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Abstract

Radix Sort is a sorting algorithm based on analyzing digital data. We study the number
of swaps made by Radix Select (a one-sided version of Radix Sort) to find an element
with a randomly selected rank. This kind of grand average provides a smoothing over all
individual distributions for specific fixed-order statistics. We give an exact analysis for the
grand mean and an asymptotic analysis for the grand variance, obtained by poissonization,
the Mellin transform, and depoissonization. The digital data model considered is the
Bernoulli(p). The distributions involved in the swaps experience a phase change between
the biased cases (p �= 1

2 ) and the unbiased case (p = 1
2 ). In the biased cases, the

grand distribution for the number of swaps (when suitably scaled) converges to that of
a perpetuity built from a two-point distribution. The tool for this proof is contraction in
the Wasserstein metric space, and identifying the limit as the fixed-point solution of a
distributional equation. In the unbiased case the same scaling for the number of swaps
gives a limiting constant in probability.
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1. Radix methods

Radix Sort is a sorting technique based on analyzing the digital composition of keys. Digits
(possibly bits at the lowest machine level) are extracted from keys and used to classify the
keys. Radix Sort dates back to the nineteenth century and can be found in the work of Hollerith
(1894) on tabulating machines. It provides a good alternative for comparison-based sorting
algorithms like Quick Sort and Merge Sort, where keys are compared according to an ordering
relation; see Knuth (1998, pp. 116–119), Mahmoud (2000, pp. 148–151), and Mehlhorn (1984,
pp. 42–68) for a broad discussion of these sorting algorithms.

Two different variants of Radix Sort are known, the least-significant-digit (LSD) Radix Sort
and the most-significant-digit (MSD) Radix Sort. The LSD Radix Sort starts with the least-
significant digit and orders the keys accordingly. It repeatedly orders the keys moving towards
the most-significant digit and using one digit at a time; see, for example, Cormen et al. (2001,
p. 178) for details. To guarantee the correctness of the LSD variant, every ordering round
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should be stable (i.e. does not alter the order of the keys that have the same value of the digit
under consideration). Alternatively, the MSD Radix Sort starts with the most-significant digit
and partitions the keys accordingly. It then recursively sorts each partition moving towards the
least-significant digit and using one digit at a time. Throughout the rest of this paper, we use
Radix Sort for MSD Radix Sort.

It is useful to connect digital sorting algorithms to digital trees. Certain classes of digital
trees are called ‘tries’. They have numerous applications in storing computer files (see Knuth
(1998, pp. 116–119)), detecting similarity of DNA strands (see Mahmoud and Ward (2008)),
etc. Tries also provide models for the design and analysis of several important algorithms, such
as extendible hashing (see Fagin et al. (1979)). In the context of the present paper, the trie is
a backbone for Radix Sort and Radix Select. The trie was proposed independently in De La
Briandais (1959) and Fredkin (1960) as a data structure for information retrieval.

A trie is a (digital) tree structure used to store a set of strings. All the descendants of a node
have a common prefix of the string associated with that node, and the root is associated with
the empty string. Every root-to-leaf path represents one string. The keys in a branch of a node
in a trie correspond to the partitioning of the keys carried out by Radix Sort. A search for a
string in a trie can be done in time proportional to the length of the string.

The ideas of Radix Sort can be adopted to perform selection (identification of a key with
a certain rank). The difference is that for selection we need to only recursively invoke the
algorithm on one part of the partition, namely the one that has the sought key. The resulting
algorithm is called Radix Select; this is in analogy to Quick Sort and Quick Select. In the
terminology of tries, Radix Select constructs and traverses a root-to-leaf path.

Recently, there has been renewed interest in the overall number of bit comparisons of
sorting algorithms, not only for radix-based sorting algorithms but also for comparison-based
algorithms, such as Quick Sort. The concern is that comparing the rank of two keys depends
critically on the nature of the data. For instance, if the data are short integers, made up of a few
bytes, the number of bit comparisons is small, when comparing two keys. But, if we order data
like DNA strands, typically of length in the order of hundreds of thousands of nucleotides, an
excessive number of bit comparisons is needed to determine the order of two similar strands.
So, it is not straightforward to compare Quick Sort to a radix-based algorithm such as Radix
Sort without considering the number of bit comparisons in both. We refer the reader to the
recent work of Fill and Janson (2004), Fill and Nakama (2008), and Vallée et al. (2009).

This renewed interest in the analysis of algorithms from a bits point of view provided the
motivation for us to consider radix selection, and to perform an analysis of the number of
swaps, to further put in perspective a meaningful distinction between radix-based methods and
comparison-based methods.

2. Implementation issues

At the heart of both Radix Sort and Radix Select is a partitioning procedure in which the keys
are separated into groups according to a specified digit. In this section we overview different
alternative popular implementations of the partitioning. We assume m-ary keys (each digit
may have one of m different values, also called letters or symbols), and accordingly use m-ary
partitioning.

A linked-list implementation. We start by initializingm empty buckets, each will hold a portion
of the list. We traverse the linked list while detaching pieces of it. More precisely, the following
two steps are repeatedly performed until the list is empty. We traverse the list as long as the
value of the specified digit is the same, and detach the traversed sublist. We then append the
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detached sublist to the end of the list in the bucket that matches its value for the specified digit.
Note that this implementation is stable.

A two-array implementation. We assume that the data is in one array, and partitioned in the
other array. (The role of the two arrays is interchanged with every partitioning round.) We start
by initializing a set ofm counters to 0. We then scan the data and count the number of keys for
each of the m values of the specified digit. The starting position in the second array for each
part of the partition is initialized accordingly. We scan the data array one more time, and during
this scan we move each key to the next available position of the part of the partition matching
its specified digit. This implementation is also stable.

A one-array (in-situ) implementation. As in the two-array case, we scan the data and count the
number of keys that should go to each part of the partition. We then initializem pointers to index
the positions of the array where each of these parts should start. Next, we advance each pointer
within its designated part as long as the current key has a matching value for the specified digit.
If the pointer reaches the end of the portion allocated for this part of the partition, we exclude
this part from all subsequent iterations.

We then arbitrarily choose one key for which the value b of its specified digit does not match
the part of the partition a in which it resides. We subsequently move this key to the current
pointer position for the nonmatching key of the bth part of the partition, eject this nonmatching
key, and advance the pointer of the bth part as above. We then move the ejected key to its
matching part, and so on. The aforementioned steps are repeated until a key is moved to the ath
part of the partition; this can be thought of as permuting nonmatching keys to their matching
parts of the partition. As long as there exist nonmatching keys, we arbitrarily select one to start
a new permutation. By the end of the algorithm, every key lands in its correct destination.

