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Abstract

Let S0 := 0 and Sk := ξ1 + · · · + ξk for k ∈ N := {1, 2, . . .}, where {ξk : k ∈ N} are
independent copies of a random variable ξ with values in N and distribution pk := P{ξ =
k}, k ∈ N. We interpret the random walk {Sk : k = 0, 1, 2, . . .} as a particle jumping
to the right through integer positions. Fix n ∈ N and modify the process by requiring
that the particle is bumped back to its current state each time a jump would bring the
particle to a state larger than or equal to n. This constraint defines an increasing Markov
chain {R(n)k : k = 0, 1, 2, . . .} which never reaches the state n. We call this process a
random walk with barrier n. LetMn denote the number of jumps of the random walk with
barrier n. This paper focuses on the asymptotics ofMn as n tends to ∞. A key observation
is that, under p1 > 0, {Mn : n ∈ N} satisfies the distributional recursion M1 = 0 and
Mn

d= Mn−In + 1 for n = 2, 3, . . . , where In is independent of M2, . . . ,Mn−1 with
distribution P{In = k} = pk/(p1 + · · · + pn−1), k ∈ {1, . . . , n− 1}. Depending on the
tail behavior of the distribution of ξ , several scalings for Mn and corresponding limiting
distributions come into play, including stable distributions and distributions of exponential
integrals of subordinators. The methods used in this paper are mainly probabilistic. The
key tool is to compare (couple) the number of jumps, Mn, with the first time, Nn, when
the unrestricted random walk {Sk : k = 0, 1, . . .} reaches a state larger than or equal
to n. The results are applied to derive the asymptotics of the number of collision events
(that take place until there is just a single block) for β(a, b)-coalescent processes with
parameters 0 < a < 2 and b = 1.

Keywords: Absorption time; beta coalescent; coupling; exponential integral; Mittag–
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1. Introduction and main results

Fix n ∈ N := {1, 2, . . .}. By a random walk with the barrier n we mean the sequence
{R(n)k : k ∈ N0 := {0, 1, . . .}} defined recursively via R(n)0 := 0 and

R
(n)
k := R

(n)
k−1 + ξk 1{R(n)k−1+ξk<n}, k ∈ N,

where {ξk : k ∈ N} are independent copies of a random variable ξ with some proper and
nondegenerate probability distribution

pk := P{ξ = k}, k ∈ N, p1 > 0.
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On the number of jumps of random walks with a barrier 207

Note that the sequence {R(n)k : k ∈ N0} is nondecreasing and that R(n)k < n for all k ∈ N0. Let

Mn := #{k ∈ N : R(n)k−1 �= R
(n)
k } =

∞∑
l=0

1{R(n)l +ξl+1<n}

denote the number of jumps in the process {R(n)k : k ∈ N0}. Note that M1 = 0 and that 1 ≤
Mn ≤ n− 1 for n ≥ 2. The aim of the paper is to investigate the asymptotic behavior ofMn as
n tends to ∞. Hinderer and Walk [23] investigated processes more general than random walks
with a barrier, but the circle of problems they considered was different from ours.

As p1 > 0, it follows from Lemma 1 of [24] that the marginal distributions of {Mn : n ∈ N}
satisfy the distributional recursion M1 = 0 and

Mn
d= Mn−In + 1, n ∈ {2, 3, . . .}, (1.1)

where In is a random variable independent of M2, . . . ,Mn−1 with distribution

P{In = k} = pk

p1 + · · · + pn−1
, k, n ∈ N, k < n. (1.2)

Note that In is the size of the first jump of {R(n)k : k ∈ N0}. It is worth mentioning that the
asymptotic results presented later not only apply to the number of jumps in a random walk
with a barrier but also to all sequences whose marginal distributions satisfy the distributional
recursion (1.1) with the distribution of In given by (1.2). The number of jumps of a random
walk with barrier n is just one example of a sequence whose marginal distributions satisfy
recursion (1.1).

Before we formulate our asymptotic results for Mn, we now briefly discuss closely related
and more general models and the corresponding literature. In order to do this, for the moment,
assume that the distribution of In in (1.1) does not follow (1.2) but rather takes the more general
form

P{In = k} = πn,n−k, k, n ∈ N, k < n, (1.3)

where the πij , 1 ≤ j < i, are some given nonnegative constants satisfying
∑i−1
j=1 πij = 1.

Probably the most general description of sequences {Mn : n ∈ N} satisfying recursion (1.1)
with the distribution of In given by (1.3) is as follows. Consider a decreasing Markov chain
{Zk : k ∈ N0} with state space N and transition probabilities πij > 0 for i, j ∈ N with j < i

and πij = 0 otherwise. For n ∈ N, let

Mn := inf{k ≥ 1 : Zk = 1 given Z0 = n}
denote the absorption time of the Markov chain conditioned on the event that the chain starts
in the initial state n. Then the marginal distributions of {Mn : n ∈ N} satisfy the distributional
recursion (1.1) with the distribution of In given by (1.3).

We are aware of only two papers, [36] and [39], which address the asymptotic behavior of
Mn as n tends to ∞ in the general setting when it is not assumed that πij takes some particular
form. The problem is simpler if either the probabilities πij are given explicitly, or if they have
some particular functional form. In this latter situation some results on the asymptotic behavior
of recursion (1.1) with (1.3) are available, for example, in the context of random composition
structures [4], [18], [20], [21], of coalescent theory [19], [24], [26] (see also Section 7 of the
present work), and in the context of random trees [11], [14], [24], [29], [30]. We also refer the
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reader to [3] for a number of interpretations of the random recursion (1.1), where In satisfies
(1.3) with πij = (i − 1)−1, i, j ∈ N, j < i.

Throughout the paper, r(·) ∼ s(·) means that r(·)/s(·) → 1 as the argument tends to ∞.
The symbols ‘

d−→’, ‘
w−→’, and ‘

p−→’ respectively denote convergence in law, weak convergence,
and convergence in probability, and Xn

d−→ (
w−→,

p−→)X means that the limiting relation holds
when n → ∞. By L we always denote a function slowly varying at ∞.

We now state our main asymptotic results for sequences of random variables {Mn : n ∈ N}
satisfying the distributional recursion (1.1) with the distribution of In given by (1.2). We begin
with a weak law of large numbers.

Theorem 1.1. If
∑n
j=1

∑∞
k=j pk ∼ L(n) for some function L slowly varying at ∞ then, as

n → ∞,
Mn

EMn

p−→ 1 (1.4)

and EMn ∼ n/L(n). In particular, if

m := E ξ < ∞ (1.5)

then EMn ∼ n/m. If (1.5) holds, and if there exists a sequence of positive numbers {an : n ∈ N}
such that Mn/an

p−→ 1 as n → ∞, then an ∼ n/m.

