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Abstract. In this paper we establish Riemann–Roch and Lefschtez–Riemann–Roch theorems
for arbitrary proper maps of finite cohomological dimension between algebraic stacks in the
sense of Artin. The Riemann–Roch theorem is established as a natural transformation

between the G-theory of algebraic stacks and topological G-theory for stacks: we define the
latter as the localization of G-theory by topological K-homology. The Lefschtez–Riemann–
Roch is an extension of this including the action of a torus for Deligne–Mumford stacks. This

generalizes the corresponding Riemann–Roch theorem (Lefschetz–Riemann–Roch theorem)
for proper maps between schemes (that are also equivariant for the action of a torus, respec-
tively) making use of some fundamental results due to Vistoli and Toen. A key result estab-

lished here is that topological G-theory (as well as rational G-theory) has cohomological
descent on the isovariant étale site of an algebraic stack. This extends cohomological descent
for topological G-theory on schemes as proved by Thomason.

Mathematics Subject Classifications (2000). 14A20, 14C40.
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1. Introduction

In this paper we consider the general Riemann–Roch problem for arbitrary proper

maps of finite cohomological dimension between algebraic stacks in the sense of Artin.

Even in the case of Deligne–Mumford stacks, the problem was only recently solved in

[Toe-1] and thedifficulties that can comeup in generalmaybe seen already in the case of

finite group actions on schemes. Let G denote a finite group, viewed as a group scheme

over a field k: we assume the order ofG is prime to the characteristic of k. Now theGro-

thendieck group of vector bundles on the stack ½Spec k=G� may be identified with the

representation ring of the finite group, namelyRðGÞor equivalentlyK 0
GðSpec kÞ.More-

over, H �etð½Spec k=G�;QÞ ffi H �etðBG;QÞ. Though RðGÞ is far from being trivial (even

when tensored withQ), the cohomology ring H �ðBG;QÞ ffi Q. Therefore, the diagram

K0
GðSpec kÞ !

chG

H�etðBG;QÞ

p�

  

p�

K0ðSpec kÞ !
ch H�etðSpec k;QÞ
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fails to commute, where p: ½Spec k=G� ! Spec k is the obvious (nonrepresentable)

map of algebraic stacks. (The top row is the G-equivariant Chern character, whereas

the bottom row is the usual Chern character which one may identify with the rank

map. One may identify the left most column with the map, sending a representation

of G to its G invariant part.) This problem was solved in [Toe-1] by a rather elaborate

procedure, ultimately making use of a theorem of Vistoli which says the equivariant

higher algebraic K-theory of a regular scheme provided with the action of a finite

group is isomorphic to the higher étale K-theory of the inertia stack provided every-

thing is tensored with C. (See the discussion below for more details.) Though, the

corresponding result is known for compact lie group actions on manifolds, the tech-

niques involved (especially induction) do not generalize to the actions of reductive

groups on regular schemes.

In fact the difficulty with Riemann–Roch for algebraic stacks may already be seen

by the lack of commutativity of the following diagram:

K0
GðSpec kÞ ! H0

etð½Spec k=G�;KQÞ

p�

  

p�

K0ðSpec kÞ ! H0
etðSpec k;KQÞ

where the last terms in each row denote the étale hyper-cohomology of the corre-

sponding stack computed with respect to the presheaf KQ; this is the presheaf defined

by U! KðUÞQ=the localization of the algebraic K-theory spectrum KðUÞ at Q, U

on the étale site of the appropriate stack. One of the key ideas in this paper may

now be stated in the above context as follows: if one replaces the étale topology

above with another topology (called the isovariant étale topology) we define in Sec-

tion 3 (and the presheaf K is replaced by the equivariant version KG), then the cor-

responding diagram does commute.

We will adopt the following terminology in the statement of Theorems 1.1 and 1.2.

Let J denote a set of primes in Z. Assume that the base scheme S is Noetherian of

finite Krull dimension and that there is a uniform bound on the l-torsion étale coho-

mological dimension of the residue fields kðsÞ for all points s in S and all le J. (Observe

that this hypothesis holds if S is of finite type over an algebraically closed field or over

Z½
ffiffiffiffiffiffiffi

	1
p
� or if 2 does not belong to J and S is of finite type over Z.) Assume also that l

is invertible in OX, for any X which is an object over S (i.e. a scheme, an algebraic

space or an algebraic stack) that we consider and for all primes leJ. Assume also

the hypotheses in (5.1) and that all the objects we consider are locally Noetherian

over the given base scheme. (However, most of our basic results will hold only for

algebraic stacks that are finitely presented over the given base scheme.)

We may summarize the main theorems of the paper as follows:

THEOREM 1.1 (see Theorem 5.10 and Corollary 5.12). Let G denote the presheaf

of spectra corresponding to the G-theory defined in Definition 5:4 and let GK � ZðJÞ
denote the localization of the presheaf G first in the sense of Bousfield by topological
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K-homology followed by inverting the primes not in J. Let S denote an algebraic stack,

finitely presented over the base scheme S, with Siso:et denoting the isovariant étale site of

the stack S defined in Section 3. Then the obvious augmentation

GðSÞK � ZðJÞ ! Hiso:etðS;GK � ZðJÞÞ ð1:0:1Þ

is a weak-equivalence of spectra where the right-hand side denotes the hyper-cohomo-

logy spectrum computed on the isovariant étale site. ðOne may restate the above result

as: the presheaf GK � ZðJÞ has cohomological descent on the isovariant étale site.Þ

Moreover, there exists a strongly-convergent spectral sequence

Es;t
2 ¼ Hs

iso:etðS; ptðGK � ZðJÞÞÞ ) p	sþtðGðSÞK � ZðJÞÞ: ð1:0:2Þ

In view of the above theorem we will call GðSÞK � ZðJÞ topological G-theory. This

will be denoted GtopðSÞ. The presheaf GK � ZðJÞ of spectra will be called the presheaf

of topological G-theory. (We may also use GðSÞ=l n½b	1� for GtopðSÞ where l is as

above, n� 0 and b denotes the Bott element.)

