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Abstract. In this paper we establish Riemann—Roch and Lefschtez—Riemann—Roch theorems
for arbitrary proper maps of finite cohomological dimension between algebraic stacks in the
sense of Artin. The Riemann—Roch theorem is established as a natural transformation
between the G-theory of algebraic stacks and topological G-theory for stacks: we define the
latter as the localization of G-theory by topological K-homology. The Lefschtez—Riemann—
Roch is an extension of this including the action of a torus for Deligne-Mumford stacks. This
generalizes the corresponding Riemann—Roch theorem (Lefschetz—Riemann—Roch theorem)
for proper maps between schemes (that are also equivariant for the action of a torus, respec-
tively) making use of some fundamental results due to Vistoli and Toen. A key result estab-
lished here is that topological G-theory (as well as rational G-theory) has cohomological
descent on the isovariant étale site of an algebraic stack. This extends cohomological descent
for topological G-theory on schemes as proved by Thomason.
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1. Introduction

In this paper we consider the general Riemann—Roch problem for arbitrary proper
maps of finite cohomological dimension between algebraic stacks in the sense of Artin.
Even in the case of Deligne-Mumford stacks, the problem was only recently solved in
[Toe-1]and the difficulties that can come up in general may be seen already in the case of
finite group actions on schemes. Let G denote a finite group, viewed as a group scheme
over a field k: we assume the order of G is prime to the characteristic of k. Now the Gro-
thendieck group of vector bundles on the stack [Spec k/G] may be identified with the
representation ring of the finite group, namely R(G) or equivalently K %(Spec k). More-
over, H([Spec k/G]; Q) = H(BG; Q). Though R(G) is far from being trivial (even
when tensored with (), the cohomology ring H*(BG; Q) = Q. Therefore, the diagram

K%(Spec k) ", H!(BG;Q)

p*l lp*

K'(Spec k) ", H*(Spec k; Q)
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fails to commute, where p: [Spec k/G] — Spec k is the obvious (nonrepresentable)
map of algebraic stacks. (The top row is the G-equivariant Chern character, whereas
the bottom row is the usual Chern character which one may identify with the rank
map. One may identify the left most column with the map, sending a representation
of G to its G invariant part.) This problem was solved in [Toe-1] by a rather elaborate
procedure, ultimately making use of a theorem of Vistoli which says the equivariant
higher algebraic K-theory of a regular scheme provided with the action of a finite
group is isomorphic to the higher étale K-theory of the inertia stack provided every-
thing is tensored with C. (See the discussion below for more details.) Though, the
corresponding result is known for compact lie group actions on manifolds, the tech-
niques involved (especially induction) do not generalize to the actions of reductive
groups on regular schemes.

In fact the difficulty with Riemann—Roch for algebraic stacks may already be seen
by the lack of commutativity of the following diagram:

K(Spec k), HZ([Spec k/Gl; Ka)

p*l lp*

K'Spec k) . HZ(Spec k; Ka)

where the last terms in each row denote the étale hyper-cohomology of the corre-
sponding stack computed with respect to the presheaf Kqj; this is the presheaf defined
by U — K(U)g =the localization of the algebraic K-theory spectrum K(U) at Q, U
on the étale site of the appropriate stack. One of the key ideas in this paper may
now be stated in the above context as follows: if one replaces the étale topology
above with another topology (called the isovariant étale topology) we define in Sec-
tion 3 (and the presheaf K is replaced by the equivariant version K£%), then the cor-
responding diagram does commute.

We will adopt the following terminology in the statement of Theorems 1.1 and 1.2.
Let J denote a set of primes in Z. Assume that the base scheme S is Noetherian of
finite Krull dimension and that there is a uniform bound on the /-torsion étale coho-
mological dimension of the residue fields k(s) for all points s in S and all /e J. (Observe
that this hypothesis holds if S is of finite type over an algebraically closed field or over
Z[~/—1] or if 2 does not belong to J and S is of finite type over Z.) Assume also that /
is invertible in Oy, for any X which is an object over S (i.e. a scheme, an algebraic
space or an algebraic stack) that we consider and for all primes /eJ. Assume also
the hypotheses in (5.1) and that all the objects we consider are locally Noetherian
over the given base scheme. (However, most of our basic results will hold only for
algebraic stacks that are finitely presented over the given base scheme.)

We may summarize the main theorems of the paper as follows:

THEOREM 1.1 (see Theorem 5.10 and Corollary 5.12). Let G denote the presheaf

of spectra corresponding to the G-theory defined in Definition 5.4 and let Gx ® Z
denote the localization of the presheaf G first in the sense of Bousfield by topological
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K-homology followed by inverting the primes not in J. Let S denote an algebraic stack,
finitely presented over the base scheme S, with Siso ¢t denoting the isovariant étale site of
the stack S defined in Section 3. Then the obvious augmentation

G(S)k ® L) = Hisoe(S, Gk ® Z() (1.0.1)

is a weak-equivalence of spectra where the right-hand side denotes the hyper-cohomo-
logy spectrum computed on the isovariant étale site. (One may restate the above result
as: the presheaf Gx ® Zy has cohomological descent on the isovariant étale site.)
Moreover, there exists a strongly-convergent spectral sequence

EE’I = Hfso.et(Sv 1(Gk ® Z(p)) = _s1(G(S)k ® Z(y)). (1.0.2)

In view of the above theorem we will call G(S)x ® Z(; topological G-theory. This
will be denoted G'°P(S). The presheaf G ® Z(;) of spectra will be called the presheaf
of topological G-theory. (We may also use G(S)/I'[f~'] for G'?(S) where [ is as
above, v > 0 and f denotes the Bott element.)

THEOREM 1.2 (Riemann—Roch from algebraic to topological G-theory). Let
f: 8 — 8§ denote any proper map between two algebraic stacks finitely presented over
S and of finite cohomological dimension. Then the direct image map f, fits in the fol-
lowing homotopy commutative square:

GS) —— G(S)
al |-

G —— G7(S)

The above theorem might seem like a tautology, since the right-hand side is a sui-
table localization of the left-hand side. However, as in [T-2], [T-3], it is the right-hand
side that can be computed by the spectral sequence in the above theorem, whereas
there is no such spectral sequence for computing the left-hand side. We will in fact
prove a stronger version of the above two theorems including the action of a smooth
group scheme on the stacks S and S'.

As an application of cohomological descent for Gx ® Z(;), one obtains the fol-
lowing Lefschetz—Riemann—Roch theorem where G(S)g ® Z; is denoted by
G'P(S). We will assume the base scheme S is the spectrum of an algebraically
closed field k, all the stacks we consider are Deligne-Mumford and finitely presen-
ted over k and that the orders of the stabilizers on all the stacks we consider are
different from the characteristic of k in the following. Moreover, Q(u,,) will
denote the algebra over @ generated by @ and u.,, with p,, denoting the roots
of unity in k imbedded in C*. Let T denote a torus, let R(T) denote the represen-
tation ring of T and let p denote a prime ideal in R(7") corresponding to a sub-
torus 7’. Given an action of a sub-torus 7” of T (which may be either T itself
or the given sub-torus 7’) on an algebraic stack S as in Definition 5.1, one lets
Coh(S, T") = the category of coherent sheaves on the stack & with a T”-action.
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We let G(S,T") = K(Coh(S, T"”)) = the K-theory spectrum of the category
Coh(S, T") and similarly G'7(S, T') = the topological K-theory of the above cate-
gory (defined as above by localizing with respect to topological K-homology fol-
lowed by inverting the primes not in J.) In this case we define the fixed point
stack 8" as in Definition 6.4 so that the induced map i:S” — S is a closed
immersion. Let /g denote the inertia stack associated to ST": there is an obvious
map n’': 1 g > S”' that is unramified (or a local imbedding) since the stack S is
assumed to be Deligne-Mumford. It is shown in 6.6 below that one may find a
finite étale cover T’ — T', so that when T’ acts on ST through the action of
T’, this action is trivial. Moreover, ST =87 and when S is a smooth Deligne—
Mumford stack, ST, is also smooth.

Given a presheaf of spectra P, we let P ® Q the localization of P at Q in the sense
of [B-K]. Next we follow [Toe-1] and let G¢(S) ® Q = He(S, G ® Q) which is the
étale hypercohomology of the stack S with respect to the presheaf G ® Q. We also
let Get(S, T) @ Q@ = Het(S,G( , T) ® Q) where G( , T) ® Q@ denotes the presheaf
of spectra associated to T-equivariant coherent sheaves on . Similarly
Ke(S, T)® Q = He(S,K( , T)® Q) where K( , T') denotes the presheaf of spec-
tra associated to T-equivariant locally free coherent sheaves.

We will assume, henceforth, that S is a smooth Deligne-Mumford stack. Next, let
7 denote the conormal sheaf associated to the local imbedding /4 — S

) a class g emo(Ke ) ® @) @ Qi) which

N s
Toen associates to the class A_j(N
is invertible.

Recall that Toen (see [Toe-1] Théorém 3.15) defines a natural isomorphism

s

b7 mlGST) Q) = 7.(Gellgrr) © Q) ® Qi)

(Here @(u,,) = the Q-algebra generated by the roots of unity of the field k; one may
choose an imbedding of this into C*.) In view of the isomorphisms

1 (G(ST, TY) = 7[M'] ® 1.(G(STY), (1.0.3)
7 Gallgr. ) = ZIM1 @ 7. (Gl 5) (10.4)

this extends to define an isomorphism ¢ :m(G(ST, T)®2 Qpe) —
T (GeIgr, T') ® Q) ®g Q). Moreover, it is shown in [Toe-1] Lemme 4.12 (see
also 6.0.18 which shows some of the hypotheses in [Toe-1] may be relaxed) that
the composition Yg=a},N( o s~ commutes with proper push-forward.
Assume in addition to the above situation that the prime ideal p in R(T") corresponds
to the subtorus 7. In this case, we prove (see Proposition 6.9 below) that if N is the
conormal sheaf associated to the closed immersion i:S.,— S, the class
i_l(N)sng(K(ST’, f"’))(p) is a unit and that the Gysin map i (GST, f"’))(p) —
1(G(S, T')) ) is an isomorphism with inverse defined by i*(" )N (N7
Combining the above isomorphisms, we obtain the isomorphism:
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T (G(S. T ® Q1) TGS T ® Q1)
s (Gullg T ® Dy ® Qi) (1.0.5)

We will denote this isomorphism by Ws.

THEOREM 1.3 (Lefschtez—Riemann—Roch). Assume that T’ is a subtorus of the
torus T acting on the smooth Deligne—Mumford stacks S and S' and thatf S — Sis
a T'-equivariant proper map of finite cohomological dimension. Let T' — T’ denote a
finite étale cover so that T’ acts trivially on the stack ST and ST Let i : ST — Sand
l.S/T — & denote the associated closed immersions. Then the following diagram

commutes.
2 (G(S',T’U\ 7o(Gar (7, T)
~ \1’31 ~ /
fe TF‘(G(S’,T’))(,,)QQ(“&) % Tx(Ger (Is.i’ T ® Q)(p)%@(l‘oo) £

w,(G(S,T’)J\ £ A u(Ger (Is7, T"))

m.(G(S. T’))(;,)@Q(/Jgd ] 7Tu (Ger (151’ )T) ® Q)(p)®Q(Moo)

COROLLARY 1.4. (i) Let S denote a smooth Deligne—Mumford stack that is pro-
vided with a proper map f-S — X of finite cohomological dimension where X is a
regular scheme. Assume S’ is provided with the action of a torus T, T’ is subtorus and
that the map f'is T'-equivariant for the trivial action of T' on X. Assume further that X
has an ample family of line bundles, so that one obtains the weak equivalence
G(X) ~ K(X). Let F denote a T'-equivariant coherent sheaf on the stack S'. Now we
obtain the equality in my(K(X, YN",))(D)(X)Z W (Us) =2 mo(Ker (X, T/))(p)@)z@(uoo):

Rf(F) = S(~1Y Rf.F = S~V R (W g (F)). (1.0.6)

(i1) Taking X = Speck, we obtain

T(=1)H(S; F) = Ei(—l)'Hi(IS,fr ,Wo(F)) (1.0.7)
in the ring R(T/)(p)@)z@(uoo).

As has been noticed for sometime now, there is close connection between equivari-
ant algebraic topology in the sense introduced by Bredon and studied extensively by
May et al. and the cohomology theory of algebraic stacks (see, for example, [Vi] or
[Toe-1]). This was explained very nicely in [T-3] and we recall this in Section 2 of the

paper. We hope this serves to nicely explain the leading ideas of this paper, in a
rather elementary manner. In Section 3, we define the isovariant étale site and study
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it in great detail, concluding with Theorems 3.13, 3.26 and 3.27. These show that the
isovariant étale site of an algebraic stack is a good substitute for the étale topology of
its coarse moduli space: the main advantage is that the isovariant étale site is defined
for all algebraic stacks irrespective of whether a coarse moduli space exists or not.

In the fourth section we define and study hyper-cohomology on the isovariant
étale site with respect to presheaves of spectra. Section 5 is devoted to cohomological
descent on the isovariant étale site. The main results are Theorem 5.10 and Proposi-
tion 5.15: Theorem 5.10 provides cohomological descent for suitable localizations of
G-theory which may be viewed as variants of topological G-theory. Proposition 5.15
provides the identification of the stalks of the topological G-theory presheaf on the
isovariant étale site and finds application in the proof of the Lefschetz—Riemann—
Roch. The last section discusses several forms of Riemann—Roch as a natural trans-
formation between G-theory and suitable topological G-theory and concludes with a
Lefschetz—Riemann—Roch for the actions of tori on Deligne-Mumford stacks.

In a sequel to this paper, we define cohomology and homology theories generali-
zing those of Bredon (i.e. Bredon-style equivariant theories as in [Br], [LMS]) on the
isovariant étale site of algebraic stacks. In the case where the stack has finite diagonal
(observe that these are in general Artin stacks), we obtain Riemann—Roch and Lef-
schetz—Riemann—Roch theorems in this setting.

2. Equivariant Algebraic Topology

First of all, one needs to point out that there are two distinct notions of equivariant
cohomology theories, one originally due to Bredon (see [Br], [LMS]) and another due
to Borel (see [Bo], [Hs]). Though the latter is a coarser invariant, it is easier to define
and this often accounts for its popularity. In fact, in the algebraic setting (i.e. for
studying algebraic group actions on schemes) no one has even defined an analogue
of the former theory. A key difference between the two types of theories can be seen
in the definition of a map to be a weak homotopy equivalence. Let X denote a G-
space where G is a compact topological group. In the Bredon style theories, one
defines the G-topology on X with the closed subsets of X given by G-stable closed
subspaces of X. The points in this topology therefore correspond to the orbits of
G on X, all of which are closed since the group G is compact. One may readily see
that, therefore, the G-topology on X is equivalent to the topology on the quotient
space X/G. In Borel style theories, one defines a simplicial space EG x X, then takes
its realization, |EG x X|, to obtain a space and defines the topology to be the topo-
logy on the above realization.

The difference between the two is clearly seen in the definition of equivariant
K-theory. The Atiyah—Segal equivariant K-theory of X is the Grothendieck group
of the category of all G-equivariant vector bundles on X. This is a Bredon style the-
ory, since it is defined only on G-stable subsets of X and a map f: X — Y between
two G-spaces induces an isomorphism on Atiyah—Segal G-equivariant K-theory, in
general, only if there is a G-equivariant map g: Y — X and G-equivariant
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homotopy equivalences fo g >~ idy and g o f >~ idy. On the other hand one may con-
sider K°(|EGX]). This is a Borel style equivariant cohomology theory. A G-equivar-
iant map f: X — Y induces an isomorphism on these groups, if there is a map
g: Y — X, not necessarily G-equivariant, so that the compositions fo g >~ idy and
gof~idy by homotopies that are once again not necessarily G-equivariant. More-
over, one knows that the Borel-style equivariant K-theory of X is the completion of
the Atiyah—Segal equivariant K-theory of X (see [A.S2]) and is therefore a coarser
invariant of X.

