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Abstract

We introduce a class of stock models that interpolates between exponential Lévy models
based on Brownian subordination and certain stochastic volatility models with Lévy-
driven volatility, such as the Barndorff-Nielsen–Shephard model. The driving process
in our model is a Brownian motion subordinated to a business time which is obtained
by convolution of a Lévy subordinator with a deterministic kernel. We motivate several
choices of the kernel that lead to volatility clusters while maintaining the sudden extreme
movements of the stock. Moreover, we discuss some statistical and path properties of the
models, prove absence of arbitrage and incompleteness, and explain how to price vanilla
options by simulation and fast Fourier transform methods.
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1. Introduction

Since the mid 1990s, the modeling of stocks by exponential Lévy processes has gained ever
increasing importance. Among the most popular models of pure jump type are the variance
gamma process [14], models based on generalized hyperbolic processes [10], and those based
on normal tempered stable processes [8]. In particular, Carr et al. [8] studied the subclass of
normal tempered stable processes, which can be obtained by subordinating a Brownian motion
with drift to an increasing Lévy process (subordinator) of tempered stable type. This popular
class of processes is often referred to as CGMY models.

A main advantage of exponential Lévy processes is that they are able to capture extreme
movements of stock prices by choosing a distribution with fat tails. However, they still exhibit,
by definition, independent increments. Therefore, exponential Lévy models cannot produce
volatility clusters. This regularly observed feature of financial time series means that large
movements of the stock prices tend to be followed by other large movements (while small
movements tend to be followed by small movements). Therefore, it was suggested in [8] to run
an exponential Lévy process in a business time, which is an increasing process independent of
the original Lévy process. Typical choices for the business time are an integrated square root
diffusion (Cox–Ingersoll–Ross process) or an integrated Ornstein–Uhlenbeck process driven
by a Lévy subordinator, as studied by Barndorff-Nielsen and Shephard [1]. While introducing
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610 C. BENDER AND T. MARQUARDT

the business time process can cause volatility clusters, it comes at the cost of requiring an
additional source of randomness which complicates the model.

In the present paper we suggest a different way to incorporate volatility clusters into expo-
nential Lévy models based on Brownian subordination, without adding an additional source
of randomness. To this end, let W denote a Brownian motion and let L denote an increasing
Lévy process. Given a deterministic kernel function k(t, s), we integrate memory into the
subordinator L by a convolution integral T (t) = ∫ t

0 k(t, s) dL(s). This type of process is
related to fractional Lévy processes and convoluted Lévy processes, as studied in [16] and [3],
respectively. We then run the Brownian motion in the business time T , i.e. we consider
X(t) = W(T (t)) as the driving process of the model. In Section 2 we motivate and illustrate
some explicit choices for the kernel function, partly based on fractional integral operators, that
induce different kinds of memory effect. In contrast to the original exponential Lévy model,
these kernels yield models with continuous trajectories, but the Lévy model comes up as a
limiting case.

In general, our assumptions guarantee that the business time T is a strictly increasing,
continuous process, i.e. the jumps of the Lévy process L are smoothed out to some extent
by the convolution. Depending on the choice of the kernel, we can build models which have
rougher paths than a Brownian motion with stochastic volatility (which typically has a Hölder
continuity index of 1

2 ), but do not exhibit jumps. We note that such path behavior is supported
by some empirical studies making use of the singularity spectrum, as reported in, e.g. [9,
Chapter 7.6].

The paper is organized as follows. In Section 2 we introduce the concept of a convoluted
subordinator as a business time. Some basic properties (including the computation of the
second-order structure and of the characteristic function) are deduced and several examples of
convolution kernels are provided. We also show that many stochastic volatility models with
Lévy-driven volatility such as the Barndorff-Nielsen–Shephard model [1] can be cast into the
framework of convoluted subordinators. In Section 3 we discuss some statistical properties
of the associated stock model, which is basically the stochastic exponential of the Brownian
motion W in the business time T . Section 4 is devoted to the proof of absence of arbitrage
and incompleteness. Finally, in Section 5 we explain the pricing of vanilla options in this
model class using simulation or fast Fourier transform methods. To this end, we compute
the log-characteristic function of the stock model and simplify it analytically in some specific
examples. We illustrate the implied volatility smile of the models and compare it with one of
the original exponential Lévy models.

2. Convoluted subordinators as the business time

In this section we discuss the class of business times which we consider in this paper. We start
with some basic facts on Lévy subordinators. A Lévy subordinator is an increasing Lévy process
{L(t)}t≥0 on a filtered probability space (�,F , (Ft )t≥0,P) satisfying the usual conditions. In
terms of the characteristic triplet (γ, σ 2, ν), where

E[eiuL(t)] = etψ(u),

ψ(u) = iγ u− 1

2
u2σ 2 +

∫
R\{0}

(eiux − 1 − iux 1{|x|≤1})ν(dx), u ∈ R,
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a subordinator can be characterized by

σ = 0, ν((−∞, 0)) = 0,
∫ ∞

0
(x ∧ 1)ν(dx) < ∞, γ0 := γ −

∫ 1

0
xν(dx) ≥ 0.

Hence, in terms of γ0, the characteristic exponent ψ of a subordinator can be simplified to

ψ(u) = iγ0u+
∫ ∞

0
(eiux − 1)ν(dx), u ∈ R.

Moreover, L has a finite second moment if and only if
∫
x>1 x

2ν(dx) < ∞. In this case it holds
that

var(L(1)) =
∫
x>0

x2ν(dx).

For the proofs and more information about Lévy subordinators, we refer the reader to [9]
or [20]. We also note that integration with respect to L can be performed pathwise, because L
is increasing.

