest 
dipoles that can be created. 
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8.2 Unitarity 

One of the main results which is obtained in the leading logarith
mic approximation used to derive the BFKL equation is that the 
elastic scattering amplitudes rise with increasing centre-of-mass 
energy, s, as some power of s. Through the optical theorem this 
then translates into a corresponding growth of the total cross
section, i.e. 

(8.22) 

where Wo = 4a s ln 2. We should ask whether this is sensible be
haviour in the limit s ----+ 00. Intuitively, if the strong interactions 
are of finite range then we expect the asymptotic behaviour of 
total cross-sections to be limited in some way. This physics is 
missing in the leading logarithmic approximation. Moreover, in 
Chapter 1 we quoted the Froissart-Martin bound, which states 
that total cross-sections cannot rise (in the limit s ----+ (0) faster 
than In 2s (see Eq.(1.25)). Although this bound may well become 
significant only at energies well beyond those which are feasibly ac
cessible it is important to understand how the leading logarithmic 
approximation is corrected to account for the unitarization correc
tions which eventually bring the theory into agreement with the 
Froissart-Martin bound. The study ofunitarity corrections within 
perturbative QCD is the subject of the remainder of this chapter. 

We start by providing a physical argument (originally due to 
Feynman) which makes the Froissart-Martin bound plausible. Let 
us suppose that the target particle has some density distribution 
which reflects the short range nature of the strong force, e.g. 

p(r) = Po exp( -r / R), (8.23) 

where r is the distance from the centre of the target and R charac
terizes the size of the target. It is important that this distribution 
falls off faster than any power at large distances (which we take as 
a fundamental property of the strong interactions). If the proba
bility of an interaction between the beam particle with the target 
is bounded (as s ~ (0) by some finite power of s then the inter
action probability satisfies 

P(s,r) < Po (:I N 
exp(-r/R). (8.24) 
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Hence, the interaction will be negligible for collisions at impact 
parameters 

r > N R In ( s / so) 

and so the total cross-section satisfies 

(Ttot < 7r R2 N 2ln 2( s / so). (8.25) 

It is possible to derive the Froissart-Martin bound in a more rigor
ous fashion starting from the partial wave expansion and assuming 
the amplitude to satisfy (subtracted) dispersion relations (this is 
the assumption that the amplitude is bounded by a finite power 
in s). It arises as a direct consequence of the unitarity of the indi
vidual partial wave amplitudes and the existence of some lowest 
mass bound state whose mass is different from zero (i.e. the pion) 
(see e.g. Collins (1977), Martin, Morgan & Shaw (1976)). This 
latter property, which is equivalent to demanding that the strong 
force be short range, is one which we do not expect to be able to 
accommodate in our perturbative calculations, as such we might 
well be able to successfully unitarize the scattering amplitude but 
fail to satisfy the Froissart-Martin bound. 

Clearly, therefore, all our previous calculations based on QCD 
in the leading logarithm approximation must break down as the 
centre-of-mass energy tends to infinity. In the centre-of-mass frame 
of the colliding particles the increase of the total cross-section with 
energy is due to the proliferation of soft gluon emissions. The 
power-like increase in the number of soft gluons means a corre
sponding rise in the total cross-section. In the dipole language it 
is the proliferation of dipoles which drives the rise. It is not hard 
to imagine the physics which must eventually enter as the spa
tial density of gluons (dipoles) continues to increase. Ultimately, 
the density will be large enough such that more than one pair of 
dipoles will undergo a scattering for each parent particle collision. 
There is also the possibility that a dipole in the parent can scatter 
off other dipoles also within the parent. As we shall see the dis
tinction between these two forms of correction is frame dependent. 
Not surprisingly both forms of correction lead to a taming of the 
growth of the elastic scattering amplitude (and hence total cross
section) in line with the demands of unitarity. It is the purpose of 
the remainder of this chapter to describe the multiple scattering 
mechanism in more detail. 
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Fig. 8.2. (a) Fundamental dipole vertex used to generate the dipole 
evolution. A gluon is emitted at position 2. (b) The vectors which 
specify the size and position of the parent and child dipoles. 

8.2.1 The operator formalism 

We start by introducing an operator formalism (Mueller (1995)) 
which can be used to re-derive the BFKL equation but which will 
also be suitable for a quantitative study of the leading multiple 
scattering corrections. We have shown that high energy scattering 
between two onia can be viewed as a two-step process. Firstly, a 
cloud of dipoles is evolved around each of the primary dipoles. 
This dipole evolution can be described as a classical branching 
process in impact parameter space. Secondly, the dipole clouds 
interact with each other so that the total cross-section is an inco
herent sum over the individual dipole-dipole cross-sections. The 
nature of the dipole branching process suggests that we should be 
able to describe it using an operator formalism where the basic 
operators are dipole creation and annihilation operators. There is 
a fundamental vertex which describes the branching of an initial 
dipole into two secondary dipoles and it is the successive iteration 
of this basic vertex that determines the evolution of the dipole 
cloud. 