Next one considers the definition of equivariant cohomology in the sense of Bre-
don. We may define this concisely as follows. (The definitions in [Br] and [LMS] are
essentially equivalent to this, though the definitions seem a bit more complicated as
they are not stated in terms of sheaf cohomology.) First, define a presheaf R”:
G — topology of X — (Abelian groups) by T'(U, R®) = K%(U) = the G equivari-
ant Atiyah—Segal K-theory of U. One may observe that if G/H is a point on the
above topology of X, the stalk Rg/H =~ R(H), at least for suitable X. Given an Abe-
lian presheaf P on the G-topology of X, one defines the Bredon equivariant cohomo-
logy of X, H{ p(X; P) = RI'(X,(P® R)) where ~denotes the functor sending a
presheaf to its associated sheaf and RI'(X, ) denotes the derived functor of the glo-
bal section functor computed on the G-topology of X. So defined, H(; 5. (X; P) is a
module over K%(X) and hence over R(G). Our procedure for defining Bredon style
equivariant cohomology may be therefore summarized as follows: define a topology
where the open sets are G-stable open sets and modify the Abelian presheaf P on this
site by the sheaf RY that contains information on the representations of G. One may
now contrast this with the definition of the usual G-equivariant cohomology of X
(which is a Borel style equivariant cohomology). Let P denote an Abelian presheaf
on the simplicial space EGxX. Then one defines Hi(X; P) = RI'(EGxgX, P). This
is a module over H}(X, Z) and, hence, over H*(BG; Z).

Finally consider the case where G is a group scheme acting on a scheme X. One
runs into various difficulties, if one tries to define a Bredon style equivariant étale
cohomology in this setting. The main difficulties are in the definition of the G-topo-
logy. The discussion in [T-3], Section 2, shows how to define an appropriate topology
in this setting so that the definition of a Bredon style equivariant étale cohomology is
still possible. Guided by this example, we define and study a site (or topology) for
any Artin stack in the next section which may be used to define a finer variant of
the cohomology of a stack.

3. The Isovariant Etale Site

3.0.8. BASIC FRAMEWORK

Let S denote a Noetherian separated scheme which will serve as the base scheme. All
objects (i.e. schemes, algebraic spaces and algebraic stacks) we consider will be
defined over the base scheme S and locally Noetherian. In particular, they are all
locally quasi-compact. Fibered products over the base scheme will be often denoted
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just as a product. (For the most part we may restrict to finitely presented objects over
the base scheme S; but it will often be necessary to consider filtered inverse limits of
such objects with affine structure maps for the inverse system.)

Let S denote an algebraic stack. We define and study several new sites associated
to stacks in this section. Given an algebraic stack S, recall the inertia stack Is asso-
ciated to S is defined by the fibered product S xs sxs4S. Since A: § > S xS is
representable, so is the obvious induced map Is — S.

DEFINITIONS 3.1. (i) Let /: &' — S be a map of algebraic stacks. We say [ is
isovariant if the natural map I¢ — IsxsS is a l—isomorphism, where Iy (Is)
denotes the inertia stack of S’ (S, respectively).

(ii) The smooth and étale sites. Given an algebraic stack S, we let Sy (Sgns) denote
the site whose objects are smooth maps u: & — S of algebraic stacks (smooth maps
u: U— S with U an algebraic space). Given two such objects u: S’ — S and
v: 8" — &, a morphism u — v is a commutative triangle of stacks

(i.e. There is given a 2-isomorphism o: u — v o ¢.) The site S is the full subcategory
of Sy,,; consisting of étale representable maps u: S’ — S, where S’ is an algebraic
stack. Finally, when S is a Deligne-Mumford stack, S, will denote the full subcate-
gory of S¢ consisting of étale maps u: U — S with U an algebraic space as objects.

(iii) The isovariant étale and smooth sites. If S is an algebraic stack, Sjs .., Will
denote the full subcategory of S consisting of (representable) maps u: &' — S that
are also isovariant. Sis m; 18 defined similarly as a full subcategory of S,,,. For the
most part we will only consider the site S, ;. (It follows from the lemma below that
these indeed define pretopologies (or sites) in the sense of Grothendieck.)

(iv) We will consider sheaves on any of the above sites with values in the category
of Abelian groups, or modules over a ring, etc. If C is any one of the above sites, we
will denote the corresponding category of sheaves on C by Sh(C).

LEMMA 3.2. (i) Isovariant maps are representable.

(1) Isovariant maps are stable by base-change and composition.

Proof. (i) Let f: &' — S denote an isovariant map. Let ¢: V' — U denote a map
of schemes and let y € ob(Sy). To prove (i), it suffices to show that for each such pair
(¢,¥), the category S, whose objects are pairs (x € ob(S}), g € Homs,(f(x),
¢*(»)) and where a morphism (x;, g1) — (x2, g&2) is @ morphism /: x; — x; in S}, so
that g = g, o f(h) is discrete. Let hy, hy: x; — x, denote two such morphisms. We
will show that hy =h;. Observe that f(/n)=g5'0g =f(h) and therefore
Syt o fi) = fihy! o hy) = id; since finduces an isomorphism on the inertia stacks,
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it follows that 4y o hy =id , i.e. hy = hy. This proves the category S, ,, is equivalent
to a set, i.e. is a discrete category (i). N

(i1) Recall the inertia stack Is = S X sxs S where both the maps S — S x S are the
diagonal maps. Now one may show readily that an atlas for /s = the equalizer of the
two maps

XX = X
P2

where x: X — S is an atlas for the stack S. Since equalizers are preserved by pull-
backs it follows readily that isovariant maps are stable under base-change. It is clear
that isovariant maps are also stable under composition. O

EXAMPLE 3.3 (Quotient stacks). Let G denote a smooth group scheme acting on
an algebraic space X. The objects of [X/Gl,,., may be identified with maps
u: U— X where U is an algebraic space provided with a G-action so that u is étale
and induces an isomorphism on the isotropy groups. Observe that any representable
map S — [X/G] of algebraic stacks may identified with a G-equivariant map
u: U— X, with U an algebraic space. The iso-variance forces isomorphism of the
isotropy subgroups.

DEFINITION 3.4 (see [L-MB] (1.4.3)). An algebraic groupoid X consists of a triple
(Xo, X1, X3) of algebraic spaces provided with the following data:

(i) maps s, t: X1 — Xo (s = the source, t = the target), X» = X1 X, x,..X1

(i1) a map m: XX, x,..X1 — X; which is associative in the obvious sense (which we
call the groupoid law)

(iii) a map e: Xyp — X so that the composition soe =idy, =toe,amap in: X; —
X so that, in*> =idy,, soin=t, toin=s, tom=sopry and som = topry.
(Observe that, since in* = idy,, in must be an isomorphism.) Moreover

(iv) mo(idy, x ) =mo (e xidy,) =idy,, mo(in xid) =eos and mo (id x in) =
eot.

DEFINITION 3.5. Let y denote an algebraic groupoid. Given an algebraic space
y: Y — Xj, a left-action of the algebraic groupoid y on Y is given by an isomorphism
D: X1 x5y, Y 2 XX, x,,Y so that Y = (Y, X1xy x,,Y) with

sy = s X idy, ty =t x idy, ey =e x idy, iny =in x idy,
my: X1 x YxX; x Y=2X; x X1 x Y= X, x Y=mxidy
s, X0,y Y 5, X0,y s, Xo,t  5,X0,y 5, X0,y

defines an algebraic groupoid. We say y: Y — X has trivial action by the groupoid if
the following conditions are satisfied: X x; x,,Y = X1X, x,,,Y and the isomorphism
® =id. (See Proposition 3.7 for a some what different explanation of groupoid
actions. The above definition of an action being trivial, though sufficient for our pur-
poses (since we consider triviality for actions only by inertia groupoids) is not the
most general.)
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3.1. CLASSIFYING SIMPLICIAL ALGEBRAIC SPACES
3.1.1. Sites

Let S denote an algebraic stack and let x: X — S denote an atlas. Let B,S denote
the classifying simplicial algebraic space associated to x: i.e. (B.S), = (cosng ), =
XxgX---xgX. One defines the small smooth (étale) site of B, S as in [Fr], p. 7. Recall
each object in this site will be an object in the smooth (étale site) of some (B,S), for
some n and a morphism between two such objects will be a map lying over some
structure map of B,S. We will denote these sites by B.Sy: (BySet, respectively).
The corresponding big sites will be denoted SMT(B,S) (ET(B\S), respectively).
Recall that an object in the corresponding big site consists of an object U in
SMT(B,S,) (ET(B.S,)) for some fixed integer » with morphisms between two such
objects defined as morphisms lying over some structure map of the simplicial space
B,S. Coverings are defined in the obvious manner and coincide in the small and the
corresponding big sites.

3.1.2. Topoi

Given a site as above associated to a simplical algebraic space X, a sheaf F on X in the
above site will be given by a collection F = {F,|n} of sheaves F, on the corresponding
site of X, along with maps ®,: «*(F,,) — F,, for any structure map «: X,, = X,.
Moreover, the maps {®,|a} are required to satisfy an obvious compatibility condi-
tion. The category of all sheaves of sets on the small smooth site (the small étale site,
the big smooth site, the big étale site) of X will be denoted Shye;( X)) (Shyers(Xet),
Shye s (SMT(X)), Shyes(ET(X)), respectively). A sheaf F = {F,|n} on a simplicial space
X has descent if the maps @, are all isomorphisms. The category of sheaves with des-
cent forms a full subcategory closed under extensions. For example, the category of
sheaves of sets with descent on the small smooth site will be denoted Sh%: (X,,,,,). If C
is any of the above sites, Preshy.,(C) will denote the corresponding category of pre-
sheaves of sets.

3.1.3. The above discussion also applies to truncated simplicial algebraic spaces and
in particular to algebraic groupoids. Given an algebraic groupoid y, one defines the
associated small (big) smooth and étale sites as the corresponding sites of the
truncated simplicial space consisting of the Xy, X; and X» = Xixx,X; along with
the given structure maps between them. A sheaf on such a site will consist of a
collection of sheaves F = {F,|n =0, 1,2}, with F; on X; along with structure maps
{D,: a*(F,) — F,|a} as above. For example, the category of sheaves of sets on the
small étale site of y will be denoted Shy.s(x.). The corresponding full sub-category
of sheaves with descent will be denoted Sh™ (y.,). (Presh®: (y.,) will denote the full

subcategory of Preshg.(y.) Where the corresponding maps @, are isomorphisms of
presheaves.)
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3.1.4. Observe that there exists an equivalence

Shgets(Xo.et) = (algebraic  spaces etale and locally)
(of finite type over Xj)

This extends to an equivalence

Shdes

sets

((BxS)) ~ (algebraic spaces Y in (Xo)e)
(with an action by the groupoid )

Remark 3.6. All the above definitions apply to Abelian sheaves or sheaves of
R-modules, where R is a commutative ring. However, for the most part, we will be
concerned with the topoi of sheaves of sets. We will also consider mostly the étale sites.

3.1.5. One may obtain the following alternate description of sheaves with descent on
the big étale site of an algebraic groupoid y. Let y denote an algebraic groupoid. A
sheaf F of sets on ET(X;) has an action by y if there is a given a pairing:
w: Xy x4 x,FF — F (where f: F— X, is the obvious structure map) which makes
the square

X\ xF _", F

5, X0.f
pri l lf

Cartesian and which is associative in the sense that the diagram

X x Xy x F ¥ x, x F

s, X0t 5, X0.f 8, Xo.f
m><idl yl
X, xF _", F
5, Xo.f

commutes. (Here we view X; as the obvious sheaves represented by the algebraic

spaces X;, i = 1,2.) We denote this full subcategory of sheaves of sets on ET(Xj)

by Shsels(ET(XO))~

PROPOSITION 3.7. There exists an equivalence Shfgtss(ET(;{)) =~ Sh* (ET(Xp)).
Proof. Let F = (Fy, Fy, F,, ®) denote a sheaf of sets with descent on ET(y). Let

fo: Fo = Xy denote the given map. Now one obtains the diagram

Fo o pri(Fo) @ p*(Fo)

ll//

Xo
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where the first and last squares are Cartesian. Given a scheme Y over X, and maps
w: Y —> Fy, go: Y — Xy and g;: Y — X so that sog; =g¢ and fyooa =gy, one
defines the Jmap w(gy, go,0): Y — Fy by first taking the induced map
Y — pri(Fy) — p*(Fo) and then following it by the map p*(Fy) — Fo forming the
last map in the top row of the above diagram. Now the associativity condition above
follows from the co-cycle condition on the isomorphism ®. Conversely maps
Y — XX, x,F correspond under the action p to a unique map Y — XX, x, F
thereby providing an isomorphism prj(F) = u*(F). The associativity of the action
will provide the necessary co-cycle conditions. O

PROPOSITION 3.8. Let S denote an algebraic stack, x: X — S an atlas, y = the
associated algebraic groupoid and BS = the associated classifying simplicial algebraic
space.

(1) There exist maps x: (BxS)y — Set and X: y = tra(ByS)y — Set 0f sites
(1) One obtains an equivalence of categories:
Shiers(Syme) = SO, L) = Shigr, (BySomi) = Shiir,(B.Ser) = Shic (1er)-

sets sets sets sets

(Here try denotes the truncation of the classifying simplicial algebraic space B, S above
degree 2.)

Proof. The first assertion is clear. The first equivalence in (ii) is provided by
descent theory, while the second follows readily by the identities relating the com-
positions of the structure maps of the simplicial space B.S. For an algebraic space,
any smooth cover has a refinement by an étale cover. Therefore, if €: y,,,, = ) 1S the
obvious map of sites, ¢, o ¢* is naturally isomorphic to the identity showing ¢* is
fully-faithful. One may also show the composition ¢* o ¢, is naturally isomorphic to
the identity showing the functor ¢* is an equivalence. O

PROPOSITION 3.9. Let S denote an algebraic stack, x: X — S an atlas and B\ S the
corresponding simplicial algebraic space. Then there exists a map of simplicial alge-
braic spaces n,: B(Xxsls) — B,S where the first is the classifying simplicial algebraic
space associated to the group-scheme Xxgsls over X.

Proof. Observe that B(Xxsls), = the n-fold fibered product of Xxs/s over X. If
n = 0, this is just X and in this case the map ny = idy. Both the structure maps

B(ng(]g)l = ng([g - X = B(X);IS)O

are the same and are given by the projection to the first factor. Observe that if T is
scheme,

X X(T) = {0y g, DI, € X(T), ¢: X)) > x(Y) in ST}

while

https://doi.org/10.1023/A:1022849624526 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022849624526

RIEMANN-ROCH FOR ALGEBRAIC STACKS: I 129

XIS(T) = {1, oo, Y1), MYy € X(T), Yo € S(T), W3 € Aut(y),

xSy, in S(T)).

Now 7t1(¥}, Waos ¥a1)s 1) = Wy, ¥y, n~" oy, om). The remaining maps {m,|n > 1}
are defined similarly and one may readily verify that the maps n, commute with
the structure maps of the simplicial algebraic spaces. O

PROPOSITION 3.10. Let S denote an algebraic stack and let F denote a sheaf on
Sqni- Let €: Is — S denote the obvious map, let u, pry, pry: Isxsls — Ig denote the
group action and the obvious projections and let e: S — Is denote the unit.

(1) Let x: X — S denote an atlas for S. The map n = n: Xxgls — XxsX makes
the triangle commute.

Xx X 22—

X T X

2
pri
T

XXIS
S

(i) Let x: Xxgls — Is denote the obvious map induced by x. Let i, pr,
Pry: Xxslsxsls — Xxsls denote the obvious maps induced by p, pri and pry.
Let ¢: X — Xxgsls denote the map induced by e. Then there exists an isomor-
phism ¢ : X*¢*(F) — X*¢*(F) satisfying a cocycle condition between the pull-
backs by ., pr, and pr, and so that the pull-back by e is the identity.

Proof. Let x: X — S denote an atlas for S. The last proposition shows we obtain
the commutative diagram:

d
XxXxX —d—> X x X Z— o

s = s o5
ﬁrT RT id (3.1.6)
dj
X;(IS)‘;IS-::—)X?ISPH X
’)

The maps d; are the obvious maps of the simplicial algebraic spaces above. Now
there exists an isomorphism ¢: pfx*(F) — p5x*(F) satisfying an obvious co-cycle
condition. Consider n*(¢). Observe that n*pix*(F) = prix*(F) = x*¢*(F) and simi-
larly m*p3x*(F) = prix*(F) = x*¢"(F). Therefore, n*(¢) defines an isomorphism
X*¢*(F) — x*¢*(F). Moreover, the commutative diagram on the left provides the
cocycle condition between the three pull-backs of this to X xgsIsxsIs. The map e
is a section to pr; and if §: X — XxsX is the diagonal, 6 = noe. O
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EXAMPLE 3.11. Let S = [X/G] where G is a finite group acting on a scheme. Now
Xxsls = Uyey Gy x X and it is clear that there is an action by XxsIs on any
G-equivariant sheaf F on X: in fact this corresponds to a representation of G, on
each stalk F,.

