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Abstract

In this paper, we show how lazy functional programs can be compiled for the Java Virtual

Machine using a mapping between a version of the 〈ν, G〉-machine and the Java Virtual

Machine. This mapping is elegant – the description is entirely straightforward – and efficient

– using it, both code size and execution speed are of the same order of magnitude as those

obtained with a traditional functional language bytecode interpreter. In future, our work

could serve as the basis of an interface between Haskell and Java.

Capsule Review

In this paper, the author describes the compilation of Haskell programs to Java Virtual

Machine code, an important first step in achieving the goal of interoperability between

Haskell and Java. The compilation techniques used are not new, being based on Augustsson

and Johnsson’s 〈ν, G〉-machine, so the interest of the paper lies in the adaptation of these

techniques to the Java Virtual Machine and the resulting performance under a number of

different interpreters and just-in-time compilers. The author presents detailed figures that put

the implementation on a par with conventional functional language bytecode interpreters.

1 Introduction

For some time, we have been interested in the implementation of lazy functional

languages on small computers, such as those found in consumer electronics devices.

Upto now, we have assumed that next-generation products would use previous-

generation RISC processors (Wakeling, 1998a). However, Java processors, with their

compact instruction encoding, are an attractive alternative (O’Connor and Tremblay,

1997). In this paper, we consider software rather than hardware implementations of

the Java Virtual Machine, and show that lazy functional languages can be compiled

for such implementations with code size and execution speed of the same order

of magnitude as those obtained with a traditional functional language bytecode

interpreter.

The paper is organised as follows. Section 2 describes the main difficulties in

compiling lazy functional languages for the Java Virtual Machine. Section 3 outlines

the architecture and instruction set of the 〈ν, G〉-machine, an abstract machine
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that allows us to overcome most of these difficulties. Section 4 shows how a core

functional language can be compiled for this abstract machine. Section 5 outlines

the architecture and instruction set of the 〈ν, G〉-machine. Section 6 shows how

〈ν, G〉-machine code can be converted to Java Virtual Machine code. Section 7

presents some benchmark figures for our compiler with the Sun implementation

of the Java Virtual Machine, and section 8 describes some optimisations to the

compilation scheme. Section 9 considers some other implementations of the Java

Virtual Machine, and section 10 compares our compiler with others for Standard

ML and Java. Section 11 mentions some closely related work, and section 12 suggests

some possible future work. Section 13 concludes.

2 Implementation difficulties

This section describes the main difficulties in compiling lazy functional languages

for the Java Virtual Machine (Lindholm and Yellin, 1999).

2.1 The cost of memory allocation

Our first attempts to compile lazy functional programs for the Java Virtual Machine

showed that the cost of memory allocation could be a serious problem. We found

that it was an order of magnitude higher in version 1.1 of the Sun Java Virtual

Machine interpreter than in version 1.3 of the Hugs interpreter (Wakeling, 1997).

Since lazy functional programs allocate so much memory for closures, this hurt.

So far, there has not been much incentive for Sun or others to reduce the cost of

memory allocation. A Java Virtual Machine implementation is judged by how well

it runs benchmarks written in Java, rather than in a lazy functional language, and

current implementations usually do an an order of magnitude less memory allocation

for Java benchmarks than they do for lazy functional ones. Consider, for example,

version 3 of Pendragon’s Embedded CaffineMark(tm) suite. This suite does not

even have a memory allocation test, and only 0.2% of the Java Virtual Machine

instructions executed allocate a new object. But for Haskell programs from the Nofib

suite (Partain, 1992) that we have compiled to Java Virtual Machine code, about

2.0% do so.

More realistic Java programs do more memory allocation, and Java Virtual Ma-

chine implementors are starting to recognise this by, for example, using generational

garbage collectors. Nonetheless, memory allocation remains a bottleneck.

2.2 Tail recursion

In functional programs, the result of one function application is often given by

another with exactly the right number of arguments. This is known as tail recursion ,

and when it happens an implementation can save stack space by ensuring that the

two function calls use the same frame. But the Java Virtual Machine specification

does not require that tail recursive method invocations use the same stack frame.

As a result, a straightforward implementation of a tail recursive functional program
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running on a conforming Java Virtual Machine implementation could easily overflow

the stack.

A similar problem was encountered by Steele some years ago, whilst compiling

Scheme to C (Steele, 1978). He solved it with the “UUO handler” – a tight loop

that continuously called the next function according to the address returned by the

previous one. In general, it seems that some variant of this technique must be used

with the Java Virtual Machine, although for small or directly tail recursive functions,

inlining or a jump instruction could be used instead.

2.3 The reduction stack

Lazy functional languages are usually implemented using some form of graph

reduction (Peyton Jones, 1987). Expressions are represented by graphs and evaluated

by reducing these graphs to normal form . Central to most implementations of graph

reduction is a reduction stack on which pointers to the graphs representing arguments

accumulate before a function is applied. Unfortunately, it is hard to see how the

Java Virtual Machine’s stack can be used to implement the reduction stack. Even the

most basic graph reduction operations, such as unwinding an application spine and

then rearranging the pointers to the vertebrae, or determining how many pointers

have been pushed, are problematic because the Java Virtual Machine lacks the

necessary stack instructions. Using a large array to implement the reduction stack

instead can be inefficient because of the cost of bounds-checked Java array accesses,

and because of space leaks caused by the Java Virtual Machine’s garbage collector

not knowing that the array is being used as a stack, and so preserving everything

reachable from it (Wakeling, 1997). It might be possible to avoid the space leaks by

setting locations above the stack pointer to null, but that involves yet more costly

array accesses. A less conventional implementation of the reduction stack seems to

be needed – one that does not use the Java Virtual Machine’s stack or cause space

leaks.

2.4 Updating

Laziness involves evaluating a function application at most once. It is achieved by

updating the root node of the graph representing the function application with the

root node of the graph representing its result. Updating a node may be performed by

overwriting it with either a new node, or with an indirection pointing to an existing

node. Choosing how to update is a slightly tricky part of graph reduction (Peyton

Jones, 1987). If the root node of the result graph is new and sufficiently small, then

it should be constructed directly on top of the root node of the application graph.

Otherwise, an indirection pointing to the root node of the result graph should be

constructed on top of the root node of the application graph.

The obvious way for the Java Virtual Machine to represent the graph is by linked

objects. However, the Java Virtual Machine provides no way to construct one object

directly on top of another, and so updates must be managed in some other way.
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3 The 〈ν, G〉-machine

Happily, a version of the 〈ν, G〉-machine (Augustsson and Johnsson, 1989) allows

us to overcome most of the difficulties just mentioned. This abstract machine

was intended for implementing graph reduction on parallel computers. Its design

allows a smooth transition from single-threaded to multi-threaded graph reduction

by allowing more than one point of reduction in the graph, and by making the

reduction stack a part of it. This section outlines the architecture and instruction set

of our version of the 〈ν, G〉-machine.

V k

g1 g2

a

g3

???

F c d

g1 g2

a

g3 sp

s

??? 6�
C c z

g1

a

?

I

g1

?

