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A TRACE FORMULA FOR SCHRODINGER OPERATORS
WITH STEP POTENTIALS

D. M. O'BRIEN1

(Received 9 November 1981)

Abstract

This paper shows how to compute the trace of G(T) — G(T°), where G is an infinitely
differentiable function with compact support, and where T and T° are one-dimensional
Schrodinger operators on (-00,00) with potentials q and q°. It is assumed that q° is a
simple step potential and that q decays exponentially to q°. The trace is expressed in
terms of the reflection and transmission coefficients for the scattering of plane waves by
the potential q.

1. Introduction

In this paper we will consider a one-dimensional Schrodinger operator

T= -d2/dx2 + q{x), -OO<JC<OO, (l.l)

obtained by perturbation from the operator

T° = - d2/dx2 + q°'(x), -oo<x<oo,

wth a simple step potential,

{_, x<0,

where
-00 < q_^ q+ < 00.

We will require that the potential q be a real, infinitely differentiable function
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[2] Schrodinger operators 139

which satisfies

^xexp(sx)\q(±(x- a)) - q± \dx< oo (1.2)
/J0

for any a ̂  0 and for all s < 2b, where b is a fixed, positive constant. Our aim is
to show that the operator

Q = G{T)- G(T°)

is nuclear for any infinitely differentiable function G whose support is compact,
and to express the trace of Q in terms of the coefficients of reflection ( r ± ) and
transmission (/.,.) for the scattering of plane waves by the potential q. We will
establish the following result.

THEOREM 1. The symmetric operator defined by the formally self-adjoint differen-
tial expression (1.1) is essentially self-adjoint. Its closure, also denoted by T, has at
most a finite number of eigenvalues \x,\2,...,\nin the interval (-oo, q_], and the
continuous spectrum of T is the interval [q_, oo). The operator Q is nuclear and its
trace is given by the following formula.

trace 0 = £ G(\t) + -±- f+d\ G(X)-^ log(r_/r°)

( L 3 )

This work was prompted by a problem in quantum field theory involving the
renormalisation of a quantum soliton field in two space-time dimensions (Fad-
deev and Korepin [9], Lohe [11], Lohe and O'Brien [12]). The classical soliton is a
stable solution of a non-linear wave equation which has a conserved 'charge' and
whose ' mass' is just the energy of the wave. In the quantum picture, the soliton
interacts with the surrounding meson cloud and its mass acquires a correction,
which is given to first order in perturbation theory by

Am = trace Tl/2,

where T is the Schrodinger operator whose potential represents the static field
produced by the soliton and experienced by the mesons. This formula, obtained
by purely formal manipulations, is divergent and must be renormalised. Firstly,
the vacuum energy must be subtracted, and this corresponds to writing

Am = trace(r'/2 _ To^^

where the potential q° is the residual potential far to the left and right of the
soliton. This formula still contains a divergence, caused by the high energy end of
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140 D. M. O'Brien [3]

the spectrum of T, which can be cancelled by the addition of a renormalisation
counter-term to the Lagrangian. Equivalently, we can write

Am = trace(G(r) - G(T0)),

where G is an infinitely differentiable function with compact support which
coincides with X1/2 on [A"1, A], and then modify the Lagrangian by the addition
of a finite counter-term. We must then prove that the counter-term cancels the
high energy divergence as A -> oo.

For the final step, we need asymptotic developments for the reflection and
transmission coefficients, since these appear in the trace formula and determine
the asymptotic behaviour of the trace for large A. In the final section of the paper
we will show how these developments may be obtained to any order. In particu-
lar, we will obtain the following simple result.

LEMMA 1. The transmission coefficients t± have the asymptotic form

(1-4)

This example of the renormalisation of the soliton mass is not atypical of many
problems in quantum field theory, because it contains the following steps:

(1) we encounter a formal expression which is divergent, but which can be
made finite by the introduction of 'cut-offs', or convergence factors;

(2) we perform one or more subtractions to eliminate the divergences;
(3) we attempt to remove the cut-offs.

For models in two space-time dimensions these steps are usually tractable, but in
higher dimensions the situation is very obscure.