DEFINITION 3.12. Assume as in the above situation that S is an algebraic stack,
x: X — S is a given atlas and B,S the associated classifying simplicial algebraic
space. We let Sh”"(B,Se) denote the full-sub-category of Shfgjg(BxSet) where the

isomorphism ¢ given in the last proposition is the identity. Sh”:"(1ry(B,S)) is
defined similarly. (One defines Presh””(B.S.) similarly.)

sets

The following result should be taken as the key to understanding and working
with the isovariant étale sites.

THEOREM 3.13. Assume that S is finitely presented over the base scheme S, a coarse
moduli space m exists (as an algebraic space) for the stack S and that S is a gerbe over
M. (1) Then the functor V>V xg S, Met = Siso.er Is an equivalence of sites. (ii) Let
m: S — m denote the obvious map. Then the functor F > X*m*(F) defines an
equivalence of categories Sh(Mie;) — Sh™"(B,Se()

Proof. We will prove the second part of the theorem first. We consider the
following commutative diagram

X);tXﬁL—’X mox_ sy

nT PT::I m)l 3.1.7)

p1
XxX X s

Let F denote a sheaf on B, S so that F = )E*m*(F) for some sheaf F on Mie;. Now we
retrace our arguments above showing the existence of the isomorphism
n(P): T pix*(F) — n*p5x*(F) (see (3.1.6).). The key observation is that the compo-
sition X xgls —7 X x5 X— X xqu X factors as X xgls =" X =2 X xq X. Since
A*(¢) is the identity, it follows that so is 7*(¢b). This proves that if F is a sheaf on
Mg, then ¥*m*(F) € Sh"™™(B.Se)).

To see the converse suppose Fis a sheaf on B, S with descent. Using the notation
as in (3.1.6), there exists an isomorphism ¢: pj(F) — p5(F) satisfying an obvious
cocycle condition and whose pull-back by the diagonal to X is the identity. We will
first show that there exists an isomorphism <7): PyY(F) — py*(F) so that ¢ = 17*((7)).
To see this one needs to observe that the map induced by m, X xs X Lx x X is
faithfully-flat. (Since this is local on nt in the fppf topology, one may readily reduce
to the case where the stack is a neutral gerbe in which case the map m and therefore
the above induced map has a section. To be precise, consider the pull-back of the
stack to X by the map X — S — m where X — S denotes an atlas. The pull-backed
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stack is a neutral gerbe over X and X is flat over m.) Therefore, by faithfully-flat des-
cent it suffices to show that nj(¢) = n5(¢) where

T AXX X XxX—>XxX
S xS S
denotes the projection to the ith factor. (Recall that faithfully flat maps between
algebraic spaces satisfy the following condition (see [Mur] p.121, p.124): let
X — Y denote a faithfully flat map and which is also locally of finite type between
algebraic spaces. Then a map f: X — X descends to a map g: YV — Y if
() = n5(f), where m;: XxyX — X is the projection to the ith factor.) Observe
from the diagram (3.1.7) that p; = p}on, i = 1, 2. Therefore, n/(¢): njn*p|*(F) —
i ph*(F). Now nom =nom. It follows therefore that both nj(¢) and w5(¢)
map win*p|*(F) to nin*ps*(F). Recall that the fibres of 7; are the orbits of X x s Is
and that the map =n{(¢) is an equivariant map between two equivariant sheaves
for the action of the group-scheme X x s Is. Therefore, it suffices to show that the
maps 7j(¢) and m}(¢) agree at the stalk at a point in each fibre. Since the maps =;
have a section, namely the diagonal map, it follows that this is indeed the case.
Therefore, nj(¢) = n5(¢) and therefore there exists a map b: Py (F) — ph*(F) so
that ¢ = n*(¢).

Observe that the projection pri: X xsIs — X is faithfully flat by the hypotheses
and that # o m = A o pri. The hypothesis that F € Sh""(BS) implies that the iso-
morphism n*n*((}b) is the identity. But pr’i‘A*((i)) = n*r]*((])) and pr; is faithfully flat;
therefore, A*(¢) itself is the identity. The faithful flatness of # readily implies that
the pull-backs of d_b to X'xgp X xgn X satisfy the required co-cycle condition. This com-
pletes the proof of the second part of the theorem.

Now we consider the first part. Observe that any isovariant étale map S’ — S in
Sisoe 18 a representable étale map. We will show that S’ = I’ x g S for some étale
map M — M. Let x: X — S denote an atlas for the stack S and let
X: X' =Xxs8 — & denote the induced atlas for S’. Observe that X xs /s is a
group scheme over X and that it acts on X Xs X as in Proposition 3.10 with the geo-
metric quotient being X xgy X. By isovariance, Iy = IsxsS and X'xglg =
X'x yXxsls. Therefore, we obtain the Cartesian square:

X' x X'[(X'xXxIg)—> X x X/ XxIs
s X s S S

pr’zl lpr’1 pr2 l 1pr1
X

X/

The two left columns define a flat equivalence relation on X”. (They are flat since they
are obtained by base-change from the two right-most columns: now one may identify
X xs X/(Xxsls) with X xgy X and the two projections pr; with the corresponding
projections from the latter to X.) Therefore, the quotient of this flat equivalence rela-
tion exists as an algebraic space . Moreover, the map X’ — X induces a map
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M — M so that one obtains a Cartesian square:
X’ > X

|

mn—— M
Now the bottom map is also étale by descent theory. Observe that
X'xX' = XxXxS =(XxX)xIM and XxS = XxIN.
S s s s 'm S n
Therefore, S’ = I’ xgy S. This completes the proof of the first assertion in the
theorem ]

COROLLARY 3.14. Assume the hypotheses of Theorem 3.13. Then one obtains an
equivalence of the following categories of sheaves Sht"i”(BxSet), Sh(Sis.e;) and Sh(mey)
Proof. This is clear from the last theorem. O

Remark 3.15. Let Sh”-"(S,,) denote the category of all sheaves of sets on Se; with
trivial action by the inertia stack /s as in Definition 3.12. It is necessary for us (see
Proposition 3.18) below to show that this is a Grothendieck topos and therefore that
there exists a site S so that the category of sheaves of sets on S is Sh”-"(S,).

et sets
We will begin by recalling the situation in Definition 3.5.

PROPOSITION 3.16. Let y = (X, X1) denote an algebraic groupoid associated to an
algebraic stack S with x: Xo — S an atlas. Then Sh (y.) and Sh%(B.S.) are
Grothendieck topoi.

Proof. Observe that the small étale topos on Xy, Shys(Xo.r) is @ Grothendieck
topos. By using suitable universes one may also ensure that so is the big étale topos
on X, i.e. Shy(ET(Xy)). Let y = tro(B,S) denote the algebraic groupoid obtained
by truncating the simplicial algebraic space B,S. Since the obvious functor from the
category of sheaves on the groupoid to the category of sheaves on X, preserves and
reflects colimits and finite limits the conditions in [SGAJ4, IV, 1.1.2(a), (b) and (c)
hold. Now it suffices to show that the categories Sh%: (y.) and Sh%: (B, S.) have a
small family of generators.

We begin with the observation that the category Shy,,(Sgn,) is a Grothendieck
topos and therefore has a small family of generators. Now the equivalences of cate-
gories in Proposition 3.8 completes the proof. O

PROPOSITION 3.17. Let i: Sy — S denote a closed immersion of algebraic stacks
with open complement j: S| — S. Now j induces an open immersion of the topoi with
complementary closed immersion i (in the sense of [SGA] 4, IV, (9.3.5), i.e. iy and j, are
Sfully-faithful and that the image of i, is the subcategory of objects that j* sends to ¢):

Sh(By,So.er)—> Sh(BySe) L-Sh(By, S 00). (3.1.8)
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Sh™ (B, S0 or)—> Sh" (B, Se) &-Sh" " (B, S o). (3.1.9)
Moreover, the functor

Ji: Sh(By,S1.e1) = Sh(BySet)  (ix: Sh(By,So.er) = Sh(BySet))
induces a functor

Ji: Sh™™(By 81 o) = Sh""(B\Ser) (ix: Sh""(B1,S0.e)) = Sh""(B,Ser),

respectively) with j, (i) left-adjoint to j* (right-adjoint to i*, respectively).

Proof. The results of [SGA] 4, VIII, (6.3) extended to algebraic spaces and then to
simplicial algebraic spaces readily proves the assertion for (3.1.8). The observation
that in the diagram

i J
XxI, Xxls—XxI
gf] S(]_) >5<, S< ; S

jis an open immersion with 7 its complementary closed immersion, along with (3.1.8)
shows that (3.1.9) is also true. The last assertion regarding ;i and i, may be verified
readily. O

PROPOSITION 3.18. Let S denote an algebraic stack that is finitely presented
over the base scheme S with an atlas x: X — S. Then the topos Sh’""(B,Sy) is a
Grothendieck topos.

Proof. Since the obvious functor Sh”"(B,Se) — Sh(B,Se) preserves and reflects
colimits and finite limits, the conditions in [SGA]4, IV, 1.1.2(a), (b) and (c¢) hold.
Now it suffices to show the existence of a small family of generators to satisfy the
condition of [SGAJ4, IV, 1.1.2(d). Observe that there exists a finite filtration
S8 C---CS5,=8 by locally closed algebraic substacks S; so that each
(Si — Si—1),.q4 1s a gerbe over its coarse moduli-space. Let x;: X; — S; — S;—1 denote
the induced atlas for S;—S;_;. By Theorem 3.13, each of the topos
Sh" (B, (S; — Si_1)) is a Grothendieck topos. The last proposition shows that the
category Sh”"(B,S.) is obtained by gluing the sub-categories Sh”"(B,,
(Si—Si—1))- Foreachi=1,...,n,letj;: S; —Si_1 — S denote the obvious locally
closed immersion. Clearly, if {G%|o} is a set of generators for Sh”"(B.,(S; — Si-1)e),
the collection {jy(G*)|x, i} will be a set of generators for Sh”"(B,Se). O

COROLLARY 3.19. (i) There exists a site BXS;"'” so that the category of sheaves of
sets on the latter is equivalent to Sh”:"(B.Sq).

sets
(i1) Now there exist a map

tr.in €
BxSet - Sisa.et

of sites. The corresponding inverse-image functor e~' sends coverings to coverings.
e*: Shyers(Siso.er) = Sh (B Se) is fully-faithful.

sets
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(iii) There exists a map of topoi f*: Sh":"(B.S¢) — Sh%*

cols ors(BxSet) which is also faith-
ful and conservative.

Proof. The first assertion follows from Giraud’s Theorem as in [SGAJ4, IV
Theorem (1.2), in view of the proposition above. It may be worthwhile recalling the
construction of the associated site starting with the given set of generators for the
category Shé?,’::’(BxSet). First, one enlarges the given set of generators by taking all
finite inverse limits among them. These form the objects of the site. The topology on
this site is the one induced by the canonical topology on the given category
Shég‘,’:",’(BxSet). Now observe that coverings are given by universal epimorphisms.

Given an object 8’ — S in Sy, Observe that Iy = 8 x sls. Therefore, the sheaf
represented by X’ = &' xsX on B, S has trivial action by X'x sls. Clearly it has des-
cent. Therefore, it defines a sheaf in Sh‘f;'t’?(BxSet). The functor §'— X'+ hy = the
sheaf represented by X', preserves pull-backs and sends coverings to epimorphisms.
This defines the map of sites e. To show that ¢* is fully-faithful, it suffices to show
that e, o ¢* = id. We will establish this as follows.

First consider the functor e™': Sjsp.e; — BxSé’t"A". We observe this is fully faithful as
follows. Suppose 1, g: ' — S” are maps in Sis¢; 50 that e”'(f) = e~ (g): e 1(S) —
¢~!(S8”). This being a map of sheaves in Sh”"(B.Se) € Sh%*(B,S.) satisfies descent
conditions to descend to a unique map S’ — S”. i.e. fand g must be equal to begin
with. This shows the functor e¢~! is faithful. To see it is full, let f: e '(S) =
hy — e (8") = hy denote a map in Sh""(B,Se). By the Yoneda lemma, f is
induced by a map g: X’ — X” which satisfies descent conditions to descend to a
unique map S — S”. This shows e~! is also full.

Now consider I'(U, e.e*(F), for U € Sisoer and F € Sh(Siso.r). €*(F) is the sheafi-
fication of the presheaf ¢*(F) and

(U, e.e"(F)) =T(e '(U),e"(F)) = lim T(W,F).
e lw—e=lom
By the arguments in the above paragraph, the last colimit identifies with
lim T'(W, F)=T(U, F).

U—>w

This shows e, o e?(F) = F for any sheaf F € Sh(Sis.;). Therefore (denoting the
functor sending a presheaf to the associated sheaf by @) and making use of Proposi-
tion 3.25 (below) we obtain

eyoe*(F)=e,0a0e"(F)=aoe,o0e(F)=e,0e"(F)=F.

It follows that ¢* is fully-faithful.

Now we consider (iii). The obvious (inclusion) functor Sh;Z',ff(BxSet) —
Shfj}fv(BxSel) preserves all colimits and finite limits and therefore by [SGAJ4, 1V,
3.13, may be written as /* for a map f of the corresponding topoi. Clearly this func-

tor is (fully)-faithful and, hence, conservative. O

Remark 3.20. In Theorem 3.27 we will prove that the functor ¢* is an equivalence
of categories, in general. Observe that the forgetful functor sending a presheaf of
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Abelian groups, or modules over a ring to the corresponding presheaf of sets
preserves limits. Therefore, it sends sheaves to sheaves and induces an equivalence
between the category of sheaves of, say Abelian groups and the sub-category of
Abelian-group objects of the category of sheaves of sets. This observation shows that
there exists a functor ¢* on the corresponding categories of sheaves of, say Abelian
groups. This will also be fully-faithful on the corresponding categories.

PROPOSITION 3.21. Let f: S — Sy denote a representable map of algebraic stacks
finitely presented over S that is integral, radicial and surjective. Let xo: Xy — Sy
denote an atlas, By,So the corresponding simplicial algebraic space, x;: X| =
Xoxs,S1 — S the induced atlas and By, S\ the corresponding simplicial algebraic
space. Then f™* defines equivalences

Shsets(onSO,et) - thets(Bx]Sl,er)v Sh”A'm(onSO,er) - Shlr.m(Bx]Sl,eI)-

sets sets

Moreover, f* also induces an equivalence:
Shser.r(SO,iso.et) g Shsets(Sl,iso.et)‘

Proof. The induced map Bf,: By, S| — B,,So is integral, radicial and surjective in
each degree. Moreover, so is the induced map BX|xgs,Is, = BXoxs,ls,. One may
verify the latter by observing the Cartesian square where n is the map defined in
Proposition 3.9:

Xxls —2— X xX
S S

! !

X 2, xxX

This proves the first assertion. Now ™ induces a map Shies(So.is0.er) = Shyers(S1.iso.er)-
Since the functors

6*2 thels(s(),iso.et) - Sh”.'m(BxSO,ef)’ 8*2 Shsetx(sl,iso.et) — Shtr.m(BxISI,et)

sets sels

are fully-faithful, it follows from the first assertion that f™: Shy.(So.iso.cr) =
Shiers(S1.iso.cr) 18 also fully-faithful. Therefore, it suffices to show the following: given
S| — &) isovariant and étale in the site S j0.er» there exists an isovariant étale map
86 — Sy so that 8/1 = 36X5051.

For this, observe that f* induces an equivalence of the étale sites

Xoer = X1 and (X0§<X0)ct g (X1§<X1)ct~
0 1
Therefore, one obtains equivalences of categories:
Shsets(XO,er) = Shsets(Xl,et)s Shseté‘((XO‘é( XO)et) = Shsets((Xlg‘(Xl)el)-
0 1

In view of the equivalence of categories in Proposition 3.8, one observes that the
functor
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f* : Shsets(XO,smt) - Shsets(Xl,smt) (3 1 . 1 0)

is also fully faithful.

Let 8§ — &) denote an isovariant étale map in the site Sy j0.r; let X} = X} x5, S).
The equivalence of the étale sites of X, and X; shows that there exists an étale map
X, — Xo so that /*(X;) = X/. Similarly, there exists an étale map Xj — Xy xs, Xo
so that f*(Xj) = X| xg X| = X|. Let ai, by denote the two obvious maps
X! — X}: the map X7 2°% anxh X} x X) is separated and quasi-compact. By (3.1.10), it
follows that there exist two smooth maps ay, by: X; — Xj, so that f*(ag) = a; and
S*(bo) = by. Since the induced maps X| — X, and X| — X|; are radicial and surjec-
tive (band hence universal homeomorphisms), one may see that the induced map

do,
Xj — X|, x Xj is separated and quasi-compact.
do

Therefore, Xj — X, defines an algebraic groupoid. (The groupoid law is defined

by
by requiring that /* applied to the the composition Xj x x, X b — X[ is the composi-
tion X7 x X, X! — X{. Similarly the remaining structure maps of the groupoid are
defined by requiring f* applied to a structure map of the groupoid is the correspond-

ing structure map of the groupoid X :), X, that corresponds to the algebraic stack

S).) Let S, denote the correspondmg algebraic stack. Clearly f*(S;) = S| since
f*(X/O) = X and f*(X7) = X7.