THEOREM 1.2 (Riemann–Roch from algebraic to topological G-theory). Let

f : S0 ! S denote any proper map between two algebraic stacks finitely presented over

S and of finite cohomological dimension. Then the direct image map f� fits in the fol-

lowing homotopy commutative square:

GðS0Þ ! GtopðS0Þ
f�

  

f�

GðSÞ ! GtopðSÞ

The above theorem might seem like a tautology, since the right-hand side is a sui-

table localization of the left-hand side. However, as in [T-2], [T-3], it is the right-hand

side that can be computed by the spectral sequence in the above theorem, whereas

there is no such spectral sequence for computing the left-hand side. We will in fact

prove a stronger version of the above two theorems including the action of a smooth

group scheme on the stacks S and S0.
As an application of cohomological descent for GK � ZðJÞ, one obtains the fol-

lowing Lefschetz–Riemann–Roch theorem where GðSÞK � ZðJÞ is denoted by

GtopðSÞ. We will assume the base scheme S is the spectrum of an algebraically

closed field k, all the stacks we consider are Deligne–Mumford and finitely presen-

ted over k and that the orders of the stabilizers on all the stacks we consider are

different from the characteristic of k in the following. Moreover, Qðm1Þ will

denote the algebra over Q generated by Q and m1, with m1 denoting the roots

of unity in k imbedded in C �. Let T denote a torus, let RðT Þ denote the represen-

tation ring of T and let p denote a prime ideal in RðT Þ corresponding to a sub-

torus T 0. Given an action of a sub-torus T 00 of T (which may be either T itself

or the given sub-torus T 0) on an algebraic stack S as in Definition 5.1, one lets

CohðS;T 00Þ ¼ the category of coherent sheaves on the stack S with a T 00-action.
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We let GðS;T 00Þ ¼ KðCohðS;T 00ÞÞ ¼ the K-theory spectrum of the category

CohðS;T 00Þ and similarly GtopðS;T 0Þ ¼ the topological K-theory of the above cate-

gory (defined as above by localizing with respect to topological K-homology fol-

lowed by inverting the primes not in J.) In this case we define the fixed point

stack ST 0 as in Definition 6.4 so that the induced map i:ST 0
! S is a closed

immersion. Let IST 0 denote the inertia stack associated to ST 0 : there is an obvious

map pT 0 : IST 0 ! ST 0 that is unramified (or a local imbedding) since the stack S is

assumed to be Deligne–Mumford. It is shown in 6.6 below that one may find a

finite étale cover ~T 0 ! T 0, so that when ~T 0 acts on ST 0 through the action of

T 0, this action is trivial. Moreover, S ~T 0
¼ ST 0 and when S is a smooth Deligne–

Mumford stack, S ~T 0

red is also smooth.

Given a presheaf of spectra P, we let P�Q the localization of P at Q in the sense

of [B-K]. Next we follow [Toe-1] and let GetðSÞ �Q ¼ HetðS;G�QÞ which is the

étale hypercohomology of the stack S with respect to the presheaf G�Q. We also

let GetðS;T Þ �Q ¼ HetðS;Gð ;T Þ �QÞ where Gð ;T Þ �Q denotes the presheaf

of spectra associated to T-equivariant coherent sheaves on S. Similarly

KetðS;T Þ �Q ¼ HetðS;Kð ;T Þ �QÞ where Kð ;T Þ denotes the presheaf of spec-

tra associated to T-equivariant locally free coherent sheaves.

We will assume, henceforth, that S is a smooth Deligne–Mumford stack. Next, let

NS ~T 0 denote the conormal sheaf associated to the local imbedding IS ~T 0

red

! S ~T 0

red;

Toen associates to the class l	1ðNS ~T 0 Þ a class aS ~T 0 ep0ðKetðIS ~T 0 Þ �QÞ�Q Qðm1Þ which
is invertible.

Recall that Toen (see [Toe-1] Théorèm 3.15) defines a natural isomorphism

fS ~T 0 : p�ðGðS
~T 0
ÞÞ �

Z
Qðm1Þ ! p�ðGetðIS ~T 0 Þ �QÞ�

Q
Qðm1Þ:

(Here Qðm1Þ ¼ the Q-algebra generated by the roots of unity of the field k; one may

choose an imbedding of this into C �.) In view of the isomorphisms

p�ðGðS
~T 0 ; ~T 0ÞÞ ffi Z½M0� �

Z
p�ðGðS

~T 0
ÞÞ; ð1:0:3Þ

p�ðGetðIS ~T 0 ; ~T 0ÞÞ ffi Z½M0� �
Z
p�ðGetðIS ~T 0 ÞÞ ð1:0:4Þ

this extends to define an isomorphism fS ~T 0 : p�ðGðS
~T 0 ; ~T 0ÞÞ �Z Qðm1Þ !

p�ðGetðIS ~T 0 ; ~T 0Þ �QÞ�Q Qðm1Þ. Moreover, it is shown in [Toe-1] Lemme 4.12 (see

also 6.0.18 which shows some of the hypotheses in [Toe-1] may be relaxed) that

the composition cS ¼ a	1
S ~T 0
\ ð Þ � fS ~T 0 commutes with proper push-forward.

Assume in addition to the above situation that the prime ideal p in RðT Þ corresponds

to the subtorus ~T
0
. In this case, we prove (see Proposition 6.9 below) that if N is the

conormal sheaf associated to the closed immersion i : S ~T 0

red ! S, the class

l	1ðNÞep0ðKðS
~T 0 ; ~T 0ÞÞðpÞ is a unit and that the Gysin map i�: p�ðGðS

~T 0 ; ~T 0ÞÞðpÞ !

p�ðGðS; ~T 0ÞÞðpÞ is an isomorphism with inverse defined by i �ð Þ \ l	1ðNÞ
	1.

Combining the above isomorphisms, we obtain the isomorphism:
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p�ðGðS; ~T 0ÞÞðpÞ �
Z
Qðm1Þ !

i�ð Þ\l	1ðNÞ	1 p�ðGðS
~T 0 ; ~T 0ÞÞðpÞ �

Z
Qðm1Þ

!
cS p�ðGetðIS ~T 0 ; ~T 0Þ �QÞðpÞ �

Q
Qðm1Þ ð1:0:5Þ

We will denote this isomorphism by CS.