Subordinators widely used in financial modeling include the gamma subordinator, given by
(κ > 0)

γ0 = 0, νκ(A) =
∫
A

e−x/κ

κx
dx, (1)

and tempered stable subordinators with index of stability 0 < α < 1, given by

γ0 = 0, νκ,α(A) =
∫
A

1

�(1 − α)

(
1 − α

κ

)1−α e−(1−α)x/κ

x1+α dx. (2)

In both cases the subordinators are already normalized in the sense that

E[L(1)] = γ0 +
∫
x>0

xν(dx) = 1.

We note that both examples are subordinators of infinite activity, that is, ν((0,∞)) = ∞.
Throughout the paper, the following hypothesis will be in force.

Assumption 1. L is a Lévy subordinator for which γ0 > 0 or ν((0,∞)) = ∞ holds, i.e. L is
strictly increasing.

A convoluted subordinator can now be defined by convolution of a subordinator with a
Volterra-type kernel.

Definition 1. A stochastic process {T (t)}t≥0 defined by

T (t) =
∫ t

0
k(t, s) dL(s)

is called a convoluted subordinator if L is a Lévy subordinator satisfying Assumption 1 and
k : [0,∞)2 → [0,∞) fulfills the following properties.

(i) For fixed t ∈ [0,∞), the mapping s �→ k(t, s) is integrable.

(ii) For fixed s ∈ [0,∞), the mapping t �→ k(t, s) is continuous and increasing. Moreover,
there is an ε > 0 such that t �→ k(t, s) is strictly increasing on [s, s + ε].

(iii) k(t, s) = 0, whenever s > t ≥ 0, i.e. the kernel k is of Volterra type.
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The next proposition collects some path properties of a convoluted subordinator.

Proposition 1. The processT = {T (t)}t≥0 has almost surely continuous and strictly increasing
sample paths.

Proof. Recalling that L is strictly increasing by Assumption 1, it follows directly from
Definition 1(ii) that T has strictly increasing sample paths. To show continuity from below, we
consider, for t > u ≥ 0,

T (t)− T (u) =
∫ t

0
k(t, s) dL(s)−

∫ u

0
k(u, s) dL(s)

=
∫ t

0
(k(t, s)− k(u, s)) dL(s)−

∫ t

u

k(u, s) dL(s).

Since k(t, s) − k(u, s) is strictly decreasing in u, the first integral tends to 0 as u ↗ t by
monotone convergence. By the dominated convergence theorem, the second term converges
to 0 as u ↗ t , since k(u, s) ≤ k(t, s) for u < t . Using a similar argument, we can show
continuity from above and the proof is complete.

Since T is increasing, it qualifies as a random time change and can be applied as a business
time. Note also that the convolution with the Volterra-type kernel k smoothes the jumps of L
and, thus, results in a continuous time change.

Before we present some examples, we briefly discuss some distributional properties of the
business time T in terms of the kernel k. The proof of the following theorem is given in [21].

Theorem 1. For every t ∈ [0,∞), the distribution of T (t) is infinitely divisible and

E[exp{zT (t)}] = exp{φt (z)},
where

φt (z) = zγ0

∫ t

0
k(t, s) ds +

∫ t

0

∫ ∞

0
(ezk(t,s)x − 1)ν(dx) ds,

holds for z = u+ iv with v ∈ R and u ≤ 0.

From the previous theorem we can easily extract information about the moments of the
business time T .

Corollary 1. (Moments.) (i) If E[L(1)] < ∞, we have

E[T (t)] = E[L(1)]
∫ t

0
k(t, s) ds.

(ii) If E[L(1)2] < ∞, it holds that

cov(T (t), T (u)) = E[L(1)2]
∫ t∧u

0
k(t, s)k(u, s) ds.

Furthermore, for 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4,

cov(T (t4)− T (t3), T (t2)− T (t1)) = E[L(1)2]
∫ t2

0
k(t2, s)(k(t4, s)− k(t3, s)) ds

+ E[L(1)2]
∫ t1

0
k(t1, s)(k(t3, s)− k(t4, s)) ds.
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As a first example, we consider a fractional subordinator.

Example 1. (Fractional subordinator.) For H > 1
2 , we consider the kernel

zH (t, s) = dH s
1/2−H

∫ t

s

(u− s)H−3/2uH−1/2 du,

with a normalizing constant

dH =
(
H − 1

2

)(
2H�(3/2 −H)

�(H + 1/2)�(2 − 2H)

)1/2

.

We call the processT (H)(t) := ∫ t
0 zH (t, s) dL(s) a fractional subordinator with Hurst parameter

H driven by L. If L has a finite second moment and is normalized to E[L2(1)] = 1, we can
deduce, from the previous corollary and the representation formula for a fractional Brownian
motion on an interval (see [2] or [18]), that T (H) has the same second-order structure as a
fractional Brownian motion with Hurst parameterH . In particular, the autocovariance function

ρH (n) = cov(T (H)(k)− T (H)(k − 1), T (H)(k + n)− T (H)(k + n− 1))

= 1
2 (|n+ 1|2H − 2|n|2H + |n− 1|2H )

∼ H(2H − 1)|n|2H−1

exhibits long memory. Roughly speaking, this can be interpreted as follows. A large jump of
L acts as a shock to the market which increases the trading activity. However, the shock does
not vanish instantaneously, but the aftereffects of the shock persist and influence the market
later on.

Note that, from the previous corollary and by substitution to a beta integral, we can also
calculate

E[T (t)] = E[L(1)]dH
∫ t

0
s1/2−H

∫ t

s

(u− s)H−3/2uH−1/2 du ds = CH t
2H

for some constant CH . This implies that the mean cumulated trading activity increases faster
than linearly. This property is questionable, at least when H � 0.5. The next example will
mend this problem.

