TWISTED GROUP RINGS WHICH ARE SEMI-PRIME
GOLDIE RINGS

by A. REID†

(Received 6 October, 1973; revised 13 March, 1974)

In this paper we examine when a twisted group ring, \(R^r(G) \), has a semi-simple, artinian quotient ring. In §1 we assemble results and definitions concerning quotient rings, Ore sets and Goldie rings, and then, in §2, we define \(R^r(G) \). We prove a useful theorem for constructing a twisted group ring of a factor group and establish an analogue of a theorem of Passman. Twisted polynomial rings are discussed in §3 and I am indebted to the referee for informing me of the existence of [4]. These are used as a tool in proving results in §4.

A group \(G \) is a poly- (torsion-free abelian or finite) group if \(G \) has a series of subgroups \(\{e\} = H_0 \triangleleft H_1 \triangleleft H_2 \triangleleft \ldots \triangleleft H_n = G \) such that \(H_i/H_{i-1} \) is either torsion-free abelian or finite \((i = 1, 2, \ldots, n) \). These groups are considered here and we prove (Theorem 4.5) that if such a group \(G \) has only a finite set \(S \) of periodic elements with \(|S| \) regular in \(R \) and \(R \) is semi-prime, left Goldie, then \(R^r(G) \) is semi-prime, left Goldie.

In §5 we define a class of groups \(\mathcal{G} \) such that if \(G \) is a torsion-free element of \(\mathcal{G} \) and \(D \) is a division ring then \(D^r(G) \) is an Ore domain. We call these groups Ore groups and prove a theorem similar to Theorem 4.5 for this class of groups.

Throughout, \(R \) will denote a ring with identity element 1 and \(G \) a multiplicative group with identity \(e \). By artinian and noetherian we mean left artinian and left noetherian.

1. Goldie rings.

We restate the following definitions which appear in [2, pp. 228, 229].

An element of a ring \(R \) is \textit{regular} if it is neither a left nor a right zero divisor. A set \(T \) of regular elements of \(R \) which is multiplicatively closed is a \textit{left Ore set} if, whenever \(a \in R \), \(c \in T \), there exist \(a' \in R \), \(c' \in T \) such that \(c'a = a'c \).

A ring \(Q \) is a \textit{left quotient ring} of \(R \) with respect to a set \(T \) of regular elements of \(R \) if

(i) \(Q \supseteq R \),

(ii) the elements of \(T \) are units in \(Q \),

(iii) the elements of \(Q \) have the form \(c^{-1}a \) where \(c \in T \), \(a \in R \).

If such a ring \(Q \) exists, it will be denoted by \(R_T \). When \(T \) is the set of all regular elements of \(R \) we say that \(Q \) is the \textit{left quotient ring} of \(R \).

\textbf{Theorem 1.1.} \textit{Let \(T \) be a set of regular elements of \(R \). Then \(R_T \) exists if and only if \(T \) is a left Ore set in \(R \).}

† This work was supported by the Science Research Council and forms part of the author’s Ph.D. thesis (Aberdeen). I wish to thank Professor D. A. R. Wallace for his invaluable encouragement and advice and the referee for his helpful suggestions. In particular I am indebted to the referee for pointing out the method of proof of Theorem 2.7. My original, longer proof followed the lines of [6, Appendices 2, 3].
A ring R has finite left Goldie rank if it contains no infinite direct sum of non-zero left ideals. Let S be a non-empty subset of R; then $\ell(S)$, the left annihilator of S, is the left ideal \{a \in R : as = 0 \text{ for all } s \in S\}. A ring R is a left Goldie ring if (i) R has finite left Goldie rank and (ii) R has ascending chain condition on left annihilators.

Goldie's Theorem [2, Theorem 1.37]. A ring R has a semi-simple artinian left quotient ring if and only if R is a semi-prime left Goldie ring.

Lemma 1.2 [11, Corollary 2.5]. Let Q be an artinian ring with subring R such that every element of Q has the form $c^{-1}a$, where $c, a \in R$. Then Q is the left quotient ring of R.

For convenience, we formulate the following straightforward lemmas.

Lemma 1.3. Let R be a ring and let $T \subseteq R$ be a left Ore set.

(i) Let L be a left ideal and let $L_T = R_T L$, the left ideal in R_T generated by L. Then $L_T = \{c^{-1}r : c \in T, r \in L\}$.

(ii) Let L and J be left ideals in R. Then $L_J \cap J_T = (L \cap J)_T$.