We begin by deriving an expression for the fundamental dipole 
vertex illustrated in Fig. 8.2( a). The parent dipole (specified by the 
points denoted 0 and 1) radiates a gluon at point 2 which generates 
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the child dipoles (of sizes y and z, see Fig. 8.2(b)). Firstly, we 
introduce dipole creation and annihilation operators at(b, x) and 
a(b, x) respectively (b is the location of the dipole centre and x 
is its size). Since the dipoles satisfy bosonic statistics we impose 
the commutation relation 

(8.26) 

The differential probability for the emission of a gluon off a dipole 
of size r into the rapidity interval y --+ y + dy and with transverse 
momentum k --+ k + d2k is 

d2k . 
d3p = a s7rk2 dy(1- e,k.r). (8.27) 

For the derivation of this expression we refer to Appendix B of 
this chapter. The colour factor is appropriate for purely gluonic 
branching, i.e. we need an adjustment which accounts for the dif
ferent coupling to the primary dipole, which is a q-ij pair. This is 
the origin of the colour factor of ~ which sits outside the ampli
tude, e.g. Eq.(8.16).t This very simple form is, however, unsuitable 
for the dipole evolution. We need to obtain an expression in terms 
of the relevant dipole sizes. Starting from 

J d2k ik·r = J d2k k . k ik-r 
k 2 e k4 e (8.28) 

and using 

ki __ 1_ J d2x . ik·x 
k 2 - 2' 2 x,e 

7r~ x 
(8.29) 

yields 

J d2k ik-r - J 2 2 Xl' X2 (2) 
k 2 e - - d xld X2 2 28 (Xl + x2 + r). 

Xl X2 
(8.30) 

Thus we can write 

d3 p as d2xld2x28(2)(XI + X2 + r) ((Xl + X2)2) 
dy 27r Xl 2X2 2 

as d2Xld2X28(2)(XI + x2 + r) ( ~2 2) . (8.31) 
27r ~1~2 

t This factor is equal to 1 - 1/ N 2 and as such is equal to unity in the leading 
N approxllnation where there is no difference between the colour structure 
of the gluon and that of a q-q pair. 
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This form is now suitable for use in the dipole evolution since it 
describes the branching of the parent dipole of size r into two new 
dipoles of sizes Z1 and Z2. Each of these secondary dipoles can 
then act as a source for further gluon emission, the probability of 
which can be computed using Eq.(8.31), and so on. 

In the operator language, the basic vertex for dipole creation is 
thus 

V1[at,a] = as jd2bd2Xd2yd2Z8(2)(X+Y+Z) 
271" 

2 

X ~ 2at (b+y/2,z)at (b-z/2,y)a(b,x). (8.32) 
y z 

The square brackets indicate that it is a functional of the creation 
and annihilation operators. The dipole evolution is driven by this 
vertex. The arguments of the dipole operators can be seen from 
Fig. 8.2(b). However, things are not quite so simple. Recall that 
the BFKL equation contains essential virtual corrections. These 
corrections are so far absent. However, we can construct the correc
tion, V2 , to the basic vertex, V1 , which accounts for all the virtual 
graphs. The vertex V1 possesses ultra-violet divergences whenever 
the emitted dipoles have vanishing size (Le. y ---+ 0 or z ---+ 0). 
In order to regularize these divergences we introduce a lower cut
off p on the size of the emitted dipoles. The virtual graphs are 
accounted for through the vertex 

V2[at , a] = - as j d2bd2xd2yd2z8(2)(x + y + z) 
271" 

z2 
X 2"2"at (b, x)a(b, x) 

y z 

~ -as j d2bd2x In ;: at(b, x)a(b, x). (8.33) 

This form is determined by requiring the conservation of probabil
ity, Le. the total probability to create a pair of secondary dipoles 
integrated over all the sizes of these dipoles, plus the probability 
not to create a secondary pair must be unity. We demonstrate this 
to order as below. The approximate equality on the second line 
of Eq.(8.33) is valid in the limit of small p. The complete vertex 
for dipole evolution is then 
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V[at,a] = Vl[at,a] + V2[at,a] 

and is independent of p (as p ---+ 0). 
We are now in a position to construct the S-matrix for the 

scattering of primary dipoles of sizes Tl and T2 (it will give us 
F( Tl, T2, b, y) of Eq.( 8.17)). Consider the centre-of-mass scattering 
of the two primary dipoles (we refer to them as left-moving and 
right-moving). The left-moving dipole (at position bo and of size 
rl) is the state 

(8.34) 

where (010) = 1. Similarly, the right-moving dipole (which is at 
impact parameter b relative to the left mover) is the state 

Ib + bo, r2) = dt(b + bo, r2)10), (8.35) 

where d and dt are the annihilation and creation operators for the 
right movers (we need independent operators since the two dipole 
clouds evolve independently, i.e. the left mover operators commute 
with the right mover operators). The probability of finding the 
primary left mover dipole in a configuration of n dipoles with 
positions and sizes {bb CI; b 2 , C2; .. '; b n, cn} is thus 

d4nPn 
d2b l d2q .. ·d2bnd2cn 

= (Ola(bb q) ... a(bn , cn)eyvLat(bo, q)IO). (8.36) 

We have used the subscript L to denote that the vertex operator 
acts on left movers. The basic vertex appears in the exponential 
due to the combinatorial factorial factor which is needed on iter
ating the basic vertex (recall that the vertex integrates over all 
dipole configurations). A similar expression exists for the evolu
tion of the right movers. It is convenient to define the n-dipole 
state (integrated over all dipole locations and sizes): 