THEOREM 1.3 (Lefschtez	Riemann	Roch). Assume that T 0 is a subtorus of the

torus T acting on the smooth Deligne–Mumford stacks S and S0 and that f : S0 ! S is

a T 0-equivariant proper map of finite cohomological dimension. Let ~T 0 ! T 0 denote a

finite étale cover so that ~T 0 acts trivially on the stack S0 ~T 0 and S ~T 0 . Let i : S ~T
0

! S and

i0:S0 ~T
0

! S0 denote the associated closed immersions. Then the following diagram

commutes:

COROLLARY 1.4. ðiÞ Let S0 denote a smooth Deligne–Mumford stack that is pro-

vided with a proper map f:S0 ! X of finite cohomological dimension where X is a

regular scheme. Assume S0 is provided with the action of a torus T, T 0 is subtorus and

that the map f is T 0-equivariant for the trivial action of T 0 on X. Assume further that X

has an ample family of line bundles, so that one obtains the weak equivalence

GðX Þ ’ KðX Þ. Let F denote a T 0-equivariant coherent sheaf on the stack S0. Now we

obtain the equality in p0ðKðX; ~T
0
ÞÞðpÞ�Z�Qðm1Þ ffi p0ðKetðX; ~T

0
ÞÞðpÞ�ZQðm1Þ:

Rf�ðF Þ ¼ Sið	1Þ
iRif�F ¼ Sið	Þ

iRif I; ~T 0

� ðCS0 ðF ÞÞ: ð1:0:6Þ

ðiiÞ Taking X ¼ Spec k, we obtain

Sið	1Þ
iHiðS0;F Þ ¼ Sið	1Þ

iHiðI
S0

~T 0 ;CS0 ðF ÞÞ ð1:0:7Þ

in the ring Rð ~T 0ÞðpÞ�ZQðm1Þ.

As has been noticed for sometime now, there is close connection between equivari-

ant algebraic topology in the sense introduced by Bredon and studied extensively by

May et al. and the cohomology theory of algebraic stacks (see, for example, [Vi] or

[Toe-1]). This was explained very nicely in [T-3] and we recall this in Section 2 of the

paper. We hope this serves to nicely explain the leading ideas of this paper, in a

rather elementary manner. In Section 3, we define the isovariant étale site and study
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it in great detail, concluding with Theorems 3.13, 3.26 and 3.27. These show that the

isovariant étale site of an algebraic stack is a good substitute for the étale topology of

its coarse moduli space: the main advantage is that the isovariant étale site is defined

for all algebraic stacks irrespective of whether a coarse moduli space exists or not.

In the fourth section we define and study hyper-cohomology on the isovariant

étale site with respect to presheaves of spectra. Section 5 is devoted to cohomological

descent on the isovariant étale site. The main results are Theorem 5.10 and Proposi-

tion 5.15: Theorem 5.10 provides cohomological descent for suitable localizations of

G-theory which may be viewed as variants of topological G-theory. Proposition 5.15

provides the identification of the stalks of the topological G-theory presheaf on the

isovariant étale site and finds application in the proof of the Lefschetz–Riemann–

Roch. The last section discusses several forms of Riemann–Roch as a natural trans-

formation between G-theory and suitable topological G-theory and concludes with a

Lefschetz–Riemann–Roch for the actions of tori on Deligne–Mumford stacks.

In a sequel to this paper, we define cohomology and homology theories generali-

zing those of Bredon (i.e. Bredon-style equivariant theories as in [Br], [LMS]) on the

isovariant étale site of algebraic stacks. In the case where the stack has finite diagonal

(observe that these are in general Artin stacks), we obtain Riemann–Roch and Lef-

schetz–Riemann–Roch theorems in this setting.

2. Equivariant Algebraic Topology

First of all, one needs to point out that there are two distinct notions of equivariant

cohomology theories, one originally due to Bredon (see [Br], [LMS]) and another due

to Borel (see [Bo], [Hs]). Though the latter is a coarser invariant, it is easier to define

and this often accounts for its popularity. In fact, in the algebraic setting (i.e. for

studying algebraic group actions on schemes) no one has even defined an analogue

of the former theory. A key difference between the two types of theories can be seen

in the definition of a map to be a weak homotopy equivalence. Let X denote a G-

space where G is a compact topological group. In the Bredon style theories, one

defines the G-topology on X with the closed subsets of X given by G-stable closed

subspaces of X. The points in this topology therefore correspond to the orbits of

G on X, all of which are closed since the group G is compact. One may readily see

that, therefore, the G-topology on X is equivalent to the topology on the quotient

space X=G. In Borel style theories, one defines a simplicial space EG�G X, then takes

its realization, jEG�GXj, to obtain a space and defines the topology to be the topo-

logy on the above realization.

The difference between the two is clearly seen in the definition of equivariant

K-theory. The Atiyah–Segal equivariant K-theory of X is the Grothendieck group

of the category of all G-equivariant vector bundles on X. This is a Bredon style the-

ory, since it is defined only on G-stable subsets of X and a map f : X! Y between

two G-spaces induces an isomorphism on Atiyah–Segal G-equivariant K-theory, in

general, only if there is a G-equivariant map g : Y! X and G-equivariant
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homotopy equivalences f � g ’ idY and g � f ’ idX. On the other hand one may con-

sider K0ðjEGXjÞ. This is a Borel style equivariant cohomology theory. A G-equivar-

iant map f : X! Y induces an isomorphism on these groups, if there is a map

g : Y! X, not necessarily G-equivariant, so that the compositions f � g ’ idX and

g � f ’ idY by homotopies that are once again not necessarily G-equivariant. More-

over, one knows that the Borel-style equivariant K-theory of X is the completion of

the Atiyah–Segal equivariant K-theory of X (see [A.S2]) and is therefore a coarser

invariant of X.

Next one considers the definition of equivariant cohomology in the sense of Bre-

don. We may define this concisely as follows. (The definitions in [Br] and [LMS] are

essentially equivalent to this, though the definitions seem a bit more complicated as

they are not stated in terms of sheaf cohomology.) First, define a presheaf RG :

G	 topology of X! ðAbelian groupsÞ by GðU;RGÞ ¼ K0
GðUÞ ¼ the G equivari-

ant Atiyah–Segal K-theory of U. One may observe that if G=H is a point on the

above topology of X, the stalk RG
G=H ffi RðHÞ, at least for suitable X. Given an Abe-

lian presheaf P on the G-topology of X, one defines the Bredon equivariant cohomo-

logy of X, H �G;BrðX;PÞ ¼ RGðX; ðP�RÞ~Þ where ~ denotes the functor sending a

presheaf to its associated sheaf and RGðX; Þ denotes the derived functor of the glo-

bal section functor computed on the G-topology of X. So defined, H �G;BrðX;PÞ is a

module over K0
GðX Þ and hence over RðGÞ. Our procedure for defining Bredon style

equivariant cohomology may be therefore summarized as follows: define a topology

where the open sets are G-stable open sets and modify the Abelian presheaf P on this

site by the sheaf RG that contains information on the representations of G. One may

now contrast this with the definition of the usual G-equivariant cohomology of X

(which is a Borel style equivariant cohomology). Let P denote an Abelian presheaf

on the simplicial space EG�GX. Then one defines H �GðX;PÞ ¼ RGðEG�GX;PÞ. This

is a module over H �GðX;ZÞ and, hence, over H �ðBG;ZÞ.