Several Russian authors, notably Buslaev and Faddeev, have studied the
renormalisation problem, both abstractly and in particular cases. Buslaev [3] has
shown the existence of a trace formula analogous to (1.3) for a wide class of
perturbations which leave unchanged the continuous spectrum of T°. In his work
the operator T° may be arbitrary, save only that its spectrum be purely continu-
ous and its spectral representation be known, and he represents the perturbation
by an integral operator on the spectrum of 7"°. His conditions on the perturbation
are formulated in terms of its kernel, and are rather hard to check. At a less
abstract level, Buslaev and Faddeev [4] renormalised the trace of the resolvent of
the one-dimensional Schrodinger operator defined on the half-line [0, oo), and
more recently Faddeev and Korepin [9, Appendix 6] extended the result to
potentials defined on (-oo, oo) which decay to zero as x -» ±oo. Thus, the aim of
this paper is a further extension to potentials which approach unequal limits as
x -»±oo.
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[4] Schrodinger operators 141

The idea of studying scattering from potentials for which the regions to the left
and right of the target are asymptotically different is not new. Alsholm and Kato
[1] proved the existence of modified wave operators for scattering from long range
potentials. Ruijsenaars and Bongaarts [14] considered the one-dimensional Dirac
equation with potentials which were constant outside a compact region, but which
did not necessarily have equal asymptotic values. They proved the existence of
modified wave operators and the unitarity of the 5-matrix. Davies and Simon [5]
have given an elegant account of scattering theory for systems with different
spatial asymptotics on the left and right. Some of the basic properties of the
operator T (such as its self-adjointness and essential spectrum) could have been
deduced from the general analysis in the above references, but, since T is only an
ordinary differential operator, all the properties we need can either be established
directly or extracted from the comprehensive treatise by Dunford and Schwartz

[7].
The first step in the proof of the theorem will be to represent G(T) as an

integral operator on L2(R) with kernel G{x, y),

f» (G(T)f)(x) = f G(x, y)f(y) dy,
JR

R = (-00,00).

This is a fairly routine task, because the spectral theory of ordinary differential
operators is very well established, and the final expression for G(x, y) could be
stated without proof. However, there are several pitfalls for the unwary (noted
even by Dunford and Schwartz [7, page 1347]!), so we will outline the construc-
tion. For this purpose we will adhere to the notation used by Dunford and
Schwartz, and frequently quote theorems from their treatise.

Given now that G(T) and G(T°) are integral operators on L2(R) with kernels
G(x, y) and G°(x, y), then so too is Q with kernel

Q(x,y) = G(x,y)-G°{x,y).

The second step is to prove that Q is nuclear and that its trace is given by

trace £> = (°°Q(x,x)dx. (1.5)
-00

Finally, we must show that (1.5) reduces to (1.3). The convergence of the integral
in (1.5) is rather delicate and we will need some analytical properties of the
reflection and transmission coefficients in order to establish it. These, along with
precise definitions of r± and t^ , are presented in Section 3, and again the proofs
are only outlined, for they are straightforward once the objective is known.
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142 D. M. O'Brien [S|

2. Scattering solutions

The first task is the construction of a full complement of solutions of the
Schrodinger equation,

(-£i + q(x)}* = M, (2-1)
which are asymptotically free for large | x \ , in the sense that they degenerate into
solutions of

To achieve this, we note the following theorem, which can be traced to Jost [10]
and Bargmann [2], although more detailed accounts are given in the text on
potential scattering by de Alfaro and Regge [6] and the review by Faddeev [8].

THEOREM 2. If the potential v satisfies the condition,

f dxxexp(sx)\v(x)\ dx < oo for all s< 2b,

then the integral equation,

t(x) = exp(ikx) - k-1 (X sin k(x - y)v(y)t(y) dy, (2.2)
Jx

has a solution \p with the following properties.

(1) At all points of the region

x>0, ImagA:>-6, (2.3)

4*(x, k) is twice differentiable with respect to x and holomorphic in k.
(2) 4> satisfies the differential equation

^— + v(x))^(x, k) = k2ip(x,k), 0*£.x<oo.
dx I

(3) For every positive integer m,

lim \xm(exp(-ikx)t(x, k) - 1) |= 0, (2.4)
x-* oo

so \p converges to the solution of the free wave equation more rapidly than any power
of x.