It is clear that algorithmically handling the case m = 2 is easier and more efficient for all
implementations. We thus opt for analyzing this case. We discuss extensions of the results to
other MSD implementations at the end. The in-situ array implementation can be done even
more efficiently for the binary case, where one scan through the array suffices. In Sections 3–9
Radix Select refers to the binary in-situ MSD radix selection.

3. The binary case

We assume the data to be binary strings on {0, 1} residing in an array A[1 . . n]. For binary
data, Radix Sort is a two-sided algorithm: it examines the first bit of each key and classifies
the data into two groups according to their first bit. Keys starting with 0 go in one group, the
rest are placed in the other group. The two groups are then handled recursively, until arrays
of size 1 or 0 are reached, and that is when the recursion is stopped, but at the bth call to the
algorithm, the bth bit in the keys are used for grouping. The corresponding tree in such cases
is a binary trie.

The operation of Radix Sort assumes the presence of Partition, a digital partition procedure
that classifies the keys according to some bit position into two groups. When called to divide
the stretch A[� . . u] according to the bth bit, Partition comes up with a splitting position k and
places all the keys having 0 at the bth position in A[� . . k − 1] and places all the keys having 1
at the bth position in A[k . . u].

Radix Sort can be easily adapted to deliver a certain order statistic r (the rth smallest data
item). Once the splitting position k is determined, we know whether r < k or r ≥ k. If r < k,
the algorithm recursively seeks the rth-order statistic inA[1 . . k−1], and if r ≥ k, the algorithm
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seeks the (r−k+1)th order statistic among the elements ofA[k . . n]. This (r−k+1)th element
is, of course, ranked rth among the entire data set. Thus, only the segment containing the des-
ired order statistic is searched and the other is truncated. The recursion is continued until equal
values of � and u are passed to it, and that is when it knows that the search has been narrowed
down to one key, which must be the order statistic it is seeking. Using the trie lingo, the sum
of the sizes of the parts of the partitions handled by Radix Select equals the sum of the sizes of
the subtrees of the nodes on the path constructed by Radix Select in the corresponding trie.

4. Partition

We assume a digital partition algorithm (Partition) that is an adaptation of a well-known
comparison-based algorithm to appeal to the nature of digital data rather than their order statis-
tics. The comparison-based analog first appeared in Hoare (1962) and was widely disseminated
in the work of Sedgwick (see, for example, Sedgwick (1977), (1978), (1980, p. 25), (1998,
pp. 305–308)).

Suppose that Partition is invoked at the bth call to Radix Select to partition A[� . . u]. The
partition is carried out according to the bth bit. Partition sets up two pointers, one at the lower
end i which moves forward, and one at the upper end j which moves backward. Initially, i is
set at the value �, and j is set at the value u. We keep advancing i so long as it falls in range and
we see keys with 0 at the bth bit. (The case of falling out of range is handled with an artificial
sentinel starting with 1 placed at the end of the array.) When this iterative operation is stopped,
i is pointing at a key with 1 as its bth bit. At this point we retract j so long as it falls in range
and we see keys that have 1 at their bth position. When this iterative operation is stopped, j
is pointing at a key with 0 as its bth bit. (The case of falling out of range is handled with an
artificial sentinel starting with 0 placed at the beginning of the array.) If the two pointers i and j
are not crossed, the two keys under i and j are both at the ‘wrong side’ of the splitting position.
We swap them and continue the process on A[i + 1 . . j − 1].

While carrying out its mechanics, Radix Select performs bit extractions and comparisons
as well as swaps of keys (moves and exchanges). For unbiased data, the average number of
bit comparisons has been known for a long time (see Knuth (1998, pp. 482–486)), and its
distribution is studied in Mahmoud et al. (2000). Our purpose here is to analyze the number
of key swaps of Radix Select for biased and unbiased data. Studies of the influence of swaps
on the performance of an algorithm are in the vogue; see Hwang and Tsai (2002), Mahmoud
(2010), and Martínez and Prodinger (2009) for a similar undertaking in Quick Sort.

5. The data model

We assume the Bernoulli(p) model of randomness, according to which the bits within a key
are independent with probability p ∈ (0, 1) of a bit being 1, and probability q of a bit being 0
(with p + q = 1), and the keys themselves are independent.

In this data model, keys are strings over a finite alphabet. In particular, numbers from the
interval (0, 1] may be thought of as infinite expansions. For rational numbers, there are two
representations: we choose the infinite. In practice, real numbers are approximated by cutting
off the expansion at some finite precision.

The ideal unbiased Bernoulli ( 1
2 ) model is equivalent to sampling from a uniform distribution,

a realistic assumption under hashing schemes, where the primary goal is to achieve uniformity;
see Fagin et al. (1979). However, a data source may degrade over time and p may shift from
an ideal 1

2 to another value, which makes the analysis for general p relevant.
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6. Scope

Let S(r)n be the number of swaps made by Radix Select on a random input of size n to find
the rth-order statistic. This variable is easy to analyze for relatively small or relatively large r .
It is harder to analyze this variable for intermediate values of r , such as when r = �0.395n�.

Analyzing S(r)n when r itself is random (chosen uniformly from {1, . . . , n}) provides smooth-
ing over all possible values of r . So, we let r be a random variable Rn distributed like
Uniform[1 . . n] (the discrete uniform random variable on the set {1, . . . , n}). This rank random-
ization introduces a smoothing operation over the easy and hard cases that makes the problem of
moderate complexity and amenable to analysis. In this case we can use the simplified notation
Sn := S

(Rn)
n . We seek a grand average of all averages, a grand variance of all variances, and

a grand (average) distribution of all distributions with a fixed r as a global measure over all
possible order statistics. This smoothing technique was introduced in Mahmoud et al. (1995),
and was used successfully in Lent and Mahmoud (1996) and Prodinger (1995).

We will analyze the number of swaps made by Radix Select to select a key with a random
rank under biased and unbiased data models, and we will see that there is a phase change in
the distribution of the number of swaps between the unbiased case and all the biased cases. In
the unbiased case, when suitably scaled, Sn converges in probability to a constant, whereas the
same scaling gives a perpetuity in all the biased cases.