Finally consider the case where G is a group scheme acting on a scheme X. One

runs into various difficulties, if one tries to define a Bredon style equivariant étale

cohomology in this setting. The main difficulties are in the definition of the G-topo-

logy. The discussion in [T-3], Section 2, shows how to define an appropriate topology

in this setting so that the definition of a Bredon style equivariant étale cohomology is

still possible. Guided by this example, we define and study a site (or topology) for

any Artin stack in the next section which may be used to define a finer variant of

the cohomology of a stack.

3. The Isovariant Étale Site

3.0.8. BASIC FRAMEWORK

Let S denote a Noetherian separated scheme which will serve as the base scheme. All

objects (i.e. schemes, algebraic spaces and algebraic stacks) we consider will be

defined over the base scheme S and locally Noetherian. In particular, they are all

locally quasi-compact. Fibered products over the base scheme will be often denoted
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just as a product. (For the most part we may restrict to finitely presented objects over

the base scheme S; but it will often be necessary to consider filtered inverse limits of

such objects with affine structure maps for the inverse system.)

Let S denote an algebraic stack. We define and study several new sites associated

to stacks in this section. Given an algebraic stack S, recall the inertia stack IS asso-

ciated to S is defined by the fibered product S�D;S�S;D S. Since D : S! S � S is

representable, so is the obvious induced map IS ! S.

DEFINITIONS 3.1. (i) Let f : S0 ! S be a map of algebraic stacks. We say f is

isovariant if the natural map IS0 ! IS�SS0 is a 1	isomorphism, where IS0 (IS)

denotes the inertia stack of S0 (S, respectively).
(ii) The smooth and étale sites. Given an algebraic stack S, we let Ssmt (Ssmt) denote

the site whose objects are smooth maps u : S0 ! S of algebraic stacks (smooth maps

u : U! S with U an algebraic space). Given two such objects u : S0 ! S and

v : S00 ! S, a morphism u! v is a commutative triangle of stacks

(i.e. There is given a 2-isomorphism a : u! v � f.) The site Set is the full subcategory

of Ssmt consisting of étale representable maps u : S0 ! S, where S0 is an algebraic

stack. Finally, when S is a Deligne–Mumford stack, Set will denote the full subcate-

gory of Set consisting of étale maps u : U! S with U an algebraic space as objects.

(iii) The isovariant étale and smooth sites. If S is an algebraic stack, Siso:et will

denote the full subcategory of Set consisting of (representable) maps u : S0 ! S that

are also isovariant. Siso:smt is defined similarly as a full subcategory of Ssmt. For the

most part we will only consider the site Siso:et. (It follows from the lemma below that

these indeed define pretopologies (or sites) in the sense of Grothendieck.)

(iv) We will consider sheaves on any of the above sites with values in the category

of Abelian groups, or modules over a ring, etc. If C is any one of the above sites, we

will denote the corresponding category of sheaves on C by ShðCÞ.

LEMMA 3.2. ðiÞ Isovariant maps are representable.

ðiiÞ Isovariant maps are stable by base-change and composition.

Proof. (i) Let f : S0 ! S denote an isovariant map. Let f : V! U denote a map

of schemes and let y 2 obðSUÞ. To prove (i), it suffices to show that for each such pair

ðf; yÞ, the category S0y;V whose objects are pairs (x 2 obðS0VÞ; g 2 HomSV
ð fðxÞ;

f �ð yÞÞ and where a morphism ðx1; g1Þ ! ðx2; g2Þ is a morphism h : x1! x2 in S0V so

that g1 ¼ g2 � fðhÞ is discrete. Let h1; h2 : x1! x2 denote two such morphisms. We

will show that h2 ¼ h1. Observe that fðh1Þ ¼ g	12 � g1 ¼ fðh2Þ and therefore

fðh	12 Þ � fðh1Þ ¼ fðh	12 � h1Þ ¼ id; since f induces an isomorphism on the inertia stacks,

124 ROY JOSHUA

https://doi.org/10.1023/A:1022849624526 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022849624526


it follows that h	12 � h1 ¼ id , i.e. h2 ¼ h1. This proves the category S0y;V is equivalent

to a set, i.e. is a discrete category (i).

(ii) Recall the inertia stack IS ¼ S�S�S S where both the maps S! S � S are the

diagonal maps. Now one may show readily that an atlas for IS ¼ the equalizer of the

two maps

X�
S

X 	!
p1

		!
p2

X

where x : X! S is an atlas for the stack S. Since equalizers are preserved by pull-

backs it follows readily that isovariant maps are stable under base-change. It is clear

that isovariant maps are also stable under composition. &

EXAMPLE 3.3 (Quotient stacks). Let G denote a smooth group scheme acting on

an algebraic space X. The objects of ½X=G�iso:et may be identified with maps

u : U! X where U is an algebraic space provided with a G-action so that u is étale

and induces an isomorphism on the isotropy groups. Observe that any representable

map S0 ! ½X=G� of algebraic stacks may identified with a G-equivariant map

u : U! X, with U an algebraic space. The iso-variance forces isomorphism of the

isotropy subgroups.

DEFINITION 3.4 (see [L-MB] (1.4.3)). An algebraic groupoid X consists of a triple

ðX0;X1;X2Þ of algebraic spaces provided with the following data:

(i) maps s; t : X1! X0 (s ¼ the source, t ¼ the target), X2 ¼ X1�s;X0;tX1

(ii) a map m : X1�s;X0;tX1! X1 which is associative in the obvious sense (which we

call the groupoid law)

(iii) a map e : X0! X1 so that the composition s � e ¼ idX0
¼ t � e, a map in : X1!

X1 so that, in2 ¼ idX1
, s � in ¼ t, t � in ¼ s, t �m ¼ s � pr2 and s �m ¼ t � pr1.

(Observe that, since in2 ¼ idX1
, in must be an isomorphism.) Moreover

(iv) m � ðidX1
� eÞ ¼ m � ðe� idX1

Þ ¼ idX1
, m � ðin� idÞ ¼ e � s and m � ðid� inÞ ¼

e � t.