Now we proceed to show that S, — S is isovariant étale and that the induced
map S| — S is integral, radicial and surjective. The last assertion follows by faith-
fully flat descent since the maps X} — X{, and X| — X{ are both integral, radicial
and surjective. One may show the isovariance of S, — Sy as follows. First the iso-
variance of S| — S implies X; xg, Is, acts trivially on the sheaf X where the action
is defined as in Proposition 3.10. The diagrams in (3.1.6) for X = X; and X, (with the
corresponding stack § = §; and Sy) correspond under pull-back by maps that are
integral radicial and surjective: therefore, the action of Xy xs, Is, on Xj is also
trivial. This shows X{ xs, Is, € X, X, Is,. Since the map Sy — So sends Is, to
Is,, clearly X, x g Is € X{ x5, Is,- Therefore Xj x & Sy xs, Is, = X xg, Is;- Since
Xy — Sy is faithfully flat, it follows that Sj xs, Is, = Is,. This proves the map
Sy — So is isovariant. To see it is also étale, observe the commutative diagram:

ay

Xy -— X5 86

e 1]
X0XX0—>XO——>80

So

1

By comparison with the corresponding diagram involving S| and Sj, one may see
that the squares in the above diagram are in fact Cartesian; similarly,
X5 = Xj xs, Xj. The two left vertical maps are étale and therefore, by faithfully flat
descent, the induced map S; — Sy is also étale. O
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THEOREM 3.22. Let i: Sy — S denote a closed immersion of algebraic stacks
finitely presented over the base scheme S. Let o.: Sy — Sy denote an isovariant étale
map in Soisoer- Then there exists an isovariant étale map S — S in Sier S0 that
*(S) =S

Proof. Let x: X — S denote a fixed atlas for S which we will assume is a sepa-
rated and quasi-compact scheme. Let S} =S — Sy and let x;: X; — S; denote the
induced atlases for S;, i =0, 1. Clearly Xj is a closed sub-scheme of X with open
complement X.

Step 1. Next we begin with the following diagram:

Xo
ld’o

X, . X

where X, = S xs X. In this diagram, the map ¢, is étale, while i is a closed immer-
sion. By [EGA]IV, 18.1.1 the following hold: there exists a family {U; — X]i} of étale
maps so that {U; xy Xo — Xj|i} forms an étale cover of X and each of the maps
U; xx Xo = Xo factors through the map ¢,: Xj; — Xy, with the corresponding
map U; xy Xo — X|, a Zariski open immersion. Let X' =uU;and ¥: X' — X be
the obvious induced map. This map is étale and the map X’ x y Xo — X, factors
through an étale surjective map to Xj,.

Observe that X' xy Xo = X' xy X X5 Sp = X’ x s Sg. Therefore, the induced map
of this to Sy factors through a smooth surjective map to Sj. i.e. X' xg 8y is also an
atlas for the stack Sj,.

Let

Ry = X'xSyxX'x S (3.1.11)
s, S
Since the map X’ xs Sy — S, is smooth surjective,
Ro: Ry —> )?’>§50 (3.1.12)

defines an algebraic groupoid. (Observe that the map 0 = (s, 1): Ry — X’ x5 Sox
X' xs 8y is quasi-compact and separated in view of the hypotheses. The separated-
ness follows from the observation that X’ x s Sy is a separated scheme. The groupoid
law is the obvious one.) Therefore, R defines an algebraic stack with X’ x5 8 as an
atlas. By [L-MB] Remarque (4.8) this stack may be identified with the stack Sj,.

Next consider X’ x y X; where X; = X — X,. Now the Cartesian square

/\;/>§X1 [N /\;/

l l

X] > X
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and the observation that the map X’ — X is étale, shows the induced map

X' xxy X1 — X is also étale. Therefore, the image of this map is an open dense sub-
scheme of Xi: callit W.Observeagainthat X’ xy X1 = X' xy X xs S =2 X' x5 S;. Let

R :()?/3551);()2’3;31) (3.1.13)

Now
Ri: R —> )?’>§51 (3.1.14)

defines an algebraic groupoid and therefore an algebraic stack with X' x5S as an
atlas. (Once again the separatedness and quasi-compactness of é = (s, f) follows
from that of X’ x5 S;.) We will denote this algebraic stack by S). Clearly this maps
to 8. In order to show this defines an open sub-stack of S; one may proceed as fol-
lows. First, using the construction of the algebraic stack S}, starting with the alge-
braic groupoid R;, one may observe that the map S} — S is a monomorphism
and hence also representable. (See [L-MB] Proposition (1.4.1.2).) The map from
the groupoid R; to the groupoid (X; xs, X1 — Xj) factors through the sub-group-
oid given by the images of R; in X| xs, X and W; this sub-groupoid also defines the
stack ). Therefore, S| is an open sub-stack of S.

Step 2. Next we consider R = Ry U R;.

We claim that R defines an algebraic groupoid R on X’ and that it is in fact an
open sub-algebraic space of X' xg X'.
We consider the induced map:

st X/ X’ X' X' x 8. 1.1
§ >§50§Z ?S<So—> ésog ?SO (3.1.15)

Observe that the last term above may be identified with X x5 X xg8p =
(A:” X s Sp) X 56()? xs58y). Clearly the latter maps by p=(idx a)xid to
(X" x5 Sp) x5, (X' x5 Sp). One may now readily verify that the composition pos
is the identity. (One may verify this, for example, on the points of the algebraic
spaces we are considering.) Clearly p, being induced by «, is étale. Therefore, it fol-
lows that s (being a section to an étale map) is an open immersion.

Now observe that R, =X xsS1 Xs, X’ xXs S1 %(Xﬂ XSA},) xsS1.  Let
O: RyUR| — (Xﬂ XSX/’) XSSOU(X// XSX/,) Xs S1 2(1{/’ ng//) XSS:X// ng//
be the map induced by s on Ry to (X' xs X') xs S, and by the identity on R; to
(X' xs X') x5 S;. Using the observation that s is an open immersion and that R,
maps by the identity to its image, one may readily see that the map @ is in fact an
open immersion and hence in particular étale. Therefore, the compositions given
by @ and the two projections X’ xs X’ — X’ are also smooth.

Therefore,

RS ¥ xX¥ 5 X
s
defines an algebraic groupoid and an associated algebraic stack. (Once again the
groupoid law is the obvious one.) We denote this stack by &'. The observation that
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R xs Sy =Rpand R xs S = Ry show that S’ x5 Sy = S, and &’ x5 S| = an open
sub-stack of S;.

Finally it suffices to show that the map &' — & is representable and is isovariant.
For the first it suffices to show that if z: Z — S is a map from an algebraic space,
Z xg S’ is an algebraic space. Now Z x5 S8’ xg S — Z xs ' is a closed immersion
while Zxs & xg 8| = Z xs &' is the complimentary open immersion. Both Zx s
S'xg Sy =2Zxs8yand Z xs S xg 8] =2 Z xg S, are algebraic spaces: recall that
Sy — So — Sand S| — S — Sare both representable morphisms. Therefore, it fol-
lows that Z xs &' is also an algebraic space proving the map S’ — S is representable.

Observe also that the maps S; — S; are isovariant: for / = 0 this follows from the
hypothesis that S; — Sy is isovariant while for i = 1 this follows from the observa-
tion that §; — &) is an open immersion. |

Remark 3.23. The above theorem is established for quotient stacks in [T-3]
Lemma 2.14. Even for the action of a trivial group, such a result seems relatively
unknown and seems to hold only in the setting of algebraic spaces and not schemes.
The only result for schemes that holds in general, seems to be the result from [EGA]
IV, 18.1.1 that we used in Step 1 of the proof.

Throughout the next proposition Presh(C) will denote the category of presheaves of
sets on the site C. Sh(C) will denote the corresponding category of sheaves of sets and
a: Presh(C) — Sh(C) will denote the functor sending a presheaf to its associated sheaf.

PROPOSITION 3.24. Let i: Sg — S denote a closed immersion of algebraic stacks.
Let iy: Presh(Sy iso.er) = Presh(Sisoer) be defined by T(V,iyP)=T(V xsSo, P).
iy Preshgs(BxSo.e1) = Preshys(BxSet) will denote the corresponding functor defined
similarly. Let iy: Sh(So.iso.er) = Sh(Sisper), ix: Sh”"(B(Sp.e) = Sh""(B Se) denote
the corresponding functors at the level of sheaves. Now iy induces a functor
Presh”"(B.Sy..;) — Presh”-"(B.S.) and one obtains the equality

sets sets
aoiy=1I.0a. (3.1.16)
Moreover, if
¢*: Sh(Sis0.er) = Sh""(B\S) and ¢*: Sh(So,isoer) = Sh""(B.,So)
are the functors in Corollary 3.19, one also obtains the equality
e oiy=1I,0¢" (3.1.17)

Proof. According to [SGAJ4, 11, Section 3, the sheafification functor « on any site
C is defined by

a(P) = LL(P), P € Presh(C), (3.1.18)
where Presh(C) denotes the category of presheaves of sets on the site C,

(U, L(P)) = lim Hompesn)(R, P) (3.1.19)
ReJ(U)
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and J(U) is the category of covering sieves of U, U e C. If R is generated by
{w;: Ui — Uli},

Hompyesn(o)(R, P) = Equalizer (HF(U,-, P) -5 TIT(U; x Uj, P)).
1 — I,j

Recall that i, is just iy restricted to the category of sheaves. Therefore, it suffices to
show that iy = Lig. For U — S in S5

I'(U, LizP) = lim Hom(R, igP) = lim Hom(R x Sy, P) (3.1.20)
ReX(U) ReJ(U) 8

By Theorem 3.22, J(U) X Sy is cofinal in J(U) x s Sy. Therefore, the above colimit is

equal to the corresponding colimit  lim  Hom(R’, P). One may identify this with

R'e(UxsSo)
I'(U xs So, L(P)) = T'(U, iy L(P)) as requi}é]d. This proves the first assertion for the

functor i, : Sh(So.iso.er) = Sh(Sise.er). The remarks in 3.23 first show that the results
of the last theorem hold on the étale site of algebraic spaces and that functor
iy Preshgs(BxSo.er) = Preshys(BxSet) preserves presheaves with descent and indu-
ces a functor iy: Presh(yy'(B.So ) = Preshiy(B,Se). Now the identity in (3.1.16)
follows for the functor i,: Sh”"(B,So..;) — Sh""(B.Se) by entirely similar argu-
ments as above.

Next we consider the second assertion. Let F denote a sheaf on Sjs,. Or 0N S js0.1-
According to [SGA] 4, 111 (1.3), e*(F) is the sheafification of the presheaf ¢/ F defined
by [(U,e*F)= lim T[(W,F). Here ¢7': Sigper — B:SL™ is the inverse-image

ol
functor associaté/d fo (tul?e map of sites e in Corollary 3.19. The colimit is taken over

the filtered category which is the opposite of the comma category U/e. (Recall the
objects of the category Ufe are w: W — S in Sj,. along with a map
w': U — e~ !(W). Morphisms from (wy: Wy — S, w}) to (wp: Wh — S, wh) are given
by maps ¢: Wi — Wi in Sipe so that wh =w]oe !(¢). (A similar description
applies to the functor e for e™!: Sp is0.er — B\Sg;’;

Next apply the identity in ( 3.1.16) for the map of sites By, S/ — B.Si™. There-
fore, i,0e* =i,0ao0e® =aoiyoe’,ie. i, oe*(F) is the sheaf associated to the pre-
sheaf

(U, iye"F) = LU x So, ¢"F) = lim  T(W', F) (3.1.21)
(UxSo)—>e~(w)
On the other hand, ¢*i,(F) = ae”i,F = ae"iyF) which is the sheaf associated to the
presheaf
LU, é"iyF)= lim T(W,iyF)= lim LW % S0, F)
(U—e1(w) (U—e 1(w)

The colimit is taken over the isovariant étale W — S provided with a map
U — e~ (W). By Theorem 3.22, the filtered category appearing in the last colimit
is cofinal in the filtered system appearing in the colimit in ( 3.1.21). Therefore, the
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colimits in ( 3.1.21) and ( 3.1.22) are isomorphic. This proves the second assertion of
the proposition. O

PROPOSITION 3.25. Let S denote an algebraic stack finitely presented over the base
scheme S. Let e, : Preshy(B<S"™) — Preshye(Siso.er) denote the direct image functor
associated to the map of sites e: ByS"™™ — Sisper. If a denotes the functor sending a
presheaf to the associated sheaf, then there is a natural isomorphism ao e, = e, o a.

Proof. Observe that if L is the functor as defined in ( 3.1.18), then a = Lo L.
Therefore, it suffices to show that e, commutes with the functor L. This will follow,
once we show that given any cover v: ¥V — ¢~ !(U) in Sh""(BSe) for any U € Sip 1,
one may find an isovariant étale u': U — Ujpe so that v=e'(/): V =
e ' (U) = e (U). Let V — e~ !(U) be a given cover. Observe that V is a sheaf of sets
with descent and with trivial action by the inertia on B,U. Observe also that
e~!'(U) — U is an atlas and, therefore,

-1 -1 — —1
e (U)xe(U) « e (V)
—

is a presentation for the algebraic stack U. V' is represented by an algebraic space
which will be denoted by V itself. Since V is sheaf with descent, there is an action
by the above groupoid on ¥V (in the sense of 3.1.5) so that there is an isomorphism
®: s*(V) — t*(V) satisfying cocycle conditions. Therefore one obtains an algebraic
groupoid s*(¥) = V which defines an algebraic stack «': U — U. (The quasi-
compactness of the map 6 = (s, #): s*(V) — V x V follows from hypothesis on S.
Observe that we may assume the atlas X is quasi-compact. The separatedness of §
may be deduced from that of (s, 7): e ' (U)xye ' (U) = e (U) x e 1(U).) The
map ' will be étale by descent theory and the hypothesis that } has trivial action
by the inertia implies #’ is isovariant. (Observe that V" has trivial action by the inertia
implies Iy xy V = Iy x ¢ V.) One may now show that v = e~!(«/) as in the proof of
Corollary 3.19. O

THEOREM 3.26. Let i: Sy — S denote a closed immersion of algebraic stacks
finitely presented over the given base scheme S with open complement j: S| — S. Now j
induces an open immersion of the topoi with complementary closed immersion i (in the
sense of [SGA] 4, 1V, (9.3.5)):

Sh(S. i) —> Sh(Siso.er) 2= Sh(S1 is0.er) (3.1.23)

Proof. By [SGA] 4,1V, (9.3.5), the assertions are equivalent to proving that i, and
J« are fully-faithful and that the image of i, is the subcategory of objects that j* sends
to ¢. Recall that we already established the corresponding assertions for the étale
topos of B.S and for the corresponding full subcategory of sheaves with trivial
action by the inertia — see (3.1.8) and (3.1.9). We will now use this to deduce that
(3.1.23) also holds. As j: S| — S is a mono-morphism in the site Sjy, ., it is clear that
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Jx: Sh(S1iso.er) = Sh(Sisoer) 1s an open immersion of topoi and therefore is fully-
faithful. (See [SGAJ4, 1V, 9.2 and VIII, 6.2.)

Showing that i, is fully-faithful is equivalent to showing the adjunction map
i* o i, — id is an isomorphism in Sh(Sy ). As €*: Sh(Sg.iso.er) = Sh”™(B.,So.er)
is faithful, it suffices to show that e*i*i, > ¢* is an isomorphism in
Sh”“"”(BxﬂSo‘e[). By the proposition 3.24, ¢*i*i, = i*e*i, = i*i,e*. Therefore, it suffi-
ces to show that i* o i, — idis an isomorphism as functors on Sh”'i"(BXOSO_e,), which
is true by (3.1.9). Finally, it remains to show that if F € Sh(S;.;) and j*F = ¢, then
the natural map F — i, i*F is an isomorphism. However, if j*(F) = ¢,
jr*e*(F) = €*j*(F) = ¢ and therefore e*(F) — i,i*e*(F) is an isomorphism in
Sh"™™(B.S¢). Since e* is faithful, the map F— i i*(F) is an isomorphism as
required. O

THEOREM 3.27. Let S denote a finitely presented algebraic stack over the base
scheme S with x: X — S an atlas. Then the map

e*: Sh(Siso.er) = Sh""(B,Ser) (3.1.24)
is an equivalence of topoi. There is a finite filtration of S
S8 C---CS5, =8 (3.1.25)

by locally closed algebraic substacks so that each (S; — Si—1),.q IS a gerbe over its
coarse moduli-space IMN; (which exists as an algebraic space) and Sh((S; — Si—1)isp.e1)
is equivalent to the topos of sheaves on W; .,. The isovariant étale site has a conservative
family of points and the points correspond to the geometric points of the coarse-moduli
space of M; for all i.

