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CONTRACTIONS WITH FIXED POINTS 
AND CONDITIONAL EXPECTATION 

BY 

A. N. AL-HUSSAINI 

1. Introduction. Let (Q, a, //) be a cr-finite measure space. By 1^(0, a, p) or 
Lp for short we denote the usual Banach space of ̂ ?th power /j-integrable functions 
on O if l<p< + co and //-essentially bounded functions on O, if p= + oo. In 
section (2) we characterize conditional expectation, by a method different than 
those used previously. Modulus of a given contraction is discussed in section (3). 
If the given contraction has a fixed point, then its modulus has a simple form 
(theorem 3.2). In section (4) we use results from section (3) to relate projections 
conditional expectation. Finally in section (5) we give a version of Chacon-
Ornestein ratio ergodic theorem. lA will denote the indicator function of A i.e. 
1^=1 on A, 1^=0 off A. 

2. Conditional expectation. Let (£1, a, JU) be an arbitrary measure space. For 
a given sub-cr-algebra |5ca, the conditional expectation E{f | (3} off given (3 is a 
function measurable relative to /?, such that 

(*) Ç E{f\p}dfi = ( fd/t, all Be/? 
JB JB 

If p(Q)=l, then a linear operator Ton L± is a conditional expectation relative 
to some sub-a-algebra 0<=OL if and only if | |7] |<1, T 2 = T a n d 71 = 1 ([6], [2]). 
The condition 71 = 1 does not make sense if ju(Q)= + oo. As it will turn out, 
our conditions for a cr-finite ju include the case when ju is finite. If T is a linear 
operator on Ll9 we denote its adjoint by T* i.e. 

(**) JTfg dp = f fT*g dp, fe Ll5 geL^ 

THEOREM 2A. A linear operator T on Lx is a conditional expectation relative to 
some sub-o-algebra ficzoi if and only if (I) | | r | | < l , (2) T2=T, (3) Tf=f some 
0 < / G Ll9 (4) T=T* on Lx n LM. 

Proof. We give the if part of the proof only. Due to existence of one-dimen­
sional projections, the condition (4) cannot be removed. By (1) and (3) of the 
hypothesis T*l - / < / a n d jT*l •/=]*/. Hence J*l = l, which together with (1) 
would imply that T* is positive. The rest of the proof depends on relating (*) 
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to (**). Let P={B: T*\B—\B}. /? is a sub-a-algebra of a as it can easily be verified 
by using additivity and positivity of T*. Conditions (3) and (4) imply that /S is 
c-finite. To complete the proof let é>9 ST be the class of all conditional expectations 
and the class of linear operators on Lx satisfying the hypothesis of the theorem, 
respectively. 

Define piS"-^, by <p(T)=C where Cg=E{g \ 0}, geLl9 and p={B:T*lB= 
lB}. By the only if part <f <=^\ ç> is one-one by (2) and (4). The proof is complete. 

COROLLARY 2.1. A linear operator T on Lx is a conditional expectation relative 
to some a-finite sub-a-algebra if and only if (I) | | 21<1 , (2) T2=T, (3) T*Tg=Tg 
for some Tg>0. 

Proof. Let f=Tg. By (2) Tf=f implying that T, J* are positive as before. We 
will show that r = r * on Lx n L^. Define dv=fdpi, then Ton Lx(Q, a, v) satisfies 
the hypothesis of the corollary and further that T* is contraction in Lv Therefore 
(by the Riez-Convexity theorem) | | T | | J ,<1 for l<p< + co, and in particular for 
p=2. Thus r = r * on L^Q, a, v) O 1^(0 , a, v)9 and consequently Th=Ev{h | /?}, 
where Ev refers to conditional expectation relative to v, from which we conclude 
that Th=E{h \ ft} a s / i s ^-measurable. 

This corollary was proved in [1] by a different method and under further con­
dition that T is positive, which is redundant. 

COROLLARY 2.2 (R. G. Douglas). Suppose ^ (0) = 1. A linear operator T on Lx 

is a conditional expectation if and only if (I) || T\\ < 1, (2) T2=T, (3) T\ — 1. 

Proof. r * l = l using (1) and (3). The proof follows from the previous corollary 
by putting 1 =g. 

3. Modulus and consequences. Throughout this section (Q, a, ju) is a cr-finite 
measure space. Modulus of a linear operator T on Lx is denoted by \T\. Its def­
inition and some properties are given in the following theorem. 