(iii) If L is a left annihilator in R, then L_T is a left annihilator in R_T and $L_T \cap R = L$.

(iv) If R_T is a left Goldie ring, then R is a left Goldie ring.

Lemma 1.4. Let R_1, R_2, \ldots, R_n be a finite number of left Goldie rings. Then $R = R_1 \oplus R_2 \oplus \ldots \oplus R_n$ is also a left Goldie ring.

2. Twisted group rings.

Definition. Let G be a group with identity element e, R a ring with identity 1, R^* the group of central units of R and $\gamma : G \times G \to R^*$ a 2-cocycle. [That is, $\gamma(g, h)\gamma(gh, k) = \gamma(g, hk)\gamma(h, k), g, h, k \in G$.] Let $R^G(G)$ be the free left R-module with basis $\{g : g \in G\}$. Define multiplication in $R^G(G)$ by

$$\tilde{g} \tilde{h} = \gamma(g, h)\tilde{g}\tilde{h} \quad (g, h \in G)$$

extending this, by linearity, to the whole of $R^G(G)$. Then $R^G(G)$ is an associative ring with identity element $\gamma(e, e)^{-1} \tilde{e}$. We call $R^G(G)$ the twisted group ring of G over R with twist γ.

We shall identify an element $r \in R$ with its image $r\gamma(e, e)^{-1} \tilde{e}$ in $R^G(G)$.

In this section we prove some results about $R^G(G)$ that we shall require later.

Theorem 2.1. Let G be a group with a central normal subgroup Z and $R^G(G)$ a twisted group ring such that $\gamma(g, z) = \gamma(z, g)$ for all $g \in G$ and $z \in Z$. Then there exists a twisted group ring of G/Z over $R^G(G)$ with twist δ such that

$$R^G(G) \cong [R^G(Z)]^U(G/Z).$$
Proof. Let T be a set of coset representatives for Z in G. Then every element of G is uniquely represented in the form $t \sigma$ for some $t \in T, \sigma \in Z$. Thus given $t_1, t_2 \in T$ there are a unique $\tau (t_1, t_2) \in T$ and $\sigma \in Z$ such that $t_1 t_2 = \tau (t_1, t_2) \sigma$. Then, in $R' (G)$,

$$l_1 l_2 = g(t_1, t_2) \overline{\tau (t_1, t_2) \sigma} = g(t_1, t_2) g(\sigma, \tau (t_1, t_2))^{-1} \overline{\sigma} \overline{\tau (t_1, t_2)}.$$

Thus

$$l_1 l_2 (\overline{\tau (t_1, t_2)})^{-1} = g(t_1, t_2) g(\sigma, \tau (t_1, t_2))^{-1} \overline{\sigma} \in \text{central units of } R' (Z).$$

Let $F = G/Z$. Then for each $f \in F$ there is a unique $t \in T$ such that $f = t \sigma$. Define $\delta: F \times F \to (R'(Z))^{*}$ by

$$\delta (f_1, f_2) = l_1 l_2 (\overline{\tau (t_1, t_2)})^{-1}, \text{ where } f_1 = t_1 \sigma, f_2 = t_2 \sigma, t_1, t_2 \in T.$$

Given f_1, f_2, then t_1, t_2 and $\tau (t_1, t_2)$ are uniquely determined. Thus δ is well-defined and it is readily verified that δ is a 2-cocycle.

Hence we have defined $[R'(Z)]^{\delta} (F)$. We shall denote by f^* the image in $[R'(Z)]^{\delta} (F)$ of an element $f \in F$.

Now we construct an isomorphism between $R'(G)$ and $[R'(Z)]^{\delta} (F)$. As remarked earlier, given $g \in G$ there are a unique $t \in T$ and $\sigma \in Z$ with $g = t \sigma = \sigma t$. Then $g = g(t, \sigma)^{-1} \bar{\sigma} t$ in $R'(G)$. Define $\theta: R'(G) \to [R'(Z)]^{\delta} (F)$ to be the R-homomorphism defined by

$$\theta (g) = g(t, \sigma)^{-1} \bar{\sigma} t \mapsto g(t, \sigma)^{-1} \bar{\sigma} (t \sigma)^{*}.$$