To formulate further results we need some more notation. For C > 0 and α ∈ [1, 2], let µα
be an α-stable distribution with characteristic function ψα(t), t ∈ R, of the form

exp

(
−|t |αC�(1 − α)

(
cos

(
πα

2

)
+ i sin

(
πα

2

)
sgn(t)

))
, 1 < α < 2,

exp

(
−|t |C

(
π

2
− i log |t |sgn(t)

))
, α = 1,

exp

(
−C

2
t2

)
, α = 2.

In the case when (1.5) holds Theorem 1.2, below, provides necessary and sufficient conditions
ensuring that Mn, properly normalized and centered, possesses a weak limit.

Theorem 1.2. If m := E ξ < ∞ then the following assertions are equivalent.

(i) There exist sequences of numbers {an, bn : n ∈ N} with an > 0 and bn ∈ R such that, as
n tends to ∞, (Mn−bn)/an converges weakly to a nondegenerate and proper probability
law.

(ii) Either σ 2 := var ξ < ∞ or σ 2 = ∞ and, for some α ∈ [1, 2] and some function L
slowly varying at ∞,

n∑
k=1

k2pk ∼ n2−αL(n), n → ∞. (1.6)

If σ 2 < ∞ then, with bn := n/m and an := (m−3C−1σ 2n)1/2, the limiting law is µ2 (normal
with mean 0 and varianceC). If σ 2 = ∞ and (1.6) holds with α = 2 then, with bn := n/m and
an := m−3/2cn, where cn is any sequence satisfying limn→∞ nL(cn)/c

2
n = C, the limiting law
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isµ2. If σ 2 = ∞ and (1.6) holds with α ∈ [1, 2) then, with bn := n/m and an := m−(α+1)/αcn,
where cn is any sequence satisfying

lim
n→∞

nL(cn)

cαn
= α

2 − α
C,

the limiting law is µα .

Remark 1.1. For σ 2 < ∞, the same weak convergence result for Mn was obtained in Theo-
rem 4.1 of [39] in a setting more general than ours. Note that, for α ∈ [1, 2), (1.6) is equivalent
to P{ξ ≥ n} ∼ (2 − α)n−αL(α)/α, n → ∞.

If the mean of ξ is infinite, Theorem 1.3 and Theorem 1.4, below, provide conditions ensuring
that Mn, properly normalized without centering and centered, respectively, possesses a weak
limit.

Theorem 1.3. Suppose that, for some α ∈ (0, 1) and some function L slowly varying at ∞,

P{ξ ≥ n} =
∞∑
k=n

pk ∼ L(n)

nα
, n → ∞. (1.7)

Then, as n → ∞,
L(n)

nα
Mn

d−→
∫ ∞

0
exp(−Ut) dt, (1.8)

where {Ut : t ≥ 0} is a drift-free subordinator with Lévy measure

ν(dt) = e−t/α

(1 − e−t/α)α+1 dt, t > 0. (1.9)

Theorem 1.4. Suppose that E ξ = ∞ and that, for some function L slowly varying at ∞,

P{ξ ≥ n} =
∞∑
k=n

pk ∼ L(n)

n
. (1.10)

Let c be any positive function satisfying limx→∞ x P{ξ ≥ c(x)} = 1, and set ψ(x) :=
x

∫ c(x)
0 P{ξ > y} dy. Let b be any positive function satisfying

b(ψ(x)) ∼ ψ(b(x)) ∼ x,

and set a(x) := x−1b(x)c(b(x)). Then, (Mn − b(n))/a(n) converges weakly to the stable
distribution µ1 with C = 1.

In the literature there exist at least two standard approaches to studying distributional
recursions. One approach is purely analytic and based on a singularity analysis of generating
functions; see, for example, [14] and [30]. Another approach, called the contraction method,
is more probabilistic; see [28], [34], and [35]. It was remarked in [24] that the recursions
(1.1) which satisfy (1.2) can be successfully investigated using probabilistic methods alone
(completely different from contraction methods). The present work extends ideas laid down
in [24] for the particular case in which

P{In = k} = n

n− 1

1

k(k + 1)
, k ∈ {1, . . . , n− 1}.
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The basic steps of the technique exploited can be summarized as follows.

Let

S0 := 0, Sn := ξ1 + · · · + ξn, and Nn := inf{k ≥ 1 : Sk ≥ n}, n ∈ N.

We may expect that the limiting behavior ofMn and Nn are similar, or at least that the limiting
behavior of the latter influences that of the former. Similarity in the limiting behavior of Mn

and Nn is well indicated by the asymptotic properties of their difference. In particular, we will
prove the following.

(a) If E ξ < ∞ then Mn − Nn weakly converges. Therefore, Mn, properly normalized and
centered, possesses a weak limit if and only if the same is true for Nn.

(b) Now assume that E ξ = ∞.

(b1) If
∑∞
k=n pk ∼ L(n)/n and if (Nn − bn)/an weakly converges to some µ then

(Mn −Nn)/an
p−→ 0, which proves that (Mn − bn)/an weakly converges to µ.

Thus, in this case and case (a) the weak behavior of Mn and Nn is the same.

(b2) If, for some α ∈ (0, 1),
∑∞
k=n pk ∼ n−αL(n) and Nn/an weakly converges to

some ν1 then (Mn − Nn)/an weakly converges to some ν2. Even though the
argument exploited above does not apply, it will be proved that Mn/an weakly
converges to ν3 �= ν1. Thus, in case (b2) a weak behavior ofMn is not completely
determined by that of Nn. Now it is influenced by the weak behavior of both
Nn and n − SNn−1 to, approximately, the same extent. This observation can be
explained as follows. The probability of one big jump of Sn in comparison to
cases (a) and (b1) is higher and, therefore, the epoch Nn comes more ‘quickly’.
As a consequence, a contribution to Mn of the number of jumps in the sequence
{R(n)k : k ∈ N0}, while R(n)k is traveling from R

(n)
Nn−1 = SNn−1 to n − 1, becomes

significant.

The referee pointed out the following interpretation of Theorem 1.3 that can be read from
(1.9) in combination with results from [20] on exponential functionals of subordinators. Since
Nn is known to be asymptotic to the local time of an unrestricted Bessel process (which has
Mittag–Leffler distribution), then Mn is asymptotic to the local time of a modified Bessel
process, obtained by recursively peeling the meander of the unrestricted Bessel process (the
latter has distribution of the right-hand side of (1.8)).