7. Organization

The sections of the sequel are organized as follows. Section 8 lays out the basic probability
notation. The technical analysis is given in Section 9, which is divided into subsections.
Subsection 9.1 is devoted to the analysis of the number of swaps in the first round of partitioning.
Subsection 9.2 is for an exact computation of the overall mean (by induction; biased and
unbiased cases have the same mean). Subsection 9.3 is for an asymptotic analysis of the
overall variance, done by poissonization, the Mellin transform and its inverse, followed by
depoissonization. Here we see a phase change in the variance, being quadratic in all the biased
cases, but turns linear in the unbiased case. A word about the significance of the Mellin transform
in the analysis of algorithms is mentioned in this subsection. The details of depoissonization
are relegated to Appendix A. Finally, Subsection 9.4 is where the main result is formally stated
and proved (convergence of the scaled number of swaps to a perpetuity in the biased cases, and
to a constant in the unbiased case). The method used in the biased cases is contraction in the
metric space of distribution functions (endowed with the Wasserstein distance) to a fixed point.
Technical details of the contraction proof are given in Appendix B. In Section 10 we sketch
how the results can be extended to a number of other MSD variants of the algorithm.

8. Notation

We will use the following standard notation: 1E is the indicator function of the event E that
assumes the value 1 when E occurs, and assumes the value 0 otherwise.

The notation Bin(n, p) stands for a binomially distributed random variable counting the
number of successes in n independent, identically distributed experiments, with rate of success
p per experiment.

We use the notation ‘
d=’ to mean (exact) equality in distribution, and ‘

d−→’ to mean weak
convergence (convergence in distribution). The notation ‘

p−→’ stands for convergence in prob-

ability, ‘
a.s.−→’ stands for convergence almost surely, and ‘

Lk−→’ stands for convergence in Lk .
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The notation OLk
(g(n)) stands for a sequence of random variables that is O(g(n)) in the Lk

norm, that is, when we describe a sequence of random variables Yn to beOLk
(g(n)), we mean

there exist a positive constant C and a positive integer n0, such that E[|Yn|k] ≤ C|g(n)| for all
n ≥ n0. Unless otherwise stated, all asymptotics mean asymptotic equivalents and bounds as
n → ∞.

Let Hypergeo(n, s, w) be a hypergeometric random variable that denotes the number of
white balls in a sample of size s balls taken at random (all subsets of size s being equally likely)
from an urn containing a total of n white and black balls of which w are white. The mean and
variance for this standard distribution are given by the formulae

E[Hypergeo(n, s, w)] = ws

n
, (1)

var[Hypergeo(n, s, w)] = ws(n− w)(n− s)

n2(n− 1)
; (2)

see Stuart and Ord (1987, Article 5.14).

9. Analysis of in-situ binary radix selection

Let Mn be the number of swaps exercised in the first call to Partition; we refer to this
invocation as the first round.

Let k = Jn+1 = Bin(n, q)+1 be the splitting position. Note thatRn andJn are independent.
Immediately after the first round of partitioning, the array is split into two segments: A[1 . . Jn]
containing keys starting with 0, and A[Jn + 1 . . n] containing keys that start with 1. We have
a dichotomy:

Sn =
{
Mn + SJn if Rn ≤ Jn,

Mn + S̃n−Jn if Rn > Jn,

or, equivalently,
Sn

d= Mn + SJn 1{Rn≤Jn} +S̃n−Jn 1{Rn>Jn} . (3)

Here S̃n−Jn
d= Sn−Jn , and S̃n−Jn and SJn are conditionally independent (in the sense that, given

Jn = j , S̃n−j and Sj are independent).

9.1. Analysis of swaps in the first round

It is evident from the stochastic recurrence (3) that an analysis of Radix Select falls back on
a clear understanding of the probabilistic behavior of the number of swaps in the first round.

Lemma 1. The random variable Mn is distributed like Hypergeo(n, Jn, n− Jn).

Proof. Let Jn be the number of keys starting with 0. Suppose that the raw data (unsorted
array) contain m keys starting with 0 placed after position Jn, with 0 ≤ m ≤ min{Jn, n− Jn}.
Each of these keys induces one swap during the first call to partition. Given Jn = j , we have(
n
j

)
equally likely arrangements of keys (each occurring with unconditional probabilitypn−jqj ).

ForMn to bem, we must have exactly j −m keys starting with 0 appear among the first j keys
(which can be done by choosing j − m positions among the first j positions in

(
j

j−m
)

ways),
and we must have exactly m keys starting with 0 appear among the last n− j keys (which can
be done by choosing m positions among the last n− j positions in

(
n−j
m

)
ways). Therefore,

P(Mn = m | Jn = j) =
(
n− j

m

)(
j

j −m

)/(
n

j

)
.

Whence, Mn | Jn = j has the distribution of Hypergeo(n, j, n− j).
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Corollary 1. We have E[Mn] = pq(n− 1).

Proof. We appeal to standard double expectation and (1) to obtain

E[Mn] = E[Hypergeo(n, Jn, n− Jn)]
= E[E[Hypergeo(n, Jn, n− Jn) | Jn]]
= E

[
Jn(n− Jn)

n

]
.

Recall that Jn
d= Bin(n, q), and the result follows.

Corollary 2. We have

var[Mn] = pq

(
(1 − 4pq)n− 2(1 − 5pq)+ 2

n
(1 − 3pq)

)
.

Proof. We compute var[Mn] via the conditional variance formula

var[Mn] = var[E[Mn | Jn]] + E[var[Mn | Jn]].
Using (1) and (2), we write this as

var[Mn] = var

[
Jn(n− Jn)

n

]
+ E

[
J 2
n (n− Jn)

2

n2(n− 1)

]

= 1

n2 (E[J 2
n (n− Jn)

2] − E2[Jn(n− Jn)])+ E

[
J 2
n (n− Jn)

2

n2(n− 1)

]
.

Recall that Jn
d= Bin(n, q). Hence, the variance of Mn requires the first four moments of Jn.

These can be obtained from reductions of

n∑
j=0

jν
(
n

j

)
qjpn−j for ν = 1, 2, 3, 4,

by standard combinatorial identities (we can also get the first four moments of the binomial
distribution from a standard book like Stuart and Ord (1987, Article 5.4)). The corollary follows
after simplification.

Forthcoming proofs need finer properties ofMn that go beyond the first two moments, such
as the concentration law given in the next lemma.