PROOF. In order to prove this theorem, we solve the integral equation (2.2) by
iteration:

* = ! * " . (2-5)
n = 0
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[61 Schrodinger operators 143

where

xP°{x, k) = exp(/A:x)

and

<T+'(*> k) = -A:"1 f* sin k(x ~ y)v{y)Vh, *) dy.

To establish the absolute and uniform convergence of the series in the region
(2.3), we use the inequality,

| fc- | s in*(je->0|<2I / 2 | :x- j> |exp|Imagfc(*- .> ' ) | , (2-6)

and prove by induction that

| f(x, k) |< exp(-Imag kx)u(x)"/n\,

where

Jx

We want to adapt this theorem to the Schrodinger equation on R with a step
potential, so we set

ka = (X-qa)
i/2, a=±, (2.7)

and apply the theorem to the overlapping intervals [-a, oo) and (-oo, a]. Firstly,
we let

v(x) =q(x-a) - q+ , x ^ 0,

and

k = k+

in the preceding analysis, construct the solution ip of (2.2), and define

+ a,k+), x>-a,

+a,k+) , x>-a, -Imag,k + > -b.

Secondly, we let

v(x) = q(-x + a)- q_, x>0,

and

k = k.

in the preceding analysis, construct the solution \p of (2.2), and define

</'-+(-«. k_) = exp( + ik_a)\p(-x + a, A:.) , x =£ +a, -lmagk_>-b,

t~(x, k_) = exp(-;A;_a)^(-jc + a, k_), x < +a, +ImagA:_> -b.

We obtain the following corollary.
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144 D. M. O'Brien [7]

COROLLARY. Under the stated assumption on the potential (1.2), the integral
equation

*M*» ka) = e\p(iPkax) + k~l f sin ka(x - y)(q - qa){y)^aP{y, ka) dy,
Jaoo

(2.8)

in which a and /? may denote either + or - , has a solution \j/ap with the following
properties.

(1) At all points of the region

ax>-a, ap\magka > -b, (2.9)

4>ap(x, ka) is twice differentiable with respect to x and holomorphic in ka.
(2) \pap satisfies the differential equation

+ (J q()\4a(i(, a) Mafi(>«)> UX < 00.

(3) For every positive integer m,

lim \xm{exp(-ipkax)tal3(x, ka) - l) |= 0, (2.10)
ax— oo

so \pap converges to the solution of the free wave equation more rapidly than any
power of x.

The strong assumption (1.2) on the potential, that it should decay exponentially
to q°, is needed to prove that i ^ will be a holomorphic function of ka in an open
region containing the positive real axis, a property that will be important later in
the Titchmarsh-Weyl-Kodaira algorithm for the spectral measure of T. In fact,
the weaker condition

\q(x)-q°(x)\<c/{l + \x\)', s>\,

is sufficient to prove the existence of solutions with the asymptotic forms,

tafiix, k
a) ~ exp(i^kax) as ax -» oo,

but then \pap will only be holomorphic in the region

afi Imag ka > 0

and continuous on the real axis, except possibly for the point ka — 0. With the
stronger conditions,

f x\q(±(x-a)) -q^\dx< co,

4/ttp will be continuous on the whole real axis, but it still might not be possible to
analytically continue i//â  into the region
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Note the important identity,

145

which follows easily from the integral equation satisfied by 4>ap.
Now k+ and k_ are not independent variables, but are related to X through

(2.7). We will assume that the branch cut lies along (-oo,<7a], and adopt the
convention that ka and \pap, now regarded as functions of X, are defined on the
cut by their boundary values from above. Thus,

* » = lim ka(fi + iv) I

^ ( • x . / O = lim &/»(•*>/* + iv) f'

When A lies on the cut \pap is real,

but for all other values

XG(-oo,9J,

since

«(-«.?«]-

(2.12)

(2.13)

3. Reflection and transmission coefficients

All four solutions \j/+ + , \p+_ and ^/_+, i//__ are defined in the region | x \< a, and
consequently must be linearly related,