Example 2. (Holmgren–Liouville fractional subordinator.) A damped version of the fractional
Holmgren–Liouville integral of the indicator function leads to the kernel

z̃H (t, s) = H + 1/2

E[L(1)]
(

1 − s

t

)H−1/2

+
,

provided L satisfies E[L(1)] < ∞. Here (·)+ denotes the positive part. The corresponding
business time driven by L is T̃ (H)(t) = ∫ t

0 z̃H (t, s) dL(s).
This kernel is much simpler than the one in the previous example, but has a similar qualitative

behavior. If a large jump ofL occurs at time s then the business time will increase with a gradient
equal to ∞ at t = s. This corresponds to a sudden shock to the market. Then gradually the
gradient decreases, but weak aftereffects of the jump influence the increments of the business
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Figure 1: Comparison between a sample path of a gamma process L with κ = 1
20 and its convolution

T̃ (H) with a damped Holmgren–Liouville kernel with H = 3
4 .

time forever. Contrary to the fractional subordinator, there is no simple expression known for
the second-order structure, but we can easily calculate

E[T̃ (H)(t)] =
(
H + 1

2

) ∫ t

0

(
1 − s

t

)H−1/2

+
ds = t,

var(T̃ (H)(t)) = (H + 1/2)2 E[L(1)2]
E[L(1)]2

∫ t

0

(
1 − s

t

)2H−1

+
ds = (H + 1/2)2

2H

E[L(1)2]
E[L(1)]2 t.

Figure 1 compares a sample path of T̃ H and the corresponding path of the driving gamma
process.

Example 3. As a third example, we present a simple kernel which exhibits short memory
effects, namely, for ε > 0,

kε(t, s) = E[L(1)]−1 min

(
1,
(t − s)+

ε

)
,

and the business time Tε(t) = ∫ t
0 kε(t, s) dL(s) associated to a Lévy subordinator L. Here, a

jump of L at time s increases the trading activity in the market linearly (with the jump height
divided by ε as gradient) for a short period of length ε. We will see in Section 5 that the simple
form of the kernel facilitates efficient option pricing via fast Fourier transform. Note also that
integration by parts yields

Tε(t) = 1

E[L(1)]ε
∫ t

max{0,t−ε}
L(s) ds.

Concerning the moments of Tε, we note that

E[Tε(t)] =

⎧⎪⎪⎨
⎪⎪⎩
t − ε

2
, t ≥ ε,

t2

2ε
, t < ε,
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Figure 2: Comparison between a sample path of a gamma process L with κ = 1
20 and its convolution Tε

with the kernel kε for ε = 1
20 .

var(Tε(t)) = E[L(1)2]
E[L(1)]2

⎧⎪⎪⎨
⎪⎪⎩
t − 2ε

3
, t ≥ ε,

t3

3ε2 , t < ε,

and that

cov(Tε(t2)− Tε(t1), Tε(t4)− Tε(t3)) = 0, t4 ≥ t3 ≥ t2 + ε ≥ t2 ≥ t1.

The last property explains why we call this kernel a short memory kernel. The correlation of
the corresponding business time dies out, if the lag between the increments is larger than ε.
This property holds true for any kernel k(t, s) satisfying k(t, s) = c for some constant c and
every (t, s) such that t − s ≥ ε, thanks to Corollary 1(ii). A typical sample path of Tε and the
corresponding path of the driving gamma process are illustrated in Figure 2.

We close this section with an example of how popular stochastic volatility models driven by
Lévy processes can be cast into the framework of convoluted subordinators.

Example 4. (CARMA-type processes.) Suppose that W is a Brownian motion and that σ(t) is
an adapted process independent of W . We interpret σ as the stochastic volatility and consider
the process Y (t) = ∫ t

0 σ(u) dW(u) as the driving process for a stock model. By the Dambis–
Dubins–Schwarz theorem (see [12, Theorem 3.4.6]), Y has the same law as the time-changed
Brownian motion Ỹ (t) = W(T (t)), where

T (t) = 〈Y 〉t =
∫ t

0
σ 2(u) du.

Suppose now that

σ 2(t) = σ 2(0)h(t)+
∫ t

0
h(t − s) dL(s),

where L is a Lévy subordinator, σ 2(0) is independent of L, and h is a deterministic function
satisfying h(u) = 0 for u ≤ 0 and h(u) > 0 for u > 0. This setting subsumes the
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Barndorff-Nielsen–Shephard model [1] and CARMA-type processes as volatility; see [5]
and [6]. Different choices for the function h are also discussed in [11]. If h is bounded,
we can interchange the order of integration and obtain

T (t)− σ 2(0)
∫ t

0
h(u) du =

∫ t

0

∫ u

0
h(u− s) dL(s) du =

∫ t

0

(∫ t

s

h(u− s) du

)
dL(s).

Therefore, T is basically a convoluted subordinator with kernel k(t, s) = ∫ t
s
h(u− s) du. None

of the kernels from the previous examples are of this special form. Nonetheless, there is an
important difference between the short memory kernel of Example 3 and the fractional kernels.
The business time induced by the short memory kernel kε can be obtained from a stochastic
volatility model with

σ 2(t) = L(t)− L((t − ε) ∨ 0)

ε
.

Contrarily, the fractional kernels yield business times which are continuous, but not Lipschitz
continuous and can therefore not be recovered by stochastic volatility models (with nonexplod-
ing σ ).