Lemma 2. The random variable Mn follows the concentration laws:

(a) in the biased cases
Mn

n

p−→ pq,

(b) in the unbiased case
Mn

n

a.s.−→ 1

4
.

Proof. Consider n ≥ 2. By Chebyshev’s inequality, for any fixed ε > 0, we write

P(|Mn − pq(n− 1)| > ε) ≤ var[Mn]
ε2 .
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Replace ε by ε(n− 1) to obtain

P

(∣∣∣∣ Mn

n− 1
− pq

∣∣∣∣ > ε

)
≤ pq((1 − 4pq)n− 2(1 − 5pq)+ 2(1 − 3pq)/n)

ε2(n− 1)2
→ 0. (4)

Therefore, Mn/n
p−→ pq in both the unbiased and biased cases.

In the unbiased case, we get a sharper result via a faster rate of convergence to 0 for the
probability of a deviation. The bound in (4) becomes

P

(∣∣∣∣ Mn

n− 1
− 1

4

∣∣∣∣ > ε

)
≤ 1/8 + 1/8n

ε2(n− 1)2
≤ 1

2ε2n2

for n ≥ 2. This fast rate of decrease in the probabilities of a deviation renders the series of the
probabilities summable:

∞∑
n=2

P

(∣∣∣∣ Mn

n− 1
− 1

4

∣∣∣∣ > ε

)
≤ π2

12ε2 < ∞.

According to the Borel–Cantelli lemma,

Mn

n

a.s.−→ 1

4
;

thus, case (b) is established.

9.2. The mean of the overall number of swaps

Equation (3) yields a recurrence for the average, which can be solved exactly.

Proposition 1. For n ≥ 1,
E[Sn] = 1

2 (n− 1).

Proof. Equation (3) gives a recurrence for the average:

E[Sn] = E[Mn] + E[SJn 1{Rn≤Jn}] + E[Sn−Jn 1{Rn>Jn}].
By conditioning on Jn and Rn (which are independent) and Corollary 1, we obtain

E[Sn] = E[Mn] +
n∑
j=0

n∑
r=1

E[SJn 1{Rn≤Jn} | Jn = j, Rn = r] P(Jn = j, Rn = r)

+
n∑
j=0

n∑
r=1

E[Sn−Jn 1{Rn>Jn} | Jn = j, Rn = r] P(Jn = j, Rn = r)

= pq(n− 1)+
n∑
j=0

n∑
r=1

E[Sj 1{r≤j}] P(Jn = j)P(Rn = r)

+
n∑
j=0

n∑
r=1

E[Sn−j 1{r>j}] P(Jn = j)P(Rn = r)

= pq(n− 1)+ 1

n

n∑
j=0

j E[Sj ]
(
n

j

)
qjpn−j + 1

n

n∑
j=0

(n− j)E[Sn−j ]
(
n

j

)
qjpn−j .
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We next show by induction on n that E[Sn] = 1
2 (n− 1) is an exact solution to the latter

recurrence. At n = 1, we have E[S1] = 0 = 1
2 (1 − 1), providing a basis. Assuming that the

result holds up to n− 1 ≥ 0, we then have

(1 − pn − qn)E[Sn] = pq(n− 1)+ 1

2n

n−1∑
j=0

j (j − 1)

(
n

j

)
qjpn−j

+ 1

2n

n∑
j=1

(n− j)(n− j − 1)

(
n

j

)
qjpn−j

= 1
2 (n− 1)(1 − pn − qn),

and the induction is complete.

9.3. The variance of the overall number of swaps

Equation (3) yields a recurrence for the second moment, which can be solved via the
poissonization-Mellin transform and its inverse-depoissonization program, and the variance
follows. Interestingly, there is a phase change in the unbiased case p = q = 1

2 . Except for the
unbiased case, the variance is quadratic in n; in the unbiased case it is linear.

A main tool in the ensuing analysis is the Mellin transform. We give a brief sketch. The
Mellin transform of a function f (x) is∫ ∞

0
f (x)xs−1 dx,

and is denoted by f ∗(s). The Mellin transform usually exists in vertical strips, in the s-complex
plane, of the form

a < Re(s) < b

for real numbers a < b. We will denote this strip by 〈a, b〉. The function f (x) can be recovered
from its transform by a line integral

f (x) = 1

2π i

∫ c+i∞

c−i∞
f ∗(s)x−s ds

for any c ∈ (a, b). Usually, such an integral is computed asymptotically (as x → ∞) by shifting
the line of integration an arbitrary distance to the right of the existence strip, and compensating
for the shift by the residues of the poles between the two lines of integration. There often is a
small residual error of the form O(x−θ ) for an arbitrary large positive number θ . For a survey
of the uses of the Mellin transform in the analysis of algorithms, see Flajolet et al. (1995).

Proposition 2. We have

var[Sn] =
⎧⎨
⎩

1
12 (1 − 4pq)n2 +O(n) if p �= q,

1
4n+O(1) if p = q = 1

2 .

Proof. Let Hn,j
d= Hypergeo(n, j, n− j). Starting with (3) in the squared form, i.e.

S2
n

d= M2
n + S2

Jn
1{Rn≤Jn} +S̃2

n−Jn 1{Rn>Jn} +2MnSJn 1{Rn≤Jn} +2MnS̃n−Jn 1{Rn>Jn},
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we take expectations to get a recurrence for the second moment:

E[S2
n] = 1

n

( n∑
j=0

(nE[H 2
n,j ] + j E[S2

j ] + (n− j)E[S2
n−j ]

+ 2j E[Hn,j ] E[Sj ] + 2(n− j)E[Hn,j ] E[Sn−j ])
(
n

j

)
pn−j qj

)
.

For E[Sj ], we plug in the simple result of Proposition 1 and, for the first two moments ofHn,j ,
we plug in (1) and (2). The recurrence takes the form

E[S2
n] = 1

n

( n∑
j=0

j E[S2
j ]

(
n

j

)
pn−j qj +

n∑
j=0

j E[S2
j ]

(
n

j

)
pjqn−j

)
+ fn(p, q), (5)

where

fn(p, q) =
n∑
j=0

(
j2(n− j)2

n2(n− 1)
+ j2(n− j)2

n2

)(
n

j

)
pn−j qj

+ 2

n

n∑
j=2

j
j (n− j)

n

1

2
(j − 1)

(
n

j

)
pn−j qj

+ 2

n

n−2∑
j=0

(n− j)
j (n− j)

n

1

2
(n− j − 1)

(
n

j

)
pn−j qj .