Proof. First observe that a filtration as in ( 3.1.25) with each §; — S;_| a gerbe
over its coarse moduli space exists for any reduced algebraic stack. Therefore, the
second statement follows immediately from Theorem 3.13. Moreover, the same
theorem shows that the functor ¢* induces an equivalence Shyes((Si — Si—1)is0.0r) —
Sh""'”(Bx,.(Si — 8Si_1)e) Where x; is the induced atlas for S; — S;_;. By the previous

sets

theorem (and by Proposition 3.17), Shyes(Siso.cr) (Shi’;ff(BxSet)) is obtained by gluing
the topoi Shys((Si — Si—1)is0.01) (Sh;’e",’f(Bxi(Si — Si—1)e) Tespectively). This proves the
first statement.

As shown in Theorem 3.13, the isovariant étale site of S; — S;_; is equivalent to the
étale site of its coarse-moduli space ;. Since the topos Shy,;s(Sise.e;) is Obtained by
gluing the topoi Shgs((S; — Si—1);50.00)- 1t follows that the geometric points of the
coarse moduli-space of all the S;—S;_;, all i, form a conservative family of

points. L]
Remark 3.28. In view of Remark 3.20, the results of both the above theorems

extend to sheaves with values in other categories, like Abelian sheaves, sheaves of
modules over a ring etc.
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4. Hypercohomology on the Isovariant Etale Site

In this section we define and establish several properties for the hyper-cohomology
computed on the isovariant site with respect to a presheaf of spectra. In view of
Theorem 3.27, we may use the Godement resolutions to define this: in fact the gene-
ral framework of presheaves on a site with values in a complete pointed simplicial
category adopted in [J-2] and [J-3] is perfectly suitable for us. We begin by adding
a few more basic hypotheses.

4.1. FURTHER HYPOTHESES

Let J denote a set of primes in Z. Assume that the base scheme S is of finite Krull
dimension and that there is a uniform bound on the étale cohomological dimension
of the residue fields k(s) for all points s in S with respect to all /-torsion sheaves and
all / € J. (Observe that this hypothesis holds if S is of finite type over an algebraically
closed field or over Z[,/=1] or if 2 does not belong to J and S'is of finite type over Z.)
Assume also that / is invertible in Oy, for any X which is a finitely presented object
over the base scheme S that we consider.

4.2. CONVENTIONS

Let C denote a site which is closed under all finite inverse limits, let C denote a set, let
(sets) denote the category of all small sets and let (sers)¢ denote the product of the
category (sets) indexed by C. Assume that we are given a conservative family of
points of C indexed by C: recall this means we are given a morphism 7: (sets)¢ — C
of sites so that a sequence of sheaves F' — F — F” (with values in any Abelian cate-
gory) is short-exact if and only if 0 — 7*(F') - n*(F) — n*(F") — 0 is exact. For
the most part S will denote the category of fibrant spectra, though any of the other
categories appearing in [J-2] may also be used. Now Presh(C, S) will denote the cate-
gory of all presheaves on the site C taking values in S. If S denotes the category of
fibrant spectra and P € Presh(C, S), n,(P) ~ will denote the sheaf associated to the
Abelian presheaf on C: U — n,(I'(U, P)) where =, is the nth (stable) homotopy
group. A map of presheaves f: P — P’ in Presh(C, S) will be called a quasi-isomorph-
ism if it induces an isomorphism on 7,(f) " (Throughout we will denote quasi-iso-
morphisms by >~ while isomorphisms will be denoted by =2.)

4.2.1. Cohomology Truncation

In all cases, 1<, P will denote an object in Presh(C, S) defined by n(I'(U, 7 <, P)) =
m;(C(U, P)) if i < n and = 0 otherwise, for any U in the site C. In the case of fibrant
spectra, the above truncation functors are defined by the canonical Postnikov trun-
cation functors. (See [T-5] Lemma (5.51), for example). One may observe that
{T'(U, © < ,P)|n} is an inverse system of fibrations for each U in this case. Moreover,
the natural map P — limyo«, T <, P is an isomorphism of presheaves.
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4.2.2. Homotopy Inverse Limits

Observe that there exists a bi-functor:
®: (pointed simplicial sets) x Presh(C, S) — Presh(C, S)

(The functor ® is defined in [J-2] Section 6 as a colimit and therefore commutes with
colimits in either argument.) Let L(Const): Presh(C,S) — Presh(C, S)* denote the
functor sending an object M € S to the cosimplicial object n— A[n], ® M.

The above functor has a right adjoint which is called the homotopy inverse limit
along A and denoted holim. This will be defined as an end and therefore will com-
mute with inverse limits. (See [J-2], Section 6, for details on the homotopy inverse
limit.)

In the above situation, a map f: X* — Y* between two cosimplicial objects in
Presh(C, S) will be called a quasi-isomorphism if for each n, the map f": X" — Y"
is a quasi-isomorphism. In the above situations, the functor holim preserves quasi-
isomorphisms (and therefore defines a functor at the level of the associated derived
categories). (See [J-2] (6.3.4) for a discussion of these.)

4.2.3. The Canonical Resolutions of Godement

We will assume the situation of 4.2. Let C denote a site as there. Assume that we are
given a conservative family of points of C indexed by C as above. (For each point p of
Cis associated a point of the site C indexed by p itself.) Let a denote the functor send-
ing a presheaf on (sets)C to its associated sheaf and let U denote the forgetful functor
sending a sheaf on the site C to its underlying presheaf. Now the functors U o 7, and
aom* define a triple; let G=Uom,oaon* =m,0Uoaom*. Observe that
G=1TIp,oUocaop* where, for each point p of C is the associated map of sites
p: (sé)tesc) — C. Let P € Presh(C; S). .

The above triple defines an augmented cosimplicial object G*P: Pd—> GP...G"'p
in Presh(C; S). We define

GP = holim(G"Pln), i.c. (U, GP) = holim(I(U, G"P)|n)
for any U in the site C.
Let C, C' denote two sites and let ¢, : Presh(C’; S) — Presh(C; S) denote a left-

exact functor. We define the right-derived functor R, : Presh(C’; S) — Presh(C; S)
by

R (P) = hoiim{cf)(G"P)ln}. (4.2.4)
This is the presheaf defined by

U — [(U. R$,(P)) = holim{I'(U. ,(G"P))In}.
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The spectral sequence of [J-2], (6.3.6) provides a spectral sequence
EY' = R¢ (n7'(P) = R (P). (4.2.5)

We also define the global section functor for presheaves. For this purpose let pt
denote the site with one object, pt, and one morphism which is the identity map
of pt. (This category is made into a site in the obvious trivial manner.) Now one
may identify presheaves on pt with values in a category S with the category S itself.
If C is a site with a terminal object X, we define a map of sites n: C — pt by sending pt
to X. We let I'(C, P) = I'(X, P) = n,(P) for any P € Presh(C, S) and

where the right-hand side is defined as in ( 4.2.4). This defines the hyper-cohomology
on the isovariant étale site with respect to any presheaf of spectra P. This will be
denoted Hj, (X, P).

PROPOSITION 4.1. Assume in addition to the above situation that there exists a
Sfunctor ¢* left adjoint to ¢,. Then the obvious map Rp,(P) — lim R, (t <, P) is a
quasi-isomorphism for any P € Presh(C’, S). =

Proof. See [J-2] (3.4.1) for a proof. O

COROLLARY 4.2. Assume that both the sites above are closed under finite inverse
limits.

(1) Next assume the following in addition to the hypothesis of (4.2.4). Let C be a full
sub-category of C', let ¢ : C' — C be the map of sites associated to a _fully-faithful
functor ¢: C — C and let ¢, be the direct image functor of presheaves associated
to ¢. Assume that every C-covering of any object U in C is a C'-covering and that
every C'-covering of such an object is dominated by a C-covering. If
P € Presh(C, S), the natural map ¢,(P) - R, (P) is a quasi-isomorphism.

(1) Assume the following in addition to the hypotheses of (4.2.4). There exists a map
of sites ¢ : C' — C so that ¢ is the inverse image functor of presheaves associated
to ¢. If P € Presh(C, S), the obvious map P — R¢, ¢ *(P) is a quasi-isomorphism
if the corresponding map F — R, ¢ *(F) is a quasi-isomorphism for any Abelian
sheaf F on the site C.

Proof. We consider (i) first. The hypotheses readily imply that the functor ¢, on
Abelian sheaves is exact. (See [Mi] p. 111.) It follows also that the spectral sequence
in (4.2.5) degenerates identifying m (R, (P)) with ¢, (mx(P)). Since the sites are all
closed under finite inverse limits, the direct limits involved in the definition of the
stalks are all filtered direct limits and commute with taking 7. The hypotheses imply
that the stalks of n;(¢p,(P)) and ¢, mx(P) are both isomorphic to the stalks of the
presheaf 7.(P). It follows that the natural map mi(¢,(P)) — ¢, (mx(P)) is an iso-
morphism. This proves (i).
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First we show that (ii) holds when P is replaced by 7, P for any fixed integer n.
Recall ¢p* is exact in the sense it commutes with finite direct and inverse limits. (This
follows from the hypothesis that the sites are closed under finite inverse limits.) It
follows that the spectral sequence in [J -1](6.3.6) for R¢, o ¢*(P) now reduces to
the spectral sequence in ( 4.2.5) for R¢, applied to ¢ *(P). The hypothesis on P
ensures that this spectral sequence converges strongly. Therefore, we reduce to show-
ing that the map n,(P) ~— R¢,¢*(m,(P) ~) is a quasi-isomorphism for all ¢. This
proves (ii) holds when P is replaced by any 7, P.

Now P = limy,, T < »P. Applying Proposition 4.1 to P replaced by ¢ *(P), it suf-
fices to show that ¢ *(t<,P) >~ t<,(¢p*(P)) as presheaves. Since the functor 7, is
characterized by nx(t<,P) = np(P) if kK <n and =2 0 otherwise, it suffices to show
(P *(P)) = ¢ *(ni(P)) as Abelian presheaves. Since ¢ * is assumed to be the inverse
image functor associated to a map of sites it is defined by a filtered direct limit which
commutes with taking 7. [

PROPOSITION 4.3. Let S denote an algebraic stack finitely presented over the base
scheme S. Under the above hypotheses, there is a uniform bound M >> 0 so that for
every 8 — S in the site Sisper, HY, (S, F) =0 for all n > M and all sheaves F of
Zp-modules on Sisye. (Here Z ) denotes the localization of Z by inverting all primes
not in J.)

Proof. The proof is by Noetherian induction. We will assume inductively that
the proposition is true for every proper closed immersion Sy — S of algebraic
stacks. By Theorem 3.27, we may assume without loss of generality that S is
reduced and that there exists such a closed immersion so that if S; denotes the
complement of Sy, Sy is a gerbe over its coarse moduli space P¢;. Now ¢ is an
algebraic space finitely presented over the base scheme S and therefore, there exists
a uniform bound on the étale cohomological dimension of M| — M, in the étale
site of ;. By the equivalence of topoi as in Theorem 3.13, the conclusion of the
proposition now holds for S§;. Let M| denote the uniform bound on the coho-
mological dimension here and let M, denote the uniform bound on the cohomo-
logical dimension on Sy. Now M = M| + M, + 1 will be a uniform cohomological
bound on Sj,.;. This argument follows exactly as in [T-3] pp. 607-608 and is
therefore skipped. O

PROPOSITION 4.4. Let S denote an algebraic stack that is Noetherian. Then the
isovariant étale site of S as well as the corresponding topos is algebraic and coherent in
the sense of [SGA] 4, VI, 2.3. Therefore, if {P,|o} is a filtered direct limit of Abelian
presheaves,

colim Hisp 0/(S, Py) =~ Hiso.0r(S, colim Py).

The same conclusion holds if {P,|a} is a filtered direct system of presheaves taking
values in S so that n,(Py,) ~are all sheaves of modules over Z ;).
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Proof. The site S, consists of Noetherian algebraic stacks and is closed
under fibered products. Moreover, every isovariant étale cover for an object in
Sisoer has a finite subcover. Therefore, every object U in this site is both quasi-
compact and quasi-separated both in the site and also when viewed as an ecle-
ment of the topos Shy(Sisoer). (See [SGA] 4, VI, 2.1.1, 1.1 and 1.2.) By [SGA]
4, 2.3, 2.4.1, the site S and the topos Shy(Sisoe:) are both algebraic and
coherent. This proves the first assertion. Now the second assertion holds when
{P,|o} is a filtered direct system of Abelian sheaves by [SGA] 4, 8.7.3, 3.1 and
VII, 5.7.

Observe that the spectral sequence ( 4.2.5) with ¢ = Hj:(S, ) converges
strongly for every presheaf P with values in S so that n,(P) is a sheaf of mod-
ules over Z;. Therefore, the hyper-cohomology also commutes with filtered
colimits of presheaves taking values in S satisfying the hypotheses of the propo-
sition. O

f, .
PROPOSITION 4.5. Let {S, <—ﬁ8/;|oc, p €1} denote a filtered direct system of
Noetherian algebraic stacks where each map f, g is representable and affine.

(1) Then the inverse limit im S, = S exists as an algebraic stack. There exists a com-
patible system ofprqjegtions {py: S — Sylal.

(ii) For each o, let P, denote a presheaf on Sy isp.; with values in S so that m,(P,) ~are
sheaves of modules over Z . Assume further that for each B > «, there is given a
map f 7 ,(Py) — Py so that the collection of such maps are compatible (in the
obvious sense). Let P = the direct limit of the filtered direct system {p}(P,)|o:}
of presheaves on Sisp . Now the canonical map

. Py)

colim Hiyy (S, Py) — Higo.er(S. colim p;
is a quasi-isomorphism.

Proof. We will first show that S exists. Pick an oy ¢/ and consider the cofinal
system of fel so that S+ 0. Let x,, : X,, > Sy, denote an atlas and let

Sag
—
Xy X Xy Xa
Sp —
1,

4.2.7)

denote the corresponding algebraic groupoid. Since each f,, g: Sp — Sy, is represen-
table, one may take pull-backs by this map of the algebraic groupoid in (4.2.7) to
obtain the algebraic groupoid
Sp
— > o (4.2.8)
XX Xp — Xg. Pz

The induced maps of the corresponding algebraic groupoids are affine and therefore,
one may take the inverse limit to define an algebraic groupoid
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limsg
B

Xy = lim(Xpx Xg) =2 Xo = limX; (4.2.9)
B

lims,
B

Since s = limgsg and ¢ =limg ¢z the diagonal map 6 = (s, 1) = limg(sg, tg) : X1 —
Xox Xy is also quasi-compact and separated. Therefore, by [L-MB] Corollaire (4.7),
the above groupoid defines an algebraic stack S. Clearly the projections p,: S — S,
exist. These prove the first assertion. The second assertion for the case of Abelian
sheaves follows readily from [SGA] IV, Exposé VI, 8.7.4. The general case follows
as in the proof of Proposition 4.4. O

We end this section by briefly considering Cech hyper-cohomology on the isovari-
ant site.

DEFINITION 4.6. Weakly cofinal system of coverings. Let S denote an algebraic
stack. A system, {S,|o}, of isovariant étale coverings of S is weakly cofinal in the
system of all isovariant étale coverings of S, if each isovariant étale covering has a
refinement in the given system.

PROPOSITION 4.7. Let S denote an algebraic stack as before and let P denote a
presheaf on Sis, o with values in S so that n,(P) "is a sheaf of modules over Z ;. Let

I]:I][w,e,(S, P) = hoiim limI'(cosko(u), P), (4.2.10)

where the colimit is over a weakly cofinal system of isovariant étale coverings u: U — S
of S. Now there exists quasi-isomorphisms

Hisoet(Ss P) =~ Higo.or(S, Hisoer(» P)). (4.2.11)

Let (alg.stacks/S);,, ., denote the big isovariant étale site of algebraic stacks over S, i.e.
objects are algebraic stacks over S, morphisms are morphisms over S and coverings are
isovariant étale coverings. Let P denote a presheaf on (alg.stacks/S);s, ., which has the
localization property: i.e. for each closed immersion Sy — S of algebraic stacks with
open complement S, — S, one obtains a fibration sequence of presheaves
I'(So, P) — I'(S, P) —> I'(Sy, P) in the sense of Definition 5.6. In this case, one also
obtains the quasi-isomorphism: I]:I],-w‘et(S, Hioer( , P)) = l]:ﬂ,-so'e,(S, P).