3. Financial models based on convoluted subordinators

We now introduce a financial market model based on convoluted subordination. It consists
of one riskless asset B (bond) and one risky asset S (stock) that operate in uncertain conditions
of probabilistic character described by a filtered probability space (�,F , (Ft )t≥0,P). Here,
the filtration (Ft )t≥0 describes the flow of incoming information. Our main assumption about
the price process S of the stock is the following. We assume that S satisfies

S(t) = S(0) exp

{
rt +

(
µ− σ 2

2

)
T (t)+ σW(T (t))

}
, t ≥ 0,

where W = {W(t)}t≥0 is a standard Brownian motion and the convoluted subordinator
T = {T (t)}t≥0 serves as a business time. Moreover, σ > 0, µ ∈ R, and S(0) > 0 are
constants. The constant µmodels the excess return of the stock (in dependence of the business
time) compared to the riskless interest rate r ≥ 0. Consequently, the riskless bond is given by

B(t) = ert, t ≥ 0.

The basic cumulated noise source of the model is

X(t) = W(T (t)), t ≥ 0.

Some important albeit simple properties of X are stated in the following proposition.

Proposition 2. X satisfies the following properties.

(i) For all p > 0 and t > s ≥ 0, we have

E[|X(t)−X(s)|p] = 2p/2

π1/2�

(
p + 1

2

)
E[|T (t)− T (s)|p/2].

Moreover, for all n ∈ N,
E[(X(t)−X(s))2n−1] = 0.
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In particular,

E[X(t)] = 0, var(X(t)) = E[T (t)] = E[L(1)]
∫ t

0
k(t, s) ds.

(ii) X is leptokurtic if T is nondeterministic.

(iii) X has uncorrelated increments.

(iv) X has weakly stationary increments on an interval [a, b] if and only if t �→ ∫ t
0 k(t, s) ds

is a linear function on this interval.

(v) X has continuous trajectories.

(vi) The realized volatility satisfies [X]t = 〈X〉t = T (t).

Proof. Part (i) can be easily calculated by conditioning on the σ -field F T∞ generated by
{T (t)}t≥0. For example,

E[|X(t)−X(s)|p] = E[E[|W(T (t))−W(T (s))|p|F T∞]]

= 2p/2

π1/2�

(
p + 1

2

)
E[|T (t)− T (s)|p/2],

because (W(T (t)) − W(T (s)) | F T∞) is normally distributed with zero mean and variance
T (t)− T (s).

(ii) From (i) we can calculate the kurtosis

κ(X) = E[X(t)4]
E[X(t)2]2 = 3

E[T (t)2]
E[T (t)]2 > 3,

if T is nondeterministic.
(iii) By conditioning on F T∞ we can easily see thatX inherits this property from the Brownian

motion.
(iv) We already know that E[X(t)] = 0 and that X has uncorrelated increments. Hence, X

has weakly stationary increments on [a, b] if and only if var(X(t+h)−X(t)) does not depend
on t for all t, t + h ∈ [a, b]. However, by (i),

var(X(t + h)−X(t)) = E[T (t + h)] − E[T (t)]

= E[L(1)]
(∫ t+h

0
k(t + h, s) ds −

∫ t

0
k(t, s) ds

)
.

Part (v) follows from the continuity of W and T .
(vi) By the continuity of X, both brackets coincide. The last identity is implied by 〈X〉t =

〈W 〉T (t) = T (t).

We now revisit the examples from the previous section. They share the following properties,
which are also illustrated by Figures 3 and 4.

• Continuous trajectories. It is often argued that large changes in stock prices are best
explained by jumps. However, some empirical tests based on the singularity spectrum,
as in [15] and [17], indicate that there may be no jumps in the stock prices. However,
they also show that stock prices have a rougher behavior than typical stochastic volatility
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Figure 3: Stock (right) and noise, i.e. increments of X (left), based on the Holmgren–Liouville kernel
with H = 3

4 and a gamma process L with κ = 1
20 .
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Figure 4: Stock (right) and noise, i.e. increments of X (left), based on the short-memory kernel of
Example 3 with ε = 1

20 and a gamma process L with κ = 1
20 .

models whose singularity spectrum reduces to a single point; see also [9, Chapter 7.6].
In this respect, the Holmgren–Liouville fractional kernel looks particularly promising,
as the corresponding stock model exhibits a Hölder continuity of order (H − 1

2 )/2 at
points, where large jumps occur in the subordinator. So, in terms of the roughness of the
path, this model is somewhere in between jump models and stochastic volatility models.

• Fat tails. In stock models based on Lévy subordinators, such as the variance gamma
model, heavy tails stem from the large jumps of the subordinator. Applying the specific
kernels introduced in the examples of the previous section, most mass of a jump of L is
eaten up byT shortly after the jump (at least ifH is close to 1

2 or ε is close to 0). Therefore,
the tail behavior of the convoluted subordinator is ‘similar’ to that of the original Lévy
subordinator in such situations.

• Volatility clustering. As explained in the previous section, the three example kernels
introduce memory into the business time in the sense that a large increase of the business
time (and, hence, of the realized volatility) is typically followed by another large one.
This effect increases with H or with ε. These two parameters therefore have a simple
interpretation, as they admit to adjust between the fatness of the tails and the memory of
the integrated volatility.
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We also note that the Holmgren–Liouville fractional subordinator yields weakly stationary
increments of the corresponding cumulated noise source X, and so does the simple short-
memory kernel of Example 3 after a burn-in-phase until time t = ε.

Remark 1. By the previous proposition we know that the business time T (t) coincides with
the realized volatility. While it is obvious, by construction, that T (t) is increasing in t , we might
ask whether T (t)/t still has some monotonicity properties. We shall show that, for the three
example kernels, we can neither expect T (t)/t to be increasing nor decreasing in the convex
order, i.e.

t �→ E

[
g

(
T (t)

t

)]

is neither increasing nor decreasing for every convex function g under appropriate assumptions.