All the sums, except those involving second moments of Sj , j = 0, . . . , n, are then reduced by
standard binomial identities. We obtain

fn(p, q) = pq(1 − pq)n3 − pq(3 − 7pq)n2 + 4(1 − 4pq)n− 2pq(1 − 6pq).

We then poissonize by introducing the generating function

Ã(z) = e−zA(z) := e−z
∞∑
n=0

nE[S2
n]
zn

n! .

In this context poissonization means considering an analogous problem, but with a Poisson
random number of keys, instead of fixed n. The number of keys is taken to be a Poisson
random variable with parameter z. Indeed, A(z) has a poissonization interpretation. For, if
N(z) is distributed like a Poisson random variable with mean z then

Ã(z) =
∞∑
n=0

nE[S2
n] P(N(z) = n)

=
∞∑
n=0

E[N(z)S2
N(z) | N(z) = n] P(N(z) = n)

= E[N(z)S2
N(z)].
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After some lengthy algebraic operations we arrive at

A(z) = eqzA(pz)+ epzA(qz)+ 2pq(1 − 6pq)(z+ 1 − ez)

+ 2pq(1 − 5pq)z(ez − 1)+ pq(1 − pq)z3ez + 4p2q2z2ez.

To complete the poissonization, multiply by e−z to write the linearized functional equation

Ã(z) = Ã(pz)+ Ã(qz)+ 2pq(1 − 6pq)((z+ 1)e−z − 1)

+ 2pq(1 − 5pq)z(1 − e−z)+ pq(1 − pq)z3 + 4p2q2z2.

The trailing cubic polynomial does not have a domain of existence for the Mellin transform.
However, a transformation that puts the functional equation in the form

B(z) = B(pz)+ B(qz)+ ψ(z),

where ψ(z) is a function that has a Mellin transform and enables us to asymptotically solve
the functional equation for A(z). One good form for ψ(z) is αz(e−z − 1) + β(e−z − 1 + z)

for constants α and β, which has a Mellin transform in 〈−2,−1〉. This is accomplished by
subtracting an appropriate polynomial in z of degree 3 from A(z).

We seek
Q(z) = a3z

3 + a2z
2 + a1z+ a0,

such that

B(z) := Ã(z)−Q(z) = B(pz)+ B(qz)+ α(e−z − 1)+ β(e−z − 1 + z).

We choose a3 to eliminate third powers of z, that is,

a3 = 1 − pq

3
.

Similarly, we eliminate quadratic powers by setting a2 = 2pq. It is clear that a1 can be
chosen arbitrarily, and we take it to be 0. If we take a0 = 0, we can organize what is left as
αz(e−z − 1)+ β(e−z − 1 + z), then solve for α and β to obtain

α = −2p2q2, β = 2pq(1 − 6pq).

Hence,

B(z) = Ã(z)− 1 − pq

3
z3 − 2pqz2 − 2pq + 12p2q2

is the transformation that puts the functional equation in the required form:

B(z) = B(pz)+ B(qz)− 2p2q2z(e−z − 1)+ 2pq(1 − 6pq)(e−z − 1 + z).

This functional equation has the Mellin transform

B∗(s) = 2pq(1 − pq(s + 6))

1 − p−s − q−s 	(s),

existing in 〈−2,−1〉, with inverse

B(z) = 2pq(1 − 5pq)z ln z+O(z).
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The O(z) term has oscillations. We obtain the asymptotic expansion

A(z) = E[N(z)S2
N(z)] = 1 − pq

3
z3 + 2pqz2 + 2pq(1 − 5pq)z ln z+O(z);

the O(z) term contains oscillations.
Consider first the biased case, where the coefficient of z3 is a positive constant. By

depoissonization (see Appendix A) we obtain

E[nS2
n] = 1 − pq

3
n3 +O(n2).

Note that we cannot identify a more accurate error term, because depoissonization adds an error
of order n2. Hence,

var[Sn] = E[S2
n] − E2[Sn]

= 1 − pq

3
n2 +O(n)−

(
n− 1

2

)2

= 1
12 (1 − 4pq)n2 +O(n).

In the unbiased case the leading term of order n2 disappears, leaving O(n) variance, which
cannot be determined more explicitly by this method, because the depoissonization error cannot
be improved beyond O(n). However, a direct induction gives us asymptotics accurate enough
for our purpose.

We show by induction on n that in the unbiased case, for all n ≥ 1,

n2

4
− n

4
− 1

4
≤ E[S2

n] ≤ n2

4
− n

4
. (6)

In the unbiased case recurrence (5) takes the symmetrical form

nE[S2
n] = 2

2n

n∑
j=0

j E[S2
j ]

(
n

j

)
+ 3

16
n3 − 5

16
n2 + 1

4

for n ≥ 2. If we let yn = nE[S2
n], we have

yn = 2

2n

n∑
j=0

yj

(
n

j

)
+ 3

16
n3 − 5

16
n2 + 1

4

for n ≥ 2, with y0 = y1 = 0.
We give a proof by induction to show that yn ≤ n3/4 − n2/4 for all n ≥ 0. We have

y0 = 0 = 1
4 (0

3 − 02), and y1 = 0 = 1
4 (1

3 − 12). Suppose that the assertion holds up to n− 1
for some n ≥ 2. Then,

yn

(
1 − 2

2n

)
≤ 2

2n

n−1∑
j=0

1

4
(j3 − j2)

(
n

j

)
+ 3

16
n3 − 5

16
n2 + 1

4

= 1

4
(n3 − n2)

(
1 − 2

2n

)
+ 1

4
− n

8
.
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The quantity 1
4 − 1

8n is nonpositive for all n ≥ 2, yielding

yn

(
1 − 2

2n

)
≤ 1

4
(n3 − n2)

(
1 − 2

2n

)
,

or
yn ≤ 1

4 (n
3 − n2),

and the induction is complete. The upper bound stated in (6) follows. The proof for the lower
bound is similar, and we omit it.

As an immediate consequence of (6) and Proposition 1, we have

var[Sn] = E[S2
n] − E2[Sn]

= n2

4
− n

4
+O(1)−

(
n− 1

2

)2

= 1
4n+O(1).

9.4. The asymptotic distribution of the overall number of swaps

We now present the main result of this paper.