Proof. In view of the hypotheses, there is a uniform cohomological bound which
shows that the hypotheses of [T-5] Theorem 1.46 are met. This proves the first quasi-
isomorphism. Again, by the hypotheses, one has a uniform cohomological bound,
which enables one to prove the last quasi-isomorphisms as in [T-5] Proposition 1.54.
(Using the observation that I]:I]im_gt( ,—) and M, ( ,—) preserve fibration
sequences, one may in fact use devissage as in Theorem 3.27 to reduce to the case
where the isovariant étale site is replaced by the étale site of the coarse moduli space.
At this point one may invoke [T-5] Proposition 1.54 to finish the proof.) O
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5. Isovariant Etale and Etale Cohomological Descent
5.1. ADDITIONAL HYPOTHESES

In this section we need to put additional hypotheses as in [T-3] (3.1) on the base
scheme S, in addition to the ones in (4.1). We will assume the following: There is
a Tate-Tsen filtration on the separable closure of the residue fields k(s) at all points
of S as in [T-5] 2.112. This hypothesis is satisfied if k(s) is of finite transcendence
degree over Q, Q,, F,, F,(()) or over a separably closed field k.

DEFINITION 5.1. Let S denote an algebraic stack and let G denote an affine
smooth group-scheme both defined over a a Noetherian base ring S. A representable
morphism u: G x § — S defines an action of G on S if it satisfies the following
conditions:

(lax associativity and lax unit): viewing G x G x S, G x § and § as lax-functors
(schemes/S)” — (groupoids) the obvious associativity and unit axiom for group-
actions hold in the 2-category of lax-functors.

Remarks 5.2. (1) Recall a lax-functor F: (schemes/S)” — (groupoids) is a not a
functor, but the following data: for each X e (schemes/S), one is given a groupoid
F(X) and for each morphism f: ¥ — X of schemes over S, one is given a morphism
F(f): (X)) — F(Y) so that if g: Z — Y is another morphism of schemes, one is
given a natural isomorphism g : F(g)oF(f)iF(g of) so that the natural iso-
morphisms satisfy an obvious associativity and unital condition. (See [Hak], Cha-
pitre I, for details: Lax-functors are called 2-functors there.) An algebraic stack may
be viewed, therefore, as a lax-functor in the above sense satisfying certain other
conditions.

(2) In general, there may not exist an atlas for the stack onto which the group-
scheme action extends. This is similar to the situation where an algebraic group acts
on a scheme, and in general, there may not be an affine cover of the scheme, which is
stable by the group action. Assume that G is a torus or a diagonalizable group
scheme acting on a stack S that is normal. By [Sum] and [J-2], we see that any atlas
onto which the action extends may be refined to an atlas that is affine.

(3) Suppose in addition to the hypothesis in Definition 5.1, that a coarse moduli
space I exists (as an algebraic space) for the stack S. Then G x I is a coarse-
moduli space for the stack G x S. The universal property of the coarse-moduli space
for maps from algebraic stacks to algebraic spaces shows that the composition
G x S5S— M factors through G x I, where u denotes the group-action. It
follows that one obtains an induced action of G on the coarse-moduli space J.

(4) A particularly simple example of a group action on an algebraic stack is the
following. Assume that the stack S in Definition 5.1 is in fact the quotient stack
[X/H] associated to the action of a group-scheme H on the algebraic space X. We
will, assume in this situation, that X itself is the atlas of [X/H] onto which the
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G-action lifts and that the actions of G and H on X commute. Therefore, we obtain
an action of the group-scheme G x H on X.

DEFINITION 5.3. Let G denote an affine smooth group scheme acting on the
algebraic stack S. We say the action is trivial if there is a splitting to the top-row in
the diagram (i.e. there is a l-morphism s: G x § — P so that there is given a
2-isomorphism ¢ o s = idgxs):

P _ ¢, GxS
l l(um) (5.1.1)
S 4, 8§xS8

(Equivalently the two morphisms u, pr;: G xS — S may be identified in the
2-category of lax-functors (schemes/S)”” — (groupoids) and lax-natural transforma-
tions between them.)

DEFINITION 5.4. Let S denote an algebraic stack and let Sy,,;; denote the smooth site
of S. A sheaf F of Os-modules on Sy, is a coherent sheaf (a vector bundle) if for any
atlas x: X — S, x*(F) is a coherent sheaf (a vector bundle, respectively) on Xj;,,. One
may see that the category of coherent sheaves (vector bundles) is Abelian (exact) and
also symmetric monoidal under the direct sum operation. The former (latter) category
will be denoted Coh(S) (Vect(S), respectively). We let G(S) (K(S)) denote the algebraic
K-theory spectrum of the category of coherent sheaves (vector bundles, respectively).
One may also consider the corresponding presheaves of fibrant spectra on the site
Siso.er: these are denoted G and K, respectively. In addition, we may need to consider the
situation where a smooth group scheme G acts on an algebraic stack S as in Definition
5.1. Making use of Proposition (7.1) in the appendix, one may observe that G-equiv-
ariant coherent sheaves (vector bundles) on the stack S correspond to coherent sheaves
(vector bundles, respectively) on the quotient stack [S/G]. i.e. If we let Coh(S, G)
(Vect(S, G)) denote the category of coherent sheaves (vector bundles, respectively) on
the stack S that are equivariant with respect to the action of G, then there is an
equivalence of categories Coh(S, G) >~ Coh([S/G]) and Vect(S, G) >~ Vect([S/G)).
(Recall a coherent sheaf F on S is G-equivariant, if there exists an isomorphism
¢: pr5(F) — u*(F) satisfying the usual conditions. Here pry (1): G x S — S is the
projection to the second factor (group action, respectively). Now these conditions
correspond to the descent data for a coherent sheaf (vector bundle) on the stack S to
descend to the stack [S/G].) Therefore, making use of Proposition (7.1), one may
incorporate the equivariant theory into the following discussion.

Remark 5.5. 1t is often advantageous to replace the presheaf K by the presheaf of
K-theory spectra corresponding to perfect complexes on a stack. Then it is shown in
[J-3] that, if the stack S is smooth, one obtains a weak-equivalence K(S) >~ G(S)
where G(S) is the same G-theory considered above.
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DEFINITION 5.6. Let C denote a site. One may define fibration sequences of
presheaves of spectra on C in the following manner. First one has the notion of a
Path object associated to any presheaf P. One defines this as Map(A[l],, P) along
with the obvious maps d'= Map(d;, P): Map(A[l],, P) — Map(A[0],, P) = P,
i =0, 1. We will denote this object as Path(P). Observe that since I'(U, P) is a fibrant
spectrum, the maps I'(U, d') are fibrations for each U in the site C; if f/: P — Pis a
map of presheaves, one defines Path(f) = xp,,, Path(P) and Q(f) = the kernel of
the map Path(f) — P induced by the map d'. We call Q(f) the canonical homotopy
fibre of f. A diagram Q — P—P” of presheaves of spectra is called a fibration
sequence of presheaves if there exists a map Q — Q(f) which is a quasi-isomorphism
and fitting in a commutative diagram

0 — P —/> P’

l idl idl

of) — P Lop

PROPOSITION 5.7. (i) Let i: Sy — S denote a closed immersion of algebraic stacks
finitely presented over the base scheme S with open complement j: S| — S. Denoting
by iy (ju) the direct image functor for presheaves, one obtains a fibration sequence

Gs,( ) = Gs( ) = juGs, (), (5.1.2)

where Gs,( ) (Gs( )) denotes the presheaf of spectra defined by G( ) on Siso.er
(Siso.et, respectively).

(ii) Assume the following in addition to the hypotheses of (i): S denotes an algebraic
stack provided with the action of a smooth group scheme G and that p: S — X is a
G-equivariant map to an algebraic space X provided with an action of G. Let
it Xo—> X (j: X1 = X— Xy — X) denote the G-equivariant closed immersion of a
closed sub-algebraic space (the G-equivariant open immersion of its complement,
respectively). Let S; = X; xx S and p;: S§; — X, denote the induced maps. Then one
obtains the fibration sequence on ([X/G])

iso.et

isposGisy/a)( ) = puGisjai( ) = Jap14Gisy e ), (5.1.3)

where Gis, () (Gisygi( ) denotes the presheaf of spectra defined by G( ) on
[Si/Glisp.et (US/GCDiso.e1» Tespectively) and py, pw are the obvious direct image functors
of presheaves.

Proof. (i) Let &' — S denote an object in the site Sjz0r. Now S’ x5Sy — S’ is a
closed immersion with open complement 8/>S<81 — &'. The commutative diagram

F(S/v i#GS()( )) _— F(S/’ GS( )) —_— > F(S/9J#G51( ))

G(S%S) —— G(S) — G5
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shows it suffices to prove the bottom row is a fibration sequence of spectra. By
invoking Quillen’s localization theorem for Abelian categories, it suffices to show
that the restriction map induces a weak-equivalence of K-theory spectra:
K(Coh(8")/Coh(S;)) = K(Coh(S))), where S; =8’ xsSp and S} =8 xs8; . Let
J be the sheaf of ideals defining Sy in S. In order to apply Quillen’s localization the-
orem one needs to show that every coherent sheaf F on the stack S§; admits an exten-
sion to a coherent sheaf on the stack S: this follows from [L-MB] Proposition (8.5).
This completes the proof of (i). An entirely similar argument applies to complete the
proof of (ii). The only additional observation needed is that the map p (p;) induces a
map of sites [S/Gliy.e; = [X/Gliso.er ([Si/Gliso.er = [Xi/ Gliso.er» TeSPECtively). This is
clear by Lemma 3.2 (ii). ]

PROPOSITION 5.8. Leti: So — S denote a closed immersion of algebraic stacks and
let P denote a presheaf of fibrant spectra on S, jso.oi- Denoting by iy the direct image
functor for presheaves, one obtains a weak-equivalence of spectra Hisp.oi(So, P) >
Hiso.er(S, iy P) that is natural in P.

Proof. In view of Proposition 4.1, it suffices to prove this proposition with P
replaced by 7, P for some n. In this case the spectral sequence in (4.2.5) applied to
Hiso.er(S, ) and Hysp.o(S, ) o iy reduces the problem to showing an isomorphism at
the E>-terms of the corresponding spectral sequences. i.e. we obtain an isomorphism

H, ,(So. aH"(P) > H!, (S, aH"(iy P)). (5.1.4)

Observe that H"(ixP) = ix(H™(P)) and by Proposition 3.24, a o iy = i, o a so that the
right-hand side identifies with H7, (S, i.aH™(P)). Observe from Theorem (3.26)
that i, is a closed immersion of topoi and therefore, by [SGA] 4, IV, Section 14, is
an exact functor, i.e. one may identify i, with Ri,. Therefore, the isomorphism in
(5.1.4) follows. O

5.1.5. Localization of K-Theory Spectra and Other Variants

Let S denote an algebraic stack as before and let G( ) denote the presheaf of
G-theory spectra on Sj,¢;- Denoting by K = topological K-homology, one obtains
the presheaf of spectra Gg( ) which is a localization of G( ) by K in the sense
of Bousfield. (See [Bous].) Given a set of primes J in Z as before, one may now loca-
lize the above presheaf by inverting all primes that are not in J. The resulting pre-
sheaf of spectra will be denoted Gg( )® Z;. One may also smash G( ) with
the Moore spectrum M(/"), v > 0 to obtain the presheaf G//'( ). Finally, one
may also invert the Bott element f5 to obtain the presheaf G/I"[f~']( ). (See [T-5],
Chapter 5 for more details.) In addition, one may consider the localization of
G( ) at Q in the sense of [B-K] or [T-5]: this will be denoted G( ) ® Q.

PROPOf_SITION 5.9. All of the above presheaves are continuous in the following sense.
Let {Sakﬁ Sglo, B € I} denote a filtered direct system of Noetherian algebraic stacks
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where each map f,p is representable and affine. Let S =1im,S,. Now coliml’,
(Sy, P) = I(S, P) if P denotes any of the above presheaves.

Proof. The existence of the inverse limit stack is shown in Proposition 4.5.
Observe that a coherent sheaf F on an algebraic stack S is given by a coherent sheaf
Fy on an atlas x: X — S along with descent data. In the above situation, if
x,: X, — S, are atlases, a coherent sheaf F on X = lim X, along with descent data
correspond to a compatible collection of coherent ‘sheaves {F, on X, along with
descent datala}. It follows that the presheaf G is continuous. One may prove simi-
larly that the presheaf K is also continuous. Since localizations of spectra as well as
smashing with a fixed spectrum commute with filtered colimits the remaining pre-
sheaves in (5.1.5) are also continuous. O

THEOREM 5.10. (i) Let S denote an algebraic stack finitely presented over the base
scheme S. Then the presheaves of spectra Gg( ) ® Zy), G/l"[/)’*l]( ) as well as
G( ) ® Q have cohomological descent on the isovariant étale site of S. i.e. the obvious
augmentations

GK(S) ® Zijy = Higou(S, Gx( ) @ Z(y),

GS)/I' B Hiswe( S, G/I'[B7'IC )
and

G(S) ® @ —:> Hiso.et(ss G( ’ G) ® @)

are weak equivalences.

(ii) Assume in addition to the hypotheses in (i) that the stack S is provided with the
action by a smooth group scheme G. Let p : S — X denote a G-equivariant map
to an algebraic space provided with a G-action. Then the augmentations

G([S/G]) ® Z(jy > Higo.o [X/GL, pyGr( ) ® Z(y),
G(IS/GV/I'IB 1= Hiso o [X/GL, pG/I'TB'IC )
and
G([S/G) ® Q= Hipp o ([X/G). pyG( ) ® Q)
are weak equivalences.

Proof. (1) Since the proofs of the last two quasi-isomorphisms are entirely similar
to the first, we will explicitly consider only the first. Since hyper-cohomology on any
site sends fibration sequences of presheaves (of spectra) to fibration sequences of
spectra, and in view (5.1.2), it should be clear that both sides define localization

sequences, i.e. if Sy — S is a closed immersion with open complement S; — S, one
obtains a commutative diagram whose rows are fibration sequences:

G(SO)K®Z(J) —_— G(S)K®Z(J) —_— G(S, )K®Z(J)

|

Hi‘vo.er(SOs GK( s G)®Z(J)) —_— [H]l‘S().L’[(Sa GK( ’ G)®Z(J)) E— Hi‘?a.et(sl ) GK( ’ G)®Z(J))

https://doi.org/10.1023/A:1022849624526 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022849624526

154 ROY JOSHUA

Therefore, (see Theorem 3.27) it suffices to consider the situation when the stack S
is a gerbe over its coarse moduli space J)¢. In this case, the equivalence of sites as in
Theorem 3.13, shows that one may identify His.e(S, Gx( ) ® Z(;)) with He (D¢, py
(Gk( ) ®Zy)). Here pu(Gk( ) ® Z(y) is the presheaf on Wi defined by

LU, py(Gi( ) ®Zy) =T(U X S), Gx( ) ®Zy) = Gx(U x S) @ L.

Therefore, T'(M, pu(Gk( ) ® Z(y)) =T(S, Gk( ) ® Z(y). i.e. It suffices to show
that we have cohomological descent on the étale site of the algebraic space ¢ for
the presheaf of spectra p4(Gk( ) ® Z(y). The continuity property and the localiza-
tion sequence (5.1.2) reduce to establishing cohomological descent for the case I is
replaced by an Artin local ring—see [T-5], Section 2. Moreover, observe that the map
G(Sy) — G(S) induces a weak equivalence for any closed immersion Sy — S of alge-
braic stacks defined by a nilpotent ideal. As in [T-5] Lemma (2.10), this shows it suf-
fices to establish cohomological descent for the presheaf pu(Gk( ) ® Z;) on the
étale site of fields.