To close the introduction, it remains to review the structural units of the rest of the paper. In
Section 2 we investigate both the univariate and the bivariate weak behavior of (Nn, n−SNn−1),
and discuss their relation to exponential integrals of subordinators. The proof of Theorem 1.3
along with some comments explaining the appearance of the limiting law in (1.8) are given in
Section 3. Theorems 1.2, 1.1, and 1.4 are proved in Sections 4, 5, and 6, respectively. Finally,
in Section 7 we apply our results to derive limiting theorems for the number of collision events
that take place in certain beta-coalescent processes until there is just a single block. It turns
out that the results are applicable for β(a, b)-coalescents with 0 < a < 2 and b = 1 because,
for that parameter range, the number of collisions satisfy the distributional recursion (1.1) such
that In has a distribution of the form (1.2).
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2. Results on Nn and n − SNn−1: the m = ∞ case

2.1. Univariate results

Necessary and sufficient conditions are given below to ensure that the sequence {Nn : n ∈ N}
(a) properly normalized (without centering), weakly converges to a nondegenerate law (Propo-
sition 2.1) and (b) is relatively stable (Proposition 2.2).

It is well known that (1.7) implies (2.1), below (in the case in which α ∈ (0, 1)), and
that Proposition 2.2(a) is equivalent to Proposition 2.2(b), below (see [17, Theorem 7] and
[9, Corollary 8.1.7], respectively). Although the whole results may seem classic, we have not
been able to locate them in the literature in the present form. Therefore, complete proofs of
them are provided in [25], which is a preprint version of this work.

We say that a random variable ςα has a scaled Mittag–Leffler distribution with parameter
α ∈ [0, 1) if

E ςnα = n!
�n(1 − α)�(1 + nα)

, n ∈ N.

Note that the moments {E ςnα : n ∈ N} uniquely determine the distribution.

Proposition 2.1. If (1.7) holds for some α ∈ [0, 1) then

lim
n→∞

Lk(n)

nαk
ENk

n = k!
�k(1 − α)�(1 + αk)

, k ∈ N,

and, therefore,
L(n)

nα
Nn

w−→ θα, (2.1)

where θα is the scaled Mittag–Leffler distribution with parameter α.
Conversely, assume that there exists a sequence {a(n) : n ∈ N} of positive real numbers such

that Nn/a(n) weakly converges to a nondegenerate and proper law θ . Then

a(n) ∼ D

( ∞∑
k=n

pk

)−1

∼ Dnα

L(n)

for some constants D > 0, α ∈ [0, 1), and some function L slowly varying at ∞, and (2.1)
holds.

Proposition 2.2. The following conditions are equivalent.

(a)
∑n
m=1

∑∞
k=m pk ∼ L(n) for some function L slowly varying at ∞.

(b) 1 − ∑∞
n=1 e−snpn ∼ sL(1/s) as s ↓ 0 for some function L slowly varying at ∞.

(c) The sequence {Nn : n ∈ N} is relatively stable, i.e. there exists a sequence {a(n) : n ∈ N}
of positive real numbers such that Nn/a(n)

p−→ 1.

Moreover, if (a) holds then

lim
n→∞

Lk(n)

nk
ENk

n = 1, k ∈ N, (2.2)

and a(n) ∼ ENn.

The next result is a corollary of Theorem 1.1 and Proposition 2.2.
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Corollary 2.1. Assume that (1.10) holds. Then, ENn ∼ EMn ∼ n/m(n), where m(x) :=∫ x
0 P{ξ > y} dy, x > 0. Moreover,

m(n)Nn

n

p−→ 1 and
m(n)Mn

n

p−→ 1.

In particular, Mn/Nn
p−→ 1.

Proof. Condition (1.10) ensures that m(·) belongs to the de Haan class �, i.e.

lim
x→∞

m(λx)−m(x)

L(x)
= log λ, λ > 0.

In particular, m(·) is slowly varying at ∞. Since
∑n
j=1

∑∞
k=j pk ∼ m(n), Theorem 1.1 and

Proposition 2.2 imply the result for Mn and Nn, respectively.

Proposition 2.3, below, is a key ingredient for our proof of Theorem 1.4. Define Yn :=
n− SNn−1, n ∈ N.

Proposition 2.3. Assume that (1.10) holds. Then, for fixed δ > 0,

E Y δn = O

(
nδL(n)

m(n)

)
, (2.3)

Furthermore, for functions a and b, as used in Theorem 1.4,

b(n)Yn

n a(n)

p−→ 0. (2.4)

Proof. In the same way as in the proof of Proposition 2.5 it follows that

E Y δn =
n−1∑
k=0

(n− k)δ P{ξ ≥ n− k}uk, n ∈ N,

where uk := ∑k
i=0 P{Si = k}, k ∈ N0. By Corollary 2.1, ENn ∼ n/m(n). Moreover,

ENn ∼ ∑n
k=0 uk, n ∈ N. Thus,

∑n
k=0 uk ∼ n/m(n) and, by Corollary 1.7.3 of [9],

U(s) :=
∞∑
n=0

snun ∼ 1

m((1 − s)−1)(1 − s)
as s ↑ 1.

By the same corollary,

V (s) :=
∞∑
n=1

snnδ P{ξ ≥ n} ∼ �(δ)L((1 − s)−1)

(1 − s)δ
as s ↑ 1.

Therefore,

∞∑
n=1

sn E Y δn = U(s)V (s) ∼ �(δ)

(1 − s)δ+1

L((1 − s)−1)

m((1 − s)−1)
as s ↑ 1.
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Therefore, Corollary 1.7.3 of [9] applies and proves (2.3). Recall that ψ(x) = xm(c(x))

and that c(x) ∼ xL(c(x)). Set v(x) := xa(x)/b(x) = c(b(x)). Since m(x)/L(x) → ∞,
c(x) → ∞, and

ψ(x)

c(x)
= xm(c(x))

c(x)
∼ m(c(x))

L(c(x))
as x → ∞,

we conclude that ψ(x)/c(x) → ∞ as x → ∞. Therefore,

b(x)

a(x)
= x

c(b(x))
→ ∞ as x → ∞.

The latter relation, together with m(x)/L(x) → ∞, implies that

L(x)

m(x)

b(x)

a(x)
= L(x)

m(x)

x

c(b(x))

∼ L(x)

m(x)

x

b(x)L(c(b(x)))

∼ L(x)

m(x)

ψ(b(x))

b(x)L(c(b(x)))

∼ L(x)

m(x)

m(c(b(x)))

L(c(b(x)))

remains bounded for large x.
For fixed δ ∈ (0, 1) and any ε > 0, we have, by Markov’s inequality and (2.3),

P{Yn > v(n)ε} ≤ E Y δn
vδ(n)εδ

= O

(
L(n)b(n)

m(n)a(n)

(
b(n)

a(n)

)δ−1)
→ 0 as n → ∞.

The proof is complete.

2.2. Some results on exponential integrals of subordinators

Let {Zt : t ≥ 0} be a drift-free subordinator which is independent of T , an exponentially
distributed random variable with mean 1. Set Q := ∫ T

0 exp(−Zt) dt , M := exp(−ZT ), and
A := ∫ ∞

T
exp(−Zt) dt . As is well known (see, for example, [10, Lemma 6.2]), the following

equality of distribution holds:
A∞

d= MA′∞ +Q, (2.5)

where A′∞ is a copy of A∞ which is independent of (M,Q). The latter means that A∞ is a
perpetuity (see [2] for the definition and recent results) generated by the random vector (M,Q).