Fig. 1. Constructed value, frame, canonical application and indirection nodes.

3.1 Architecture

The 〈ν, G〉-machine represents expressions by graphs with four kinds of node (see

figure 1). A constructed value node, V k a, represents the application of a data

value constructor to all of its arguments. The node stores the constructor number k,

and has slots for pointers to the graphs representing the arguments a. Basic values,

such as integers and characters, are represented by constructed value nodes with

appropriate values of k and no argument slots. A frame node, F c d a s, represents

the application of a function to all of its arguments. The node stores the function’s

code, c, a dynamic link, d, back to the node that requested its reduction, and has

slots for pointers to the graphs representing the arguments, a. Additional argument

slots are also provided for local variables , and for a small evaluation stack , s, growing

from the last slot of the node. These additional slots are used when the application

is reduced. A canonical application node, C c z a, represents the application of a

function to the first few of its arguments. The node stores the function’s code, c,

the number of arguments that are missing, z, and has slots for pointers to graphs

representing arguments, a (z of which are unused). An indirection node, I g, may

appear when a frame node is updated, as mentioned earlier.

The advantage of the 〈ν, G〉-machine architecture is that the small evaluation

stacks of many frame nodes replace a single large reduction stack, making it

possible to avoid space leaks. There are no argument/local variable slots in the

original 〈ν, G〉-machine – the evaluation stack is used for everything. As we shall

see later, though, the architecture of the Java Virtual Machine makes separating the

argument/local variable and stack slots sensible.

3.2 Instruction set

To present the instruction set of the 〈ν, G〉-machine, we need to introduce some

notation for lists and graphs. An empty list is written [ ], and a non-empty list with
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Table 1. Summary of the 〈ν, G〉-machine instructions

Instruction Description

ALOAD i push pointer from argument/local variable slot i

ASTORE i pop pointer into argument/local variable slot i

CASE (l1, l2, . . .) pop value and transfer control to appropriate label

DO n apply an unknown function on the stack to n arguments

EVAL reduce graph on top of stack to normal form

INITCAP fki m initialise m argument slots of a fki canonical application node

INITFRM fki initialise k argument slots of a fki frame node

INITVAL m initialise m argument slots of a constructed value node

NUM pop pointer to constructed value node; push its constructor number

NEWCAP fki push pointer to new fki canonical application node

NEWFRM fki push pointer to new fki frame node

NEWVAL m push pointer to new m-argument constructed value node

POP pop top stack value

RET update frame node and return from evaluation

SPLIT n m copy m constructed value node arguments to local variables from n

x as its head (first item) and xs as its tail (list of remaining items) is written (x : xs).

As a shorthand, [x1, x2, . . . , xn] can be written instead of (x1 : (x2 : (. . . xn : [ ]))). The

infix operator ++ concatenates two lists. A graph is a mapping from node identifiers

to nodes, written as 
i1 7→ g1

i2 7→ g2

...

in 7→ gn


Lists will be used to describe sequences of 〈ν, G〉-machine instructions, as well as the

contents of argument/local variable and evaluation stack slots. Graphs will appear

as part of the machine state, written 〈ν, G〉, where G is a graph, and ν is the node

identifier of the frame node in G where reduction is currently taking place. Table 1

summarises the 〈ν, G〉-machine instructions. Below, one or more state transition rules

of the form 〈ν1, G1〉 ⇒ 〈ν2, G2〉 will be given for each. In these rules, graph nodes

mentioned in G1 but not G2 are assumed to be unchanged, and those mentioned in

G2 but not G1 are assumed to be new.

Figure 2 gives state transition rules for the various NEW and INIT instructions

that allocate and initialise graph nodes (rules 1–3, 4–6). Here and elsewhere, fki
stands for a non-primitive function f that happens to be the ith of arity k defined

in the program (although all of this information is not always needed in the state

transition rules, it will be needed later to convert 〈ν, G〉-machine code to Java Virtual

Machine code); codek(i) stands for the code of this function. A “?” stands for an

uninitialised value. Unlike the original 〈ν, G〉-machine, we separate node allocation
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(1) 〈ν,{ ν 7→ F (NEWVAL m : c) d a s
}〉
⇒ 〈ν,

{
ν 7→ F c d a (ν1 : s)

ν1 7→ V ? [?1, . . . , ?m]

}
〉

(2) 〈ν,{ ν 7→ F (NEWFRM fki : c) d a s
}〉

⇒ 〈ν,
{
ν 7→ F c d a (ν1 : s)

ν1 7→ F codek(i) ? [?1, . . . , ?k] ?

}
〉

(3) 〈ν,{ ν 7→ F (NEWCAP fki : c) d a s
}〉
⇒ 〈ν,

{
ν 7→ F c d a (ν1 : s)

ν1 7→ C codek(i) ? [?1, . . . , ?k]

}
〉

(4) 〈ν,
{
ν 7→ F (INITVAL k m : c) d a (gm : · · · : g1 : ν1 : s)

ν1 7→ V ? [?1, . . . , ?m]

}
〉

⇒ 〈ν,
{
ν 7→ F c d a (ν1 : s)

ν1 7→ V k [g1, . . . , gm]

}
〉

(5) 〈ν,
{
ν 7→ F (INITFRM fki : c1) d a (gk : · · · : g1 : ν1 : s)

ν1 7→ F c2 ? [?1, . . . , ?k] ?

}
〉

⇒ 〈ν,
{
ν 7→ F c1 d a (ν1 : s)

ν1 7→ F c2 ∅ [g1, . . . , gk] [ ]

}
〉

(6) 〈ν,
{
ν 7→ F (INITCAP fki m : c1) d a (gm : · · · : g1 : ν1 : s)

ν1 7→ C c2 ? [?1, . . . , ?k]

}
〉

⇒ 〈ν,
{
ν 7→ F c1 d a (ν1 : s)

ν1 7→ C c2 (k − m) [g1, . . . , gm]

}
〉

Fig. 2. The various NEW and INIT instructions.

(7) 〈ν,{ ν 7→ F (ALOAD i : c) d [. . . , ai, . . .] s
}〉

⇒ 〈ν,{ ν 7→ F c d [. . . , ai, . . .] (ai : s)
}〉

(8) 〈ν,{ ν 7→ F (ASTORE i : c) d [. . . , ai, . . .] (g : s)
}〉

⇒ 〈ν,{ ν 7→ F c d [. . . , g, . . .] s
}〉

Fig. 3. The ALOAD and ASTORE instructions.

from initialisation so as to fit better with the Java Virtual Machine, which separates

object allocation from initialisation.

Figure 3 gives state transition rules for the ALOAD and ASTORE instructions that

must be provided in our version of the 〈ν, G〉-machine to move pointers between the

argument/local variable slots and the evaluation stack of a frame node (rules 7 and

8).