Theorem 1. Let Sn be the number of swaps Radix Select executes when it searches for a key of
a rank selected uniformly at random, among n keys following the Bernoulli(p) model. We then
have

(a) in the unbiased case
Sn

n

p−→ 1

2
,

(b) in the biased case
Sn

n

d−→ S∗,

where S∗ is a perpetuity given by

S∗ = pq

∞∑
n=0

n∏
j=1

Vj ,

and the variables {Vj }∞j=1 are independent and identically distributed like the two-point
random variable

V =
{
p with probability p,

q with probability q.

Proof. In the unbiased case, by Proposition 2 and Chebyshev’s inequality, for any fixed
ε > 0,

P

(∣∣∣∣Sn − 1

2
(n− 1)

∣∣∣∣ > ε

)
≤ var[Sn]

ε2 .

Replace ε by ε(n− 1) to obtain

P

(∣∣∣∣ Sn

n− 1
− 1

2

∣∣∣∣ > ε

)
≤ var[Sn]
ε2(n− 1)2

= O

(
1

n

)
→ 0.
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Therefore,
Sn

n

p−→ 1

2
.

We next take up the biased cases. Introduce

S∗
n = Sn

n
.

We normalize (3) by writing it in the form

Sn

n

d= SJn

Jn

Jn

n
1{Rn≤Jn} + S̃n−Jn

n− Jn

n− Jn

n
1{Rn>Jn} +Mn

n
.

Expressed in terms of the normalized random variables, this is

S∗
n

d= S∗
Jn

Jn

n
1{Rn≤Jn} +S̃∗

n−Jn
n− Jn

n
1{Rn>Jn} +Mn

n
, (7)

where, for each j , S̃j
d= Sj and the families {S∗

j }, {S̃∗
j }, {Jj }, and {Rj } are totally independent

(for the usual definition of total independence, see any classic book on probability, such as
Chung (1974), for example). This representation suggests a limiting functional equation as
follows. We first observe that

Jn

n

p−→ q and
n− Jn

n

p−→ p.

Also,
1{Rn≤Jn}

p−→ B∗ and 1{Rn>Jn}
p−→ 1 − B∗,

where B∗ is a Bernoulli random variable with success probability q. Recall from Lemma 2
that Mn/n

p−→ pq.
To summarize, if S∗

n converges in distribution to a limiting random variable S∗, so will S∗
Jn

and S̃∗
n−Jn , as both Jn and n−Jn go to +∞ almost surely. We can surmise that the limit satisfies

the distributional equation

S∗ d= qB∗S∗ + p(1 − B∗)S̃∗ + pq, (8)

with S∗, S̃∗, and B∗ being independent. To formally justify this guessed limit equation, we use
a technical lemma presented in Appendix B.

Equation (8) is equivalent to
S∗ d= V S∗ + pq, (9)

where S∗ and V are independent, and V is a two-point random variable with distribution

V =
{
p with probability p,

q with probability q.

A random variable satisfying a distributional recurrence of the type (9) is called a perpetuity;
see Knape and Neininger (2008). The perpetuity representation (9) allows us to obtain an
expression for S∗ as a sum of products of independent random variables. Toward this end, let
S∗

1 , S
∗
2 , . . . be independent copies of S∗, and let V1, V2, . . . be independent copies of V . Then

S∗ d= pq + V1S
∗
1

d= pq + V1(pq + V2S
∗
2 ).
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Note that because S∗
1 is independent of V1, the S∗ and V introduced in the next iteration

must be independent copies of S∗
1 and V1. Continuing the iterations (always introducing new

independent random variables), we arrive at

S∗ d= pq + pqV1 + V1V2(pq + V3S
∗
3 )

d= pq

L∑
n=0

( n∏
j=1

Vj

)
+ V1V2 · · ·VL+1S

∗ (10)

for any integer L ≥ 0.
We demonstrate next that the tail term converges to 0, allowing us passage to a limit

representation as an infinite series. Let ρ = max{p, q}. We have V ≤ ρ. It follows that
the tail term

V1V2 · · ·VL+1 ≤ ρL+1 → 0 as L → ∞.

By Slutsky’s theorem, the product V1V2 · · ·VL+1S
∗ converges to 0 in probability. We can

proceed with the limit of (10) and write

S∗ d= pq(1 + V1 + V1V2 + V1V2V3 + · · · ), (11)

which establishes the result.

Remark. We can still interpret the result in the unbiased case as a ‘perpetuity’ built from
constants—in this case the two points of the distribution of V coincide in the center and
V becomes degenerate—the two probabilities fold up, and P(V = 1

2 ) = 1; then we can say
that (11) holds in the form

S∗ d= 1
4

(
1 + 1

2 + 1
4 + · · · ) = 1

2 .

10. Extensions to some other MSD variants

The issues with other binary variants of MSD Radix Select are only algorithmic, and so
are the extensions to m-ary data. However, the analysis of the underlying parameters remains
essentially the same. Other variants are more complicated and some variants are wasteful
of some resources, such as the amount of space allocated to the execution of the algorithm.
A practitioner might ask for advice on how these variants compare. For the variants we discussed
in Section 2, some execute the algorithm through a sequence of moves rather than swaps. To
have a uniform base for comparing different variants, we should translate swaps-based analysis
into moves-based analysis. We let Xn denote the total number of moves exercised by any
version.

In the binary version we analyzed, the average number of swaps is asymptotic to 1
2n. Each

swap is essentially three cyclic moves (via a temporary container). We thus have an asymptotic
average of 3

2nmoves. The exact distributional equation (7) gives rise to the limiting perpetuity
equation

S∗ d= V S∗ + pq,

where V is a ‘selector’ with a distribution on the two points p and q (with probabilities p and q,
respectively). In terms of scaled moves (X∗

n = Xn/n with limn→∞X∗
n = X∗), the perpetuity

equation becomes
X∗ d= VX∗ + 3pq.
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If instead we used the two-array implementation, we move the n keys at the first round of
partitioning in such a way to separate the keys beginning with 0 on the left-hand side of an
auxiliary array, and the keys beginning with 1 on the right-hand side of the same auxiliary array.
The equivalent of (7) then becomes

X∗
n

d= X∗
Jn

Jn

n
1{Rn≤Jn} +X̃∗

n−Jn
n− Jn

n
1{Rn>Jn} +1,

giving rise to the limiting perpetuity equation

X∗ d= VX∗ + 1;
the proofs are quite similar to those already presented, and we omit them. The average number
of moves in this implementation is asymptotic to n/(2pq). The best case is the unbiased case,
with an asymptotic average of 2n moves. In the unbiased case, this version of the algorithm
consumes twice the amount of space and executes 4

3 as many moves as the in-situ version on
average. The situation gets worse as p and q deviate further away from the center.