Our next result generalizes Proposition 3.1 of [10], which deals with the moments ofQ, and
a number of results concerning the moments of

∫ ∞
0 exp(−Zt) dt = Q+ A (see, for example,

[38, Proposition 3.3]).

Proposition 2.4. For λ > 0 and µ ≥ 0,

EQλMµ = λ

1 + ϕ(λ+ µ)
EQλ−1Mµ,

where ϕ(s) := −log E exp(−sZ1), s ≥ 0. In particular,

an,m := EQnMm = n!∏n
k=0(1 + ϕ(m+ k))

, m, n ∈ N0, (2.6)

bn,m := EQnAm = n!m!∏n
k=0(1 + ϕ(m+ k))ϕ(1) · · ·ϕ(m), m, n ∈ N0.
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The moment sequences {am,n : m, n ∈ N0} and {bm,n : m, n ∈ N0} uniquely determine the laws
of the random vectors (M,Q) and (A,Q), respectively.

Proof. For t > 0, define At := ∫ t
0 exp(−Zv) dv. The following is essentially [10, Equa-

tion (3.1)]:

Aλt exp(−µZt) = λ

∫ t

0
(At − Av)

λ−1 exp(−µ(Zt − Zv)) exp(−(µ+ 1)Zv) dv.

Since

(At − Av)
λ−1 exp(−µ(Zt − Zv))

= exp(−(λ− 1)Zv)

(∫ t−v

0
exp(−(Zs+v − Zv)) ds

)λ−1

exp(−µ(Zt − Zv))

and {Zs+v−Zv : s ≥ 0} is a subordinator which is independent of {Zv : v ≤ t} and has the same
law as {Zt : t ≥ 0}, we conclude that (

∫ t−v
0 exp(−(Zs+v − Zv)) ds)λ−1 exp(−µ(Zt − Zv)) has

the same law asAλ−1
t−v exp(−µZt−v) and is independent of exp(−(λ− 1)Zv). Therefore, using

Fubini’s theorem,

EAλT exp(−µZT ) =
∫ ∞

0
e−t EAλt exp(−µZt) dt

= λ

∫ ∞

0
e−t

(∫ t

0
e−vϕ(λ+µ) EAλ−1

t−v exp(−µZt−v) dv

)
dt

= λ

∫ ∞

0
e−vϕ(λ+µ)

(∫ ∞

v

e−t EAλ−1
t−v exp(−µZt−v) dt

)
dv

= λ

∫ ∞

0
e−v(ϕ(λ+µ)+1) dv

∫ ∞

0
e−u EAλ−1

u exp(−µZu) du

= λ

1 + ϕ(λ+ µ)
EAλ−1

T exp(−µZT ).

Starting with

E exp(−µZT ) =
∫ ∞

0
e−t E exp(−µZt) dt =

∫ ∞

0
e−t (1+ϕ(µ)) dt = 1

1 + ϕ(µ)
, (2.7)

the formula for an,m follows by induction. To prove that the law of (M,Q) is uniquely
determined by {an,m : n,m ∈ N0}, it suffices to check that the marginal laws are uniquely
determined by the corresponding moment sequences (see [31, Theorem 3]). Since M ∈ [0, 1]
almost surely, the law of M is trivially moment determinate. From (2.6), it follows that

EQn = n!
(1 + ϕ(1)) · · · (1 + ϕ(n))

, n ∈ N.

Set fn := EQn/n!. The limit f := limn→∞ fn/fn+1 exists and is positive (it is finite if Zt is
compound Poisson, otherwise it is infinite). By the Cauchy–Hadamard formula, f = sup{r >
0 : E erQ < ∞}. Therefore, the law of Q has finite exponential moments of some orders from
which we deduce that this law is moment determinate.
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According to Proposition 3.3 of [38], EAm∞ = m!/(ϕ(1) · · ·ϕ(m)), m ∈ N0. In view
of (2.5),

EQnAm = EQnMm EAm∞

= n!m!∏n
k=0(1 + ϕ(m+ k))ϕ(1) · · ·ϕ(m), m, n ∈ N0.

It can be checked, in the same way as above for (M,Q), that the law of (A,Q) is determined
by the moment sequence. We omit the details.

2.3. A bivariate result

Assume that (1.7) holds or, equivalently, that

w(n) := 1

P{ξ ≥ n} =
( ∞∑
k=n

pk

)−1

∼ nα

L(n)

for some α ∈ (0, 1). Let T be an exponentially distributed random variable with mean 1, which
is independent of a drift-free subordinator {Ut : t ≥ 0} with Lévy measure (1.9).

From Proposition 2.1, it follows that Nn/w(n) converges in distribution to a random vari-
able ςα with the scaled Mittag–Leffler distribution with parameter α. From (2.6) or from
Proposition 3.1 of [10], we have

E

(∫ T

0
exp(−Ut) dt

)n
= n!
�n(1 − α)�(1 + nα)

, n ∈ N0,

which means that
∫ T

0 exp(−Ut) dt
d= ςα . Thus,

Nn

w(n)

d−→
∫ T

0
exp(−Ut) dt. (2.8)

Let ηα be a beta-distributed random variable with parameters 1 − α and α, i.e. with density
x �→ π−1 sin(πα)x−α(1 − x)α−1, x ∈ (0, 1). It is well known that (see, for example,
[9, Theorem 8.6.3]) (1 − SNn−1/n)

α d−→ ηαα . It can be checked that

E ηnαα = �(α(n− 1)+ 1)

�(1 − α)�(αn+ 1)
, n ∈ N0.

From (2.7), it follows that exp(−UT ) has the same moment sequence. Therefore, since the
distribution of exp(−UT ) is concentrated on [0, 1], it coincides with the distribution of ηαα .
Thus, (

1 − SNn−1

n

)α
d−→ exp(−UT ). (2.9)

Now we point out a bivariate result generalizing (2.8) and (2.9).

Proposition 2.5. Suppose that (1.7) holds. Then,

w−1(n)(w(n− SNn−1), Nn)
d−→

(
exp(−UT ),

∫ T

0
exp(−Ut) dt

)
,

where {Ut : t ≥ 0} is a drift-free subordinator with Lévy measure (1.9).
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Remark 2.1. Corollary 3.3 of [33] states that(
L(n)

nα
(Nn+1 − 1), 1 − SNn+1−1

n

)
d−→ (X, Y ), (2.10)

where the distribution of a random vector (X, Y ) was defined by the moment sequence. Our
proof of Proposition 2.5 is different from and simpler than Port’s [33] proof of (2.10).