Figure 4 gives the state transition rules for the instructions that reduce a graph to

normal form. The EVAL instruction examines the node at the top of the evaluation

stack. If it is a constructed value node or a canonical application node then there is

nothing to do (rules 9 and 10); if it is an indirection node, then the node pointed to

is reduced instead (rule 11); if it is a frame node, then the current point of reduction

is saved in the dynamic link of the frame node and then moved to it (rule 12). After

the frame node has been reduced, the EVAL instruction is tried again. This iterative

description of EVAL is different from the one in the original 〈ν, G〉-machine paper,

and will form the basis of our “UUO handler”. The RET instruction updates the

node at the current point of reduction with an indirection to a result node taken

from the evaluation stack. At the same time, it restores the current point of reduction
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(9) 〈ν,
{
ν 7→ F (EVAL : c) d a1 (ν1 : s)

ν1 7→ V k a2

}
〉

⇒ 〈ν,
{
ν 7→ F c d a1 (ν1 : s)

ν1 7→ V k a2

}
〉

(10) 〈ν,
{
ν 7→ F (EVAL : c1) d a1 (ν1 : s)

ν1 7→ C c2 z a2

}
〉

⇒ 〈ν,
{
ν 7→ F c1 d a1 (ν1 : s)

ν1 7→ C c2 z a2

}
〉

(11) 〈ν,
{
ν 7→ F (EVAL : c) d a (ν1 : s)

ν1 7→ I g

}
〉

⇒ 〈ν,
{
ν 7→ F (EVAL : c) d a (g : s)

ν1 7→ I g

}
〉

(12) 〈ν,
{
ν 7→ F (EVAL : c1) d a1 (ν1 : s)

ν1 7→ F c2 ∅ a2 [ ]

}
〉

⇒ 〈ν1,

{
ν 7→ F (EVAL : c1) d a1 s

ν1 7→ F c2 ν a2 [ ]

}
〉

(13) 〈ν,
{
ν 7→ F (RET : c1) ν1 a1 (g : s1)

ν1 7→ F c2 d a2 s2

}
〉

⇒ 〈ν1,

{
ν 7→ I g
ν1 7→ F c2 d a2 (g : s2)

}
〉

Fig. 4. The EVAL and RET instructions.

(14) 〈ν,
{
ν 7→ F (NUM : c) d a1 (ν1 : s)

ν1 7→ V k a2

}
〉

⇒ 〈ν,
{
ν 7→ F c d a1 (k : s)

ν1 7→ V k a2

}
〉

(15) 〈ν,{ ν 7→ F (CASE (l1, l2, · · ·) : · · · : lk : ck) d a (k : s)
}〉

⇒ 〈ν,{ ν 7→ F ck d a s
}〉

(16) 〈ν,
{
ν 7→ F (SPLIT n m : c) d [a1, . . . , a(n−1)] (ν1 : s)

ν1 7→ V k [g1, . . . , gm]

}
〉

⇒ 〈ν,
{
ν 7→ F c d [a1, . . . , a(n−1), g1, . . . , gm] s

ν1 7→ V k [g1, . . . , gm]

}
〉

Fig. 5. The NUM, CASE and SPLIT instructions.

from the dynamic link of the updated node and leaves a pointer to the result node

on the evaluation stack of this node too (rule 13). Depending upon the context,

the original 〈ν, G〉-machine could either update by copying or by indirection. To

accommodate the Java Virtual Machine, however, we always update by indirection.

Figure 5 gives state transition rules for the instructions that perform case-analysis.

The NUM instruction replaces a pointer to a constructed value node on the evaluation

stack with its constructor number (rule 14). A CASE instruction pops this number

and uses it to choose which branch to take (rule 15). Should the constructed value

node have any arguments, a SPLIT instruction provides access to them by copying

them into local variable slots of the frame node at the current point of reduction

(rule 16).

Figure 6 gives five state transition rules for the DO instruction that performs a

general tail-call by applying a function – unknown at compile-time – to n arguments.
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(17) 〈ν,
{
ν 7→ F (DO n : c1) d a1 (gn : · · · : g1 : ν1 : s)

ν1 7→ I g

}
〉

⇒ 〈ν,
{
ν 7→ F (DO n : c1) d a1 (gn : · · · : g1 : g : s)

ν1 7→ I g

}
〉

(18) 〈ν,
{
ν 7→ F (DO n : c1) d1 a1 (gn : · · · : g1 : ν1 : s)

ν1 7→ F c2 d2 a2 s2

}
〉

⇒ 〈ν,
{
ν 7→ F (EVAL : POP : DO n : c1) d1 a1 (ν1 : gn : · · · : g1 : ν1 : s)

ν1 7→ F c2 d2 a2 s2

}
〉

(19) 〈ν,
{
ν 7→ F (DO n : c1) d a1 (gn : · · · : g1 : ν1 : s)

ν1 7→ C c2 z a2

}
〉, (n < z)

⇒ 〈ν,


ν 7→ F c1 d a1 (ν2 : s)

ν1 7→ C c2 z a2

ν2 7→ C c2 (z − n) (a2 ++ [g1, . . . , gn])

〉
(20) 〈ν,

{
ν 7→ F (DO n : c1) d a1 (gn : · · · : g1 : ν1 : s)

ν1 7→ C c2 z a2

}
〉, (n = z)

⇒ 〈ν,


ν 7→ F c1 d a1 (ν2 : s)

ν1 7→ C c2 z a2

ν2 7→ F c2 ∅ (a2 ++ [g1, . . . , gn]) [ ]

〉
(21) 〈ν,

{
ν 7→ F (DO n : c1) d a1 (gn : · · · : g1 : ν1 : s)

ν1 7→ C c2 z a2

}
〉, (n > z)

⇒ 〈ν,


ν 7→ F (DO (n− z) : c1) d a1 (gn : · · · : g(z+1) : ν2 : s)

ν1 7→ C c2 z a2

ν2 7→ F c2 ∅ (a2 ++ [g1, . . . , gz]) [ ]

〉
(22) 〈ν,{ ν 7→ F (POP : c) d a (g : s)

}〉
⇒ 〈ν,{ ν 7→ F c d a s

}〉
Fig. 6. The DO instruction.

Before the function can be applied, its graph must be reduced to a canonical

application node (rules 17 and 18). Thereafter, there are three possibilities to consider.

First, if the canonical application node is missing more than n arguments, the result

is a new canonical application node missing n fewer arguments (rule 19). Secondly,

if the canonical application node is missing exactly n arguments, the result is a new

frame node (rule 20). Thirdly, if the canonical application node is missing less than

n arguments, a new frame node must be constructed with the first few of the n

arguments, and then another DO instruction must be used to apply this node to the

remainder (rule 21).

4 Compilation rules

This section describes how programs written in the core functional language of

figure 7 can be compiled for our version of the 〈ν, G〉-machine. A core program

consists of n functions, fki , where f is the ith function of arity k to be defined. A core

expression is an argument or function applied to zero or more other expressions,
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p ::= f
k1
1 x11 · · · x1k1

= e1

...

fknn xn1 · · · xnkn = en
e ::= x e1 · · · em (m > 0)

| fki e1 · · · em (m > 0)

| ck e1 · · · em (m > 0)

| case x in ck1
x1 · · · xm : e1 ‖ · · · end

Fig. 7. The core language.