DEFINITION 3.5. Let w denote an algebraic groupoid. Given an algebraic space

y : Y! X0, a left-action of the algebraic groupoid w on Y is given by an isomorphism

F : X1�s;X0;yY ffi X1�t;X0;yY so that Y ¼ ðY;X1�s;X0;yY Þ with

sY ¼ s� idY; tY ¼ t� idY; eY ¼ e� idY; inY ¼ in� idY;

mY : X1 �
s;X0;y

Y�
Y

X1 �
s;X0;y

Y ffi X1 �
s;X0;t

X1 �
s;X0;y

Y! X1 �
s;X0;y

Y ¼ m� idY

defines an algebraic groupoid. We say y : Y! X0 has trivial action by the groupoid if

the following conditions are satisfied: X1�s;X0;yY ¼ X1�t;X0;yY and the isomorphism

F ¼ id. (See Proposition 3.7 for a some what different explanation of groupoid

actions. The above definition of an action being trivial, though sufficient for our pur-

poses (since we consider triviality for actions only by inertia groupoids) is not the

most general.)
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3.1. CLASSIFYING SIMPLICIAL ALGEBRAIC SPACES

3.1.1. Sites

Let S denote an algebraic stack and let x : X! S denote an atlas. Let BxS denote

the classifying simplicial algebraic space associated to x: i.e. ðBxSÞn ¼ ðcoskS
0 X Þn ¼

X�SX � � � �SX. One defines the small smooth (étale) site of BxS as in [Fr], p. 7. Recall

each object in this site will be an object in the smooth (étale site) of some ðBxSÞn for

some n and a morphism between two such objects will be a map lying over some

structure map of BxS. We will denote these sites by BxSsmt (BxSet, respectively).

The corresponding big sites will be denoted SMTðBxSÞ (ETðBxSÞ, respectively).

Recall that an object in the corresponding big site consists of an object U in

SMTðBxSnÞ (ETðBxSnÞ) for some fixed integer n with morphisms between two such

objects defined as morphisms lying over some structure map of the simplicial space

BxS. Coverings are defined in the obvious manner and coincide in the small and the

corresponding big sites.

3.1.2. Topoi

Given a site as above associated to a simplical algebraic space X, a sheaf F on X in the

above site will be given by a collection F ¼ fFnjng of sheaves Fn on the corresponding

site of Xn along with maps Fa : a�ðFnÞ ! Fm for any structure map a : Xm ! Xn.

Moreover, the maps fFajag are required to satisfy an obvious compatibility condi-

tion. The category of all sheaves of sets on the small smooth site (the small étale site,

the big smooth site, the big étale site) of X will be denoted ShsetsðXsmtÞ (ShsetsðXetÞ,

ShsetsðSMTðX ÞÞ, ShsetsðETðX ÞÞ, respectively). A sheaf F ¼ fFnjng on a simplicial space

X has descent if the maps Fa are all isomorphisms. The category of sheaves with des-

cent forms a full subcategory closed under extensions. For example, the category of

sheaves of sets with descent on the small smooth site will be denoted Shdes
setsðXsmtÞ. If C

is any of the above sites, PreshsetsðCÞ will denote the corresponding category of pre-

sheaves of sets.

3.1.3. The above discussion also applies to truncated simplicial algebraic spaces and

in particular to algebraic groupoids. Given an algebraic groupoid w, one defines the
associated small (big) smooth and étale sites as the corresponding sites of the

truncated simplicial space consisting of the X0, X1 and X2 ¼ X1�X0
X1 along with

the given structure maps between them. A sheaf on such a site will consist of a

collection of sheaves F ¼ fFnjn ¼ 0; 1; 2g, with Fi on Xi along with structure maps

fFa : a�ðFnÞ ! Fmjag as above. For example, the category of sheaves of sets on the

small étale site of w will be denoted ShsetsðwetÞ. The corresponding full sub-category

of sheaves with descent will be denoted Shdes
setsðwetÞ. (Presh

des
setsðwetÞ will denote the full

subcategory of PreshsetsðwetÞ where the corresponding maps Fa are isomorphisms of

presheaves.)
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3.1.4. Observe that there exists an equivalence

ShsetsðX0;etÞ ’ ðalgebraic spaces etale and locallyÞ

ðof finite type over X0Þ

This extends to an equivalence

ShdessetsððBxSÞetÞ ’ ðalgebraic spaces Y in ðX0ÞetÞ

ðwith an action by the groupoid wÞ

Remark 3:6: All the above definitions apply to Abelian sheaves or sheaves of

R-modules, where R is a commutative ring. However, for the most part, we will be

concerned with the topoi of sheaves of sets.We will also consider mostly the étale sites.

3.1.5. One may obtain the following alternate description of sheaves with descent on

the big étale site of an algebraic groupoid w. Let w denote an algebraic groupoid. A

sheaf F of sets on ETðX0Þ has an action by w if there is a given a pairing:

m : X1�s;X0;fF! F (where f : F! X0 is the obvious structure map) which makes

the square

X1 �
s;X0;f

F !
m F

pr1

  

f

X1 !
t X0

Cartesian and which is associative in the sense that the diagram

X1 �
s;X0;t

X1 �
s;X0;f

F !
id�m

X1 �
s;X0;f

F

m�id

 

m

 

X1 �
s;X0;f

F !
m

F

commutes. (Here we view Xi as the obvious sheaves represented by the algebraic

spaces Xi, i ¼ 1; 2.) We denote this full subcategory of sheaves of sets on ETðX0Þ

by ShwsetsðETðX0ÞÞ.

PROPOSITION 3.7. There exists an equivalence ShdessetsðETðwÞÞ ’ ShwsetsðETðX0ÞÞ.

Proof. Let F ¼ ðF0;F1;F2;FÞ denote a sheaf of sets with descent on ETðwÞ. Let
f0 : F0 ! X0 denote the given map. Now one obtains the diagram
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where the first and last squares are Cartesian. Given a scheme Y over X0 and maps

a : Y! F0, g0 : Y! X0 and g1 : Y! X1 so that s � g1 ¼ g0 and f0 � a ¼ g0, one

defines the map mðg1; g0; aÞ : Y! F0 by first taking the induced map

Y! pr�2ðF0Þ !
F

m�ðF0Þ and then following it by the map m�ðF0Þ ! F0 forming the

last map in the top row of the above diagram. Now the associativity condition above

follows from the co-cycle condition on the isomorphism F. Conversely maps

Y! X1�s;X0;fF correspond under the action m to a unique map Y! X1�t;X0;fF

thereby providing an isomorphism pr�2ðF Þ ffi m�ðF Þ. The associativity of the action

will provide the necessary co-cycle conditions. &

PROPOSITION 3.8. Let S denote an algebraic stack, x : X! S an atlas, w ¼ the

associated algebraic groupoid and BxS ¼ the associated classifying simplicial algebraic

space.