At this point, one needs to show that the presheaf of spectra pu(Gg( ) ® Z(;) has
hyper-transfer in the sense of Thomason, [T-5] (2.25). (Given such a hypertransfer,
Lemma (3.10) of [T-3] applies to complete the proof.) For this we will use the follow-
ing arguments as outlined in [T-5] Example (2.30). First we begin with the definition of
the hyper-transfer as in [T-5], Section (2.21). Let G denote a discrete group acting on a
spectrum F. We consider G as a category with one object and whose morphisms are
the elements of G. Now F may be viewed as a functor from this category to the cate-
gory of spectra. One defines the hyper-homology of G with respect to F to be given by

H.(G, F) = hocglim F. (5.1.6)

This functor preserves weak-homotopy equivalences and homotopy (co-)fibre
sequences in F and moreover the homotopy colimit is characterized by a universal
mapping property as shown in [T-5] (5.15). The group hyper-homology considered
above has several properties of which the most important is the following:

Induction weak-equivalence (see [T-5] Lemma (2.22).). Let G denote a group with
sub-group H and let F denote a spectrum on which H acts. Let LG,y F denote the
wedge (= the co-product in the category of spectra) indexed by G/H. Now the inclu-
sion of H — G and the map F — Ug,y F induce a weak-equivalence:

HL(H, F) > H.(G, 1 F). (5.1.7)

DEFINITION 5.11. Let F denote a presheaf of spectra on the étale site of the
spectrum of a field L. F is said to have a hyper-transfer if for all finite Galois
extensions L'/L and all algebras 4 over L, there is a map of spectra
T:H.(Gal(L'/L); F(A (%L’)) — F(A) satisfying the following conditions:

e the transfer map 7 must be natural in 4
e whenever A = L” is a separable extension of L containing L’, there is a homo-
topy commutative diagram formed
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H, (Gal(L'/L), F(L"t? L))

S

H, (Gal(L'/L), Gaﬁgw.) A F(L")

1

H.(Gal(L'/L), U “F(L")
(Gal(L/L), 0, “F(L")
from the hyper-transfer 7" and the maps in the induction weak equivalence

above.
e finally the following diagram homotopy commutes:

H.(Gal(Ly/L); H(Gal(Lo/L); F(ADLI®L2))) BEVED b (Gal(L, /L) F(48L))
lr
~ F(4)
I
Ho(L2/L;T)

H,(Gal(L,/L); H,(Gal(L1/L); F(AQ?LI(%LZ))) —————"—> H,(Gal (LZ/L);F(Ac%)LZ))

Given this, one needs to check the hypotheses in [T-3] Lemma (3.10) hold for the
presheaf I = pu(Gg( , G) ® Z;)). (Recall that these are the following:

(i) The presheaf F above is a presheaf of module spectra over the presheaf of
K-theory spectra. (i.e. F(A4) is a module spectrum over K(A) where K(A) is
the algebraic K-theory spectrum of A for all A as above and this structure is
compatible with the structure of presheaves on the étale site of the field L).

(i) The hypertransfer in Definition 5.11 is a map of K(A4)-module spectra (i.e. the
projection formula holds).

(iii) The hypertransfer in Definition 5.11 is compatible (in the sense of [T-3] (3.13))
with the hypertransfer for the presheaf of K-theory spectra).

The arguments as in [T-5] Example (2.30) and [T-4] (3.20) through (3.22) (see also
Example (2.30) in [T-5]) apply to define a hyper-transfer for the presheaf
F = ps(G( )) defined on the étale site of M by T'(U, p2(G( ))) = G(U xgy S): one
may readily verify the above hypotheses. Now ps(Gk( ) ® Z(;) inherits this
hyper-transfer.

This completes the proof of (i) for the two presheaves Gyx( )® Z(; and
G( )/I'[f"]. The proof for the presheaf G( ) ® Q is simpler since one has a strict
transfer or what is called a weak-transfer in [T-5] and [J-1]: the same proof as above
using the hyper-transfer works as well.
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Now we consider the proof of (ii). We will first consider the case when the group G
is trivial and the stack is Deligne—-Mumford. In this case, the localization sequence in
(5.1.3) enables one to reduce to the case when the stack S is the quotient stack asso-
ciated to a finite group action on a scheme: this case now follows from [T-3] Theorem
(3.8). In case the map p: S — X is the identity (i.e. S itself) is an algebraic space, (ii)
also follows from [T-3] Theorem (3.8). Next we consider the general case. The loca-
lization sequence (5.1.3) enables one to reduce to the case when the quotient stack
[X/G] is a gerbe over its coarse moduli space which can be assumed to be a scheme:
the coarse moduli space is a scheme-theoretic quotient in the sense of [T-3] Definition
(2.3), which is also a geometric quotient. Therefore, we will denote this by X/G. If
p:[X/G] — X/G is the obvious map, now it suffices to establish cohomological des-
cent for the presheaf p4(py(Gk( ) ® Z(;)) on (X/G).. The continuity property of
the presheaf Gg( ) enables one to reduce to the case where X/G has been replaced
by the spectrum of a local ring and the localization property as in (5.1.2) enables one
to reduce to the case when X/G has been replaced by the spectrum of an Artin local
ring. (See [T-5], Section 2 for details.) Moreover, as in the proof of (i), we may reduce
to the case of fields. Now it suffices to show that a hypertransfer exists for the pre-
sheaf pu(pu(Gg( ) ® Z(;)) when X/G has been replaced by the spectrum of a field.
The rest of the proof is entirely similar. O

COROLLARY 5.12 (Atiyah—Hirzebruch spectral sequences). (i) Assume the hypo-
theses of Theorem 5.10 (1). Then there exists a strongly-convergent spectral sequence:

Ey' = Hi, o(S. m(Gx( ) ® Z(1))) = 1-s1:(Gk(S) ® Z(y)).

(i1) Assume the hypotheses of Theorem 5.10 (). Then there exists a strongly-conver-
gent spectral sequence:

E' = Hi, ([X/G], 1(psGk( ) ® Z(y)) = n1_s1:(Gk([S/G]) ® Zyy)).

The corresponding statements also hold with the presheaf G replaced by G/I'[f~'] and
Gg.

Proof. (1) This spectral sequence is provided by (4.2.5) with ¢ = Hj, (S, ). The
strong convergence follows from the observation that the hypotheses imply E5' = 0
for s > 0. The proofs of (ii) and the last assertion are similar. O

Remark 5.13. Observe that Theorem 5.10 and Corollary 5.12 extend the results of
[T-3]: if the stacks are assumed to be algebraic spaces, we recover these results.
Moreover, taking the group G to be trivial in the statements (ii) of Theorem 5.10 and
the corollary 5.12, we see that the presheaves pyGk and p;Gg have descent on the
étale site of the moduli space ¢ provided it exists as an algebraic space with a proper
map p: S — .

Remark 5.14. In order to be able to use Theorem 5.10, one needs to be able to
identify the stalks of the presheaf Gg ® Z(;, on the isovariant étale site. The fol-
lowing result shows that it is possible to do this generically, in general in char-
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acteristic 0, and globally for Deligne—Mumford stacks, which suffices for the
applications. It suffices to do this for the nonequivariant case.

PROPOSITION 5.15. Let S denote an algebraic stack as before so that it is a gerbe
over its coarse moduli space IN. Let p: S — W denote the obvious map, let
x:Spec Q — I denote a fixed geometric point and let R(X) denote the corre-
sponding strict Henselization of Oy at X. Then one obtains the identification of the
stalk of the presheaf py(Gg ® Z(y) at X

PGk ® Z(5);: = Gx(Sr®) ® L)

where Sgz) = (Spec  R(X))xyS. (If the stack S is smooth and K denotes the K-theory
of perfect complexes, one obtains a weak-equivalence Gg(Sgx) = Kig(Sr).)

(i) If, in addition, S is smooth over its coarse moduli space (or more generally, if Sgez)
is smooth over Spec  R(X)), Sg(x) is neutral gerbe over Spec  R(x). (In particular
this holds generically if the map p: S — I is smooth generically and the base
scheme S is the spectrum of a field or more generally is an excellent scheme.)
Moreover, in this case Kx(Sr) ® Z5) = Kg(Spec  R(X), Gz) where Gx is the
stabilizer at R(x) in the stack Sp).

(ii) Moreover, if X corresponds to a regular point of M (or if K denotes the K-theory
of perfect complexes) and the stack Sgcxy is smooth over Spec R(X), the stalk
G(Sr)/I'[B~'1 = K(Sre)/I"IB~'] = K(Sk)/I'[B~'].

(iil) If the stack is Deligne—Mumford, Sg) is the quotient stack associated to a finite
group-scheme action for all geometric points X of JIN.

Proof. The continuity property of the presheaf py(Gg ® Z(;) provides the first
weak-equivalence. Let x: X — S denote an atlas for the stack. If the stack is smooth
over Spec  R(x), one may find a lifting of idz(X) to a map Spec  R(X) — Xg) over
Spec  R(x). Now the structure map of the stack Sgiry) — Spec  R(X) has a section
which shows Sz is a neutral gerbe. This proves (i). In view of (i), the first weak
equivalence in (ii) follows from the weak equivalence between the equivariant G-
theory and equivariant K-theory of regular schemes: see [T-1]. The last weak
equivalence in (ii) follows by the rigidity theorem for mod-/" topological K-theory of
regular schemes. In order to prove (iii), observe that if the stack is Deligne—Mumford,
one may localize on the étale topology of the moduli-space and assume the stack is a
quotient stack. O

PROPOSITION 5.16 (See [Toe-1]) (Poincaré duality for smooth Deligne—Mumford
stacks). Assume that S is a Deligne—Mumford stack which is regular. Now the obvious
map Gg(S) ® Zyy ~ He (M, psGr( ) Q Z(y)) < He(WX, psKx( ) ® Z(y)) is a weak
equivalence.

Proof. It suffices to show the map is a weak equivalence locally on the étale
topology of the moduli space. Therefore, we reduce to the case when the stack is a
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quotient stack for the action of a finite group. In this case the above weak-equi-
valence follows from [T-1]. O

5.1.8. We end this section with the following criterion for cohomological descent on
the étale site of an algebraic space for presheaves of spectra that come up often in
this paper. Let G denote a fixed smooth group scheme over the base scheme S
and let (alg.stacks/S, G) denote the category with objects all algebraic stacks over
the base scheme S that are Noetherian and provided with a G-action. The morphisms
are all G-equivariant maps of algebraic stacks. Let P denote a presheaf of spectra on
this category having the following properties:

(i) There exists a Gysin map i,: P(Sg) — P(S) for any G-equivariant closed immer-
sion i Sy — S (which is a weak-equivalence if the closed immersion is given by
a nilpotent sheaf of ideals). The Gysin map is functorial in i.

(i) Given a G-equivariant closed immersion as in (i) with open complement
J: 81 =8—8) — S, there exists a fibration sequence igi*P — P — ju* P of pre-
sheaves where iy, ju (i*, j*) are the obvious direct image functors (inverse image
functors, respectively) (as in Section 5). Moreover, the map izi*P — P is given
by the Gysin map in (i).

(iii) The presheaf P has the following continuity property: let {S,|z} denote an
inverse system of algebraic stacks with G-action and where the structure maps
of the inverse system are affine. Now the obvious map colim,I'(S,, P) —
I'(S, P) is a weak-equivalence.

Let S denote a given algebraic stack, finitely presented over the base scheme S,
with a G-action, X a given algebraic space (with trivial action by G) and p: § - X
a G-equivariant map. We define a presheaf py(P) on X by I'(U, pyP) = T'(Ux xS, P).

PROPOSITION 5.17. Assume the above situation.

(1) Then the presheaf pu(P) has cohomological descent on the étale site of X if for
every L = a field that is etale over a residue field of X, one has cohomological des-
cent for the restriction of p4(P) to the étale site of L

(if) If the presheaf of homotopy groups m,(pyP) are all Q-vector spaces, the conclusion
of (1) holds if the presheaf py(P) restricted to the étale site of every field L as in (1)
has the weak-transfer property (as in [T-5] (2.12) or see Remark 5.18 below)

Proof. This is essentially in [T-5], Section 2. O
Remark 5.18. The weak-transfer property for a presheaf F on the étale site of a field
L means that for every finite étalemap A: Spec L' — Spec L, thereis given a transfer

map A F(Spec L') — F(Spec L) satisfying the hypotheses in [T-5] Defini-
tion (2.12). The existence of a weak transfer suffices to obtain étale cohomological
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descent for presheaves of spectra satisfying the hypotheses in 5.18 whose homotopy
groups are all Q-vector spaces. The hypertransfer is a variant of the transfer that also
provides étale cohomological descent for presheaves of spectra whose homotopy
groups are not necessarily (D-vector spaces.

6. Riemann—Roch Theorems for Algebraic vs. Topological G-Theory

In this section we obtain a general Riemann—Roch theorem relating algebraic and
topological G-theories for algebraic stacks.

DEFINITION 6.1. Let S denote an algebraic stack as before provided with the
action of a smooth group scheme G. Let J denote a set of primes in Z. We define the
G-equivariant topological G-theory of S to be G(S, G)x ® Z(. We will also often call
G(S, G)/I"[f~'] G-equivariant topological G-theory of S. Either of these will be
denoted G'P(S, G) in this section.

Remark 6.2. Theorem 5.10 shows that the G-equivariant topological G-theory has
descent on the isovariant étale site of the stack [S/G] and therefore justifies being
called topological G-theory. The following Riemann—Roch theorem might seem like
a tautology: however the fact that topological G-theory has descent on the isovariant
étale site makes the right-hand side computable by means of the spectral sequence in
Corollary 5.12, whereas there is no such spectral sequence for the left-hand side.

THEOREM 6.3 (Riemann-Roch). Let f: S — S denote a proper map between
algebraic stacks that are finitely presented over S. Assume that a smooth group scheme
G acts on both the stacks making f G-equivariant and that f has finite cohomological
dimension. Then the following square

GS.G) ., GS,G)
[ S

GS,G) . GS,G)

commutes.
Proof. This is clear since the right-hand side is simply the localization of the
left-hand side. O

We consider group actions on algebraic stacks and the resulting Lefschetz—
Riemann—Roch in the rest of this section. We begin first by defining actions by group
schemes on algebraic stacks and their fixed point stacks.

6.0.9. Throughout the rest of this section, the base scheme S is assumed to be the
spectrum of an algebraically closed field k. We will further restrict to actions of alge-
braic groups G on smooth Deligne—-Mumford stacks &, all over k. It seems, to us,
that the more systematic definition of the fixed point stack S would make it not a
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closed algebraic substack of S, but one that is unramified over S. However, the fol-
lowing approximation to the fixed point stack seems sufficient for the situation con-
sidered above.

DEFINITION 6.4. Let 3¢ denote the fixed point algebraic subspace of the coarse
moduli space. We let S¢ = M xpS. We adopt this as the definition of the fixed
point stack.

Remark 6.5. Since the coarse moduli space of S has the same points as MO, it
follows that the points of the group G act trivially on the points of the stack S°.
However, the group G may not act trivially on residual gerbes at each point. Since
the base scheme is assumed to be the spectrum of an algebraically closed field &, these
residual gerbes may be identified with quotient stacks for the action of finite groups.
The following result will, however, show that, we may find a finite étale cover of the
group G that acts trivially on the stack S, provided we work over an algebraically
closed field k£ and the group G is a torus.

PROPOSITION 6.6. Assume the base scheme is the spectrum of an algebraically
closed field k and the group G = T is a torus, that the stack S is smooth and the coarse
moduli space I is an algebraic space of finite type over k. Then there exists a finite
étale cover T=T — T so that the torus T (with the obvious induced action) acts tri-
vially on the stack ST. We may now identify ST with ST.

Proof. We begin with the Cartesian square

1%, _0, TxS8T

’ l J (o) (6.0.10)
s, 8'xs?
A

defining Igr. Let X — S” denote an atlas for the stack S. The right column is the
map defined by the two maps w7TxS’ — ST and the projection
pry: T x ST — ST, Clearly Igr Xgr X i8S a group scheme over X. Moreover, the
obvious map ¢ Igr xgr X — T x X induced by 6 is unramified and surjective. (To
see O is surjective, one may take points of the diagram (6.0.10). Observe from
[L-MB] Proposition (5.3.1) that the induced map |I§T| — |ST] X gy g7 | T % ST is
surjective. The definition of the fixed point stacks above shows the last term is
isomorphic to

T xR = T < Tx M.

RusiPIhusl M em”

The latter is the set of points of the inertia stack associated to the trivial action of T
on the moduli space M”. Therefore, it maps surjectively to |7 x 9’| and hence 6
itself is surjective.) Since X is generically integral (recall the base scheme is a field),
it follows that the map & is generically flat and, hence, finite étale. One may now
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stratify X by locally closed subschemes, U;, which are the atlases of locally closed
substacks of S7, so that over U; — U;_; the map ¢’ is finite étale of degree n;. Let
SiT denote the algebraic substack corresponding to U; — U;_;.