In) " ~! ! (t! d'cjd'bja t (bj, Cj)) 10). (8.37) 

The integrated probability for the n-dipole configuration is then 

Pn ~Jd4nPn 
n. 
(nleYVLat(bo, rl)IO), (8.38) 
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and satisfies 

(8.39) 
n=l 

which is consistent with our interpretation of Pn as a probability. 
Working to first order in as allows us to see the conservation of 
probability and the role of the virtual corrections (V2 ) explicitly. 
At this order, only PI and P2 are non-zero and it is easy to show 
that 

(8.40 ) 

The dependence upon the ultra-violet cut-off (p) cancels, as re
quired. Moreover, the virtual corrections generated by V2 are solely 
responsible for the logarithmic term in PI which ensures the con
servation of probability. 

The scattering matrix for the elastic scattering of the left- and 
right-moving primary dipoles is given by 

S(q, r2, b, y) = 

(Oleal +dl e- f ey'vL+(Y-Y')VRdt(b + bo, r2)a t (bo, q) 10), (8.41) 

where 

(8.42) 

(and similarly for dl ). The dipole-dipole scattering operator, f, is 
given by 

f = J d2 Rd2 R' d2cd2c' f(R - R', c, c') 

x dt(R, c)d(R, c)at(R', c')a(R', c') (8.43) 

and f(R - R',c,c') is given in Eq.(8.18). A few words are in or
der regarding Eq.(8.41). Starting from the 'vacuum state' on the 
right, we first create the primary dipoles (of size rl and r2 with 
relative separation b). The action of the dipole evolution opera
tors then generates the respective dipole clouds. These clouds are 
then made to interact. The amplitude for any single dipole-dipole 
interaction is given by - f (the operator structure of Eq.(8.43) 
is such that it projects out the dipoles that interact from the 
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evolved dipole clouds). If we assume that there are very many 
dipoles and that these dipoles scatter independently of each other 
then we are able to account for an arbitrary number of individual 
dipole-dipole interactions by including the factor ( - f)n / n! for n 
dipole-dipole interactions. This explains the origin of the factor 
e- i in Eq.(S.41). The final factor simply ensures that the dipole 
systems have unit overlap with the final state. The factorial fac
tors associated with the various exponential terms are necessary 
in order to divide out the equivalent configurations (recall that all 
secondary dipole configurations are integrated over to determine 
the elastic amplitUde). Thus we have a formalism which allows 
us to include the multiple scattering of individual dipoles. As 
we shall soon see, the BFKL (leading logarithmic approximation) 
is equivalent to including only the interaction of a single pair of 
dipoles (which eventually violates unitarity) whilst the complete 
multiple scattering series ensures that unitarity is preserved. 

We can re-write the S-matrixin an alternative form by inserting 
the unit operator, 

L In,m)(n,ml, (S.44) 
m,n 

w here the state In, m) = In) 1m) represents n dipoles in the left
moving onium and m dipoles in the right-moving onium. We find 

S(rI, r2, b, y) = L PnPm exp( -(n, mlfln, m)). (S.45) 
m,n 

Note that this expression explicitly satisfies the constraints of uni
tarity. To see this we note that 11 - SI 2 is the probability of an 
elastic scattering occurring at a fixed impact parameter and as 
such should satisfy 11 - S 12 S; 1. This bound is indeed satisfied 
since the Pn and Pm are probabilities and because (n, mlfln, m) 
is positive definite (see Eq.(S.43)). This is not the case for single 
Pomeron exchange, where the e- i factor is replaced by 1 - f. 

In the one-Pomeron exchange approximation, the formalism we 
have just described must be completely equivalent to the BFKL 
(leading lns) one, i.e. replacing the e- i factor by 1 - f should 
lead to 

Sl(rI, r2, b, y) = 1 + F(rl, r2, b, y), (S.46) 

where F(rl' r2, b, y) is defined in Eq.(S.17). It is enlightening to 
spend a little time outlining the proof of this equivalence. 
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We start by quoting the result (it is not hard to show): 

ea1 f[at]e- a1 = flat + 1], (8.47) 

where f[at] is some functional of the creation operator. Using 
Eq.(8.47), we can re-write Eq.(8.41) in the one-Pomeron exchange 
approximation as 

SI (1'1,1'2, b, y) = 1 - J d2Rd2R' d2cd2c' f(R - R', c, c') 

X (Ola(R', c')eylVdat +1,a1at(bo, q)IO) 

X (Old(R, c)e(y-yl)VR[dt+l,d)dt (b - bo, r2)10). (8.48) 

which, on comparison with Eq.(8.17), reveals that 

n(1'1'2c', ;;, R') = (Ola(R', c')eyIVdat+l,alat(bo, rl)IO). (8.49) 
7rC 

We need to evaluate explicitly the right hand side of this expres-
sion and demonstrate its equivalence to the number density cal
culated using Eqs.(8.8) and (8.19). 