ðiÞ There exist maps �x : ðBxSÞet ! Set and ~x : w ¼ tr2ðBxSÞet ! Set of sites

ðiiÞ One obtains an equivalence of categories:

ShsetsðSsmtÞ ’ Shdes
setsðwsmtÞ ’ Shdes

setsðBxSsmtÞ ’ Shdes
setsðBxSetÞ ’ Shdes

setsðwetÞ.

ðHere tr2 denotes the truncation of the classifying simplicial algebraic space BxS above

degree 2:Þ

Proof. The first assertion is clear. The first equivalence in (ii) is provided by

descent theory, while the second follows readily by the identities relating the com-

positions of the structure maps of the simplicial space BxS. For an algebraic space,

any smooth cover has a refinement by an étale cover. Therefore, if E : wsmt ! wet is the
obvious map of sites, E� � E� is naturally isomorphic to the identity showing E� is

fully-faithful. One may also show the composition E� � E� is naturally isomorphic to

the identity showing the functor E� is an equivalence. &

PROPOSITION 3.9. Let S denote an algebraic stack, x : X! S an atlas and BxS the

corresponding simplicial algebraic space. Then there exists a map of simplicial alge-

braic spaces p� : BðX�SISÞ ! BxS where the first is the classifying simplicial algebraic

space associated to the group-scheme X�SIS over X.

Proof. Observe that BðX�SISÞn ¼ the n-fold fibered product of X�SIS over X. If

n ¼ 0, this is just X and in this case the map p0 ¼ idX. Both the structure maps

BðX�
S

ISÞ1 ¼ X�
S

IS ! X ¼ BðX�
S

ISÞ0

are the same and are given by the projection to the first factor. Observe that if T is

scheme,

X�
S

XðT Þ ¼ fðc1;c2;fÞjci 2 XðT Þ; f : xðc1Þ!
ffi

xðc2Þ in SðT Þg

while

128 ROY JOSHUA

https://doi.org/10.1023/A:1022849624526 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022849624526


X�
S

ISðT Þ ¼ fðc
0
1; ðc

0
20;c

0
21Þ; ZÞjc

0
1 2 XðT Þ; c020 2 SðT Þ; c021 2 Autðc020Þ;

Z : xðc01Þ!
ffi
c020 in SðT Þg:

Now p1ðc
0
1; ðc

0
20;c

0
21Þ; ZÞ ¼ ðc

0
1;c

0
1; Z
	1 � c021 � ZÞ. The remaining maps fpnjn5 1g

are defined similarly and one may readily verify that the maps pn commute with

the structure maps of the simplicial algebraic spaces. &

PROPOSITION 3.10. Let S denote an algebraic stack and let F denote a sheaf on

Ssmt. Let E : IS ! S denote the obvious map, let m, pr1, pr2 : IS�SIS ! IS denote the

group action and the obvious projections and let e : S! IS denote the unit.

ðiÞ Let x : X! S denote an atlas for S. The map p ¼ p1 : X�SIS ! X�SX makes

the triangle commute.

ðiiÞ Let �x : X�SIS ! IS denote the obvious map induced by x. Let �m, pr1,

pr2 : X�SIS�SIS ! X�SIS denote the obvious maps induced by m, pr1 and pr2.

Let �e : X! X�SIS denote the map induced by e. Then there exists an isomor-

phism f : �x�E�ðF Þ ! �x�E�ðF Þ satisfying a cocycle condition between the pull-

backs by m, pr1 and pr2 and so that the pull-back by �e is the identity.

Proof. Let x : X! S denote an atlas for S. The last proposition shows we obtain

the commutative diagram:

ð3:1:6Þ

The maps di are the obvious maps of the simplicial algebraic spaces above. Now

there exists an isomorphism f : p�1x
�ðF Þ ! p�2x

�ðF Þ satisfying an obvious co-cycle

condition. Consider p�ðfÞ. Observe that p�p�1x
�ðF Þ ¼ pr�1x

�ðF Þ ¼ �x�E�ðF Þ and simi-

larly p�p�2x
�ðF Þ ¼ pr�1x

�ðF Þ ¼ �x�E�ðF Þ. Therefore, p�ðfÞ defines an isomorphism

�x�E�ðF Þ ! �x�E�ðF Þ. Moreover, the commutative diagram on the left provides the

cocycle condition between the three pull-backs of this to X�S IS�S IS. The map �e

is a section to pr1 and if d : X! X�SX is the diagonal, d ¼ p � �e. &
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EXAMPLE 3.11. Let S ¼ ½X=G� where G is a finite group acting on a scheme. Now

X�SIS ¼ [x2X Gx � XGx and it is clear that there is an action by X�SIS on any

G-equivariant sheaf F on X: in fact this corresponds to a representation of Gx on

each stalk Fx.

DEFINITION 3.12. Assume as in the above situation that S is an algebraic stack,

x : X! S is a given atlas and BxS the associated classifying simplicial algebraic

space. We let Shtr:in
sets ðBxSetÞ denote the full-sub-category of Shdes

setsðBxSetÞ where the

isomorphism f given in the last proposition is the identity. Shtr:in
sets ðtr2ðBxSÞetÞ is

defined similarly. (One defines Preshtr:in
sets ðBxSetÞ similarly.)

The following result should be taken as the key to understanding and working

with the isovariant étale sites.

THEOREM 3.13. Assume that S is finitely presented over the base scheme S, a coarse

moduli space m exists ðas an algebraic spaceÞ for the stack S and that S is a gerbe over

M. ðiÞ Then the functor V 7!V�M S, Met ! Siso:et is an equivalence of sites. ðiiÞ Let

m : S! m denote the obvious map. Then the functor F 7! �x�m�ðF Þ defines an

equivalence of categories ShðMetÞ ! Shtr:in
ðBxSetÞ

Proof. We will prove the second part of the theorem first. We consider the

following commutative diagram

ð3:1:7Þ

Let F denote a sheaf on BxSet so that F ¼ �x�m�ð �F Þ for some sheaf �F on Met. Now we

retrace our arguments above showing the existence of the isomorphism

p�ðfÞ : p�p�1x
�ðF Þ ! p�p�2x

�ðF Þ (see (3.1.6).). The key observation is that the compo-

sition X�S IS !
p X�S X!