If x: Spec k — U; — U;_; is any geometric point of U; — U;_;, Igr Xor X Xy X =
Tx is a torus isomorphic to 7, but the map T — T induced by 9 is finite étale of
degree = n;. If Spec  R(x) denotes the strict Henselization of X at x, the correspond-
ing induced map Tspec R(X) — T x Spec  R(¥) induced by ¢ will also be finite étale
of the same degree. Therefore, we may find an étale covering V' — U; — U,_; so that
Igr xgr V= T x V with the induced map to 7" x sT xgr V(=T x V) is finite étale of
the same degree. We will denote the torus 7" appearing in the former by T': this is a
finite étale cover of the original torus T The algebraic groupoid T} x V xgr V'
T2 T! x V defines the algebraic stack / = Igr X g7 (ST );- Therefore, we obtain

(ST
the diagram with both squares cartesian:

T} 4 T

IST; ——  Tix(S)

UL, =Tix (ST, 2, Tx(S"), (6.0.11)

|»

(8" s (ST x (ST

A

Clearly the top row has a splitting. Therefore, if we consider the étale cover of 7,
T; — T of degree n;, and we let 77 act through the action of T, it will act trivially
on the locally closed substack (S”), : see (5.1.1). Therefore, let T — T denote an
étale cover of sufficiently large degree (> n;, for all i) and let it act on the stack
through the action of T and the homomorphlsm T — T. Then the action of T on
ST will be trivial. Since the homomorphism 7 — T is surjective, we see that
ST =sT. L]

LEMMA 6.7. Assume the above hypotheses. Then one may find a finite subgroup
scheme F of T of order prime to the characteristic of k so that " = I,

Proof. Observe that the elements of T of finite order different from the char-
acteristic p are dense in 7. If T, denotes the subgroup generated by these elements,
one may observe that M’ = IMT. On the other hand, Ty can be written as the union

T(") where T(”) denotes the elements of order n; in Ty, for a sequence of integers n;
d1fferent from the characteristic. Therefore M= Jﬁji Since I is Noetherian by
hypothesis, it follows that 9" = ED? /" for some i. (We thank Michel Brion for
supplying this lemma.) ]

PROPOSITION 6.8. Assume the above situation. Then SY,, is smooth.
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Proof. Let x:Spec k— M denote a fixed geometric point of MM, let
x: Spec k — ST denote lifting of ¥ and let G, denote the corresponding residual
gerbe. One may observe that G, is the neutral gerbe associated to a finite group
scheme since the stack is assumed to be Deligne—Mumford. Moreover, we may
therefore assume that x represents an atlas for this residual gerbe.

Let 7 denote the sheaf of ideals defining S” as a closed sub-stack of S: we will show
that I, is defined by a regular sequence in Og  which is strict Henselization of Og at
x. If m, is the maximal ideal of Og ,, let X1, ..., X, X¢+1, - .., X, denote a basis for
k(x) = m,/m>. Lift these basis vectors to xy, ..., X, in m,: now they form a regular
sequence in m,.

By the preceding lemma, we may now find a finite subgroup scheme F of T of
order prime to the characteristic p, so that MF = M’. Observe that, by our defini-
tion, S¥' = ST. We may further find a map Y — S and a lift 7 y of the point x so that
Y is an affine scheme, with an action of F, j is fixed by Fand with yy, ..., y, in its co-
ordinate ring so that each x; maps to the image of y; in the strict Henselization of the
local ring at 7. Moreover, the action of F on Y is compatible with the action of 7 on
S. We may define Y as follows. We may first find an affine smooth scheme with an
étale map o: ¥ — S provided with a lift j of the point x and j; in its co-ordinate ring
so that each x; maps to the image of y; in the strict Henselization of the local ring at
7. Y may not have an action by F. Next replace Y by the iterated fibered product of
A(Y), (over S), f € F: f(Y) is the fibered product of ¥ over S and the map f1: S — S
with the map from fiY)—= S be1ng the induced map (=fooaof; !, where
f : iY) — Yis the map induced by f~': S — S). This is a smooth separated scheme
prov1ded with an (obvious) action by F (which we denote by Y) with an étale map to
S, a lift of the point x fixed by F (which we denote by y) and y1, ..., y, in the stalk of
its structure sheaf at the chosen point p so that x; maps to the image of y; in the strict
Henselization of the local ring at y. Observe that the action by F on Yis compatible
with the action of 7 on 8. However, ¥ is not necessarily affine. Now take an affine
open neighborhood Nj; of j in Y: since Yis separated, ¥ = Nferf-Nj is an affine open
neighborhood of p stable by F. This also shows that such neighborhoods are co-final
in the system of affine neighborhoods of y in Y, so that we may lift the y; to one such
neighborhood. Since the group F is linearly reductive, we may also assume that F
acts on y; with nontrivial character y;, j=k+1,...,n and trivially on yi,... yk.
Observe that ¥ = S’ xg Y is a closed subscheme of Y defined by a sheaf of ideals
1. Moreover, Y — ST is an atlas for S.

We will next show that F acts trivially on Y and that the map ¥ — S7 is fixed by
every element of F. To see this recall F acts on ST through the action of Ton S: T
acts trivially on ST and therefore the action of F on S is trivial. Now recall the defi-
nition of Y as the iterated fibered product of (Y), f € F. Here f{Y) is the fibered pro-
duct of )_Z—% S and 18§ — S. Since F acts trivially on S7, the composition
ST 5> 8-S is simply the original closed immersion S? — S; therefore
ST xsfou of ST xsfAY) — ST identifies with ST xgo. It follows that F leaves
every point of Y fixed and fixes the map ¥ — S7.
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Let j > k denote a ﬁxed~ integer and let y; denote the corresponding character by
which F acts on y;. Recall Y is affine; therefore the {y;| j} are elements of the co-ordinate
ring of Y. Let ' € Y denote an arbitrary (closed) point. If y; does not vanish at the
point )’ € Y, the stabilizer F)y must be contained in ker(y,). Since ker(y;) is properly
contained in F (otherwise F would act trivially on y; contrary to the choice of y)), it
follows that y” would not be a fixed point for F. (Recall F acts trivially on every
point 3’ of Y). Therefore, it follows that y; vanishes at every point of Y: i.e.
(Viksts -, yn) € I Since YF is defined by the ideal (yii, ..., yn), it follows that
Y € YF. Now observe that Og. x = (’)Sh the strict Henselization of (’)Y at y and
that I, = [;®o, . (’)Sh ; When [; = I®r(yo )(9 y.;- Therefore, it follows that
(Xkt1s-005X0) C I

Conversely we will show I, € (xg41,...,x,). For this, it suffices to show that
YF € Y which implies that 7 € (y41, ..., y). Since Y = 87 x ¥, the closed immer-
sion Y¥ — Y factors through Y. Now an argument as in the last paragraph shows
Iy = (Xk+1, - - -, Xy) Which is a regular sequence in Og . Therefore, Ogr | is a regular
local ring for every closed point x of S”. This proves S’ is smooth. O

6.0.12. Proof of Theorem 1.3. It follows from the above proposition that the
closed immersion i : Swd — S is a regular immersion. Let N denote the conormal
sheaf associated to this closed immersion. O

PROPOSITION 6.9. Assume that the above situation is correct. (1) Then the class
I(N)sno(G(ST T’ N ®2zQ is a wunit. (i) Moreover the Gysin map i, :
n*(G(S T’ N = 7(G(S, T’ D) is an isomorphism. (111) The inverse to this iso-
mo;phzsm tensored with Q is provided by i*( )N i_(N)™".
Proof. Throughout the proof, we will identify the G-theory of an algebraic stack
with the G-theory of the associated reduced stack. We will first prove the first
statement. We first recall the canonical isomorphism (see: 1.0.3):

T(G(S, T") = Z[M'] % 1.(G(S)) (6.0.13)

where M’ is the character group of 7" and T acts trivially on the stack S. Through-
out the proof we will let G( , T”) 7 K( ,T) ST’) denote the presheaf of spectra
associated to the category of 77- -equivariant coherent (coherent and locally free,
respectively) sheaves on the stack st

Let p: S — M and pT ST — JJET denote the obvious maps. Using the notation as
in 5.10, the presheaf p# (G( T) ) ® Q satisfies the hypotheses in Proposition
5.17. Therefore, we obtain a spectral sequence:

B = Hy s m ] G T Q) > 7 (6T The @) (6.0.14)

In view of the hypotheses, this spectral sequence converges strongly. One may loca-
lize this spectral sequence at the prime ideal p in R(T") corresponding to the subtorus
7' clearly the resulting spectral sequence also converges strongly. Therefore, the ker-
nel of the edge map
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e: no(G(ST,, T/) ® Q) — EOOQDO — E<2).0
= B mo(p] (G( . T)) ® D))

is nilpotent and it suffices to show that e(4_;()) is a unit. Next observe that
e(Z—1(N)) is in the image of the natural map

HYOT  mo(pl (R( . T ) ® Q)
S B 7ol (G T) ) @ @) (6.0.15)

Therefore, we will denote by e(4_1(N)) the corresponding class on the left-hand side
of the previous equation. The isomorphism in (6.0.13) for K-theory (and the obser-
vation that 7" indeed acts trivially on the stack S”') enables one to obtain the iso-
morphism:

Hgt(%i‘,’ nO(Pz(K( ) f/)sf') ® Q)(D))
= Z1M )y @ HA (N mo(p] (K( ) ) © D). (6.0.16)

Next, in order to show e(A_{(N)) is a unit, it suffices to show that it maps to a unit at
each of the stalks (taken at the geometric points of the moduli space M’ ) of the pre-
sheaf Z[M](p) ®z mo( p# (K( ) 7 ® @)) Since the stack is Deligne-Mumford, one
may localize on the moduli space M and assume the stack is a quotient stack asso-
ciated to a finite group action. Therefore, we reduce to showing that the class 4_;(V)
is a unit in Z[M'],) ®z no(K(S ™)) ®7 @ when the stack S”" is a quotient stack asso-
ciated to the action of a finite group on a scheme of finite type over k.

At this point, one observes that the y-filtration on the Grothendieck group of
equivariant vector bundles on a scheme of finite type over k, equivariant with respect
to the action of a finite group is nilpotent modulo torsion. (See [A].) Therefore, it suf-
fices to show that the image of 4_;(N) in Z[M'],) ®7 Q is a unit. In fact it suffices to
do this for the image of 2_j(N) in Z[M'],). The stalk N; is the sum of nontrivial one-
dimensional representations X;m;: therefore the image of (A_;(N)) = I1(1 — m;). One
may readily show m; # 1(mod)p. It follows that (1 — m;) is a unit in Z[M’](p) for all i
i.e. (A_1(N)) maps to a unit in the given stalk.

This completes the proof of the first statement of the proposition.

Next we will show the Gysin map

i 1 GST, Ty = 7(G(S, Ty (6.0.17)

is an isomorphism. By the localization sequence in G-theory and induction on the
dimension of the stack, it suffices to prove that on any sufficiently small open sub-
stack Sy of § — 8", n(G(Sy, f/))(p) ~0. Let ¥ < M —M"" denote any open non-
empty 7’-stable and smooth subalgebraic space. We may in fact assume that it is a
scheme. Let Sy = S xg V. Observe that G(V, T') ~ K(V, T’) since V is regular and
that G(Sy, T') is a module over K(V, T"). The latter is trivial on localization at the
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prime idea~l p by [T-2]. Therefore, = (G(Sy, T’))(p) ~0 and hence
1. (G"P(Sy, T'))) = 0. This shows that the Gysin map in ( 6.0.17) is an isomorphism
and completes the proof of the second statement of the proposition. The last asser-
tion follows readily since the composition of i, and i* corresponds to multiplying by
A_1(N). This completes the proof of the proposition. O

6.0.18. Proof of Theorem 1.3. This s clear in view of the previous proposition. The
key observation is that the map ¥ commutes with proper push-forward by [Toe-1],
Lemme (4.12). In fact, in [Toe-1] Lemme (4.12) is stated in a restrictive form with the
hypothesis that every coherent sheaf on the stacks S7 and S’ is a quotient of a
locally free coherent sheaf. This is a very restrictive hypotheses which, fortunately
may be removed as follows. Let S denote either of the above stacks: recall these are
both smooth. It suffices to show that there exists a Chow envelope S — & which is
strongly projective, i.e. factors through a closed immersion into Proj(£) where £ is a
locally free coherent sheaf on S followed by the obvious projection to S. Since the
stack S is smooth and defined over a field k, one may find such a S as follows. Since S
is smooth, it is well known that S is a gerbe over Sy where the latter is another smooth
Deligne-Mumford stack which is generically a scheme. By Theorem 2.18, [EHK V], S
is a quotient stack and therefore every coherent sheaf on S is the quotient of a locally
free coherent sheaf. Therefore every morphism S’ — Sy that factors as the compo-
sition of a closed immersion into Proj(E), with E a coherent sheaf on Sy and the
obvious projection is in fact strongly projective in the sense above, i.e. one may
assume without loss of generality that E'is in fact locally free. In particular, if S; — S
is a Chow envelope, it is strongly projective. Now one takes the pull-back
S = Sy xs, S — S. This is strongly projective and is a Chow envelope, since S — S
is a gerbe. Therefore one may apply Lemme (4.12) of Toen without further restric-
tions on the stacks. (We thank Bertrand Toen for supplying the above argument.) The
map i*( )N A_(N)~! being inverse to i, also commutes with proper push-forward
for equivariant maps. O

6.0.19 Proof of Corollary 1.4. This is also clear in view of the previous results.
Etale cohomological descent for the presheaf K( )) ® @ provides the isomorphism
= -
To(K(X, T)) ) ®z QUog) == To(Ket( X, T7)) ) @2 Q(pto)-

7. Appendix: Quotient Stacks of Algebraic Stacks

In this section we will briefly show that the quotient of an algebraic stack by the
action of a smooth group scheme exists as an algebraic stack. This seems well known,
though nothing appears in the literature.

7.1. Let S denote an algebraic stack with an action by a smooth group scheme G.
We define the category, [S/G] fibered in groupoids over schemes as follows. For a
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given scheme T, the objects of the category [S/G](T) are given by diagrams of the
following form:

lp/
ls (7.1.1)

4. T

where g is a principal G-bundle over T, s corresponds to an object in the stack S over
¥, the object y is provided with an action by G, so that if u, pry: G x y — ) are the
group action and the projection, then there is given an isomorphism ¢: u*(s) = prj(s)
satisfying an obvious co-cycle condition on further pull-back to G x G x by the
obvious maps and so that the pull-back to ¥ by the identity section e:yy — G x
is the identity. A morphism between two such objects in the category [S/G|(T) is
an isomorphism preserving all the structure.

PROPOSITION 7.1. Assume the above situation. Then [S/G] is an algebraic stack so
that there exists a representable smooth map S — [S/G]| of algebraic stacks. If
x: X — S is an atlas for the stack S, the composition X — S — [S/G] defines an atlas
for the stack [S/G].

Proof. We skip the verification that [S/G] is a stack. The map S — [S/G] is given
by sending an object #' in S(T') to the diagram

lp/ :G X rl/
l (7.1.2)

GxT_ ", T

One may verify that the map S — [S/G] is representable. Finally, to show that the
stack [S/G] is algebraic, one may proceed as follows. First let xy: Xy — S denote an
atlas for the stack & with X, a separated scheme. If w:G xS — S and
pry: G x § — S are the projections, one obtains an isomorphism (not necessarily
satisfying any co-cycle conditions) between the two pull-backs u*(Xp) and pr5(Xo).
We will denote pr;(Xp) by X;. Making use of this isomorphism, one obtains the com-
mutative square:

u
GxSTPT~>g

L .l

¢ TEAEP.C

where the two maps in the bottom row are the obvious ones induced by the ones in
the top row. Now the square is Cartesian with the maps u and ' (pr, and pr, respec-
tively). Moreover, all the maps are smooth and the schemes are all separated (and
quasi-compact). We may now extend this to the diagram:
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©
GxS_ I S

e

X1 2 "X,

IR

X G>>§SX1 7’7‘2‘“’1\’0?1\’0

Once again all the maps are smooth and the schemes are all separated (and quasi-
compact). Therefore, the diagonal of the above diagram:

X x Xi—> X
GxS e

defines an algebraic groupoid. (Observe that X; = G x Xj. Therefore one obtains a

composition X; xy, X; — X induced by the group-law G x G — G. Next observe

that, since G x S is an algebraic stack, X] X gxs X1 —> X is an algebraic groupoid.
. —_—

Therefore one has a composition

X1 X X1XX1 X X1—>X1 X Xl.
GxS X GxS GxS

Combining these two compositions, one obtains a composition

X] X X]XX] X X]-)X] X X]
GxS Xo GxS GxS
that defines the groupoid law. Now one needs to verify that the required identities
hold.) The associated stack may be identified with [S/G]. O
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