Proof of Proposition 2.5. According to Proposition 2.4 it suffices to verify that

lim
n→∞

Ewi(n− SNn−1)N
j
n

wi+j (n)
= j !�(α(i − 1)+ 1)

�j+1(1 − α)�(α(i + j)+ 1)
, i, j ∈ N0. (2.11)

By Proposition 2.1,

lim
n→∞

Lk(n)

nαk
ENk

n = k!
�k(1 − α)�(1 + αk)

, k ∈ N. (2.12)

For i = 0, (2.11) follows from (2.12). For i ∈ N, (2.11) is checked as follows:

Ewi(n− SNn−1)N
j
n

=
n∑
k=1

n−1∑
l=0

wi(n− l)kj P{Nn = k, Sk−1 = l}

= wi(n)P{ξ ≥ n} +
n−1∑
l=1

wi(n− l)P{ξ ≥ n− l}
l+1∑
k=2

kj P{Sk−1 = l}

= wi(n)P{ξ ≥ n} +
n−1∑
l=1

wi−1(n− l)

l+1∑
k=2

kj P{Sk−1 = l}.

As in [1, p. 26], define the function f (x) := 0 on [0, 1) and f (x) := (k+ 1)j on [k, k+ 1) for
k ∈ N, and set F(t) := ∫ t

0 f (x) dx. Then,

n−1∑
l=1

l+1∑
k=2

kj P{Sk−1 = l} =
n−1∑
k=1

(k + 1)j P{Nn > k} = EF(Nn).

By Karamata’s theorem [9, Proposition 1.5.8], F(t) ∼ (j+1)−1tj+1. Since limn→∞Nn = ∞
almost surely and (Nn/w(n))j+1 d−→ ς

j+1
α , we have

F(Nn)

wj+1(n)

d−→ ς
j+1
α

j + 1
. (2.13)

By (2.12),

lim
n→∞ E

(
Nn

w(n)

)j+2

= E ςj+2
α < ∞.

Therefore, the sequence {F(Nn)/wj+1(n) : n ∈ N} is uniformly integrable, which together
with (2.13) implies that

EF(Nn) ∼ E
ς
j+1
α

j + 1
wj+1(n) ∼ j !

�j+1(1 − α)�(1 + (j + 1)α)

nα(j+1)

Lj+1(n)
. (2.14)
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Thus, if i = 1, we have

Ew(n− SNn−1)N
j
n ∼ j !

�j+1(1 − α)�(1 + (j + 1)α)

nα(j+1)

Lj+1(n)
,

and (2.11) follows. Now assume that i ≥ 2. Sincewi−1(n) ∼ nα(i−1)/Li−1(n), Corollary 1.7.3
of [9] yields

W(s) :=
∞∑
n=1

snwi−1(n) ∼ �(1 + α(i − 1))

(1 − s)1+α(i−1)Li−1((1 − s)−1)
, s ↑ 1.

By the same corollary, (2.14) implies that

R(s) :=
∞∑
n=1

sn
(n+1∑
k=2

kj P{Sk−1 = l}
)

∼ j !
�j+1(1 − α)

1

(1 − s)α(j+1)Lj+1((1 − s)−1)
, s ↑ 1.

Therefore,

W(s)R(s) ∼ �(1 + α(i − 1))j !
�j+1(1 − α)

1

(1 − s)1+α(i+j)Li+j ((1 − s)−1)
, s ↑ 1.

The sequence {wi−1(n) : n ∈ N} is nondecreasing. Hence, the sequence

{n−1∑
l=1

wi−1(n− l)

l+1∑
k=2

kj P{Sk−1 = l} : n = 2, 3, . . .

}

is nondecreasing too. Another appeal to Corollary 1.7.3 of [9] gives, as n → ∞,

n−1∑
l=1

wi−1(n− l)

l+1∑
k=2

kj P{Sk−1 = l} ∼ �(1 + α(i − 1))j !
�j+1(1 − α)�(1 + α(i + j))

nα(i+j)

Li+j (n)
.

From this, (2.11) follows.

3. Proof of Theorem 1.3 and some comments

Nothing more than (1.1) and (1.2) is required for the proof given below.
For k, n ∈ N, set ak(n) := EMk

n and bk(n) := ENk
n . For x ≥ 0, define

�(x) := �(1 − α)�(αx + 1)

�(α(x − 1)+ 1)
− 1 = αxB(αx, 1 − α)− 1,

where B denotes the beta function. Note that

B(αx, 1 − α) =
∫ 1

0
yαx−1(1 − y)−α dy = α−1

∫ ∞

0
e−xy(1 − e−y/α)−α dy,
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and, hence,

�(x) =
∫ ∞

0
xe−xy(1 − e−y/α)−α dy − 1

=
∫ ∞

0
(1 − e−y/α)−α d(1 − e−xy)− 1

=
∫ ∞

0
(1 − e−xy) e−y/α

(1 − e−y/α)α+1 dy. (3.1)

Thus, the function � is the Laplace exponent of an infinitely divisible law with zero drift and
Lévy measure ν given in (1.9).

Remark 3.1. In [7, p. 102] it was stated that the right-hand side of (3.1) equals �(x) + 1 (in
our notation). Thus, our (3.1) corrects that oversight.

Assuming that (1.7) holds, we will prove that

lim
n→∞

Lk(n)

nαk
ak(n) = k!

�(1) · · ·�(k) =: ak, k ∈ N. (3.2)

This will imply that (see, for example, [7])

(i) ak = E ηk, k ∈ N, where η is a random variable with distribution of the exponential
integral of a drift-free subordinator with Lévy measure ν; and

(ii) the moments {an : n ∈ N} uniquely determine the law of η.

Note that the statement in (i) was first obtained in Example 3.4 of [38]. From (i) and (ii), it will
follow that (3.2) implies (1.8).

From (1.1) and (1.2), it follows that

a1(n) = 1 + rn

n−1∑
i=1

a1(n− i)pi,

and, for k ∈ {2, 3, . . .},

ak(n) = Dk(a1(n), . . . , ak−2(n))+ kak−1(n)+ rn

n−1∑
i=1

ak(n− i)pi

=: dk(n)+ rn

n−1∑
i=1

ak(n− i)pi, (3.3)

where Dk(·) denotes the affine function of k − 2 positive variables of the form

Dk(x1, x2, . . . , xk−2) = γ0,k +
k−2∑
i=1

γi,kxi

with coefficients γi,k ∈ R, i ∈ {0, 1, . . . , k − 2} (these coefficients can be derived explicitly,
but their exact values are of no use here), and rn := 1/(p1 + · · · + pn−1). Using the equality
of distributions,

N1 = 1, Nn
d= 1 +N ′

n−ξ 1{ξ<n}, n = 2, 3, . . . ,
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where ξ is independent of {N ′
n : n ∈ N}, a copy of {Nn : n ∈ N}, we can show that

bk(n) = ck(n)+
n−1∑
i=1

bk(n− i) pi, k ∈ N, (3.4)

where c1(n) := 1 and

ck(n) := Dk(b1(n), . . . , bk−2(n))+ k bk−1(n), k ≥ 2.