THEOREM 3.1. For a linear operator T on L l5 there exists a linear operator \T\ 
the modulus of T, satisfying: 

a) il m ii < urn 
(2) I T g l ^ m i g l a U g e l a 

(3) |T | / i = s u p | g | < f t | T g | , 0 ^ f t e L 1 

Proof. See [4]. 

LEMMA 3.1. IfTis contraction on L^ with Tf=f, then \T\ \f\ = \f\. 

Proof. By (2) of theorem 3.1 \T\ | / l > | r / | = | / | . However by (1) of the same 
theorem J | r | | / | < f | / | . Therefore | r | | / | = | / | . 
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LEMMA 3.2. If Tis a contraction with Tf=ffor some Oj£feLu then T*(f/\f\ = 

fi\f\-
Proof. !\f\-S\f\=MI\f\)-T*(fl\f\))-f> s i n c e Tf=f- But | r * ( / 7 | / | ) | £ 

K//I/DI for T* is contraction. Hence r * ( / / | / | ) = / / | / | . 

THEOREM 3.2 (representation). If T is a linear contraction on Lx with Tf=f 
for some 0 5^/e Z^ //ie« 

ms'{fAms\ orequivalen,ly r 8"mm(w8) 
Proof. We shall show that \T\g=(fl\f\)T((f/\f\)g). Equivalence of this with 

Tg=(fI\f\)\T\((fl\f\)g) follows by observing that ( / / | / | ) = ( | / | / / ) 

We may and do assume that g>0. Now \T\g>(f/\f\)T((fl\f\) - g) using (3) 
of theorem 3.1. By Lemma 3.2 and property (1) of \T\; we have: 

|r|8 = mT(iH 
4. Projections on Lv In this section we imploy the representation theorem 

of the previous section, to represent projections defined on Li(Q, a, /u) where /LC 
is cr-finite. The representation we prove is different than those given in ([2], [5]). 

THEOREM 4.1. Let Tbe a linear operator on Lx satisfying (1) | | r | | < l (2) T2=T 
(3) T=T* on L± n L^, ?Ae# f/zere erâto a unique C e a .swA fAaf: 

Hence 

m li/i ' i I/I u/i 
w/*er£ C=support off, and /? w a a-finite sub-a-algebra of C. 

Proof. Let C be the largest support among the supports of all Tg, as g ranges 
over Lx. By [2] there is a g e Lx such t h a t / = T g and C= support off Actually in 
[2] this is proved when JU is finite, but extension to the case when n is cr-finite is 
easy. It is easy to check that \GT\C is contraction, idempotent and fixes lc •/. 
By theorem 3.2 

lcTlcg = X la |T| 10U- • g ) , since |T| fixes | / | . 

But lc\T\ lcg=E{g\B} using theorem 2.1. Here P={B:1C\T*\101B=1B}. 
The proof is complete. We must remark that condition (3) cannot be removed. 
See other representations in ([2], [5]). 
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5. A version of Chacon-Ornstein theorem. Let T be a positive contraction 
on Li(Q, a, fx) some c-finite measure space (£i, a, [x). The Chacon-Ornstein 
theorem [3] says: 

Iow Th 

converges almost everywhere to a finite limit as n-+co on the set Qt™ T*g>0} 
where g > 0 . If T is a contraction and Tf=f>0 then T is positive as is shown in 
the preceeding sections so that such a T will satisfy the Chacon-Ornstein theorem. 
However if T is a contraction and Tf=f^0 then J is not necessarily positive, 
and the Chacon-Ornstein Theorem fails in this case. The version we have in mind 
is: 

THEOREM 5.1. If T is a linear operator on Lx such that Tf=f y£0 then 

converges almost everywhere on (2o° O D ^ D ) ^ ^ } where g>0. Here D={f>0} 
or {/<0}. 

Proof, l ^ n ^ is positive by theorem 3.2. 

6. REMARKS. Chacon's identification theorem ([5], pp. 104) could be utilized 
in characterizing conditional expectation as a linear operator (see [1]) for example. 
However our approach in section (2) would seem to be more direct and in a sense 
a head on. 

Also one may give an alternative proof to theorem 5.1, and as follows: Assume 
Z>={/>0}. The case where D={f<0} is handled by considering —/instead of/. 
N o w i f | g | < | / | on i) then l l ^ n ^ l ^ l l ^ r i ^ / l . Using theorem 3.l .SettingPn= 
lDf, n=l, 2, . . . . The proof follows from Lemma 4 of ([5], pp. 102). 
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