(i) Fractional kernel. We calculate

E

[(
T (H)(t)

t

)2]
= t−2(var(T (H)(t))+ E[T (H)(t)]2) = E[L(1)2]t2H−2 + C2

H t
4H−2

for some constant CH ; see Example 1. For 1
2 < H < 1, this function is decreasing for small t

and increasing for large t .

(ii) Short-memory kernel. The same reasoning as for the fractional kernel yields, thanks to
Example 3,

E

[(
Tε(t)

t

)2]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + t−1
(

E[L(1)2]
E[L(1)]2 − ε

)
+ t−2

(
ε2

4
− 2ε E[L(1)2]

3 E[L(1)]2

)
, t ≥ ε,

E[L(1)2]
E[L(1)]2

t

3ε2 + t2

4ε2 , t < ε,

which is increasing for small t and decreasing for large t , provided ε < 1.

(iii) Holmgren–Liouville kernel. For the Holmgren–Liouville kernel (Example 2), we obtain

E

[(
T̃ (H)(t)

t

)2]
= 1 + E[L(1)2]

E[L(1)]2

(H + 1)2

2H
t−1,

which is decreasing in t . If L(t) = γ t + J (t), where J is an increasing compound Poisson
process, we consider the function gµ(x) = max(x, µ) for some µ > γ/E[L(1)]. Then, it is
easy to see that

E[gµ(T (1))] > γ

E[L(1)] , lim
t↓0

E

[
gµ

(
T (t)

t

)]
= γ

E[L(1)] ,

which shows that t �→ E[gµ(T (t)/t)] is not decreasing.

We close this section by providing the characteristic function of the logarithmic stock price.
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Theorem 2. For every t ≥ 0, the distribution of log(S(t)) is infinitely divisible with charac-
teristic function

E[exp{iu log(S(t))}]

= exp

{
iu(log(S(0))+ rt)+

(
iu

(
γ0µ− γ0σ

2

2

)
− u2σ 2

2

) ∫ t

0
k(t, s) ds

+
∫ t

0

∫ ∞

0

(
exp

{(
iu

(
µ− σ 2

2

)
− u2σ 2

2

)
xk(t, s)

}
− 1

)
ν(dx) ds

}
.

Proof. It follows from Theorem 1, by conditioning on F T∞, that

E[exp{iu log(S(t))}]

= E

[
E

[
exp

{
iu

(
log(S(0))+ rt +

(
µ− σ 2

2

)
T (t)+ σW(T (t))

)} ∣∣∣∣ F T∞
]]

= exp{iu(log(S(0))+ rt)} E

[
exp

{
iu

(
µ− σ 2

2

)
T (t)−

(
u2σ 2

2

)
T (t)

}]

= exp{iu(log(S(0))+ rt)} exp

{
γ0

(
iu

(
µ− σ 2

2

)
− u2σ 2

2

) ∫ t

0
k(t, s) ds

+
∫ t

0

∫ ∞

0

(
exp

{(
iu

(
µ− σ 2

2

)
− u2σ 2

2

)
xk(t, s)

}
− 1

)
ν(dx) ds

}
.

This also proves that log(S(t)) is infinitely divisible.

4. Absence of arbitrage and incompleteness

We shall now prove that the model, which we introduced in the previous section, is free of
arbitrage and incomplete. Recall that the model consists of a riskless bond B(t) = ert and
stock given by

S(t) = S(0) exp

{
rt +

(
µ− σ 2

2

)
T (t)+ σW(T (t))

}
.

Here W is a Brownian motion independent of a Lévy subordinator L with Lévy measure ν on
a filtered probability space (�,F ,Ft ,P)t≥0 and

T (t) =
∫ t

0
k(t, s) dL(s).

As a standing assumption, in this section we shall assume that ν((0,∞)) �= 0. We also fix the
investment horizon τ ∈ (0,∞). In order to construct equivalent martingale measures for the
market, we first consider, for any continuous function η : [a, b] → R such that [a, b] ⊂ (0,∞)

satisfies ν([a, b]) �= 0, the stochastic exponential

Zη(t) = exp

{
−t

∫ b

a

(eη(x) − 1)ν(dx)+
∫ t

0

∫ b

a

η(x)Ñ(dx, ds)

}
.

Here, Ñ is the compensated jump measure corresponding to ν. We define a new probability
measure Rη via the relation

dRη

dP
= Zη(τ).
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Under Rη, the process L is still a Lévy subordinator determined by the pair

νη(dx) = exp{1[a,b](x)η(x)}ν(dx), γ
η
0 = γ0;

see, e.g. [9, Proposition 9.8].
We next introduce a filtration via

U(t) = T −1(t) = inf{s ≥ 0; T (s) ≥ t},
Gt = σ(W(s), 0 ≤ s ≤ t, U(s), 0 ≤ s ≤ t ∧ τ).

Note that W is still a Brownian motion with respect to (Gt )t≥0 under the measure Rη and that,
for any 0 ≤ t ≤ τ , T (t) is a stopping time with respect to (Gt )t≥0, since

{T (t) ≤ s} = {U(s) ≥ t} ∈ Gs .

We now define

Z(t) = exp

{
−µ
σ
W(t ∧ T (τ))− µ2

2σ 2 (t ∧ T (τ))
}

and Z(∞) := limt→∞ Z(t). By conditioning on F T
τ we can easily see that E[Z(∞)] = 1.