To prove (3.2), we will use induction on k. Suppose that (3.2) holds for k ∈ {1, 2, . . . , j−1}.
Set

β1 := 1

1 − b1
and βl := 1

bl−1 − l−1bl

l−1∏
i=1

bi−1

bi−1 − i−1bi
, l ∈ {2, 3, . . .},

where bl := l!/(�l(1 − α)�(1 + αl)), l ∈ N, and note that

al−1 − βl(bl−1 − l−1bl) = 0, l ∈ N. (3.5)

In the following we exploit an idea given in the proof of Proposition 3 of [18]. Suppose that
there exists an ε > 0 such that aj (n) > (βj + ε)bj (n) for infinitely many n. It is possible to
decrease ε so that the inequality aj (n) > (βj + ε)bj (n)+ c holds infinitely often for any fixed
positive c. Thus, we can define nc := inf{n ≥ 1 : aj (n) > (βj + ε)bj (n)+ c}. Then

aj (n) ≤ (βj + ε)bj (n)+ c for all n ∈ {1, 2, . . . , nc − 1}. (3.6)

We have

(βj + ε)bj (nc)+ c < aj (nc)

= dj (nc)+ rnc

nc−1∑
i=1

aj (nc − i)pi by (3.3)

≤ dj (nc)+ c + (βj + ε)rnc

nc−1∑
i=1

bj (nc − i)pi by (3.6)

= Dj(a)+ jaj−1(nc)+ c

+ (βj + ε)(rnc − 1)(bj (nc)−Dj(b)− jbj−1(nc))

+ (βj + ε)bj (nc)− (βj + ε)(Dj (b)+ jbj−1(nc)) by (3.3) and (3.4),

or, equivalently,

0 < Dj(a)+ jaj−1(nc)+ (βj + ε)(rnc − 1)(bj (nc)−Dj(b)− jbj−1(nc))

− (βj + ε)(Dj (b)+ jbj−1(nc)),

where we have used the abbreviations

Dj(a) := Dj(a1(nc), . . . , aj−2(nc)) and Dj(b) := Dj(b1(nc), . . . , bj−2(nc))
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for convenience. Divide the latter inequality by z(c) := n
(j−1)α
c /Lj−1(nc), and let c go to ∞

(which implies that nc tends to ∞). Note that, according to (1.7), rn − 1 ∼ n−αL(n) and that,
by the induction assumption,

lim
c→∞

Dj(a1(nc), . . . , aj−2(nc))

z(c)
= 0 and lim

c→∞
aj−1(nc)

z(c)
= aj−1.

Using these facts and (2.12), we obtain

0 ≤ jaj−1 + (βj + ε)bj − (βj + ε)jbj−1.

Since the function� defined at the beginning of the proof is positive for x > 0 and jbj−1/bj −
1 = �(j), we conclude that jbj−1 − bj > 0. Therefore,

ε(jbj−1 − bj ) ≤ j (aj−1 − βj (bj−1 − j−1bj )) = 0

by (3.5). This is the desired contradiction. Thus, we have verified that

lim sup
n→∞

aj (n)

bj (n)
≤ βj .

A symmetric argument proves the converse inequality for the lower bound. Therefore,

aj (n) ∼ βjbj (n) ∼ βjbj
njα

Lj (n)
= aj

njα

Lj (n)
.

A similar but simpler reasoning yields the result for k = 1. We omit the details. The proof is
complete.

The above proof only exhibits the limiting law, it does not give any insight into why it is
the law of an exponential functional. We intend to explore this issue now in some more detail.
Remarkably enough, it seems that we have found a new area where perpetuities appear in a
natural way.

Fix i, j ∈ N. Define R̂(j)0 (i) := 0,

R̂
(j)
k (i) := R̂

(j)
k−1(i)+ ξi+k 1{R̂(j)k−1(i)+ξi+k<j}

, k ∈ N,

and

M̂n(i) :=
∞∑
l=0

1{R̂(n)l (i)+ξi+l+1<n}, n ∈ N.

Also set Yn := n− SNn−1.
The subsequent argument relies upon the following decomposition, (3.8).

Lemma 3.1. For fixed n ∈ N and any i ∈ N,

M̂n(i)
d= Mn (3.7)

and
Mn −Nn + 1 = M̂Yn(Nn)

d= M ′
Yn
, (3.8)

where {M ′
n : n ∈ N} has the same law as {Mn : n ∈ N} and is independent of (Nn, Yn).
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Proof. We have

Mn =
∞∑
l=0

1{R(n)l +ξl+1<n}

=
Nn−2∑
l=0

1 +
∞∑
l=Nn

1{R(n)l +ξl+1<n}

= Nn − 1 +
∞∑
l=0

1{R̂(Yn)l (Nn)+ξNn+l+1<Yn}

= Nn − 1 + M̂Yn(Nn),

and the first equality in (3.8) follows. For any fixed k ∈ N,

P{M̂Yn(Nn) = k}

=
n∑
i=1

n−1∑
j=0

P{M̂n−j (i) = k, Nn = i, SNn−1 = j}

=
n∑
i=1

n−1∑
j=0

P

{ ∞∑
l=0

1{R̂(n−j)l (i)+ξi+l+1<n−j} = k, Nn = i, SNn−1 = j

}
.

The sequence {R̂(n−j)l (i)+ ξi+l+1 : l ∈ N0} is independent of 1{Nn=i,SNn−1=j} and has the same
law as {(R(n−j)l )′ + ξ ′

l+1 : l ∈ N0}, where {(R(·)l )′ : l ∈ N0} is constructed in the same way as
the sequence without the ‘prime’ by using {ξ ′

k : k ∈ N}, an independent copy of {ξk : k ∈ N}.
This implies (3.7) and

P{M̂Yn(Nn) = k}

=
n∑
i=1

n−1∑
j=0

P

{ ∞∑
l=0

1{(R(n−j)l )′+ξ ′
l+1<n−j}

= k

}
P{Nn = i, SNn−1 = j}

= P

{ ∞∑
l=0

1{(R(Yn)l )′+ξ ′
l+1<Yn} = k

}

= P{M ′
Yn

= k},
and the second equality in distribution in (3.8) follows.

Set t (n) := nα/L(n). From the above proof, we already know that Mn/t(n) converges
in law to a random variable Z, say, with a proper law. From Yn

p−→ +∞ and the result of
Lemma 3.1, we conclude that M̂Yn/t (Yn) converges in law to a random variable Z′′ d= Z. By
Proposition 2.5,

(
t (Yn)

t (n)
,
Nn − 1

t (n)

)
d−→ (M,Q) :=

(
exp(−UT ),

∫ T

0
exp(−Ut) dt

)
.