We show that θ is also a ring homomorphism. To do this, it is sufficient to show that $\theta (g_1 g_2) = \theta (g_1) \theta (g_2) (g_1, g_2 \in G)$. Let $g_1 = z_1 t_1, g_2 = z_2 t_2$, where $z_1, z_2 \in Z, t_1, t_2 \in T$. Then

$$\bar{\sigma} (t \sigma)^{*} = g(z_1, t_1)^{-1} \bar{\sigma} (t \sigma)^{*} g(z_2, t_2)^{-1} \bar{\sigma} (t \sigma)^{*} = g(z_1, t_1)^{-1} \bar{\sigma} g(z_2, t_2)^{-1} \bar{\sigma} g(z_3, t_3)^{-1} \bar{\sigma} g(z_4, t_4)^{-1} \bar{\sigma} (t \sigma)^{*}.$$

Thus, recalling that

$$g(t_1 Z, t_2 Z) = \overline{t_1 t_2 (t_3)^{-1} = g(t_1, t_2) g(z_3, t_3)^{-1} \bar{\sigma} t_3},$$

it follows that $\theta (g_1 g_2) = \theta (g_1) \theta (g_2)$.

https://doi.org/10.1017/S0017089500002433 Published online by Cambridge University Press
Hence \(\theta \) is a ring homomorphism and, since \(\theta \) is clearly both one-one and onto, the required isomorphism is established.

COROLLARY 2.2. Let \(G \) be a group, \(Z \) a central normal subgroup of \(G \) and \(R \) a ring. Then there exists a twisted group ring of \(G/Z \) over \(R(Z) \) with twist \(\delta \), such that

\[
R(G) \cong R(Z)\delta(G/Z).
\]

Thus twisted group rings occur in a fairly natural way and we have a useful method of expressing a group ring in terms of a subgroup and a factor group.

For Lemma 2.5 we shall require the following result. We denote the set of positive integers by \(\mathbb{P} \).

LEMMA 2.3. Let \(R \) be a semi-simple, artinian ring and let \(n \in \mathbb{P} \). Let \(W = \{w \in R^*: w^n = 1\} \). Then \(W \) is finite.

Proof. Let \(S \) be the centre of \(R \). Then, since \(R \) is semi-simple artinian, there exist fields \(F_1, F_2, \ldots, F_r \) (say) such that \(S = F_1 \oplus F_2 \oplus \cdots \oplus F_r \). For \(w \in W \), let \((w_1, w_2, \ldots, w_r) \) be the image of \(w \) in \(F_1 \oplus F_2 \oplus \cdots \oplus F_r \). Then \(w^n = 1 \) implies that \(w_i^n = 1 \) (\(i = 1, 2, \ldots, r \)). Hence \(W = W_1 \oplus W_2 \oplus \cdots \oplus W_r \), where \(W_i \) is the set of \(n \)th roots of unity in \(F_i \). But the set of \(n \)th roots of unity in a field is finite. Hence \(W \) is finite.

COROLLARY 2.4. Let \(R \) be a semi-prime left Goldie ring and let \(n \in \mathbb{P} \). Let \(W = \{w \in R^*: w^n = 1\} \). Then \(W \) is finite.

Proof. Let \(Q \) be the semi-simple, artinian quotient ring of \(R \). Then \(W \subseteq \{w \in Q^*: w^n = 1\} \) which, by the lemma, is finite.

DEFINITION. Let \(R^\prime(G) \) be a twisted group ring and let \(H \subseteq G \). Define

\[
\tilde{C}_G(H) = \{g \in G: \tilde{g}h = h\tilde{g} \text{ for all } h \in H\}
\]

\[
= \{g \in C_G(H): \gamma(g, h) = \gamma(h, g) \text{ for all } h \in H\}.
\]

It is readily verified that \(\tilde{C}_G(H) \) is a subgroup of \(G \).

LEMMA 2.5. Let \(R \) be a semi-prime left Goldie ring and let \(R^\prime(G) \) be a twisted group ring. Let \(H \) be a subgroup of \(G \). Then (i) \(\tilde{C}_G(H) \leq C_G(H) \) and (ii) if, further, \(|H| < \infty \), then

\[
|C_G(H): \tilde{C}_G(H)| < \infty.
\]

Proof. Let \(g_1, g_2 \in C_G(H), h \in H \). Then

\[
\frac{\gamma(g_1, h)\gamma(g_2, h)}{\gamma(h, g_1)\gamma(h, g_2)} = \frac{\gamma(g_1, h)\gamma(g_2, h)\gamma(hg_1, g_2)}{\gamma(h, g_1)\gamma(h, g_2)\gamma(hg_1, g_2)}
\]
TWISTED GROUP RINGS WHICH ARE SEMI-PRIME GOLDIE RINGS

Now define \(\theta_h : C_\alpha(H) \rightarrow R^* \) by

\[
\theta_h(g) = \gamma(g, h)^{-1} \quad (g \in C_\alpha(H)).
\]

Then, by the above argument, \(\theta_h \) is a group homomorphism, \(\text{Ker} \ \theta_h = \{ g \in C_\alpha(H) : \gamma(g, h) = \gamma(h, g) \} \) and hence

\[
\overline{C_\alpha(H)} = \bigcap_{h \in H} \text{Ker} \ \theta_h.
\]

It follows that \(\overline{C_\alpha(H)} \triangleleft C_\alpha(H) \).