Therefore, Z is a uniformly integrable martingale with last element Z(∞) with respect to the
filtration (Gt )t≥0 under the measure Rη .

Thus, Qη defined by
dQη

dRη
= Z(∞)

is a probability measure on (�,F ) equivalent to P. Thanks to Girsanov’s theorem

W̃ (t) = W(t)+ µ

σ
(t ∧ T (τ)), t ≥ 0,

is a Brownian motion with respect to Qη. Moreover, the dynamics of L remain unchanged by
the second change of measure.

Under Qη, the dynamics of the discounted stock are therefore given by

e−rtS(t) = S(0) exp
{
σW̃(T (t))− 1

2σ
2T (t)

}
,

where W̃ is a Brownian motion and T (t) is a convoluted subordinator under Qη driven by a
Lévy subordinator L, and the distribution of L is determined by the pair (γ η0 , ν

η).
It now follows from the optional sampling theorem that {e−rtS(t)}0≤t≤τ is a local martingale

under Qη with respect to the filtration (GT (t))0≤t≤τ . (We can, in fact, easily show that it is a
martingale.) Note next that F S

t = GT (t), where (F S
t )0≤t≤τ is the filtration generated by the

stock S. Therefore, under each measure Qη, the discounted stock is a (local) martingale with
respect to (F S

t ).

Theorem 3. Suppose that ν((0,∞)) �= 0. Then the market (B(t), S(t)) is free of arbitrage and
incomplete on every finite time horizon [0, τ ] with respect to the information structure given
by (F S

t )0≤t≤τ .

Proof. We have already shown that each of the measures Qη is an equivalent martingale
measure for this market. Therefore, the model is free of arbitrage. Incompleteness will follow,
if we establish that

Qη1
| F S

τ
�= Qη2

| F S
τ

for some η1, η2. We take η1 = 0 and η2 = 1[a,b] for some 0 < a < b such that ν([a, b]) �= 0.
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Then,

EQη1 [T (τ)] =
(∫ τ

0
k(τ, s) ds

)
EQη1 [L(1)]

=
(∫ τ

0
k(τ, s) ds

)(
γ0 +

∫
x>0

xν(dx)

)

<

(∫ τ

0
k(τ, s) ds

)(
γ0 +

∫
x>0

x exp{1[a,b](x)}ν(dx)
)

=
(∫ τ

0
k(τ, s) ds

)(
γ
η2
0 +

∫
x>0

xνη2(dx)

)

=
(∫ τ

0
k(τ, s) ds

)
EQη2 [L(1)]

= EQη2 [T (τ)].

As T (τ) = 〈W 〉T (τ) is GT (τ)-measurable and, thus, F S
τ -measurable, the proof is complete.

5. Option pricing

In this section we will be concerned with the pricing of European call options in the new
model class. We shall assume that we work under risk-neutral dynamics. Hence,

S(t) = S(0) exp{rt + σW(T (t))− 1
2σ

2T (t)},
whereW is a Brownian motion, T is a convoluted subordinator, σ > 0 is a constant, and r ≥ 0
is the riskless interest rate.

As a first result, by conditioning on F T
τ , we can easily derive a weighted Black–Scholes

formula.

Theorem 4. (Weighted Black–Scholes formula.) Let X = (Sτ − K)+ be a European call
option with strikeK ∈ R+ and maturity τ . Then, for the initial fair price C0(K) ofX, we have

C0(K) =
∫ ∞

0

[
S0�

(
log(S0/K)+ σ 2t/2

σ
√
t

)
−Ke−rτ�

(
log(S0/K)− σ 2t/2

σ
√
t

)]
FT (τ)(dt),

where � is the distribution function of the standard normal distribution and FT (τ) is the
distribution function of T (τ).

Remark 2. At first glance, the above weighted Black–Scholes formula looks rather useless,
since one cannot expect to know the distribution function of T (τ) in closed form. Indeed, this
distribution function depends on the whole path of the driving Lévy subordinator L. However,
there are effective series expansions for Lévy subordinators (see [4] for the gamma subordinator
and [19] for the general case), which can be applied to simulateL (by simulating the jump times
τj and jump heights Yj , neglecting very small jumps). This gives rise to a straightforward
simulation of T by setting

T̂ (t) =
∑
j

k(t, τj )Yj .

Therefore, option prices can be calculated from this formula by a Monte Carlo simulation of T .
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Remark 3. We can also run other models in the business time given by a convoluted subordina-
tor. For instance, we can replace the Brownian motion by a CGMY process. CGYM processes
constitute a flexible and popular class of Lévy processes with log-characteristic function

φCGMY(u) = C�(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ];

see [8]. Straightforward modifications of the arguments in Section 4 show that the subordinated
CGMY model inherits absence of arbitrage and incompleteness from the original CGMY
model. Then, prices of European options in the subordinated model are weighted prices of
the original CGMY model, analogously to the weighted Black–Scholes formula. Moreover,
the characteristic function of the CGMY process subordinated by a convoluted subordinator
can be obtained in the same way as for the subordinated Brownian motion in Theorem 2. We
just replace the log-characteristic function of the Brownian motion by the one of the CGMY
process. This gives rise to option pricing by fast Fourier transform techniques, as discussed
below for the Brownian motion case. We note, however, that the business time cannot any
longer be interpreted as realized volatility in the CGMY context, and that the corresponding
subordinated CGMY model will exhibit jumps.