*.+(*, A) = r.(X)^_(x, X) + t+ (\)++ + (x, X), (3.1)

*+_(x, X) = r+ (X)^+ + (x, X) + /.(X)^..(x, X). (3.2)

The coefficients r± and (± , defined by these identities, are the reflection and
transmission coefficients, so named because in (3.1) \p_+ representes a plane wave
incident on the potential from the left, \p__ is the reflected wave retreating to -oo,
and \p++ is the transmitted wave advancing to +oo. Equation (3.2) can be
interpreted similarly. The reflection and transmission coefficients can be ex-
pressed in terms of the Wronskians of the asymptotically free solutions,

+
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146 D.M. O'Brien [9]

where

w(f,g)=f'g-fgr-
Since the Wronskian is independent of x, we can deduce from the asymptotic
form of \pap that

and hence that \f/a+ and \pa_ are linearly independent except when ka = 0.
For the potential q°, the standard solutions and corresponding reflection and

transmission coefficients are

+

o _
* _

,0 =
•jfc++ik. ' + k++k_ '

For the general potential #, the coefficients r± and ^ have the following
properties.

LEMMA 2.

(1) r± and t + are holomorphic functions ofX in a strip containing the real axis,
cut along (-oo, q+ ], except possibly for poles in the lower half plane. For X in this
region the following identities hold:

r.(X)7(A)

MX)

k+(\)r+(\)t+(\) = -k_(\)r_(\)t_(\).

(2)r^ andt^ are infinitely differentiableon (q_, q+) and

| r . ( X ) | = l , q_<X<q+.

(3) If r^ and t± are regarded as functions of ka, then they are holomorphic in a
neighborhood of ka = 0. Furthermore,

lim r^(k±) = 1, lim t^(k±) = 0.

PROOF. When A lies on the cut plane, all the solutions ^ are holomorphic, so
r± and t± will be holomorphic, except for poles at the zeros of W(\j/__, i//++).
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110] Schrodinger operators 147

This Wronskian cannot vanish when Imag A > 0, for that would imply that ip__
and \p+ + are linearly dependent, and consequently that the self-adjoint operator
T has a complex eigenvalue, because $__ is square integrable at -oo and \p++ at
+oo. Hence, any zero of W(\f/__, yp++) must lie in Imag A < 0. Nor can zeros lie
in (q_, oo), for the identities show that | r_\ is bounded there.

Both k+ and k_ are infinitely differentiable functions of X on (q_, q+), and r±

and t± are holomorphic functions of both k+ and k_, regarded momentarily as
independent variables. Hence, r± and t± are infinitely differentiable functions of
Xon(q_,q+).

The identities follow trivially from the definitions of r± and f± and the
relations (2.12), (2.13).

Finally, we note that when ka -» 0 the solutions \pa+ and ^a_ become identical,
so the limiting values of r± and r± again follow trivially from the definitions.

4. The Schrodinger operator and its resolvent kernel

Consider the symmetric operator on L2(R) defined by

T: K-* L2(R),

where K is the set of infinitely differentiable functions with compact support. The
deficiency indices of T are both equal to zero, so T has a unique self-adjoint
extension, its closure, also denoted by T. In order to verify this assertion, we need
only count the number of solutions of (2.1) which are square-integrable in
neighborhoods of +oo and -oo when Imag X $ 0. Now

\tafi\~ exp(-/?Imag kax) as ax -> oo,

so \pap is square-integrable near aoo if and only if aft Imag X > 0. Thus, in any
neighbourhood of +oo or -oo, only one solution is square-integrable and T does
not need to be supplemented by boundary conditions [7, pages 1306 and 1406].

The resolvent of T is a bounded integral operator with kernel [7, page 1329]

ImagX>0,R(X ) \
x(X'y) ! * ( * ) * ( A ) / ^ * ) ImagA<0,

where

2<= min(x, y), z>=max(x, y).

Note that

R-X(x,y) =Rx(x,y),

provided that A does not lie on the cut (-oo, q+ ].
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5. Continuous spectrum of T

(ill

The essential spectrum of T coincides with the interval [q_, oo) [7, pages 1448,
1438 and 1437].