Z
X�M X factors as X�S IS !

pr1 X!D X�M X. Since

D�ðfÞ is the identity, it follows that so is p�ðfÞ. This proves that if �F is a sheaf on

met, then �x�m�ð �F Þ 2 Shtr:in
ðBxSetÞ.

To see the converse suppose F is a sheaf on BxSet with descent. Using the notation

as in (3.1.6), there exists an isomorphism f : p�1ðF Þ ! p�2ðF Þ satisfying an obvious

cocycle condition and whose pull-back by the diagonal to X is the identity. We will

first show that there exists an isomorphism �f : p01
�
ðF Þ ! p02

�
ðF Þ so that f ¼ Z�ð �fÞ.

To see this one needs to observe that the map induced by m, X�S X!
Z

X�MX is

faithfully-flat. (Since this is local on m in the fppf topology, one may readily reduce

to the case where the stack is a neutral gerbe in which case the map m and therefore

the above induced map has a section. To be precise, consider the pull-back of the

stack to X by the map X! S! m where X! S denotes an atlas. The pull-backed
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stack is a neutral gerbe over X and X is flat over m.) Therefore, by faithfully-flat des-

cent it suffices to show that p�1ðfÞ ¼ p�2ðfÞ where

pi : X�
S

X �
X�X
M

X�
S

X! X�
S

X

denotes the projection to the ith factor. (Recall that faithfully flat maps between

algebraic spaces satisfy the following condition (see [Mur] p.121, p.124): let

X! Y denote a faithfully flat map and which is also locally of finite type between

algebraic spaces. Then a map f : X! X descends to a map g : Y! Y if

p�1ð f Þ ¼ p�2ð f Þ, where pi : X�YX! X is the projection to the ith factor.) Observe

from the diagram (3.1.7) that pi ¼ p0i � Z, i ¼ 1; 2. Therefore, p �i ðfÞ : p
�
i Z
�p01
�
ðF Þ !

p �i Z
�p02
�
ðF Þ. Now Z � p1 ¼ Z � p2. It follows therefore that both p�1ðfÞ and p�2ðfÞ

map p�1Z
�p01
�
ðF Þ to p�1Z

�p02
�
ðF Þ. Recall that the fibres of pi are the orbits of X�S IS

and that the map p�1ðfÞ is an equivariant map between two equivariant sheaves

for the action of the group-scheme X�S IS. Therefore, it suffices to show that the

maps p�1ðfÞ and p�2ðfÞ agree at the stalk at a point in each fibre. Since the maps pi

have a section, namely the diagonal map, it follows that this is indeed the case.

Therefore, p�1ðfÞ ¼ p�2ðfÞ and therefore there exists a map �f : p01
�
ðF Þ ! p02

�
ðF Þ so

that f ¼ Z�ð �fÞ.
Observe that the projection pr1 : X�S IS ! X is faithfully flat by the hypotheses

and that Z � p ¼ D � pr1. The hypothesis that F 2 Shtr:in
ðBxSetÞ implies that the iso-

morphism p�Z�ð �fÞ is the identity. But pr�1D
�
ð �fÞ ¼ p�Z�ð �fÞ and pr1 is faithfully flat;

therefore, D�ð �fÞ itself is the identity. The faithful flatness of Z readily implies that

the pull-backs of �f to X�M X�MX satisfy the required co-cycle condition. This com-

pletes the proof of the second part of the theorem.

Now we consider the first part. Observe that any isovariant étale map S0 ! S in

Siso:et is a representable étale map. We will show that S0 ¼M0 �M S for some étale

map M0 !M. Let x : X! S denote an atlas for the stack S and let

x0 : X 0 ¼ X�S S0 ! S0 denote the induced atlas for S0. Observe that X�S IS is a

group scheme over X and that it acts on X�S X as in Proposition 3.10 with the geo-

metric quotient being X�M X. By isovariance, IS0 ffi IS �S S0 and X 0�S0IS0 ffi

X 0�XX�SIS. Therefore, we obtain the Cartesian square:

The two left columns define a flat equivalence relation on X 0. (They are flat since they

are obtained by base-change from the two right-most columns: now one may identify

X�S X=ðX�SISÞ with X�M X and the two projections pri with the corresponding

projections from the latter to X.) Therefore, the quotient of this flat equivalence rela-

tion exists as an algebraic space M0. Moreover, the map X 0 ! X induces a map
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M0 !M so that one obtains a Cartesian square:

Now the bottom map is also étale by descent theory. Observe that

X 0�
S0

X 0 ffi X�
S

X�
S
S0 ¼ ðX�

S
X Þ�

M
M0 and X�

S
S0 ffi X�

M
M0:

Therefore, S0 ¼M0 �M S. This completes the proof of the first assertion in the

theorem &

COROLLARY 3.14. Assume the hypotheses of Theorem 3:13: Then one obtains an

equivalence of the following categories of sheaves Shtr:in
ðBxSetÞ, ShðSiso:etÞ and ShðmetÞ

Proof. This is clear from the last theorem. &

Remark 3:15: Let Shtr:in
sets ðSetÞ denote the category of all sheaves of sets on Set with

trivial action by the inertia stack IS as in Definition 3.12. It is necessary for us (see

Proposition 3.18) below to show that this is a Grothendieck topos and therefore that

there exists a site Str:in
et so that the category of sheaves of sets on Str:in

et is Shtr:in
sets ðSetÞ.

We will begin by recalling the situation in Definition 3.5.

PROPOSITION 3.16. Let w ¼ ðX0;X1Þ denote an algebraic groupoid associated to an

algebraic stack S with x : X0! S an atlas. Then Shdes
setsðwetÞ and Shdes

setsðBxSetÞ are

Grothendieck topoi.

Proof. Observe that the small étale topos on X0, ShsetsðX0;etÞ is a Grothendieck

topos. By using suitable universes one may also ensure that so is the big étale topos

on X0, i.e. ShsetsðETðX0ÞÞ. Let w ¼ tr2ðBxSÞ denote the algebraic groupoid obtained

by truncating the simplicial algebraic space BxS. Since the obvious functor from the

category of sheaves on the groupoid to the category of sheaves on X0 preserves and

reflects colimits and finite limits the conditions in [SGA]4, IV, 1.1.2(a), (b) and (c)

hold. Now it suffices to show that the categories Shdes
setsðwetÞ and Shdes

setsðBxSetÞ have a

small family of generators.