F [[ fki x1 · · · xk = e ]] = R [[ e ]] [ x1 = 1, · · · xk = k ] (k + 1)

R [[ x ]] ρ n = C [[ x ]] ρ n; RET

R [[ x e1 · · · em ]] ρ n = C [[ x ]] ρ n; C [[ e1 ]] ρ n; · · · C [[ em ]] ρ n;

DO m; RET

R [[ fki e1 · · · em ]] ρ n, (m 6 k) = C [[ fki e1 · · · em ]] ρ n; RET

R [[ fki e1 · · · em ]] ρ n, (m > k) = C [[ fki e1 · · · ek ]] ρ n; C [[ ek+1 ]] ρ n; · · · C [[ em ]] ρ n;

DO (m− k); RET

R [[ ck e1 · · · em ]] ρ n = C [[ ck e1 · · · em ]] ρ n; RET

R [[ case x in ck1
x1 · · · xm : e1‖ · · · end ]] ρ n

= ALOAD ρ(x); EVAL; ASTORE ρ(x); ALOAD ρ(x);

NUM; CASE (l1, l2, · · ·);
l1:

ALOAD ρ(x); SPLIT n m;

R [[ e1 ]] (ρ+ [x1 = n, · · · xm = n+ m− 1]) (n+ m)

· · ·
C [[ x ]] ρ n = ALOAD ρ(x);

C [[ fki e1 · · · em ]] ρ n, (m < k) = NEWCAP fki ; C [[ e1 ]] ρ n; · · · C [[ em ]] ρ n;

INITCAP fki m;

C [[ fki e1 · · · em ]] ρ n, (m = k) = NEWFRM fki ; C [[ e1 ]] ρ n; · · · C [[ em ]] ρ n;

INITFRM fki ;

C [[ ck e1 · · · em ]] ρ n = NEWVAL m; C [[ e1 ]] ρ n; · · · C [[ em ]] ρ n;

INITVAL k m;

Fig. 8. The compilation schemes.

a data value constructor applied to all of its arguments, or a case-expression on a

variable with simple patterns. Ten years on from the original 〈ν, G〉-machine paper,

the trend is for core languages to include types, in the hope that they can be used

to produce more efficient code. Their absence here reflects a belief that the right

choice of abstract machine alone should be enough to obtain the efficiency of a

traditional functional language bytecode interpreter, without recourse to complex

and expensive optimisations.

Figure 8 collects together the three compilation schemes: F generates code for

a function; R generates code to return the value of an expression on top of the

stack; and C generates code to construct the graph for an expression, leaving it

on top of the stack. In these schemes, ρ is an environment mapping identifiers to

argument/local variable slots, and n is the number of the next free slot. As in the
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original 〈ν, G〉-machine paper, it is assumed that all functional programs can be

transformed into core language programs of a form acceptable to these schemes.

A minor difference between our compilation schemes and those of the original

〈ν, G〉-machine paper is that arguments go on the stack in Java Virtual Machine

order (first argument pushed first), rather than functional language order (first

argument pushed last). A major difference is that the R scheme deals with all tail

recursion by returning a frame node representing the next function application,

instead of performing that application directly. A “UUO handler” loop must be

used to drive this node to normal form.

5 The Java Virtual Machine

As a prelude to converting 〈ν, G〉-machine code to Java Virtual Machine code,

this section outlines the architecture and instruction set of the Java Virtual Ma-

chine (Lindholm and Yellin, 1999).

5.1 Architecture

A Java program is organised into classes , which have methods for performing

computation and describe the structure of objects . For every class, the Java compiler

produces a file containing Java Virtual Machine code for the methods and a constant

pool of literals, such as numbers and strings, used by this code. The local state of

a method invocation is stored on the Java Virtual Machine stack. It consists of the

actual parameters and local variables, and a small operand stack for the intermediate

results of expression evaluations. An object is a record whose fields may be either

scalar values or references to other objects. Storage for objects is allocated from

heap memory and later recovered by garbage collection.

5.2 Instruction set

Table 2 summarises the Java Virtual Machine instructions that we need in this paper.

The names of classes, constructors, methods, and fields are all stored as strings

in the constant pool, with constructor names appearing as the string “<init>”.

Type descriptors are also stored as strings in the constant pool, with constructor

and method types encoded as a sequence of argument types between parentheses,

followed by a result type.

6 Conversion to Java Virtual Machine Code

To convert 〈ν, G〉-machine code to Java Virtual Machine code, we use the classes

described below.

6.1 The node class

Figure 9 shows the N class that represents graph nodes. Subclasses of N will represent

constructed value, frame, canonical application and indirection nodes. The N class
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Table 2. Summary of some Java Virtual Machine instructions

Instruction Description

aload i push reference from local variable i

astore i pop reference into local variable i

checkcast c cast object on top of stack to class c

dup duplicate top stack value

getfield c f t get field f of type t from object of class c

getstatic c f t get field f of type t from class c

invokespecial c m t invoke constructor m of type t for object of class c

invokestatic c m t invoke method m of type t of class c

invokevirtual c m t invoke method m of type t on object of class c

lookupswitch (l1, l2, . . .) pop value and transfer control to appropriate label

new c push reference to new heap object of class c

pop pop top stack value

sipush i push integer i

has three abstract methods, num, ev1 and do1, and concrete methods do2, do3 . . . .

In principle, there are an infinite number of these. In practice, eight have proved

to be more than enough. To save space, just three are shown. The methods are

for converting the NUM, EVAL and DO n instructions: num returns the constructor

number of a node; ev1 returns the result of evaluating it to normal form, or to the

next tail recursive call; and don returns the result of applying it to n arguments.

6.2 Constructed value node classes

Constructed value node classes are part of the run-time system, written in Java.

Figure 10 shows the V3 class for constructed value nodes of arity three. There are

three slot fields, s1, s2 and s3, used for the arguments, and a field for the constructor

number, k. The constructor is used to convert the INITVAL instruction (rule 4), while,

the num and ev1 methods take care of the NUM and EVAL instructions (rules 14 and

9). A do1 method must also be provided, but in a correct implementation it should

never be invoked.

6.3 Frame, canonical application and indirection node classes

Our compiler produces a class for each different function arity in the program,

including any functions used from the standard prelude. This reduces the number

of classes that need to be produced, but does not limit the arities of the functions

that can be written. By way of example, figure 11 sketches a skeleton FC3 class for

all non-primitive functions f3
i in some program. To make matters clearer, the class

is written in Java. In reality, however, our compiler produces the equivalent Java

Virtual Machine code directly. The class has six fields: an indirection field, ind, used

when the node is updated; three slot fields, s1, s2, and s3 used for the arguments;

a missing argument count field, z, used to record how many slots are unused;
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public abstract class N {

public abstract int num();

public abstract N ev1();

public abstract N do1(N g1);

public N do2(N g1, N g2) {

return this.do1(g1).do1(g2);

}

public N do3(N g1, N g2, N g3) {

return this.do1(g1).do1(g2).do1(g3);

}

public N do4(N g1, N g2, N g3, N g4) {

return this.do1(g1).do1(g2).do1(g3).do1(g4);

}

...