Let A denote any open subinterval of [q_, oo) and choose

©,(*, A) = +_+{x, A), o2(x, X) = *„ (* , X)

as a basis of solutions of (2.!). After a short manipulation, the resolvent kernel
can be written

Rx(x,y) = 2 a,(y,X)erj(X)aJ(x,X), x<y,
•j

where

iv) =

1 0
-r_(n + iv) 0

0 —/•_(/! + iv)

0 1

2ik_(n + iv))

H + iv))
v>0.

If(A,,A2)isa subset of A, then the Titchmarsh-Kodaira theorem [7, page 1364]
asserts that the spectral measure of T is

p((A,,A2)) =

where

The integrand

lim
8-0 +

lim
V— 0 +

is continuous

1 fX2-S

4 T 4 , + S

A = /x +

on the region

1

MM

iv.

ri 0

0

MM.

-1

so the limits can be evaluated trivially and

MM)
This measure is absolutely continuous with respect to Lebesgue measure on
[q_, oo) and its Radon-Nikodym derivative is

^ = «(M) =
1

1

If G is a bounded, Borel function with compact support in A, then [7, page
1355] the kernel of G(T) is

G(x, y)=f°°G(X)e(x,y,X)dX,
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where

e(x, y, A) = 2 a,(y>^)m

ij

Since the spectral measure of a set {A} containing only one point of A is clearly
zero, because m is continuous at A, the operator T cannot have any eigenvalues in
A [7, page 1360]. Thus, the essential spectrum of T is purely continuous, except
perhaps for the point A = q_.

6. Point spectrum of T

Now let A denote any open subinterval of (-oo, q_]. The previous assignment
for the solutions o,(x, A) and o2(x, A) is no longer acceptable, because \p_+ and
>//„ are not holomorphic across the branch cut along (-oo, q_\. Instead, choose

{ , A),
and

as a basis of solutions of (2.1). These functions are real on A and have reflection
symmetry,

al(x,\)=a,(x,\), (6.1)

so are indeed holomorphic in an open region $2 which contains A. When v > 0,
the resolvent kernel can be written

*x(*>y) = 2 oi{y,X)ei-J(X)oJ(x,X)> x<y,
ij

where

But 0' is real on A and has reflection symmetry,

6~(n - iv) = 6-(ix + iv) , p>0,
a consequence of (4.1) and (6.1), so 0~ is also holomorphic in Q, except for poles
of r_ in A. These isolated points are the eigenvalues of T [7, page 1380]. Since the
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spectrum of Tis bounded below [7, page 1459] and the holomorphic function

can only have a finite number of zeros in any bounded region, T has only a finite
number of eigenvalues A,,A2,...,An. If

d, = residue (-/•_( X )/2ik_(X)),

then [7, page 1380]

and [7, page 1361]

0 0

o e.

is the normalised eigenvector of T corresponding to the eigenvalue A,. Note that
all the eigenvalues must be simple.

In analogy with the result for the continuous spectrum, if G is a bounded, Borel
function with compact support in A, then the kernel of G(T) is

G(x,y)= 2 G(A,>(x, y, X,)

where

e(x,y, X,) = Xi

7. Nudearity of Q

To prove the nuclearity of Q, we use the following result, proved in [13].

LEMMA 3. Suppose that Q is a bounded integral operator on L2(R") whose kernel,
Q(x, y), is twice continuously differentiable with respect toy. Construct the kernel

+ \Y\Q() P > O .

if

f f \P(x,y)\2d"xd"y<oo,
JR" JR"
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so that P is a Hilbert-Schmidt operator, then Q G 6r for all r>t, where

2n{p + 2)
4 + ( + 2)'

and

() o(k-l/l) ask^oo.

Here sk(Q) denotes the kth singular value of Q and Sr is the ideal of compact
operators whose singular values are f-summable.

If we insist that G should be infinitely differentiable, then the integral represen-
tation for Q(x, y) is amenable to the standard methods of asymptotic analysis,
and a straightforward, but lengthy, calculation leads to the following result.