Now suppose that \(|H| = n \) and let \(h \in H, \ g \in C_\alpha(H) \). Then \((h \bar{g})^n = ah^n\bar{g}^n \) for some \(a \in R \). But \(h^n = e \) therefore \(\bar{h}^n \in R \) and so \((h \bar{g})^n = b\bar{g}^n \) for some \(b \in R \). Thus

\[
(h \bar{g})^n = \bar{a}(h \bar{g})^n\bar{g}^{-1} = \bar{g}(h \bar{g})^n = [\gamma(g, h)^{-1} \bar{h} \bar{g}]^n.
\]

Therefore

\[
[\gamma(g, h)^{-1} \bar{h} \bar{g}]^n = 1 \quad \text{and so}
\]

\[
C_\alpha(H) / \text{Ker} \ \theta_h \cong \text{subgroup of group of } n \text{th roots of unity in } R^*.
\]

Hence, by Corollary 2.4, \(|C_\alpha(H) : \text{Ker} \ \theta_h| < \infty \). Further, since \(|H| < \infty, |C_\alpha(H) : \overline{C_\alpha(H)}| < \infty \) and the result is proved.

We now give a lemma concerning rings of quotients.

Lemma 2.6. (i) Let \(H \triangleleft G \) such that \(R'(G) \) has a left quotient ring and let \(T \) be the set of regular elements in \(R'(H) \). Then \(T \) is a left Ore set in \(R'(G) \).

(ii) If \(R \) has a left quotient ring \(Q \), then \(Q'(G) \) is well-defined and is the left quotient ring of \(R'(G) \) with respect to the set of regular elements of \(R \).

Proof. (i) Adapt [12, Lemma 2.6].

(ii) This is clear.

We shall wish to know when \(R'(G) \) is semi-prime. We denote by \(PR'(G) \) the prime radical of \(R'(G) \). In the ‘untwisted’ situation we have the following theorem due to D. Passman [6, p. 162, see also 7] and I. Connell [6, Appendices 2 and 3].

Theorem A. The group ring \(R(G) \) is semi-prime if and only if \(R \) is semi-prime and the order of each finite normal subgroup of \(G \) is regular in \(R \).

In [8, Theorem 3.7] Passman proves the following extension of this.
THEOREM B. Let K be an algebraically closed field of characteristic $p > 0$ and $K^\gamma(G)$ a twisted group ring. Then $K^\gamma(G)$ is semi-prime if and only if G has no finite normal subgroups of order divisible by p.

Let K be any field of characteristic $p > 0$, F its algebraic closure and $K^\gamma(G)$ a twisted group ring. Then $F^\gamma(G)$ is well-defined and, arguing as in [1, Proposition 9], it can be shown that

$$PK^\gamma(G) = K^\gamma(G) \cap PF^\gamma(G).$$

It is immediate from this and Theorem B that, if G has no finite normal subgroups of order divisible by p then, $K^\gamma(G)$ is semi-prime and we generalise this below in Theorem 2.7. The converse of this, however, is not true. We recall a counter example discussed in [9]. Let K be a field over which the polynomials $x^{p^n} - a$ are irreducible for some $a \in K$ and where $p = \text{char } K$. Let $G = \mathbb{Z}_p$. Then we may construct a twisted group ring $K^\gamma(G)$ which is a field and hence semi-prime. The orders of finite normal subgroups of G, however, are powers of p.

THEOREM 2.7. Let R be a semi-prime ring and one of the following: (i) commutative, (ii) a semi-direct product of simple rings, (iii) left Goldie. Let G be a group such that the order of each finite normal subgroup is regular in R and let $R^\gamma(G)$ be a twisted group ring. Then $R^\gamma(G)$ is semi-prime.

Proof. (i) As in [1, proof of Theorem 5, p. 668].
(ii) As in [1, proof of Proposition 10, pp. 669 and 670].
(iii) Let Q be the semi-simple artinian left quotient ring of R. Then, by (ii), $Q^\gamma(G)$ is semi-prime and hence $R^\gamma(G)$ is semi-prime.