}

Fig. 9. The N class.

public final class V3 extends N {

public N s1, s2, s3; public int k;

public V3(N s1, N s2, N s3, int k) {

this.s1 = s1; this.s2 = s2; this.s3 = s3; this.k = k;

}

public int num() { return this.k; }

public N ev1() { return this; }

public N do1(N g1) { RT.Stop("V3.do1()"); return null; }

}

Fig. 10. The V3 class.

and a function number, i, used to identify the function f3
i of the frame/canonical

application node. There are no fields for local variables or the evaluation stack, for

which the Java Virtual Machine’s local variables and stack are used.

The FC3 class has four constructors. The first three are used to convert the

INITCAP instruction (rule 6), and the last the INITFRM instruction (rule 5). A num

method must be provided, but once again it should never be invoked.

The ev1 method is used to convert the EVAL instruction. It tests for an indirection

node, which must be bypassed (rule 11), and for a canonical application node, which

is already in normal form (rule 10). The remaining possibility is a frame node that

must be reduced to normal form (rule 12). Reduction takes place in three stages.

First, the pointers are copied from the slot fields to the ev1 method’s local variables,

making access to them more efficient, and allowing the node to be blackholed by
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public final class FC3 extends N implements Cloneable {

private N ind, s1, s2, s3; private int z, i;

public FC3(int i) {

this.z = 3; this.i = i;

}

public FC3(N s1, int i) {

this.s1 = s1; this.z = 2; this.i = i;

}

public FC3(N s1, N s2, int i) {

this.s1 = s1; this.s2 = s2; this.z = 1; this.i = i;

}

public FC3(N s1, N s2, N s3, int i) {

this.s1 = s1; this.s2 = s2; this.s3 = s3; this.i = i;

}

public int num() { RT.Stop("FC3.num()"; return 0; }

public N ev1() {

if (this.ind != null) return this.ind.ev1();

else if (this.z > 0) return this;

else {

/* local 1 = this.s1; local 2 = this.s2; local 3 = this.s3 */

this.s1 = null; this.s2 = null; this.s3 = null;

switch (this.i) {

case 1: /* code for function number 1 of arity 3 */ break;

case 2: /* code for function number 2 of arity 3 */ break;

...

}

/* this.ind = local 1; */ return this.ind;

}

}

public N do1(N g1) {

if (this.ind != null) return this.ind.do1(g1);

else if (this.z == 0) return RT.UUO(this).do1(g1);

else {

try { FC3 f = (FC3) this.clone();

switch (f.z) {

case 1 : f.s3 = g1; f.z = 0; return f;

case 2 : f.s2 = g1; f.z = 1; return f;

case 3 : f.s1 = g1; f.z = 2; return f;

}

} catch (CloneNotSupportedException e) { RT.Stop("FC3.do1()"); }

return null; /* not reached */

}

}

}

Fig. 11. A skeleton FC3 class.
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ALOAD i ⇒ [ aload i ]

ASTORE i ⇒ [ astore i ]

CASE (l1, l2, · · ·) ⇒ [ lookupswitch (l1, l2, · · ·) ]

DO n ⇒ [ invokevirtual N don, (N1 · · · Nn)N ]

EVAL ⇒ [ invokestatic RT UUO (N)N ]

INITCAP fki m ⇒ [ sipush i, invokespecial FCk <init> (N1 · · · NmI)V ]

INITFRM f0
i ⇒ [ ]

INITFRM fki ⇒ [ sipush i, invokespecial FCk <init> (N1 · · · NkI)V ]

INITVAL k m ⇒ [ sipush k, invokespecial Vm <init> (N1 · · · NmI)V ]

NEWCAP fki ⇒ [ new FCk, dup ]

NEWFRM f0
i ⇒ [ getstatic FC0 ci N ]

NEWFRM fki ⇒ [ new FCk, dup ]

NEWVAL m ⇒ [ new Vm, dup ]

NUM ⇒ [ invokevirtual N num ()I ]

POP ⇒ [ pop ]

RET ⇒ [ astore 1 ]

SPLIT n 0 ⇒ [ pop ]

SPLIT n m ⇒ [ checkcast Vm,

dup, getfield Vm s1 N, astore n,

dup, getfield Vm s2 N, astore (n+ 1),

· · ·
getfield Vm sm N, astore (n+ m− 1) ]

Fig. 12. Instruction conversion rules.

setting all of its slot fields to null. Black-holing avoids space leaks through nodes

that will eventually be updated (Jones, 1992). In figure 11 we show the copying as a

comment rather than as three Java variable declarations with initialisation in order

to ensure that the first slot field is copied into the first local variable, and so on. Java

does not specify the mapping between variable declarations and local variables. Next,

the node’s function number is used to choose the appropriate code via a switch

statement. The ith case of this switch is obtained by converting the 〈ν, G〉-machine

instructions for the ith function of arity three to Java Virtual Machine instructions

using the rules given in figure 12. Each rule produces a list of instructions that

are then concatenated. In reality, of course, our compiler uses the efficient versions

of the Java Virtual Machine instructions mentioned, such as aload 0 and bipush,

whenever possible. Primitive operations are converted in the obvious way so, for

example, integer addition uses iadd. Finally, the result of running the function’s

code is used to set the indirection field, and is returned (rule 13). This result is

not necessarily in normal form. To get it there, the ev1 method may need to be

repeatedly invoked. The loop

public static N UUO(N x) { while (x != (x = x.ev1())); return x; }

in the main run-time system class RT does this, and is our “UUO handler”. As a

detail, notice that the result of a function is stored in a local variable “result register”,

rather than being left on the stack. This preserves an invariant of our compiler,

which is that at any label in the Java Virtual Machine code, the stack depth is zero.
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Given this invariant, it is easy for the compiler to calculate the maximum stack

usage of a method.

Together, the do1, do2, . . . methods are used to convert the DO n instruction.

Here, we depart from the state transition rules somewhat in order to save code

space. As the N class shows, do1, do2, . . . can be defined in terms of do1, and so this

is all that a node need provide. The do1 method tests for an indirection node, which

must be bypassed (rule 17), and a frame node, which must be reduced to a canonical

application node (rule 18). Once a canonical application node has been obtained,

the the do1 method takes a copy of it, stores its pointer argument in the first empty

argument slot of the node and alters the missing argument count, z (rules 20 and

21).

6.4 Constant applicative forms

Constant applicative forms (or CAFs) require the usual special treatment: a node

must be allocated for each CAF; it must be updated when the CAF is first evaluated;

and thereafter it must be used instead of re-evaluating the CAF (Peyton Jones, 1987).

By way of example, figure 13 sketches a skeleton FC0 class produced for all non-

primitive CAFs f0
i in some program, including any used from the standard prelude.

For each CAF there is a variable ci initialised to reference a frame node with the

appropriate function number, i. All uses of the CAF refer to the same frame node

via the variable ci. By convention, CAF 1 is the Haskell main function, and it is the

frame node for this CAF that is evaluated when a Haskell program is run with the

command “java FC0”.

7 Benchmarks

Using the ideas described above, we have constructed a compiler from Haskell to

Java Virtual Machine code, based on version 990222 of the Hugs development

environment. For benchmarking, we used a SUN UltraSPARC workstation with

a 143 MHz processor, 192 Mbytes of memory and version 2.5.1 of the Solaris

operating system.