LEMMA 4. Provided G is an infinitely differentiable function,

xmy" 0, as\x\ ,|.y|-» oo

for all positive integers l,m,n.
Hence, for any p > 0, the kernel P(x, y) satisfies

\xmynP(x,y)\^0 as\x\ ,|.y|-» oo,

for all positive m and n, and is certainly a Hilbert-Schmidt kernel. In particular, if
p > 2 / 3 , then Lemma 3 shows that Q is nuclear. Finally,

trace Q= f°°Q(x,x)dx, (7.1)
- 0 0

because the kernel of Q is continuous.

8. Renormalised trace formula

In the preceding section we assumed that G was infinitely differentiable in
order to expedite the asymptotic analysis of Q(x, y) and to establish the
nuclearity of Q. However, in this section, where we evaluate the integral on the
right in (7.1) and show that it indeed reduces to (1.3), we need only require that G
be a bounded, Borel function with compact support. Then G(T) is an integral
operator whose kernel is

G(x,y)= 2
/ = l

so Q is also an integral operator with kernel

Q(x, y) = G(x, y) - G°(x, y).
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152 D. M. O'Brien [is]

We may assume that the support of G lies in one of the sets

(-°°.4-]. [?->?+]. [4+>°°)>
for it is always possible to decompose G into the sum of three functions with this
property, so we will prove the theorem for the three cases separately.

(1) Support G C (-oo, q_\.
In this case,

G(x,y) = 2 :
1 = 1

and

G°(x, y) = 0,

because the point spectrum of T° is empty. Hence,

tracee=/°°^ 2 xXxJG(\,)Xl(x) = £ G(\,),
-°° 1=1 1=1

exactly as expected.
(2) Support GQ[q_,q+].
The proof in this case is somewhat harder! Write

traceQ= lim f+dx J"+dX G(X)[e(x, x, A) - e°(x, x, A)]. (8.1)

Since G is integrable and e is continuous for all (x, A) in [«_, u+ ] X support(G),
we may reverse the order of the integrations in (8.1) and write

trace£ = lim lim f"+Ge(X) f"+dx[e(x, x, A) - e°(x, x, A)], (8.2)
u *—»± oo € -• 0 + Jq J u

where

G,(X)=-G(X), ?. + e<X< 9 + -e ,
0, q+-e<X.

This device, which excludes small neighbourhoods of q ± from the A integration, is
necessary because the trick we will use to evaluate the x integration involves
differentiation of r± and t± with respect to A, and these functions are not
differentiable at A = q± . However, we will ultimately be able to evaluate both
limits in (8.2).

When A is real, the solutions a, satisfy
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116 ] Schrddinger operators

Differentiate (8.4) with respect to X,

j w h e r e = i x -

153

( 8 5 )

Multiply (8.3) by ay and (8.5) by a, and subtract the resulting equations to find

d [ . d - - d

d.

Hence

/ +e(x, x, X) dx = g(u+) - g(u_),
* it

g(x) = S m , J ^ a, - a, —d,J.

where

When | u± \ is large, we can use the asymptotic forms of a, and a2 to evaluate
g(«:h). A long and tedious calculation yields the following asymptotic relations,
valid when u + -> ± oo.

2-nig{u_) ~Y~ + - ^ lmag[r_e-2lk-u-],

i k. t_

*("+ ) ~T7T l og( '-A-) + T1- - T7T Imag[r+ e2'*+»+], 9 + < X.

We now find that

2 77/trace (?

= lim lim fq+dXGe(X)
«+—:*: oo c —0+ Jq«+—:*: oo c —0+ dX

log(r_A_°)
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In the second and third terms change the integration variables to | k+ | and k_
respectively. Thus,

liri trace g

= lim Urn I /"*+</X G,(X) 4-log(r_/r_°)
u.-.ioo e->0+ q_

k+

r —r

Now, r± and t ± are holomorphic functions of k± in a neighborhood of k± = 0,
and

r±= 1 + ck±+ •••,

so we may allow e -» 0 with impunity. The Riemann-Lebesgue lemma shows that
the integral containing the oscillatory factor e~2lk-u- converges to zero as u_^> -oo.
When w+ -» +oo, the integral containing the factor e"2|*+'"+ clearly converges to
zero. Hence,

trace Q — -z—: -^ log(r_/r_°).
<?-

(3) Support G C [q+ , oo).
The proof for this case is almost identical to the last. Let