3. Twisted polynomial rings.

DEFINITION. Let R be a ring and $\theta: R \to R$ an automorphism of R. Let $\langle x \rangle$ be an infinite cyclic group. We define $R_\theta(x)$ to be the free left R-module with basis $\langle x \rangle$ and, for $r \in R$, we define multiplication on $R_\theta(x)$ by

$$xr = \theta(r)x$$
$$x^{-1}r = \theta^{-1}(r)x^{-1},$$

extending by linearity to the whole of $R_\theta(x)$. With this definition of multiplication $R_\theta(x)$ is an associative ring.

Thus $R_\theta(x)$ is a ring of polynomials in x and x^{-1} with coefficients from R. The subring of $R_\theta(x)$ containing only the polynomials in non-negative powers of x, denoted by $R_\theta[x]$, is called a twisted polynomial ring.

A. Horn in [4, §2] has proved the following.

THEOREM 3.1. Let R be a noetherian ring. Then $R_\theta[x]$ has an artinian left quotient ring if and only if R has an artinian left quotient ring.
From this we may deduce the following corollary.

Corollary 3.2. Let R have an artinian left quotient ring. Then $R_\rho(x)$ has an artinian left quotient ring.

Proof. Let Q be the left quotient ring of R. Then, by the theorem, $Q_\rho[x]$ has an artinian left quotient ring \tilde{Q}. Since x^i is regular in $Q_\rho[x]$, $x^{-i} \in \tilde{Q}$ ($i \in \mathbb{P}$) and hence

$$R_\rho(x) \subseteq Q_\rho(x) \subseteq \tilde{Q}.$$

It is now clear from Lemma 1.2 that \tilde{Q} is the artinian left quotient ring of $R_\rho(x)$.

4. Quotient rings of $R'(G)$. In this section we obtain sufficient conditions for $R'(G)$ to have a semi-simple artinian quotient ring, similar to but less stringent than those obtained by P. Smith in [12, Theorem 2.18] for $R(G)$. By Goldie's Theorem, if $R'(G)$ is to have a semi-simple artinian left quotient ring, then it must itself be a semi-prime left Goldie ring and therefore must have both a.c.c. on left annihilators and finite left Goldie rank.

Lemma 4.1. Let $R'(G)$ be semi-prime and let $H \triangleleft G$ be such that (i) $|G:H| < \infty$ and (ii) $R'(H)$ is semi-prime left Goldie. Then $R'(G)$ is semi-prime left Goldie.

Proof. By Lemma 2.6, the set T of regular elements of $R'(H)$ is a left Ore set in $R'(G)$. Let $S = [R'(G)]_T$. Then S is semi-prime and $S = \sum_{c \in C} Q_c$, where Q is the left quotient ring of $R'(H)$ and C is a set of coset representatives for H in G. But C is finite; therefore S is an artinian Q-module and hence an artinian ring. It follows from Lemma 1.2 that S is the left quotient ring of $R'(G)$ and so, by Goldie's Theorem, $R'(G)$ is a semi-prime left Goldie ring.

Lemma 4.2. Let $R'(G)$ have a left quotient ring and let $H \triangleleft G$ be such that

(i) $R'(H)$ is semi-prime left Goldie, and

(ii) G/H is ordered.

Then $R'(G)$ is semi-prime left Goldie.

Proof. We prove that every essential left ideal in $R'(G)$ contains a regular element. Let E be an essential left ideal in $R'(G)$ and let

$$E_0 = \{a \in R'(H): g_0a + g_1a_1 + \ldots + g_na_n \in E \text{ for some } n \text{ and } a_i \in R'(H) \text{ and where } g_0H < g_1H < \ldots < g_nH \text{ in } G/H\}.$$

Then E_0 is a left ideal in $R'(H)$. Let $a \in R'(H)$, $a \neq 0$. Then there exists $\alpha = k_1b_1 + k_2b_2 + \ldots + k_mb_m \in R'(G)$, $b_i \in R'(H)$, $k_1H < k_2H < \ldots < k_mH$ in G/H, such that $\alpha a \neq 0$ and $aa \in E$. Therefore $b_1a \neq 0$ and $b_ia \in E_0$ for some $1 \leq i \leq m$ and it follows that E_0 is essential in $R'(H)$. But $R'(H)$ is semi-prime left Goldie; therefore E_0 contains a regular element of
$R'(H)$. That is, there exists $x \in E$ with $x = \bar{g}_0 c + \bar{g}_1 c_1 + \ldots + \bar{g}_n c_n$, where $c_i \in R'(H)$, c is regular in $R'(H)$ and $g_0 H < g_1 H < \ldots < g_n H$ in G/H. It is readily verified that x is regular in $R'(G)$.