In the m-ary case, we have m symbols in the alphabet, occurring with probabilities p1, . . . ,

pm. (Let qi := 1 − pi for i = 1, . . . , m.) The two-array version still moves n keys at the first
round, and has the limiting perpetuity equation

X∗ d= VmX
∗ + 1;

here Vm is an m-point distribution, on the set {p1, . . . , pm}, with probabilities p1, . . . , pm.
Asymptotically, as n → ∞, the average number of moves is

E[Xn] ∼ n

1 − ∑m
i=1 p

2
i

.

Just like the binary in-situ case, any of these perpetuity equations can be iterated to give us
sums of random variables. For example, the two-array implementation for binary data admits
the explicit representation

X∗ d= 1 + V1 + V1V2 + V1V2V3 + · · · .
The linked-list implementation must be viewed in a different light. This algorithm makes

no moves per se. It performs the selection via a series of linkage changes. If we let Xn denote
the number of such operations, the equivalent of (7) becomes

X∗
n

d= X∗
Jn

Jn

n
1{Rn≤Jn} +X̃∗

n−Jn
n− Jn

n
1{Rn>Jn} +H(n)

n
,

where H(n) is the number of linkage changes in the first round of key separation. Let us
discuss the m-ary case. Let Yi be the first letter in the ith key, and let us form the word
wn by concatenating the Yis. As discussed, in this algorithm we detach a stretch of keys all
beginning with the same letter (a sublist) all at once, whenever we detect two consecutive letters
in wn that are different. Let H̃ (n) be the number of such letter changes. The letters Yi occur
independently and are identically distributed. It is clear that H(n) = H̃ (n)+O(1), where the
O(1) term accounts for the additional overhead for bookkeeping, and

H̃ (n) =
n∑
i=2

Zi,

where Zi = 1{Yi �=Yi−1}. The variables Zi are identically distributed Bernoulli (2
∑m
i=1 piqi).
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Note that the random variables Zi and Zi+1 are dependent with covariance
∑m
i=1 piq

2
i −

(2
∑m
i=1 piqi)

2. However, Zi and Zj are independent when the indices are at least two apart,
and thus have 0 covariance. We have

E[H̃ (n)] = (n− 1)E[Z2] = (n− 1)

(
1 −

m∑
i=1

p2
i

)
,

and

var[H̃ (n)] =
n∑
i=2

var[Zi] + 2
n∑

2≤i<j≤n
cov[Zi, Zj ]

= (n− 1) var[Z2] + 2
n−1∑
i=2

cov[Z2, Z3]

= (n− 1)

( m∑
i=1

p2
i

)(
1 −

m∑
i=1

p2
i

)

+ 2(n− 2)

( m∑
i=1

piq
2
i − 4

( m∑
i=1

piqi

)2)
.

These orders of mean and variance (via Chebyshev’s inequality) assert that n−1H(n)
p−→ 1 −∑m

i=1 p
2
i . The perpetuity equation is

X∗ d= VX∗ + 1 −
m∑
i=1

p2
i .

For any sequence p1, . . . , pm of probabilities whatsoever, the linked-list implementation per-
forms an asymptotic average of n linkage changes to select an element with random rank from
the list. The independence of this asymptotic average from the frequency of the letters is
remarkable.

We have just shown how the analysis in the binary in-situ case can be extended to other MSD
variants of Radix Sort. We covered all the variants mentioned in Section 2, except for the in
situ withm-ary data; this is not one unique well-defined algorithm—it depends greatly on how
the partition and the movement of keys are carried out. In principle, whichever choice for the
implementation of the partitioning will lead essentially to the same type of analysis, i.e. some
associated perpetuity.

Appendix A. Depoissonization

Theorem 2. (Jacquet and Szpankowski (1998).) Let p, q > 0, and let p + q = 1. Suppose
that gn is a sequence of numbers with Poisson transformG(z) satisfying the functional equation

G(z) = u1(z)G(pz)+ u2(z)G(qz)+ T (z),

which is stipulated to have an entire solution. Suppose further that, for some positive constants
C, β, z0, 0 < θ < π/2, and 0 < η < 1, the following conditions hold.

(i) For all z with |Arg(z)| < θ and |z| ≥ z0,

|u1(z)|pβ + |u2(z)|qβ ≤ 1 − η, |T (z)| ≤ Cη|z|β.
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(ii) For all z with |Arg(z)| ≥ θ and |z| ≥ z0, and some α < 1,

|u1(z)e
q Re(z)| ≤ 1

3 eα|z|q, |u2(z)e
pRe(z)| ≤ 1

3 eα|z|p, |T (z)eRe(z)| ≤ 1
3 eα|z|.

Then, for large n,
gn = G(n)+O(nβ−1);

theO term can be taken to depend only on p, q, and the constants that appear in the conditions.

This depoissonization applies to the recurrence

Ã(z) = Ã(pz)+ Ã(qz)+ 2pq(1 − 6pq)((z+ 1)e−z − 1)+ 2pq(1 − 5pq)z(1 − e−z)
+ pq(1 − pq)z3 + 4p2q2z2,

where u1(z) = u2(z) ≡ 1, and the toll function is

T (z) = 2pq(1 − 6pq)((z+ 1)e−z − 1)+ 2pq(1 − 5pq)z(1 − e−z)
+ pq(1 − pq)z3 + 4p2q2z2.

We can take β = 3, η = 3pq, C = 17/48pq, and certainly for large |z| ≥ z0 > 1 inside the
depoissonization cone the conditions

p3 + q3 = 1 − (3p2q + 3q2p) = 1 − 3pq = 1 − η

and

|T (z)| = |2pq(1 − 6pq)(ze−z + (e−z − 1))+ 2pq(1 − 5pq)z(1 − e−z)
+ pq(1 − pq)z3 + 4p2q2z2|

≤ 1
4 (|z|3 + |z|3)+ 1

8 |z|3 + 3
16 |z|3 + 1

4 |z|3
= 17

16 |z|3
= Cη|z|3

hold, and outside the cone so do the conditions

eq Re(z) ≤ 1
3 eq|z|α, epRe(z) ≤ 1

3 ep|z|α, T (z)eRe(z) ≤ 1
3 e|z|α,

for some α ∈ (cos θ, 1).