If the characteristic function of a logarithmic discounted stock price is known analytically
then an efficient and simultaneous computation of the price of call options with different strikes
is possible by means of Fourier transform methods; see, e.g. [7] and [13]. For a given strikeK ,
we denote the log-strike by k = log(K). Then, for instance, the regularized function

zτ (k) = e−rτ E[(exp{rτ + log(Sτ )} − ek)+] − Cσ̃BS(k),

where Cσ̃BS(k) is the Black–Scholes price of a call option with log-strike k, maturity τ , and
volatility σ̃ , can be rewritten as follows (see [9, p. 363]):

zτ (k) = 1

2π

∫ +∞

−∞
e−ivkζτ (v) dv,

where

ζτ (v) = eivrτ �τ (v − i)−�σ̃τ (v − i)

iv(1 + iv)
.

Here�τ denotes the characteristic function of log(Sτ /Bτ ) and�σ̃τ is the characteristic function
of a normal random variable with mean −σ̃ 2τ/2 and variance σ̃ 2τ .

Application of Theorem 2 with µ = r = 0 yields

�t(u) = exp{iu log S(0)} exp

{
−γ0

σ 2u

2
(i + u)

∫ t

0
k(t, s) ds

+
∫ t

0

∫ ∞

0

(
exp

{
−uσ

2

2
(i + u)xk(t, s)

}
− 1

)
ν(dx) ds

}
. (3)

Of course, an efficient application of the fast Fourier transform technique requires that the
double integral in the expression of �t can be computed. We next give some examples where
this is possible.
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Example 5. In the case of a stable subordinator with γ0 = 0 and ν(dx) = 1{x>0} cx−α−1 dx
for some c > 0 and 0 < α < 1, we can easily see that the double integral in (3) simplifies to

∫ t

0

∫ ∞

0

(
exp

{
−uσ

2

2
(i + u)xk(t, s)

}
− 1

)
ν(dx) ds

=
∫ t

0
|k(t, s)|α ds

∫ ∞

0

(
exp

{
−uσ

2

2
(i + u)x

}
− 1

)
ν(dx).

The second integral can be computed in closed form; see, e.g. [9, p. 94]. The first integral is
easily performed for the kernels from Examples 2–3. For example, with a slight modification
of Example 2, namely with the kernel

k(t, s) =
(
α

(
H − 1

2

)
+ 1

)(
1 − s

t

)H−1/2

+
,

we obtain ∫ t

0
|k(t, s)|α ds = t.

Therefore, the corresponding process has the same marginal distribution as an α-stable sub-
ordinator, but a more involved dependency structure. In a similar way, (3) can be evaluated
efficiently for many kernels (at least numerically), if a stable subordinator is applied. However,
the corresponding stock model does not have a second moment, which appears to be a drawback
in financial modeling.

The next theorem yields �t in the case of a tempered stable subordinator. Here, we require
an explicit choice of the kernel to facilitate the computations.

Theorem 5. Suppose that L is a gamma subordinator (α = 0) or a tempered stable subordi-
nator (0 < α < 1), as defined in (1)–(2), and that k(t, s) = kε(t, s) is the short-memory kernel
of Example 3. Then,

log(�t (u)) =
(
(t − ε)+ + min(t, ε)

1 + α
+ 2ε(1 − α)

κuσ 2(i + u)(1 + α)

)
�α,κ,σ̂ 2(t),−σ̂ 2(t)/2(u)

+ iu log(S(0))+ min(t, ε)
1 − α

κ(1 + α)
,

where σ̂ 2(t) = σ 2 min(t, ε)/ε and

�α,κ,σ 2,θ (u) =

⎧⎪⎪⎨
⎪⎪⎩

− 1

κ
log

(
1 + u2σ 2κ

2
− iθκu

)
, α = 0,

1 − α

κα

(
1 −

(
1 + κ(u2σ 2/2 − iθu)

1 − α

)α)
, 0 < α < 1,

is the characteristic exponent of the variance gamma process or the normal tempered stable
process with parameters α, κ, σ , and θ .

Proof. We calculate the double integral

∫ t

0

∫ ∞

0

(
exp

{
−uσ

2

2
(i + u)xkε(t, s)

}
− 1

)
ν(dx) ds,

https://doi.org/10.1239/jap/1253279842 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279842


Integrating volatility clustering into exponential Lévy models 625

with the Lévy measures introduced in (1)–(2), in several steps. Firstly, we may change the
order of integration by an application of Fubini’s theorem and obtain, by direct integration, for
t < ε, ∫ t

0

(
exp

{
−uσ

2

2
(i + u)xkε(t, s)

}
− 1

)
ds

=
∫ t

0

(
exp

{
−uσ

2

2
(i + u)x

t − s

ε

}
− 1

)
ds

= 2ε

uσ 2(i + u)x

(
1 − exp

{
−uσ

2

2
(i + u)x

t

ε

})
− t,

and, for t ≥ ε,

∫ t

0

(
exp

{
−uσ

2

2
(i + u)xkε(t, s)

}
− 1

)
ds

= (t − ε)

(
exp

{
−uσ

2

2
(i + u)x

}
− 1

)
+

∫ t

t−ε

(
exp

{
−uσ

2

2
(i + u)x

t − s

ε

}
− 1

)
ds

= (t − ε)

(
exp

{
−uσ

2

2
(i + u)x

}
− 1

)

+ 2ε

uσ 2(i + u)x

(
1 − exp

{
−uσ

2

2
(i + u)x

})
− ε.

Hence,

∫ t

0

(
exp

{
−uσ

2

2
(i + u)xkε(t, s)

}
− 1

)
ds

= (t − ε)+
(

exp

{
−uσ

2

2
(i + u)x

min(t, ε)

ε

}
− 1

)

+ 2ε

uσ 2(i + u)x

(
1 − exp

{
−uσ

2

2
(i + u)x

min(t, ε)

ε

}
− uσ 2(i + u)x

2

min(t, ε)

ε

)
.