Now since every essential left ideal of $R'(G)$ contains a regular element, Q, the left quotient ring of $R'(G)$, contains no proper essential left ideals and is therefore a semi-simple artinian ring [2, p. 234 and p. 219].

Corollary 4.3. Let $R'(G)$ be a twisted group ring and $H \triangleleft G$ be such that G/H is infinite cyclic and $R'(H)$ is semi-prime left Goldie. Then $R'(G)$ is semi-prime left Goldie.

Proof. $G/H = \langle gH \rangle$ for some $g \in G \setminus H$. Define $\theta: R'(H) \rightarrow R'(H)$ by $\theta(a) = \bar{g}a\bar{g}^{-1}$ ($a \in R'(H)$). Then, since $H \triangleleft G$, θ is an automorphism of $R'(H)$ and, in the notation of §3, with $\bar{g} = x$, $R'(G) = R'(H)_{\theta(\bar{g})}$. Now it follows from Corollary 3.2 that $R'(G)$ has an artinian left quotient ring and so, G/H being an ordered group, $R'(G)$ is semi-prime left Goldie.

Lemma 4.4. Let $R'(G)$ be a twisted group ring and let $H \triangleleft G$ be such that (i) $R'(H)$ is semi-prime left Goldie, and (ii) G/H is torsion-free abelian. Then $R'(G)$ is semi-prime left Goldie.

Proof. G/H is an ordered group. Thus, from Lemma 4.2, it will be sufficient to prove that $R'(G)$ has a left quotient ring. To do so it is enough to show that $R'(G_1)$ has a left quotient ring for every subgroup G_1 such that G_1/T is finitely generated. But G_1/H is a direct sum of a finite number of infinite cyclic groups and the required result follows by induction from Corollary 4.3.

Theorem 4.5. Let G be a poly- (torsion-free abelian or finite) group and let S be the set of all periodic elements of G. Let R be semi-prime left Goldie and let S be finite with $|S|$ regular in R. Then $R'(G)$ is semi-prime left Goldie.

Proof. By Theorem 2.7, $R'(G)$ is semi-prime and so the result follows by induction from Lemmas 4.1, 4.4.

Examples of poly- (torsion-free abelian or finite) groups.

(i) Nilpotent groups with finite set of periodic elements. (A torsion-free nilpotent group has central series with factors all torsion-free abelian [5, Theorem 1.2].)

(ii) Soluble groups with derived series whose factors have only a finite number of periodic elements.

(iii) FC-soluble groups [10, pp. 121, 129] with series

$$\{e\} = H_0 \vartriangleleft H_1 \vartriangleleft \ldots \vartriangleleft H_n = G$$

such that H_{i+1}/H_i is an FC-group whose torsion subgroup [10, p. 121, Theorem 4.32] is finite ($i = 0, 1, \ldots, n-1$).

((i) and (ii) are particular examples of (iii).)
5. Ore groups.

Definition. A ring R is called a *left Ore domain* if

(i) R contains no proper zero divisors, and
(ii) R satisfies the left Ore condition.

We shall be interested in the class of groups such that, given G torsion-free and an Ore domain R, then $R^\gamma(G)$ is an Ore domain. We therefore make the following definition.

Definition. Let \mathcal{G} be the class of groups such that

(i) $G \in \mathcal{G}$, $H \leq G \Rightarrow H \in \mathcal{G}$,
(ii) $G \in \mathcal{G}$, $H < G$, $|H| < \infty \Rightarrow G/H \in \mathcal{G}$,
(iii) if $G \in \mathcal{G}$ is torsion-free, D is a division ring and $D^\gamma(G)$ a twisted group ring, then $D^\gamma(G)$ is an Ore domain.

If $G \in \mathcal{G}$ we call G an *Ore group*. Every periodic group is an Ore group. Also abelian groups, nilpotent groups and FC-groups are Ore groups.

Theorem 5.1. Let G be a group such that any twisted group ring $D^\gamma(G)$, where D is a division ring, is semi-prime left Goldie. Let R be a semi-prime left Goldie ring. Then $R^\gamma(G)$ is semi-prime left Goldie.