Rewriting (3.8) in the form

Mn

t(n)
= M̂Yn

t (Yn)

t (Yn)

t (n)
+ Nn − 1

t (n)
,
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we conclude that (
M̂Yn

t (Yn)
,
t (Yn)

t (n)
,
Nn − 1

t (n)

)
d−→ (Z′,M,Q),

where Z′ d= Z, and using characteristic functions, it can be checked that Z′ is independent of
(M,Q). Furthermore,

Z
d= MZ′ +Q. (3.9)

From (2.5), it follows that the distribution of
∫ ∞

0 exp(−Ut) dt is a solution of (3.9). By
Theorem 1.5(i) of [40], this solution is unique. Therefore,

Mn

t(n)

d−→
∫ ∞

0
exp(−Ut) dt.

In a similar way, we can prove the following result.

Corollary 3.1. Suppose that (1.7) holds. Then,

(
Mn −Nn

t(n− SNn−1)
,
t (n− SNn−1)

t (n)
,
Nn

t (n)

)

d−→
(∫ ∞

0
exp(−(Ut+T − UT )) dt, exp(−UT ),

∫ T

0
exp(−Ut) dt

)
.

Furthermore,
Mn −Nn

t(n− SNn−1)
and

(
t (n− SNn−1)

t (n)
,
Nn

t (n)

)

are asymptotically independent, and

t−1
n (Mn −Nn,Nn)

d−→
(∫ ∞

T

exp(−Ut) dt,
∫ T

0
exp(−Ut) dt

)
.

4. Proof of Theorem 1.2

Our proof essentially relies upon the following classical result:

lim
n→∞ P{n− SNn−1 ≤ k} = m−1

k∑
i=1

P{ξ ≥ i} =: P{W ≤ k}, k ∈ N. (4.1)

In order to see why (4.1) holds, note that

P{n− SNn−1 = k} =
n∑
i=1

P{Si−1 = n− k, Si ≥ n}

= P{ξ ≥ k}
n−k∑
i=0

P{Si = n− k}

→ m−1 P{ξ ≥ k}, n → ∞,

by the elementary renewal theorem, and (4.1) follows.
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From (3.8) we conclude that

Mn −Nn
d−→ M ′

W − 1, (4.2)

where W is a random variable with distribution (4.1) which is independent of {M ′
n : n ∈ N}.

Therefore, for any sequence {dn : n ∈ N} such that limn→∞ dn = ∞,

Mn −Nn

dn

p−→ 0. (4.3)

Assume that the distribution of ξ does not belong to the domain of attraction of any stable law
with index α ∈ [1, 2]. Then, as is well known, it is not possible to find sequences xn > 0 and
yn ∈ R such that (Sn − yn)/xn converges to a proper and nondegenerate law. In view of the
fact that

P{Nn > m} = P{Sm ≤ n− 1},
the same is true for Nn (see [17, Theorem 7] and/or [22, Theorem 2] for more details) and,
according to (4.3), for Mn.

Assume that the conditions of Theorem 1.2(ii) hold. If σ 2 = ∞ and (1.6) holds with α = 2
then arguing as in the proof of Theorem 2 of [22] we conclude that, with an and bn as defined
in our Theorem 1.2,

Nn − bn

an

w−→ µ2.

Theorem 5 of [17] (if σ 2 < ∞) and Theorem 7 of [17] (if (1.6) holds for some α ∈ [1, 2)) lead
to the same limiting relation (with corresponding an and bn, and with µ2 replaced by µα in the
latter case).

In view of (4.3), the same limiting relations hold for Mn. The proof of Theorem 1.2 is
complete.

5. Proof of Theorem 1.1

First assume that m = ∞. According to (2.2), ENk
n ∼ nk/Lk(n), k ∈ N. The same

argument as in Section 3 yields

EMk
n ∼ nk

Lk(n)
∼ (EMn)

k, k ∈ N.

Therefore,

lim
n→∞ E

(
Mn

EMn

)k
= 1, k ∈ N,

which proves (1.4). In fact, to arrive at (1.4), it suffices to know that EMn ∼ n/L(n) and
EM2

n ∼ n2/L2(n), and to exploit Chebyshev’s inequality.
Now assume that m < ∞. It is well known that

lim
n→∞

Nn

n
= 1

m
almost surely. (5.1)

In view of (4.2), limn→∞(Mn−Nn)/n = 0 almost surely, which yields limn→∞Mn/n = 1/m
almost surely. By the elementary renewal theorem, ENn ∼ n/m. Using the same approach
as in Section 3, it is straightforward to check that EMn ∼ n/m. Conversely, if Mn/an

p−→ 1
then (4.3) gives (Mn −Nn)/an

p−→ 0. Therefore, Nn/an
p−→ 1. An appeal to (5.1) allows us to

conclude that an ∼ n/m. The proof is complete.
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6. Proof of Theorem 1.4

By Theorem 3(c) and formulae in [8, p. 42] (see also [12]),

Nn − b(n)− 1

a(n)

w−→ µ1,

where µ1 is the 1-stable law with characteristic function
∫ ∞
−∞ eitxµ1(dx) = eit log |t |−|t |π/2,

t ∈ R. By Corollary 2.1,
Mn

Nn − 1
p−→ 1. (6.1)

Therefore,
Mn − b(n)

a(n)
− Mn −Nn + 1

Nn − 1

b(n)

a(n)

w−→ µ1.

Thus, to prove the theorem it suffices to show that the second summand tends to 0 in probability.
Clearly, this can be regarded as a rate of convergence result for (6.1). Recalling the notation
Yn = n− SNn−1 and using (3.8) gives

Mn −Nn + 1

Nn − 1

b(n)

a(n)
= M̂Yn

Yn/m(Yn)

m(n)

m(Yn)

b(n)Yn

na(n)

n

m(n)(Nn − 1)

=:
4∏
i=1

Ki(n).

By Corollary 2.1, m(n)Mn/n
p−→ 1. Using the equality of distributions (3.8) and the fact that

Yn
p−→ ∞, allows us to conclude thatK1(n)

p−→ 1. By Theorem 6 of [16],K2(n)
d−→ 1/R, where

R is a random variable uniformly distributed on [0, 1]. By Proposition 2.3,K3(n)
p−→ 0. Finally,

by Corollary 2.1, K4(n)
p−→ 1. The proof is complete.

7. Number of collisions in beta coalescents

In this section the main results presented in Section 1 are applied to the number of collisions
that take place in beta-coalescent processes until there is just a single block. Other closely
related functionals of coalescent processes such as the total branch length or the number of
segregating sites have been studied in [6], [13], [15], and [27] (see also [5]).

Let E denote the set of all equivalence relations on N. For n ∈ N, let �n : E → En denote
the natural restriction to the set En of all equivalence relations on {1, . . . , n}. For η ∈ En, let
|η| denote the number of blocks (equivalence classes) of η.