The first three of our benchmarks are quite small: calendars (200 lines) is a

program from Bird and Wadler (1988) used to format calendars for seven successive

years; clausify (189 lines) is the program from Runciman and Wakeling (1993a)

used to put a complex proposition into clausal form; soda (128 lines) is the program

from Runciman and Wakeling (1993b) used to perform a word search in a 20× 30

grid. The other five of our benchmarks are among the larger “real” ones in the Nofib

suite (Partain, 1992): bspt (1451 lines) exercises a geometric modelling program,

making extensive use of arbitrary-precision integer arithmetic; infer (597 lines)

uses a type checker written in the monadic style to infer the types of a number of

lambda terms; parser (1355 lines) uses parser combinators to parse a large Haskell

module; prolog (648 lines) interprets a Prolog program to solve the Towers of

Hanoi problem with seven disks; and reptile (1449 lines) exercises a graphical

design program that performs extensive processing of character strings. All of the
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public final class FC0 extends N implements Cloneable {

private int i; private N ind;

public static final N c1 = new FC0(1);

public static final N c2 = new FC0(2);

...

public FC0(int i) { this.i = i; }

public int num() { RT.Stop("FC0.num()"; return 0; }

public N ev1() {

if (this.ind != null) return this.ind.ev1();

else {

switch (this.i) {

case 1: /* code for CAF number 1 */ break;

case 2: /* code for CAF number 2 */ break;

...

}

/* this.ind = local 1; */ return this.ind;

}

}

public N do1(N g1) { return RT.UUO(this).do1(g1); }

public static void main(String[] argv) { RT.UUO(this.c1); }

}

Fig. 13. A skeleton FC0 class.

program sizes given here include comments and blank lines. Those for the first three

programs include functions usually found in the standard prelude; those for the

remaining five programs do not.

Five implementations of Haskell were compared:

• Ghc — the Glasgow Haskell compiler (version 4.01);

• Nhc — the York Haskell compiler (prerelease 2);

• Hugs — the Hugs Haskell development environment (version 990222);

• Int — our compiler/Sun interpreter (production version 1.2);

• JIT — our compiler/Sun JIT compiler (production version 1.2).

The Ghc and Nhc compilers were chosen as benchmarks because they represent two

extremes: the first compiles to native code, optimising for speed at the expense of

space (and the -O2 flag was used to ensure that it held nothing back); the second

compiles to a bytecode that is then interpreted, optimising for space at the expense

of speed. Hugs also compiles to a code that is interpreted, and was chosen because it

is used by many for program development. For all implementations, the maximum

heap size was fixed at 24 Mbytes; for our compiler, the minimum heap size was also

fixed at 24 Mbytes.
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Table 3. Code sizes (in bytes)

Program Ghc Nhc Hugs Int or JIT

calendars 190,656 81,384 — 56,352 (37 classes)

clausify 184,788 58,080 — 56,173 (37 classes)

soda 193,928 58,224 — 60,195 (38 classes)

bspt 480,336 127,880 — 124,803 (39 classes)

infer 318,040 89,652 — 83,784 (38 classes)

parser 382,272 119,120 — 103,699 (41 classes)

prolog 266,068 75,744 — 71,738 (39 classes)

reptile 390,812 128,008 — 106,255 (40 classes)

7.1 Code size

Table 3 compares code sizes in bytes. For both Ghc and Nhc, the sizes are those

of dynamically-linked executables stripped of redundant symbol table information;

for Hugs, no sizes are given because programs exist only within the development

environment; for our compiler, the sizes are the sum of those of the program and

run-time system “.class” files, the total number of which are also given.

These sizes all include code used from the standard prelude, but exclude that

from the standard C or Java libraries. Those for Ghc include an 80 kbyte run-time

system; those for Nhc include a 52 kbyte run-time system complete with a bytecode

interpreter; those for our compiler include a 32 kbyte run-time system (32 classes),

but exclude either the bytecode interpreter or the “just-in-time” compiler. With this

in mind, the most we can say is that the sizes of programs produced by our compiler

are of the same order of magnitude as those produced by Nhc.

7.2 Execution time

Table 4 compares execution times in seconds. For Ghc, Nhc and our compiler,

timings were made for ten consecutive runs, the two best and the two worst were

removed, and the average of the remainder recorded; for Hugs, the ten consecutive

runs were made immediately after starting the interpreter. Previously, when we

produced many hundreds of classes for the large benchmark programs, we gave the

Java Virtual Machine interpreter or “just-in-time” compiler an initial “warm up”

run to load the “.class” files from disk into memory (Wakeling, 1997; 1998b). Now

that we produce far fewer classes, however, this is no longer necessary.

Typically, programs produced by our compiler run five times faster with the “just-

in-time” compiler than with the interpreter, giving execution times of the same order

of magnitude as those of Nhc or Hugs. They are slower with small benchmarks

because the Java Virtual Machine must load a large number of standard classes

before it can get going, and also with bspt because the Java library for arbitrary-

precision integer arithmetic is not as efficient as the GNU one used by Nhc. Overall,
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Table 4. Execution times (in seconds)

Program Ghc Nhc Hugs Int JIT

calendars 0.1 1.0 7.3 19.8 3.5

clausify 0.2 2.3 11.2 35.4 5.9

soda 0.2 1.5 3.8 8.6 3.8

bspt 2.4 10.9 70.8 235.1 40.2

infer 1.7 18.6 35.5 164.2 28.7

parser 2.3 17.1 46.9 179.7 33.0

prolog 3.5 40.8 112.8 487.7 75.8

reptile 1.3 15.9 11.9 39.6 8.3

Hugs suffers because its mark-sweep garbage collector is not as efficient as those of

the other implementations in a 24 Mbyte heap.

8 Optimisations

Since our compiler is based on the Hugs interpreter, no significant optimisations,

such as strictness analysis, are performed. However, we have tried a few simple

optimisations, aimed at reducing code size and increasing execution speed.

8.1 Overriding the don methods

The implementations of the do2, do3, . . . methods in the N class are simple, but

inefficient. Using don to apply a function to n arguments creates n intermediate

nodes representing the application of the function to 1, 2, . . . , n arguments. Given

the high cost of memory allocation in the Java Virtual Machine, we would like to

create just one node representing the application of the function to all n arguments.

To do this, we override the inefficient methods in the N class with efficient ones in

the FCk subclasses. By way of example, figure 14 shows an efficient do2 method for

the FC3 class.

Of course, providing the full complement of do2, do3 . . . methods in every FCk

class would make Java Virtual Machine code programs much larger. Profiling

our benchmarks, however, reveals that almost all of the benefit can be obtained by

providing just do2, which accounts for more than 99% of all do2, do3 . . . invocations.

Table 5 shows the effect of overriding the do2 method in every FCk class (here, a “-”

indicates a reduction, and a “+” an increase). The figures reflect the large number of

applications of binary functions selected from dictionaries in unoptimised Haskell

programs.