Proof. Let Q be the semi-simple artinian quotient ring of R. By Lemmas 2.6 and 1.3, (iv), it is sufficient to prove that $Q^\gamma(G)$ is semi-prime left Goldie. Then

$$Q = M_{n_1}(D_1) \oplus M_{n_2}(D_2) \oplus \ldots \oplus M_{n_r}(D_r)$$

for some integers n_1, \ldots, n_r and division rings D_1, D_2, \ldots, D_r. Also there exist orthogonal central idempotents $e_1, e_2, \ldots, e_r \in Q$ such that $M_{n_i}(D_i) = Qe_i$ $(i = 1, 2, \ldots, r)$. Let $g, h \in G$. Since $\gamma(g, h)$ is a central unit of R, $\gamma(g, h)e_i$ is a central unit of D_i $(i = 1, 2, \ldots, r)$ and thus, defining $\gamma(g, h) = \gamma(g, h)e_i$, we have defined twisted group rings $D_i^\gamma(G)$ $(i = 1, 2, \ldots, r)$. It follows that

$$Q^\gamma(G) = M_{n_1}(D_1^\gamma(G)) \oplus M_{n_2}(D_2^\gamma(G)) \oplus \ldots \oplus M_{n_r}(D_r^\gamma(G)).$$

Hence it is sufficient to prove that each $M_{n_i}(D_i^\gamma(G))$ is semi-prime left Goldie. But $D_i^\gamma(G)$ has a semi-simple artinian quotient ring Q_i, by the hypotheses of the theorem; hence [11, Theorem 3.1] $M_{n_i}(Q_i)$ is the semi-simple artinian quotient ring of $M_{n_i}(D_i^\gamma(G))$.

Corollary 5.2. Let R be a semi-prime left Goldie ring and G a torsion-free Ore group. Then $R^\gamma(G)$ is semi-prime left Goldie.

Before the main theorem of this section we require the following lemma, the proof of which is routine.

Lemma 5.3. Let G be a group and let S be the set of all periodic elements of G. Then

(i) $C_G(S) \leq G$,
(ii) $|S| < \infty \Rightarrow S \leq G$,
(iii) $|S| < \infty \Rightarrow |G: C_G(S)| < \infty$.
THEOREM 5.4. Let R be a semi-prime left Goldie ring and let G be an Ore group such that the set S of all periodic elements of G is finite with $|S|$ regular in R. Then $R^\ast(G)$ is semi-prime left Goldie.

Proof. Let $\mathcal{C}_G(S) = \{g \in C_G(S): \gamma(g, s) = \gamma(s, g) \text{ for all } s \in S\}$. By Lemma 2.5, $|C_G(S): C_G(S)| < \infty$. Hence, since $|G: C_G(S)| < \infty$, $|G: C_G(S)| < \infty$. Also, by Theorem 2.7, $PR^\ast(G) = 0$ and so, by Lemma 4.1, it is sufficient to prove that $R^\ast(\mathcal{C}_G(S))$ is semi-prime left Goldie. Let $C = \mathcal{C}_G(S) \cap S$. Then C is a central subgroup of $\mathcal{C}_G(S)$ and, since $C \subseteq S$, $\bar{c} \bar{c} = \bar{c} \bar{c}$ for all $g \in \mathcal{C}_G(S), c \in C$. Therefore, by Theorem 2.1, we may construct a twisted group ring of $\mathcal{C}_G(S)/C$ over $R^\ast(C)$ with twist δ (say) such that

$$R^\ast(\mathcal{C}_G(S)) \cong [R^\ast(C)]^\Phi(\mathcal{C}_G(S)/C).$$

But, since $|C| < \infty$ and $|C|$ is regular in R, $R^\ast(C)$ is semi-prime left Goldie (Lemma 4.1). Also, since G is an Ore group, $\mathcal{C}_G(S)$ is an Ore group. Then, since C is the set of periodic elements of $\mathcal{C}_G(S)$ and C is finite, $\mathcal{C}_G(S)/C$ is a torsion-free Ore group. It now follows from Corollary 5.2 that $[R^\ast(C)]^\Phi(\mathcal{C}_G(S)/C)$ is a semi-prime left Goldie ring. That is, $R^\ast(\mathcal{C}_G(S))$ is semi-prime left Goldie and hence $R^\ast(G)$ is also semi-prime left Goldie.

DEFINITIONS. If \mathcal{X} is a class of groups, $L\mathcal{X}$ is the class of locally \mathcal{X}-groups consisting of all groups G such that every finite subset of G is contained in a \mathcal{X}-subgroup. \mathcal{X} is called a local class if $L\mathcal{X} = \mathcal{X}$. [10, part 1 p. 5, part 2 p. 93].