0 '
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Then

2 iri trace Q

/•» \ d ( t 7 \
= lim lim / dX G,(X)\ -pr log = —^

«.-.±» £^o+ ^?+ \ d X \t_ t o

Note that t° is real and change the integration variables to obtain

2 w/trace Q

= Urn lim If °°d\Ge(X)4- log(*_/ 77)
u.-±oo £-0+ \Jq+ aA °v ' y

All the integrals are well defined in the limit as e -» 0 and the Riemann-Lebesgue
lemma shows the last two terms converge to zero as M±-» ±OO. Hence,

traced = ̂ ~ j^dXG(X)-^ log(t_/T).

The proof is now complete.

9. Asymptotic developments of r± and t ±

In the final section we want to record asymptotic developments for r± (X) and
/^(X), valid when A is large and positive. For the analysis the condition on the
potential may be weakened and we will only require that

C\q{±(x- a)) - q±\dx < oo for all a s* 0.
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Let us return to the solution of the integral equation (2.2) by iteration. If
instead of the estimate (2.6) we use simply

\k-isink(x-y)\<\k\-\ k¥-0,

then it is easy to prove by induction that

n\, (9.1)

where now

u(x)=f"\v(y)\dy.

The series (2.5) converges absolutely and uniformly on compact subsets of x > 0,
k > 0. Furthermore, (9.1) shows that the sequence {^"} is an asymptotic se-
quence, and also that the series (2.5) provides the corresponding asymptotic
development of i//. However, a more convenient asymptotic development of i|/ in
descending powers of k can be obtained as follows.

LEMMA 5. Suppose that v is infinitely differentiable on [0, oo), and let

xP"(x, k) = exp(ikO(-2'*)~V(*. k). (9.2)

Then

oo

where

x°J={o, jjl°o (9-4)

and

Xn+ly(*) = - S ('/2)m( —I [u(*)x"-'~m(*)]- (9-5)
m = 0 V JC /

PROOF. The proof is by induction on n. The recursion formula for x" is

Xn+l(x, k) = f°(l - exp[-2i*(* - y)])v(y)X"(y, k) dy,
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so, if we assume the form (9.3) for x", then

/
y=0 I/* m=o

// \ m 1
j - \ [v(x)X

nj(x)]\

y=0 m=o

from which the result follows.
Note the convention used in the lemma, that

°
/ f(y)dy, ifsupport(/) =[-a,oo),

I — I f( ) —
\dx> X +[* f{y) dy, if support(/) =( -oo ,

There is a corresponding development for \pap, the solution of (2.8). We set

v(x) = q{x - a) - q+ , x > 0,

and

fc = k+

in the preceding analysis, construct \"J from the corresponding solution \p(x, k+ )
of (2.2), and define

Xl\(x) = x"J(x ~ a)]
>, x> -a.

XlJ-{x) = X"j(x - a) j
Secondly, we let

v(x) = q(-x + a) — q_, x > 0,

and

k = k_,

construct x"J from the corresponding solution \p(x, kj of (2.2), and define

XlUx) = X
nJ(-x + a) J

We then obtain the following corollary to Lemma 5.

COROLLARY. Let

rXU(x, ka). (9.6)
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Then x"ap has the asymptotic expansion

Xlfi(x,ka)~ 2 k-Jx%(x) aska-> 00, (9.7)

where

oj -
fi [0, j>G,

and

Xn4>J(x) = -a 2 (f!i/2r(-fj-)m~\(q-qa)(x)x%-m(x)], ax>a.
m = 0 V * '

(9.9)

By coupling this asymptotic expansion for i//a/3 with the expansion of ka in
descending powers of X1/2, we can obtain a similar expansion for \paB to any order
we require. Furthermore, when | x | «£ a, the expansions for \p+_ and \j/_+ are both
valid, so we can estimate W(\p_+, \p+_) asymptotically, from which we can obtain
developments of r± and t± . For example, a straightforward but tedious calcula-
tion yields

(q- q°)(x) dx
• ' -00

from which it follows that
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