8.2 Boxed values

Functional language implementations often make a few common constant values

part of the run-time system to avoid allocating them many times. It is easy for
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public N do2(N g1, N g2) {

if (this.ind != null) return this.ind.do1(g1).do1(g2);

else if (this.z == 0) return RT.UUO(this).do1(g1).do1(g2);

else {

try { FC3 f = (FC3) this.clone();

switch (f.z) {

case 1 : f.s3 = g1; f.z = 0; return f.do1(g2);

case 2 : f.s2 = g1; f.s3 = g2; f.z = 0; return f;

case 3 : f.s1 = g1; f.s2 = g2; f.z = 1; return f;

}

} catch (CloneNotSupportedException e) { RT.Stop("FC3.do2()"); }

return null; /* not reached */

}

}

Fig. 14. The do2 method for the FC3 class.

Table 5. The effect of the do2 optimisation

Program Code size (bytes) Int time (secs) JIT time (secs)

calendars 56,772 (+0.7%) 19.0 (-4.0%) 3.1 (-11.4%)

clausify 56,593 (+0.8%) 33.3 (-5.9%) 4.9 (-17.0%)

soda 61,051 (+1.4%) 8.2 (-4.7%) 3.4 (-10.5%)

bspt 125,607 (+0.6%) 221.4 (-5.8%) 35.2 (-12.4%)

infer 84,375 (+0.7%) 147.1 (-10.4%) 21.4 (-25.4%)

parser 104,882 (+1.1%) 165.4 (-8.0%) 28.0 (-15.2%)

prolog 72,481 (+1.0%) 457.7 (-6.2%) 62.8 (-17.1%)

reptile 107,201 (+0.9%) 39.5 (-0.3%) 8.2 (-1.2%)

us to do this too. Instead of generating code to allocate a constructed value node

with a small constructor number (in our case, between zero and ten) and without

arguments, we generate code to use one built in to the run-time. So, for example,

rather that allocate a constructed value node with a constructor number 0 and

without arguments, the compiler generates code to use the variable b0, initialised as

public static final N b0 = new V0(0);

in the run-time system class RT. Table 6 shows the further effect of this optimisation.

The figures show that for short-lived boxed values, the cost of referencing a global

field in another class can outweigh the saving from not allocating it.

8.3 Tail recursion

As we have already explained, tail recursion is dealt with by returning a frame node

representing the next function application, instead of performing that application

directly. However, it is possible to do better when the next function application has

the same arity as the current one. All one need do is put the arguments to the
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Table 6. The effect of the boxed value optimisation

Program Code size (bytes) Int time (secs) JIT time (secs)

calendars 56,624 (-0.3%) 17.7 (-6.8%) 3.0 (-3.2%)

clausify 56,541 ( 0.0%) 32.3 (-3.0%) 4.9 (0.0%)

soda 60,975 (-0.1%) 7.6 (-7.3%) 3.4 (0.0%)

bspt 124,348 (-1.0%) 211.3 (-4.6%) 33.6 (-4.8%)

infer 83,846 (-0.6%) 149.1 (+1.4%) 21.7 (+1.4%)

parser 103,898 (-0.9%) 165.6 (+0.1%) 26.7 (-4.6%)

prolog 72,083 (-0.6%) 428.0 (-6.5%) 62.9 (+0.2%)

reptile 106,156 (-1.0%) 40.2 (+1.8%) 9.0 (+9.8%)

Table 7. The effect of the tail recursion optimisation

Program Code size (bytes) Int time (secs) JIT time (secs)

calendars 56,509 (-0.2%) 17.0 (-4.0%) 2.9 (-3.3%)

clausify 56,374 (-0.3%) 31.1 (-3.7%) 4.6 (-6.1%)

soda 60,955 (-0.0%) 6.7 (-7.9%) 2.8 (-17.6%)

bspt 123,997 (-0.3%) 205.0 (-3.0%) 37.2 (+10.7%)

infer 83,080 (-0.9%) 144.0 (-3.4%) 18.9 (-12.9%)

parser 103,456 (-0.4%) 186.2 (+12.4%) 26.9 (+0.8%)

prolog 71,891 (-0.3%) 429.0 (+0.2%) 62.5 (-0.6%)

reptile 105,949 (-0.2%) 37.8 (-6.0%) 7.6 (-15.6%)

next function application into the appropriate local variables, and then use a goto

instruction to transfer control to the function’s code. Table 7 shows the further effect

of this optimisation.

For small benchmarks designed to make extensive use of tail recursion, the

optimisation described usually makes programs run 10% faster. For our benchmarks,

however, it is uncertain whether execution time will get better or worse, even though

around 40% of tail recursive calls are optimised. At the moment, we do not know

why this is. Originally, we thought that it was because of a space leak. As soon as

the ev1 method in class FCk is invoked, the Java Virtual Machine allocates enough

local variable and stack space for any function of arity k. If the method returns,

then everything reachable only from this local variable and stack space can be

recovered; if it simply branches, then everything reachable from this local variable

and (perhaps) stack space is preserved. However, setting unused local variables to

null before a tail recursive call makes little difference, and we are continuing to

investigate. The original reason for generating Java Virtual Code rather that Java

was to implement tail-recursion efficiently using the goto that Java forbids. But this

problem means that the considerable additional effort is not currently worthwhile.
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Table 8. Execution times (in seconds)

Program Ghc Nhc Hugs Sun Symantec Jview Kaffe

calendars 0.3 0.8 3.3 8.3 3.6 7.8 30.8

clausify 0.3 1.7 5.1 14.7 5.8 13.5 46.4

soda 0.3 0.5 1.8 5.6 2.1 2.1 5.1

bspt 1.8 8.3 30.3 100.7 45.0 537.5 a

infer 1.6 14.3 15.9 82.0 34.7 511.7 318.0

parser 1.8 13.7 21.8 86.8 42.7 253.0 382.5

prolog 2.5 32.4 50.9 229.4 103.3 b c

reptile 1.2 4.0 5.5 24.4 16.6 33.2 128.2

a fails because of a spurious verification error
b fails because of a stack overflow
c fails because of an unimplemented bignum initialiser

9 Other Java Virtual Machine implementations

To illustrate the variability among current Java Virtual Machine implementations,

we have also run the Java Virtual Machine code produced by the final version of

our compiler on a Gateway 2000 Solo notebook computer with a 166 MHz Pen-

tium II MMX processor, 48Mbytes of memory and version 4.0 of the Windows NT

Workstation operating system (build 1381, SP 3).

Seven implementations of Haskell were compared:

• Ghc — the Glasgow Haskell compiler (version 4.02);

• Nhc — the York Haskell compiler (prerelease 2);

• Hugs — the Hugs Haskell development environment (version 990222);

• Sun — our compiler/Sun interpreter (version 1.2-V);

• Symantec — our compiler/Symantec JIT compiler (version 1.2-V);

• Jview — our compiler/Microsoft JIT compiler (version 5.00.3167);

• Kaffe — our compiler/Transvirtual JIT compiler (version 1.00 beta 3).