THEOREM 5.5. The class \mathcal{C} of Ore groups is a local class.

Proof. Let $G \in L\mathcal{C}$. Let S be a finite subset of G and let $H = \langle S \rangle$. Since $G \in L\mathcal{C}$, there exists $K \in \mathcal{C}$ such that $S \subseteq K$. Then $H \leq K$ and so $H \in \mathcal{C}$. From this it is clear that $L\mathcal{C}$ satisfies (i) and (ii) of the definition of an Ore group. We must now prove that if $G \in L\mathcal{C}$ is torsion-free and D is a division ring then $D^\ast(G)$ is an Ore domain. To prove this we show that

(a) $xy = 0$ if and only if $x = 0$ or $y = 0$ ($x, y \in D^\ast(G)$);

(b) given $x, y \in D^\ast(G)$, there exist $x', y' \in D^\ast(G)$ such that $x'x = y'y$.

Let $x, y \in D^\ast(G)$; then there exists a finitely generated subgroup H such that $x, y \in D^\ast(H)$. Then $H \in \mathcal{C}$ so that H is a torsion-free Ore group and $D^\ast(H)$ is an Ore domain. Now, since $x, y \in D^\ast(H)$, they satisfy conditions (a) and (b). Hence $D^\ast(G)$ is an Ore domain. We have shown that $L\mathcal{C}$ satisfies (i), (ii) and (iii) of the definition of \mathcal{C}. Hence $L\mathcal{C} \subseteq \mathcal{C}$ and so $L\mathcal{C} = \mathcal{C}$.

COROLLARY 5.6. Let G be a locally nilpotent group (locally FC group); then G is an Ore group.

THEOREM 5.7. Let G be a locally nilpotent (locally FC) group. Then $R(G)$ is semi-prime left Goldie if and only if

(i) R is semi-prime left Goldie, and

(ii) the subgroup S of all periodic elements of G is finite with $|S|$ regular in R.

https://doi.org/10.1017/S0017089500002433 Published online by Cambridge University Press
TWISTED GROUP RINGS WHICH ARE SEMI-PRIME GOLDIE RINGS

Proof. That (i) and (ii) are sufficient for \(R(G) \) to be semi-prime left Goldie follows from Theorem 5.4.

Conversely, let \(R(G) \) be semi-prime left Goldie. It is not hard to show that \(R \) must be a left Goldie ring. Then, by Theorem A and the fact that the set of periodic elements of a locally nilpotent (locally FC) group is a locally finite subgroup, it follows that (i) and (ii) hold true.

Theorem 5.8. Let \(G \) be a group and let \(H \triangleleft G \) be such that \(H \) is periodic and \(G/H \) is an Ore group. Then \(G \) is an Ore group.

Proof. Let \(\mathcal{X} = \{ G : G \) has a periodic normal subgroup \(H \) with \(G/H \) an Ore group\}. Clearly \(\mathcal{G} \subseteq \mathcal{X} \). We shall prove that \(\mathcal{X} \) satisfies the definition of \(\mathcal{G} \) and hence that \(\mathcal{X} = \mathcal{G} \).

Let \(G \in \mathcal{X} \) with \(H \triangleleft G \) such that \(H \) is periodic and \(G/H \in \mathcal{G} \).

(i) If \(K \leq G \), then \(K \cap H \) is a periodic normal subgroup of \(K \). Also \(K/(K \cap H) \cong KH/H \leq G/H \in \mathcal{G} \). Hence \(K/(K \cap H) \in \mathcal{G} \) and it follows that \(K \in \mathcal{X} \).

(ii) Let \(K \triangleleft G \), \(|K| < \infty \). Now \(HK/K \cong H/(H \cap K) \) is a periodic normal subgroup of \(G/K \). Also \((G/K)/(HK/K) \cong (G/H)/(HK/H) \) which belongs to \(\mathcal{G} \), since \(G/H \in \mathcal{G} \) and \(HK/H \cong K/(H \cap K) \) is a finite normal subgroup of \(G/H \). Hence \(G/K \in \mathcal{X} \).

(iii) If \(G \) is torsion-free, then \(H \) is trivial and hence \(G \in \mathcal{G} \).

We have shown that \(\mathcal{X} \) satisfies conditions (i), (ii) and (iii) of the definition of \(\mathcal{G} \). Hence \(\mathcal{X} = \mathcal{G} \).

References

Mathematics Department
University of Aberdeen
Aberdeen AB9 2UB