Since the only terms in the exponent which generate a non-zero 
contribution to the number density are those which contain equal 
numbers of creation and annihilation operators we can make the 
replacement 

V[I+at ,a]---7atKa. (8.50) 
Selecting terms in Vdl+at , a]+ V2[at , a] (see Eqs.(8.32) and (8.33)) 
that contain one creation and one annihilation operator we find 

atKa == J d2bd2xd2x'd2b'at(b + b', x)K(b', x, x')a(b, x') 

(8.51) 
and the evolution kernel is (using Eqs.(8.32) and (8.33)) 

2 
K(b', X, x') = -asln ~5(2)(b')5(2)(x - x') 

p2 
- ,2 

+ as _x_ [5(2)(b' + (x + x')/2) + 5(2)(b' - (x + x')/2)]. (8.52) 
87r b,2 X 2 

The eigenfunctions of this operator are none other than the con
formal eigenfunctions, i.e. 

J 2 d2x', , -", , , 
d b-4 K(b - b, x, x )<Pn(b + x /2, b - x /2, w) 

x' 
_ ()~~(b' + x/2, b' - x/2, w) 
asXn v 4 

x 
(8.53) 
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and the eigenvalues are the eigenvalues of the BFKL kernel. To 
derive this important result, it is best to move to complex co
ordinates (Le. 2d2x = dzdz) whereupon the integrand separates 
into a product of one-dimensional integrals over z and z. After 
a change of variables the integrals can be rewritten in two-vector 
form, where they are seen to generate the eigenfunctions using the 
result that t 

(8.54) 

where n is an arbitrary unit vector. This result suggests that we 
should expand the dipole creation and annihilation operators in 
terms of these eigenfunctions, Le. 

~ ! dv . d2w 
a(b, x) = nf::= (271")24(w+n/2)anv(w) x4 

X ¢~(b + x/2, b - x/2, w), (8.55) 

and 

~ ! dv. t 2 
nf::= (271")24( -w + n/2)anv(w)d w 

X ¢~*(b + x/2, b - x/2, w). (8.56) 

Using Eq.(4.50) the 'conformal' operators can be shown to satisfy 
the commutation relation 

[anv(w), a~'v,(w')l = 6nn l 6(v - v')6(2)(w - w') (8.57) 

and, using the known properties of the eigenfunctions (Eqs.(8.4) 
and (8.5)), we can recast the evolution operator in the diagonal 
form 

atKa = as t ! dvd2wXn(v)a~Aw)anv(w). 
n==-(X) 

(8.58) 

Using Eqs.(8.55), (8.56), (8.57) and (8.58) in Eq.(8.49) allows us 
to show that (in the n = 0 case) 

! dv d2w _ () 
n(rl c Y R) = 16 --__ v 2 e""xo v y , , , (271")3 c2 

¢~(R + c/2, R - c/2, w)¢~*(bo + rl/2, bo - rl/2, w). (8.59) 

t This is appropriate for n = 0 but it is not much more difficult to prove the 
result for general n. 
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This is equivalent to the result that is obtained in a straightfor
ward way after substituting Eq.(S.S) into Eq.(S.19). 

Thus we have demonstrated the equivalence of the operator for
malism to that of BFKL. Indeed, the dipole formalism does offer 
an alternative derivation of the BFKL equation (Mueller (1994, 
1995), Mueller & Patel (1994), Chen & Mueller (1995), Nikolaev, 
Zakharov & Zoller (1994a,b), Nikolaev & Zakharov (1994)). How
ever, more than merely reproducing the results obtained in Chap
ter 4 we have now established a framework in which we can in
vestigate the multiple scattering corrections which motivated this 
alternative approach, i.e. we can go beyond the one-Pomeron ex
change approximation. 

8.2.2 Multiple scattering 

Consider the total cross-section for the scattering of two primary 
dipoles of fixed (and equal) sizes R (this avoids us having to in
voke specific onium wavefunctions and should demonstrate all the 
important features). It is natural to ask when the one Pomeron 
exchange approximation (BFKL) starts to break down. Formally 
the S-matrix for the elastic scattering can be written as a mul
tiple scattering series; keeping only the first term corresponds to 
the BFKL calculation and has the S-matrix ofEq.(S.46). This will 
only be a good approximation provided IFI ~ 1. When IFI rv 1 
it becomes necessary to consider the remaining terms in the mul
tiple scattering series. We shall discuss these terms shortly, but 
for now we have a simple condition for the validity of the BFKL 
calculation. We can evaluate F(R, R, b, y) in the limit of b2 ~ R2 
and for a2y ~ In (b2 / R2) (by the usual saddle point method). 
Our condition for the legitimate neglect of the multiple scattering 
corrections then becomes the explicit condition 

~ 2R2In(b2/R2) WoY (In2(b2/R2)) 
-F(R,R,b,y) S"a S -b2 ( 2 )3/2 e exp - 2 

7ra yay 

~ 1. (S.60) 

The total cross-section is formed using Eq.(S.20), i.e. 

I a2ewoy 
O"tot = - 27r db 2 F( R, R, b, y) = S7r R2 (7r;2 y )1/2. (S.61) 
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Fig. 8.3. Plot to delineate the region where the one-Pomeron ex
change (BFKL) calculation (ofthe total cross-section) is valid from 
the region where multiple scattering is important. 