Appendix B. Contraction

The Wasserstein distance of order k between two distribution functions F and G is defined
by

dk(F,G) = inf ||W − Z||k,
where the infimum is taken over all random variablesW andZ having the respective distribution
functionsF andG (with || · ||k being the usual Lk norm). It is known (see Barbour et al. (1992))
that convergence in the second-order Wasserstein distance implies weak convergence, as well
as convergence of the first two moments.
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Lemma 3. There exists a limiting random variable S∗ such that S∗
n

d−→ S∗.The limit S∗ satisfies
the distributional functional equation

S∗ d= qB∗S∗ + pB̃∗S̃∗ + pq,

where S̃∗ d= S∗, B̃∗ = 1 − B∗, B∗ d= Bernoulli(q), and S∗, S̃∗, and B∗ are independent.

Proof. LetF ∗
n (x) be the distribution function ofS∗

n , and letF ∗(x) be the distribution function
of S∗. We will show that the second-order Wasserstein distance between F ∗

n (x) and F ∗(x)
converges to 0, and, consequently, S∗

n

d−→ S∗.
As d2(F

∗
n , F

∗) is an infimum over all ||Wn − W ||2 for any random variables Wn
d= S∗

n

and W
d= S∗, d2(F

∗
n , F

∗) ≤ ||Zn − Z||2 for any particular choice of Zn
d= S∗

n and Z
d= S∗.

Furthermore, if we manage to show that ||Zn − Z||2 → 0 then certainly d2(F
∗
n , F

∗) → 0.
The variables Bn = 1{Rn≤Jn} all have the same distribution as a Bernoulli random variable

with success probability q; this follows from the calculation

P(Bn = 1) = 1

n

n∑
j=0

n∑
r=1

P(1{r≤j} = 1)qjpn−j
(
n

j

)
= 1

n

n∑
j=0

jqjpn−j
(
n

j

)
= q.

We choose to work with the realization

Q
d= qBnQ+ qB̃nQ̃+ pq,

which employs the same Bn and B̃n = 1 − Bn that appear in the recurrence for Sn (withQ and
Q̃ being distributed like S∗, and Q, Q̃, and Bn being independent).

Define

bn = E[(Sn −Q)2]

= E

[((
S∗
Jn

Jn

n
1{Rn≤Jn} +S̃∗

n−Jn
n− Jn

n
1{Rn>Jn} +Mn

n

)
− (qBnQ+ pB̃nQ̃+ pq)

)2]
.

Toward a quick calculation, we replace several quantities with their limits and compensate by
correction terms—namely, we replace Mn/n with pq +OL1(1/

√
n), according to a known

approximation of hypergeometric random variables by normal variates (see Feller (1968,
p. 194)) and uniform integrability; likewise, we replace Jn with qn+OL1(

√
n) (following

from the uniform integrability of binomial random variables and their usual approximation by
normal random variates). We can write

bn = E

[(
BnS

∗
Jn

(
q +OL1

(
1√
n

))
+ B̃nS̃

∗
n−Jn

(
p +OL1

(
1√
n

))

+
(
pq +OL1

(
1√
n

))
− (qBnQ+ pB̃nQ̃+ pq)

)2]
.

When we group these terms appropriately, square out, and then take expectations, we get
quadratic terms giving rise to a recurrence for bn, and all the other terms are subsumed in a
small error:

bn = q2 E[Bn(S∗
Jn

−Q)2] + p2 E[B̃n(S̃∗
n−Jn − Q̃)2] +O

(
1√
n

)

= q2

n

n∑
j=0

jbjp
n−j qj

(
n

j

)
+ p2

n

n∑
j=0

bjp
jqn−j +O

(
1√
n

)
.
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We show from the last recurrence that bn is bounded byK/
√
n for some positive constantK .

We show this by induction on n. The O in the recurrence means that the last term in the
recurrence is bounded from above by C/

√
n for some positive constant C, and all n ≥ n′

0 for
some n′

0 ≥ 1.
Also, for any fixed p (and, hence, q), the function 1 − x(px+2 + qx+2) approaches 1 (from

below) as x → ∞. As a function of p, the function (p5/4 + q5/4)2 is convex and reaches the
value 1 at p = 0 and p = 1; at all intermediate values of p it is strictly less than 1. It then
follows that, for large enough n, say n ≥ n′′

0 ≥ 1,

1 − n(pn+2 + qn+2) ≥ (p5/4 + q5/4)2. (12)

Take n0 = max{n′
0, n

′′
0}. Note that

bj ≤ max{b1, b2, . . . , bn0} ≤ max{b1, b2, . . . , bn0}√n0√
j

for j = 1, 2, . . . , n0.

This guarantees the bound bn ≤ K/
√
n at n = 1, up to n0, if K > max{b1, b2, . . . , bn0}√n0.

We take

K > max

{
C

2p5/4q5/4
,max{b1, b2, . . . , bn0}

√
n0

}
.

Assume that the induction hypothesis holds from 0 up to n− 1 ≥ n0. Then

bn(1 − n(pn+2 + qn+2)) ≤ q2

n

n−1∑
j=1

j
K√
j
pn−j qj

(
n

j

)
+ p2

n

n−1∑
j=1

j
K√
j
pjqn−j

(
n

j

)
+ C√

n
.

Note that the remaining sums have an interpretation as averages of square roots of binomial
random variables, namely,

E[√Jn] =
n∑
j=0

√
jpn−j qj

(
n

j

)
,

and, by Jensen’s inequality,

n−1∑
j=1

√
jpn−j qj

(
n

j

)
≤ √

E[Jn] = √
qn.

Likewise,
n−1∑
j=1

√
jpjqn−j

(
n

j

)
= E[√n− Jn] ≤ √

E[n− Jn] = √
pn.

It then follows from (12) that, for all n ≥ 1,

bn ≤ K(p5/2 + q5/2)+ 2Kp5/4q5/4

√
n(1 − n(pn+2 + qn+2))

≤ K(p5/4 + q5/4)2√
n(1 − n(pn+2 + qn+2))

≤ K√
n
,

completing the induction.
This induction demonstrates that

d2
2 (S

∗
n, S

∗) ≤ bn → 0 as n → ∞,

which is sufficient to establish convergence of S∗
n to S∗ in distribution and in the first two

moments.
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