Ghc, Nhc and Hugs all run with version 20.1 beta of the Cygwin32 dynamically-

linked library (Noer, 1998). The Sun JDK for Windows NT includes both their

own interpreter and the Symantec “just-in-time” compiler. For all but Jview, we

were again able to set both the minimum and maximum heap size to 24Mbytes.

Table 8 compares execution times in seconds, obtained using the same methodology

as previously.

10 Other compilers

Out of interest, we have translated the calendars, clausify and soda benchmarks

from Haskell to Standard ML, and rewritten them in Java, so that we can compare

three compilers to Java Virtual Machine code, all running on our UltraSPARC:
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Table 9. Code sizes (in bytes)

Program Ours MLJ Javac

calendars 56,509 (37 classes) 11,881 (21 classes) 6,145 (4 classes)

clausify 56,374 (37 classes) 12,469 (21 classes) 8,564 (10 classes)

soda 60,955 (38 classes) 15,579 (19 classes) 5,712 (5 classes)

Table 10. Execution times (in seconds)

Program Ours MLJ Javac

Int JIT Int JIT Int JIT

calendars 17.0 2.9 1.4 0.2 0.6 0.1

clausify 31.1 4.6 2.5 0.5 2.4 0.4

soda 6.7 2.8 0.7 0.3 1.6 0.5

• Ours — our compiler (final version);

• MLJ — the Persimmon IT Standard ML compiler (version 0.1);

• Javac — the Sun Java compiler (SDK version 1.2).

Table 9 compares code sizes in bytes, and Table 10 compares execution times in

seconds with the Sun Java Virtual Machine interpreter and “just-in-time” compiler

(both production version 1.2). The figures show that on these small benchmarks

our compiler for a lazy functional language is not competitive with one for a strict

functional language or an object-oriented one.

11 Related work

In two previous papers, we have described Haskell to Java Virtual Machine code

compilers based on the G-machine (Wakeling, 1997) and the 〈ν, G〉-machine (Wake-

ling, 1998b). The first of these generated one class file for each function, the second

generated two, leading to programs that were large and slow. As mentioned ear-

lier, the G-machine based compiler had another drawback – the Java array used

for the reduction stack was a source of inefficiency because of the high cost of

bounds-checked array access, and because of space leaks caused by the Java Virtual

Machine’s garbage collector not knowing that it was being used as a stack. Looking

for way to avoid space leaks by splitting the single large array into a linked-list

of many small arrays, we soon arrived at an abstract machine remarkably like the

〈ν, G〉-machine. But even armed with the equation ν = this, it proved hard to get

the details right. Our first attempt had clumsy implementations of both the “UUO

handler” and the DO instruction, and it was only much later that we realised that

integer function numbers and a large switch statement could eliminate the need for
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more than a few class files per functional program, without a significant efficiency

penalty.

A number of other researchers have considered compiling lazy functional lan-

guages to Java Virtual Machine code. Prototype Haskell compilers based on the

Spineless Tagless G-machine have been produced by two students: Tullsen at Yale

University (Tullsen, 1997), and Vernet at the Swiss Federal Institute of Technol-

ogy (Vernet, 1998). From the Spineless Tagless G-machine’s “every node is a closure”

design, both created “every closure is a class” implementations. Classes have one

method for constructing a closure, with the arguments taken from the Java Virtual

Machine’s stack, and another for entering it in order to reduce it to normal form. For

higher-order functions, Tullsen uses an apply method like our do methods, creating

a closure for each application to an argument; from his paper, it is unclear what

Vernet does. Neither student considers the problem of implementing tail-recursion

properly and, unsurprisingly, neither appears to have run more than one or two very

small test programs.

Meehan and Joy at Warwick have produced a compiler based on the G-machine

for their lazy language, Ginger (Meehan and Joy, 1998). The novelty of their work

lies in the implementation of functions. They avoid generating a class file for each

by using the Java reflection package to access the methods of a single class, and

to apply them to arrays of arguments. In our experience, however, this is a rather

poor choice. An early version of our first 〈ν, G〉-machine based compiler used a

similar technique, and we found that invoking methods via the reflection package

was much slower than doing so directly (our measurements suggested about 1/3rd

of the speed). Moreover, according to Sun, the reflection package is intended for

use by applications such as debuggers, interpreters and class browsers, so improving

its performance is unlikely to be a priority. The need for arrays of arguments

in addition to graph nodes, of course, also leads to increased storage allocation.

Meehan and Joy’s benchmark figures confirm our fears – with an UltraSPARC and

Sun’s JDK 1.1.5, programs produced by their compiler run 5–10 times slower than

those run with Hugs.

There has also been work on compiling strict functional languages for the Java

Virtual Machine. As we have already mentioned, Benton, Kennedy and Russell

at Persimmon IT, Inc. have developed MLJ, a compiler from Standard ML to

Java Virtual Machine code (Benton et al., 1998). Their compiler performs exten-

sive optimisation of the whole program in order to generate compact code with

reasonable performance. Having sight of the whole program is a big advantage.

It allows, for example, the removal of polymorphism by specialisation, the avoid-

ance of argument tuple allocation by uncurrying, and the compilation of functions

according to how they are used. However, their compiler does not handle general

tail recursion properly. With a Java Virtual Machine that performs “just-in-time”

compilation, benchmark programs usually run more quickly than with version 1.42

of the Moscow ML interpreter; numerical ones run even more quickly than with

version 110 of the SML/NJ compiler.

Per Bothner at Cygnus Solutions has developed a Scheme implementation, com-

plete with the usual read-eval-print loop, that generates Java Virtual Machine
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code (Bothner, 1998). On the one hand, there are clear similarities here between his

class Procedure with its apply methods, and our N class with its do methods. But on

the other hand, there are also clear differences between his planned implementation

of general tail recursion using a variant of the “UUO handler” loop, and our own.

For certain procedures, Bothner proposes to use a continuation passing style, and to

model traditional frame pointer and program counter registers using Java variables.

It is not yet clear how his idea will work out in practice, or if it would be of any

use to us. Even without it though, his implementation with Sun’s JDK 1.1.5 can run

benchmark programs at more than half the speed of those run with the Scheme48

interpreter.

12 Future work

An obvious way to continue with this work would be in the direction that Benton,

Kennedy and Russell (Benton et al., 1998) have taken with Standard ML, improving

performance through extensive optimisation, and providing Haskell with an interface

to Java. The first of these requires a re-implementation of our ideas in a more suitable

framework than Hugs, and the Glasgow Haskell compiler would seem to be a good

choice. The second of these requires us to invent a syntax for Haskell programmers

to describe classes, create objects and invoke methods, preferably without forcing

them to write Java programs, which is essentially what Benton, Kennedy and Russell

do.

13 Conclusions

In this paper, we have shown how lazy functional programs can be compiled for the

Java Virtual Machine using a mapping between a version of the 〈ν, G〉-machine and

the Java Virtual Machine. This is not the obvious thing to do, but it turns out to

be both elegant and efficient. The description is entirely straightforward, and both

the code size and execution speed of Haskell programs compiled using it are of the

same order of magnitude as those obtained with a traditional functional language

bytecode interpreter. In future, our work could serve as the basis of an interface

between Haskell and Java.
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