The dominant contribution to this cross-section comes from the 
region of large b, in particular 

b2 rv R2eM (8.62) 

and we have a self-consistent calculation (i.e. Eq.(8.60) is valid 
in the region which gives rise to the dominant contribution to 
the total cross-section). Note that the total cross-section is driven 
by the contribution from peripheral collisions (i.e. b ~ R). The 
inequality of Eq.(8.60) can be re-written as a bound on y at a 
given impact parameter, i.e. defining y(b) to be the solution to 
-F(R, R, b, y) = 1 we find 

(
( 7ra2y(b) )3/2 b2 j R2 ) 

woy(b)~ln 87ra~ In(b2jR2) (8.63) 

and the condition for the validity of the one Pomeron exchange 
calculation of the amplitude at some impact parameter b is then 
that y ~ y(b). 

In Fig. 8.3, the solid line corresponds to the curve y = y(b), 
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whilst the dashed line corresponds to y = (1/a2)Jn 2(b2/R2) 
(which, from Eq.(8.62), specifies the region which provides the 
dominant contribution to the total cross-section). We define Yl to 
correspond to the minimum of the curve y = y(b) and Y2 to be 
the rapidity where the two curves intersect. For y < Yl the one 
Pomeron exchange approximation is appropriate over the whole 
range of impact parameter which contributes to the total cross
section and so we can trust the BFKL calculation in this region. 
For Yl < Y < Y2 multiple scattering corrections are significant for 
a wide range of impact parameter. However, the dominant contri
bution to the total cross-section still arises from the region of large 
impact parameter where the BFKL calculation is again valid. For 
Y > Y2 multiple scattering corrections are now significant even 
in the region which contributes most to the total cross-section. 
Thus only for Y > Y2 do we need to worry about the role of multi
ple scattering (unitarization) corrections to the total cross-section. 
Fig. 8.3 was produced with as = 0.25, in which case Yl ~ 15, which 
is quite large and indicates that unitarity corrections to the total 
cross-section are important only at very high energies. The slow 
onset of the unitarity corrections is due essentially to the periph
eral nature of the dominant contributions to the total rate, i.e. 
multiple scattering effects are most important for the more cen
tral collisions (where there is a large overlap between the left and 
right-moving dipole clusters). 

A process which is more sensitive to the multiple scattering cor
rections will therefore be one which is dominated by more central 
collisions. The elastic-scattering cross-section is such a process. 
The integrated cross-section for elastic scattering is 

(8.64) 

and, since IFI rv 1/ b2 , it follows that the elastic cross-section is 
dominated by more central collisions than the total cross-section. 

Having established when we expect the BFKL calculation to 
break down we turn now to a discussion of the specific nature 
of the multiple scattering corrections. Firstly we should establish 
the approximations that are inherent in deriving the particular 
form of the elastic scattering matrix of the preceding subsection, 
i.e. Eqs.(8.41) and (8.45). We know that the leading logarithmic 
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approximation ofBFKL corresponds to the single scattering of one 
dipole in one onium with another dipole in the other onium, i.e. 
the S -matrix for elastic onium-onium scattering can be written 

00 

S = 1 + a~ L cn(asyt· (8.65) 
n=l 

We have distinguished between factors of as and factors of as. The 
latter factors are always accompanied by a logarithm of the energy 
since the leading logarithm approximation is also the leading liN 
approximation (N being the number of colours). The additional 
factor of a~ arises due to the colour neutrality of the external onia. 
In the dipole picture, each onium evolves a dipole cloud by iter
ating the evolution operator, which is '" asY. The interaction of 
the two dipoles is determined by f '" a~. Clearly therefore, the n 
Pomeron exchange contribution is suppressed by the overall factor 
'" a;n - so it is sub-leading in both the liN and leading logarithm 
approximations. Why, therefore, do we keep these multiple scat
tering contributions whilst ignoring all the other possible higher 
order corrections? 

The answer is simply stated: it is because of the very high num
bers of dipoles which are generated in the evolution of the onia. 
Typical configurations contain very large numbers of dipoles, i.e. 
'" e wOyl and '" ewo(y-yl), so although the probability of an indi
vidual scattering is small ('" a;) the number of 'trials' is very 
large (it is the product of the number of dipoles in each onium), 
i.e. '" eWOY • Thus we expect the multiple scattering corrections to 
be significant when a;eWOY '" 1. The incoherent multiple scatter
ing of the dipoles within the onia, i.e. the exponentiation of the 
basic dipole-dipole scattering amplitude (e- f), amounts to the 
assumption that the dominant sub-leading effects are due solely 
to the large number of dipoles and that collective effects between 
the individual dipoles (which would spoil the exponentiation) are 
negligible. To make this plausible consider another sub-leading 
effect which should become important as the energy increases. 
This is the effect which we call dipole saturation. As the dipole 
evolution proceeds with the corresponding increase of the dipole 
number we might expect that dipoles within a single onium start 
to interact with other dipoles in the same onium. These effects are 
implemented via a modification of the onium wavefunction and are 
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rv a;eWOyl (Le. the amplitude of any given dipole to interact with 
all the others is proportional to the number of dipoles). Clearly, 
if we choose to divide the rapidity interval equally between the 
two onia, Le. y' = y /2, then the saturation effects enter at ener
gies which are roughly the square of the energies where multiple 
scattering effects first become important. If we choose a highly 
asymmetric partitioning of the energy (e.g. y' = 0 or y' = y) then 
there is no justification for focusing only on the multiple scat
tering corrections, Le. there will be large wavefunction saturation 
effects which alter the evolved onium state in such a way that 
the total amplitude is the same as that which would be obtained 
by including only multiple scattering effects but with y' = y /2. 
So, although the physics is clearly independent of y' the sensible 
choice is y' = y /2 since this maximally suppresses the saturation 
effects which we are unable to calculate. We expect all other sub
leading corrections to be truly sub-leading, i.e. not enhanced by 
large dipole multiplicity factors. 