(4)

Now recall that the relevant Lévy measure ν is defined, for 0 ≤ α < 1 and κ > 0, by

ν(A) = νκ,α(A) =
∫
A

1

�(1 − α)

(
1 − α

κ

)1−α e−(1−α)x/κ

x1+α dx.

We calculate, by integration by parts,

∫ ∞

0

2ε

uσ 2(i + u)x

(
1 − exp

{
−uσ

2

2
(i + u)x

min(t, ε)

ε

}
− uσ 2(i + u)x

2

min(t, ε)

ε

)
νκ,α(dx)

=
∫ ∞

0

2ε

uσ 2(i + u)x

(
1 − exp

{
−uσ

2

2
(i + u)x

min(t, ε)

ε

}
− uσ 2(i + u)x

2

min(t, ε)

ε

)

× 1

�(1 − α)

(
1 − α

κ

)1−α e−(1−α)x/κ

x1+α dx
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= 2ε((1 − α)/κ)1−α

uσ 2(i + u)�(1 − α)

∫ ∞

0

( −1

1 + α

d

dx
x−1−α

)
e−(1−α)x/κ

×
(

1 − exp

{
−uσ

2

2
(i + u)x

min(t, ε)

ε

}

− uσ 2(i + u)x

2

min(t, ε)

ε

)
dx

= 2ε((1 − α)/κ)1−α

uσ 2(i + u)�(1 − α)(1 + α)

×
∫ ∞

0

e−(1−α)x/κ

x1+α

(
1 − α

κ

uσ 2(i + u)x

2

min(t, ε)

ε

+
(

1 − α

κ
+ uσ 2

2
(i + u)

min(t, ε)

ε

)

×
(

exp

{
−uσ

2

2
(i + u)x

min(t, ε)

ε

}
− 1

))
dx

=
(

2ε(1 − α)

κuσ 2(i + u)(1 + α)
+ min(t, ε)

1 + α

)

×
∫ ∞

0

(
exp

{
−uσ

2

2
(i + u)x

min(t, ε)

ε

}
− 1

)
νκ,α(dx)

+ min(t, ε)
1 − α

κ(1 + α)�(1 − α)

(
1 − α

κ

)1−α ∫ ∞

0

e−(1−α)x/κ

xα
dx.

The last integral can be substituted to a gamma integral, whence

min(t, ε)
1 − α

κ(1 + α)�(1 − α)

(
1 − α

κ

)1−α ∫ ∞

0

e−(1−α)x/κ

xα
dx = min(t, ε)

1 − α

κ(1 + α)
.

Combining these considerations with (4) we obtain∫ t

0

∫ ∞

0

(
exp

{
−uσ

2

2
(i + u)xkε(t, s)

}
− 1

)
ν(dx) ds

= min(t, ε)
1 − α

κ(1 + α)
+

(
(t − ε)+ + 2ε(1 − α)

κuσ 2(i + u)(1 + α)
+ min(t, ε)

1 + α

)

×
∫ ∞

0

(
exp

{
−uσ

2

2
(i + u)x

min(t, ε)

ε

}
− 1

)
νκ,α(dx).

Taking into account the fact that the characteristic exponent of a variance gamma process
(α = 0) or a normal tempered stable process (0 < α < 1) is, by definition,

�α,κ,σ,θ (u) =
∫ ∞

0

(
exp

{
−u

2σ 2

2
x + iθux

}
− 1

)
νκ,α(dx),

the first assertion is proved. The explicit form of �α,κ,σ,θ can, e.g. be found in [9, p. 117].

We also state the log-characteristic function for the gamma case and the tempered stable
case, if the Holmgren–Liouville fractional kernel is applied. The representation follows directly
from (3). As it requires one additional integration, a numerical evaluation of the fast Fourier
transform methods is slower, but still feasible.
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Figure 5: Implied volatility smile for 1 (solid line), 0.3 (dotted line), and 0.1 (dashed line) year maturities.
Top left: variance gamma model with r = 0, σ = 0.2, κ = 0.05, and S(0) = 1. Top right: short-memory
kernel with ε = 0.05 driven by a gamma subordinator with the same parameters. Bottom: damped
Holmgren–Liouville kernel with H = 0.7 (left) and H = 0.9 (right) driven by a gamma subordinator

with the same parameters.

Theorem 6. Suppose that L is a gamma subordinator (α = 0) or a tempered stable subordi-
nator (0 < α < 1), as defined in (1)–(2), and that k(t, s) = z̃H (t, s) is the Holmgren–Liouville
fractional kernel of Example 2. Then,

log(�t (u)) =
∫ t

0
�α,κ,σ̂ 2(s,t),−σ̂ 2(s,t)/2(u) ds,

where σ̂ 2(s, t) = σ 2(H + 1
2 )(1 − s/t)H−1/2 and �α,κ,σ,θ (u) was defined in the previous

theorem.

Finally, we illustrate the implied volatility smile of models based on different kernels and
driven by a gamma process. Figure 5 shows that, with the short-memory kernel of Example 3
and the damped Holmgren–Liouville kernel of Example 2, the smile flattens out quickly with
increasing maturity as in the variance gamma model. Indeed, the four smiles for the different
models resemble each other very closely. From this we may conclude that, in particular for
the damped Holmgren–Liouville kernel, the marginal distributions of the model do not vary
much in the memory parameterH . Therefore, the prices of plain vanilla options do not change
significantly for different values ofH . It is, however, expected that the prices of path-dependent
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options, such as barrier options, will strongly depend on the dependency structure of the model
induced by the memory parameter H . This topic will be further pursued in future research.
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