Pitman [32] and Sagitov [37] independently introduced coalescent processes with multiple
collisions. These Markovian processes with state space E are characterized by a finite measure
� on [0, 1] and are, hence, also called�-coalescent processes. For a�-coalescent {�t : t ≥ 0},
it is known that the process {|�n�t | : t ≥ 0} has infinitesimal rates

gnk := lim
t↓0

P{|�n�t | = k}
t

=
(

n

k − 1

) ∫
[0,1]

xn−k−1(1 − x)k−1�(dx) (7.1)

for all k, n ∈ N with k < n. Let gn := ∑n−1
k=1 gnk, n ∈ N, denote the total rates. We are

interested in the number of collisions (jumps) Xn that take place in the restricted coalescent
process {�n�t : t ≥ 0} until there is just a single block. From the structure of the coa-
lescent process, it follows that (Xn)n∈N satisfies the distributional recursion X1 = 0 and
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Xn
d= 1+Xn−In , n ∈ {2, 3, . . .}, where In is independent of X2, . . . , Xn−1 with distribution

P{In = k} = gn,n−k/gn, k ∈ {1, . . . , n− 1}. The random variable n− In is the (random) state
of the process {|�n�t | : t ≥ 0} after its first jump.

We consider beta coalescents, where, by definition,� = β(a, b) is the beta distribution with
density x �→ (B(a, b))−1xa−1(1 − x)b−1 with respect to the Lebesgue measure on (0, 1), and
B(a, b) := �(a)�(b)/�(a + b) denotes the beta function, where a, b > 0. In this case the
rates (7.1) have the form

gnk =
(

n

k − 1

)
1

B(a, b)

∫ 1

0
xa+n−k−2(1 − x)b+k−2 dx

=
(

n

k − 1

)
B(a + n− k − 1, b + k − 1)

B(a, b)
, k, n ∈ N, k < n. (7.2)

From

gk+1,k = k(k + 1)

2

B(a, b + k − 1)

B(a, b)
,

it follows that

gn =
n−1∑
k=1

(gk+1 − gk) =
n−1∑
k=1

2

k + 1
gk+1,k = 1

B(a, b)

n−1∑
k=1

kB(a, b + k − 1).

In the following it is assumed that b = 1 such that the rates (7.2) reduce to

gnk =
(

n

k − 1

)
B(a + n− k − 1, k)

B(a, 1)
= n!
(n− k + 1)!a

�(a + n− k − 1)

�(a + n− 1)

and the total rates reduce to

gn = a

n−1∑
k=1

kB(a, k) =

⎧⎪⎨
⎪⎩

a

a − 2

(
1 − �(a)�(n+ 1)

�(a + n− 1)

)
for a > 0, a �= 2,

2(hn − 1) for a = 2.

Here, hn := ∑n
i=1 1/i denotes the nth harmonic number. From the last formula, it follows that

the parameter a = 2 plays a special role in this model. Define

pk := (2 − a)�(a + k − 1)

�(a)�(k + 2)
, k ∈ N.

Now assume that 0 < a < 2. In this case (and only in this case) we have pk ≥ 0 for k ∈ N,∑∞
k=1 pk = 1, and (1.2) holds. Let ξ be a random variable with distribution P{ξ = k} =

pk, k ∈ N. It follows, by induction on n, that

P{ξ ≥ n} = �(a + n− 1)

�(a)�(n+ 1)
, n ∈ N.

Using �(n+ x) ∼ �(n)nx for n → ∞, we conclude that

P{ξ ≥ n} ∼ na−2

�(a)
= n−α

�(2 − α)
, n → ∞.

Thus, if 1 < a < 2 or, equivalently, if 0 < α < 1, Theorem 1.3 is applicable (with L(n) ≡
1/�(a) = 1/�(2 − α)), and we obtain the following result.
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Theorem 7.1. For the β(a, 1)-coalescent with 1 < a < 2, i.e. 0 < α := 2 − a < 1, the
number of collision events Xn satisfies

Xn

�(2 − α)nα
d−→

∫ ∞

0
exp(−Ut) dt,

where {Ut : t ≥ 0} is a drift-free subordinator with Lévy measure (1.9).

Note that, for � = β(a, b), we have µ−1 := ∫
x−1�(dx) < ∞ if and only if a > 1.

Under the condition µ−1 < ∞, limiting results similar to those presented in Theorem 7.1 are
known for the number of segregating sites (see, for example, [27, Proposition 5.1]) for general
�-coalescent processes with mutation.

Now assume that 0 < a < 1. Then, m := E ξ = 1/(1 − a) < ∞. It is straightforward to
verify that

n∑
k=1

k2pk ∼ 2 − a

�(a + 1)
na, n → ∞.

In particular, the variance of ξ is infinite. Thus, Theorem 1.2 is applicable (with L(n) ≡
(2 − a)/�(a + 1) = α/�(3 − α), C := 1/�(a) = 1/�(2 − α), bn := n(1 − a) = n(α − 1),
and cn := n1/α) and yields the following result.

Theorem 7.2. For the β(a, 1)-coalescent with 0 < a < 1, i.e. 1 < α := 2 − a < 2, the
number of collision events Xn satisfies

Xn − n(α − 1)

(α − 1)(α+1)/αn1/α
w−→ µα,

or, equivalently,
Xn − n(α − 1)

(α − 1)n1/α
d−→ Sα, (7.3)

where E exp(itSα) = exp(|t |α(cos(πα/2)+ i sin(πα/2)sgn(t))), t ∈ R.

Gnedin and Yakubovich [19, Theorem 9] used analytic methods to verify the same con-
vergence result (7.3) for �-coalescents satisfying �([0, x]) = Axa + O(xa+ζ ), x → 0,
0 < a < 1, and ζ > max{(2 − a)2/(5 − 5a + a2), 1 − a}.

Theorems 7.1 and 7.2 do not cover the asymptotics of Xn for the Bolthausen–Sznitman
coalescent, i.e. the β(a, b)-coalescent with a = b = 1. The limiting behavior of Xn for the
Bolthausen–Sznitman coalescent was studied in [24], and also follows from our Theorem 1.4
with pk := 1/(k(k + 1)), L(n) ≡ 1, c(x) := x, b(x) := x/ log x + x log log x/(log x)2, and
a(x) := b2(x)/x ∼ x/(log x)2. Therefore, the asymptotics of Xn for all β(a, 1)-coalescent
processes with 0 < a < 2 is clarified. Unfortunately, our method cannot be used to treat the
asymptotics of Xn for β(a, 1)-coalescent processes with a ≥ 2, as in this case condition (1.2)
is not satisfied. Recently, the limiting behavior of Xn for β(2, b)-coalescents with parameter
b > 0 was obtained in [26] using a completely different approach based on the asymptotics of
moments.
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