A word of caution ought to be issued at this stage. The above 
arguments rely heavily on the fact that the dominant features of 
the sub-leading corrections can be determined from knowledge of 
the average features of the dipole evolution. However, one can en
visage scenarios where this is a dangerous line of reasoning. For 
example, consider a collision in the centre of mass (Le. y' = y/2) 
at very large impact parameters, i.e. in the region where multiple 
scattering effects are small. One might also infer that saturation 
effects are therefore even smaller. However, this need not be the 
case. The dipole evolution could undergo a period of evolution 
where only small dipoles are produced. These large numbers of 
localized dipoles may then be subject to significant saturation 
corrections. In order to contribute to the scattering at large im
pact parameters at least one large dipole needs to be created (in 
at least one of the onia) and this may be done at the end of the 
dipole evolution. Thus the distribution of large dipoles can be af
fected by what happened earlier in the dipole evolution and hence 
be subject to large saturation corrections. However, for the typ
ical configurations which provide the dominant contributions to, 
for example, the total cross-section we expect the more general 
arguments to hold (Mueller & Salam (1996)). 

It is now time to investigate the actual size of the multiple scat-
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Fig. 8.4. The contributions to the total cross-section for the scat
tering of two primary dipoles of size R from successive terms in 
the multiple scattering series (see Salam (1996a)). 

tering corrections. The natural course of action is to compute first 
the corrections to one Pomeron exchange which arise from the 
p j2! term in the exponential series. Progress can be made with 
an analytic calculation. However, it is not necessary to go into the 
details here and so we refer to the work of Mueller (1995). The 
important feature is that the two Pomeron exchange contribu
tion to the onium-onium total cross-section exceeds that for one 
Pomeron exchange for large enough y. This effect can be seen in 
Fig. 8.4, where the total cross-section for scattering two primary 
dipoles each of size R is shown (normalized by R2). Moreover, 
and as Fig. 8.4 reveals, the contributions from even more Pom
eron exchanges exceed the one Pomeron exchange contribution at 
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Fig. 8.5. The ratio of the elastic scattering amplitudes for k to k-1 
Pomeron exchange. The amplitudes are computed at zero impact 
parameter (see Salam (1996a)). 

successively lower energies. The curves are reproduced from the 
paper by Salam (1996a) using a Monte Carlo program (Salam 
(1996b)) and with as = 0.18. Note that the nature of the dipole 
evolution is ideally suited to the construction of a Monte Carlo 
program which allows studies far more detailed than are possible 
analytically. 

Some analytic progress has been made in establishing the essen
tial features of the multiple scattering series. In particular, Mueller 
(1995) has introduced a toy model in which there are no trans
verse dimensions (i.e. the creation and annihilation operators have 
no arguments and satisfy [a, at] = 1). This simplification allows 
complete analytic calculations to be performed. For large enough 
energies, the toy model suggests that the terms in the multiple 
scattering series are ex n! where n is the number of Pomeron ex
changes. This behaviour also seems to hold to a good accuracy 
in the more realistic QCD case, as Fig. 8.5 shows. The graph 
shows the ratio of successive terms in the multiple scattering se-
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Fig. 8.6. The total cross-section for scattering primary dipoles of 
size R calculated with and without unitarization corrections (see 
Salam (1996a)). 

ries (for elastic scattering of two primary dipoles at zero impact 
parameter and fixed energy) and the linearity confirms the facto
rial behaviour of the terms in the series. This explains the origin 
of the apparent divergence of the multiple scattering series which 
is seen in Fig. 8.4. Thus it seems necessary to sum up the whole 
series before making any predictions. The (summed) large order 
behaviour of this series cancels out for small enough rapidities 
even though the individual terms each yield very large contribu
tions. This means that the one Pomeron exchange contribution is 
good provided the S -matrix is close to unity (as discussed earlier) 
but as soon as the double Pomeron exchange contribution starts 
to become important so, too, do all other Pomeron exchanges. 
The well behaved nature of the fully summed multiple scattering 
series and the relative smallness of the multiple scattering effects 
for y ;S 10 (which is roughly in line with our expectations from the 
start of this subsection) can be seen in Fig. 8.6, where the total 
cross-section is shown as a function of rapidity. 
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To conclude, we have shown how to unitarize the scattering 
amplitude. Unitarization, via multiple interactions, occurs in the 
perturbative domain (for small enough primary dipoles). However, 
non-perturbative physics is ultimately required in order to ensure 
that the total cross-section satisfies the Froissart-Martin bound 
(any calculation which assumes massless exchanges, as we do, need 
not obey that bound). We argued that multiple scattering is the 
largest unitarization effect. Also, for large enough energies, we 
argued that the effects of wave function saturation can no longer be 
ignored. Ultimately, the total cross-section becomes dominated by 
non-perturbative effects. We should also like to remind the reader 
that we have been working with primary dipoles which are small in 
size (e.g. dipoles arising from heavy onia). IT the colliding particles 
are light hadrons then the small size configurations are relatively 
rare fluctuations and lead to small corrections compared with the 
predominant contribution from non-perturbative physics. 

8.3 Summary 

• High energy scattering in QCD can be viewed as the scattering 
of dipole clusters which are generated by the incoherent branching 
of one dipole into two dipoles. We demonstrated the equivalence 
of this approach to the one of BFKL developed earlier. The dipole 
picture provides a very convenient description of high energy scat
tering in terms of the locations of the dipoles in impact parameter 
space. 

• In QCD the leading logarithm approximation to high energy 
scattering leads to a power-like growth of total cross-sections, i.e. 
rv sWo. This growth leads to the violation of unitarity at high 
enough energies. We quantify when this violation is expected to 
occur. 

• The dipole language of high energy scattering was derived 
within an operator formalism. This formalism is also suitable 
for the calculation of the important corrections (to the leading 
logarithm calculation) which ensure the preservation of unitarity. 
These corrections arise due to the large number of dipoles within 
the colliding particles leading to a significant probability that more 
than one pair of dipoles will interact per onium-onium collision. 
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8.4 Appendix A 

In this appendix we outline the derivation ofEq.(8.7). Our starting 
point is the relation, 

F( s, kb k2' q) 
k~(ki - q)2 

x e -i(kIobll,-k2ob22,+Qo(bi-b2)) 

X (8~ 8~, )-lj(y,bbb~,b2,b;), 
1 1 

which is just the inverse transform of Eq.( 4.46). 

(A.8.1) 

We now make use of the convolution formula, Eq.(8.6), to re
place j by a convolution of two j factors; after a simple manipu
lation we find (again using Eq.(4.51) with n = 0) 

F(s,kb k 2,q) 1 J 2 2 2( / /) 
(2",")2 d bll,d b 22,d b i - b 2 

k~(ki - q)2 II 

~ J d2bxd2b~ d2 d2 / -i(ooo) 
X 8 4 C ce 

7r b xx' 

X ~ J dv v 2 J dpp2e<>s(xo(v)y'+xo(J1.)(Y-Y')) 
16 (v 2 + 1/4)2 

X ¢~(bb b~, c)¢~*(bx, b~, c)¢~(bx, b~, c/)¢~*(b2' b;, c/), (A.8.2) 

where b xx' = b x - b x" 
N ow we insert the delta function operator: 

82(bx - by )82(b~ - b~) + 82(bx - b~ )82(b~ - by) 

_ 1 82 82, J d211 d212 
- 2(27r)4 by by 112 122 

X [eildbx-by) _ eildbx-by) _ eildb~-by) + eildb~-by)] 
X kI2o(bx-by) _ ei12o(bx-by) _ eiI2o(b~-by) + ei12o(b~-by)] . 

(A.8.3) 

Since the eigenfunctions, ¢~(bI' b 2, c), are symmetric under the 
interchange of the first two arguments (i.e. b i +-+ b 2 ) we can insert 
the delta functions of Eq.(A.8.3). Note that the Ii integrals are 
finite before the action of the Laplacian operators - we utilized 
the symmetry property of the eigenfunctions under interchange 
of the arguments to ensure just this property. As a result, we 
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can perform an integration by parts to reverse the action of the 
Laplacian operators such that they act upon the eigenfunctions 
rather than the I integrand. Hence, 

F(s,kI,k2,q) _1_Jd2b ,d2b ,d2(b' -b')e- i ( ... ) 
k~(kl-q)2 4(27r)6 11 22 1 2 

X J d2bxd24b~ d2byd24b~ d2cd2c,d2I21 d2I22 [ ... J [ ... J 

bx~ b yy' 11 ~ 

x :8 J dv v 2 J df.1 f.12ea .(xo(v)y'+xo(J.l)(Y-Y')) 

X J~(bI, b~, c)J~*(by, b~, c)J~(bx, b~, c')J~*(b2' b2, c').(A.8.4) 

Making the standard change of variables 

1 ( ')' Rx = '2 b x + b x - c , 

and similarly for the other co-ordinates, allows the volume ele
ments to be re-written, i.e. 

d2(b~ - b 2)d2cd2c' -+ d2 ( C - c')d2Rld2 R2 

d2bxd2b~ -+ d2Rxd2bxx" etc. (A.8.5) 

The independent variables are now b ll" b 22" RI, R 2, b xx" b yy" 
R x , Ry and c - c'. The only dependence upon c - c' is in 
the exponential terms. Hence we can collect them together 
and integrate over c - c' which gives the delta function factor 
(27r)252 (q -11 -12). 

The remaining integrals, combined with the definitions speci
fied by Eqs.(8.8) and (8.9), lead directly to the desired result, i.e. 
Eq.(8.7). 

8.5 Appendix B 

In this appendix we derive Eq.(8.27) for the probability of emis
sion of a gluon from a dipole. 

Consider a colour singlet dipole with momentum PI moving 
along the positive z-axis. It is convenient to define a momentum 
P2 with the same energy component moving along the negative 
z-axis, such that 2PI . P2 = s. 

Let ¢(Po, r) be the amplitude for this dipole to consist of a 
quark-antiquark pair in which the the quark carries a fraction Po 
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Fig. 8.7. Graphs for the emission of a gluon from a dipole. 

of the longitudinal momentum of the dipole and is separated from 
the antiquark, in impact parameter space, by r. We may write this 
in terms of an amplitude in transverse momentum space as 

¢(Po, r) = (2~ )2 J d21 ei1.r ~(po, I), (B.8.1) 

where ~(Po, 1) is the amplitude for the quark to have transverse 
momentum 1 and the antiquark to have transverse momentum-I. 

N ow consider a gluon with transverse momentum k and fraction 
of longitudinal momentum P emitted from this dipole, as shown in 
Fig. 8.7. We assume that P ~ Po, (1- Po). This is the strong order
ing required for the leading logarithm approximation. This gluon 
will later couple to a further gluon so it is really off-shell. However, 
since any gluon to which it couples has a fraction of longitudinal 
momentum which is small compared with that of the parent gluon 
and transverse momentum which is small compared with the lon
gitudinal momentum of the parent, it is a valid approximation to 
consider the emitted gluon to be on shell (and hence transversely 
polarized). The rapidity of the emitted gluon is given by 

(B.8.2) 

We may write the momenta of the quark and antiquark as 

[ 1-' _ 1-' + 12 1-' + [1-' 
1 - POPl -P2 -L' spo 

(B.8.3) 
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l/J. - (1 ) /J. + f /J. l/J. 
2 - - Po PI ( 1 ) P2 - .L , 

S - Po 

and the momentum of the emitted gluon as 

k 2 

k/J. = ppi + -P~ + ki· 
sp 

235 

(B.8.4) 

(B.8.5) 

Furthermore we can exploit gauge invariance to demand that the 
polarization vector, e/J., of the emitted gluon has no component 
proportional to pi and, using the fact that the gluon is transverse 
(e· k = 0), we have 

2e ·k 
e/J. = --p~ + ei. (B.8.6) 

sp 

Now the amplitude for emission from the quark (Fig. 8.7(a)) is 

2h . e -
- igTa - 1 k'¢(po, 1- kj2), (B.8.7) 

2 1 , 

where the factor -¢;(po, 1- kj2) indicates that the quark-anti quark 
pair produced by the dipole are separated by 21 - k in transverse 
momentum space. T a is the colour generator in the fundamental 
representation. We have used the eikonal approximation as the 
emitted gluon is soft relative to the parent quark. 

For P ~ Po, we may use Eqs.(B.8.3), (B.8.5) and (B.8.6) to 
write 

I 2poe· k 
2 1 ·e=-'---

P 

211 . k = PO k 2 

P 

(we have kept only the terms proportional to 1 j P ), so that the 
contribution from this graph becomes 

(B.8.8) 

Likewise the contribution from emission off the antiquark 
(Fig. 8. 7(b)) is 

(B.8.9) 
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Returning to impact parameter space the total amplitude for 
the emission of the gluon off a dipole with transverse size r is 

e·k 1 J 2"1 (- k - k) -2igra--- dIe,·r 1/J(po 1- -) -1/J(po 1 + -) 
k 2 (211")2 '2' 2 

2 · a e . k -i1k·r 1 J d21 il·r .7.( 1) (1 ik.r) 
- zgr k2e 2 (211")2 e 'I-' Po, - e 

(B.8.10) 

Taking the square modulus of this and summing over emitted 
gluon polarizations and colours gives us 

4 2 N 2 - 1 11/J(po, r W (1 _ ik.r) 
g N k2 e (B.8.11) 

(where we understand that we must take the real part of the expo
nential). The factor of (N 2 -1)/2N comes from the square of the 
colour generator summed over all possible colours for the emitted 
gluon. In the large N limit we may replace this by N /2 (this al
lows us to generalize our result without modification, so that it 
describes gluon emission off any colour dipole, i.e. not just a q-q 
pair). It is worth noting here that this expression is proportional to 
the impact factor for the coupling of a (zero momentum transfer) 
Pomeron to the parent dipole. The formalism is easily extended 
to non-zero momentum transfer. t 

The element of phase space is given by 

_1_d2k dp 
2(211")3 P . 

We may use Eq.(B.8.2) to express this in terms of rapidity and 
obtain 

1 2 
2(211")3d kdy. 

Thus the probability of emitting a gluon into a rapidity interval 
dy and transverse momentum interval d2k is 

t For non-zero momentum transfer, we need to multiply Eq.(B.8.10) by the 
conjugate of the amplitude which is obtained by replacing k ---> k - q in 
Eq.(B.8.10). This adds extra exponential factors in the final result as well 
a factor of (e· k)(e· (k - q)). The latter factor poses no problem, on using 
Eq.(8.29), whilst the former (on transforming to impact parameter space) 
leads to delta functions which fix the locations of the dipoles (i.e. the ar
guments of the creation and annihilation operators of Eq.(8.32)). 
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(B.8.12) 

The factor I'I/J(po, r W is just the probability of finding the dipole 
in the first place. Therefore the probability for emission of a gluon 
from a dipole is given by Eq.(8.27). 
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