We begin with the observation that the category ShsetsðSsmtÞ is a Grothendieck

topos and therefore has a small family of generators. Now the equivalences of cate-

gories in Proposition 3.8 completes the proof. &

PROPOSITION 3.17. Let i : S0 ! S denote a closed immersion of algebraic stacks

with open complement j : S1! S. Now j induces an open immersion of the topoi with

complementary closed immersion i ðin the sense of ½SGA� 4, IV, ð9:3:5Þ, i.e. i� and j� are

fully-faithful and that the image of i� is the subcategory of objects that j� sends to fÞ:

ShðBx0
S0;etÞ!

i�
ShðBxSetÞ 

j�
ShðBx1

S1;etÞ; ð3:1:8Þ
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Shtr:in
ðBx0

S0;etÞ!
i�
Shtr:in

ðBxSetÞ 
j�
Shtr:in

ðBx1
S1;etÞ: ð3:1:9Þ

Moreover, the functor

j! : ShðBx1
S1;etÞ ! ShðBxSetÞ ði� : ShðBx0

S0;etÞ ! ShðBxSetÞÞ

induces a functor

j! : Sh
tr:in
ðBx1

S1;etÞ ! Shtr:in
ðBxSetÞ ði� : Sh

tr:in
ðBx0

S0;etÞ ! Shtr:in
ðBxSetÞ;

respectivelyÞ with j! ði�Þ left-adjoint to j � ðright-adjoint to i �, respectivelyÞ.

Proof. The results of [SGA] 4, VIII, (6.3) extended to algebraic spaces and then to

simplicial algebraic spaces readily proves the assertion for (3.1.8). The observation

that in the diagram

X�
S0

IS0
!

i
X�

S
IS 

j
X�

S1

IS1

j is an open immersion with i its complementary closed immersion, along with (3.1.8)

shows that (3.1.9) is also true. The last assertion regarding j! and i� may be verified

readily. &

PROPOSITION 3.18. Let S denote an algebraic stack that is finitely presented

over the base scheme S with an atlas x : X! S. Then the topos Shtr:in
sets ðBxSetÞ is a

Grothendieck topos.

Proof. Since the obvious functor Shtr:in
ðBxSetÞ ! ShðBxSetÞ preserves and reflects

colimits and finite limits, the conditions in [SGA]4, IV, 1.1.2(a), (b) and (c) hold.

Now it suffices to show the existence of a small family of generators to satisfy the

condition of [SGA]4, IV, 1.1.2(d). Observe that there exists a finite filtration

S0 � S1 � � � � � Sn ¼ S by locally closed algebraic substacks Si so that each

ðSi 	 Si	1Þred is a gerbe over its coarse moduli-space. Let xi : Xi ! Si 	 Si	1 denote

the induced atlas for Si 	 Si	1. By Theorem 3.13, each of the topos

Shtr:in
ðBxi
ðSi 	 Si	1ÞetÞ is a Grothendieck topos. The last proposition shows that the

category Shtr:in
ðBxSetÞ is obtained by gluing the sub-categories Shtr:in

ðBxi

ðSi 	 Si	1ÞetÞ. For each i ¼ 1; . . . ; n, let ji : Si 	 Si	1! S denote the obvious locally

closed immersion. Clearly, if fGa
i jag is a set of generators for Shtr:in

ðBxi
ðSi 	 Si	1ÞetÞ,

the collection fji!ðG
a
i Þja; ig will be a set of generators for Shtr:in

ðBxSetÞ. &

COROLLARY 3.19. ðiÞ There exists a site BxStr:in
et so that the category of sheaves of

sets on the latter is equivalent to Shtr:in
sets ðBxSetÞ.

ðiiÞ Now there exist a map

BxStr:in
et !

e Siso:et

of sites. The corresponding inverse-image functor e	1 sends coverings to coverings.

e� : ShsetsðSiso:etÞ ! Shtr:in
sets ðBxSetÞ is fully-faithful.
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ðiiiÞ There exists a map of topoi f � : Shtr:in
sets ðBxSetÞ ! Shdes

setsðBxSetÞ which is also faith-

ful and conservative.

Proof. The first assertion follows from Giraud’s Theorem as in [SGA]4, IV

Theorem (1.2), in view of the proposition above. It may be worthwhile recalling the

construction of the associated site starting with the given set of generators for the

category Shtr:in
sets ðBxSetÞ. First, one enlarges the given set of generators by taking all

finite inverse limits among them. These form the objects of the site. The topology on

this site is the one induced by the canonical topology on the given category

Shtr:in
sets ðBxSetÞ. Now observe that coverings are given by universal epimorphisms.

Given an object S0 ! S in Siso:et, observe that IS0 ffi S0�SIS. Therefore, the sheaf

represented by X 0 ¼ S0�SX on BxSet has trivial action by X�SIS . Clearly it has des-

cent. Therefore, it defines a sheaf in Shtr:in
sets ðBxSetÞ. The functor S0 7!X 0 7! hX 0 ¼ the

sheaf represented by X 0, preserves pull-backs and sends coverings to epimorphisms.

This defines the map of sites e. To show that e� is fully-faithful, it suffices to show

that e� � e� ¼ id. We will establish this as follows.

First consider the functor e	1 : Siso:et ! BxStr:in
et . We observe this is fully faithful as

follows. Suppose f; g : S0 ! S00 are maps in Siso:et so that e	1ð f Þ ¼ e	1ðgÞ : e	1ðS0Þ !
e	1ðS00Þ. This being a map of sheaves in Shtr:in

ðBxSetÞ � Shdes
ðBxSetÞ satisfies descent

conditions to descend to a unique map S0 ! S00. i.e. f and g must be equal to begin

with. This shows the functor e	1 is faithful. To see it is full, let f : e	1ðS0Þ ¼
hX 0 ! e	1ðS00Þ ¼ hX00 denote a map in Shtr:in

ðBxSetÞ. By the Yoneda lemma, f is

induced by a map g : X 0 ! X00 which satisfies descent conditions to descend to a

unique map S0 ! S00. This shows e	1 is also full.

Now consider GðU; e�e
�ðF Þ, for U 2 Siso:et and F 2 ShðSiso:etÞ. e�ðF Þ is the sheafi-

fication of the presheaf e#ðF Þ and

GðU; e�e
#ðF ÞÞ ¼ Gðe	1ðUÞ; e#ðF ÞÞ ¼ lim

	!

e	1 ðUÞ!e	1 ðWÞ

GðW;F Þ:

By the arguments in the above paragraph, the last colimit identifies with

lim
	!

U!W

GðW;F Þ ¼ GðU;F Þ.

This shows e� � e#ðF Þ ¼ F for any sheaf F 2 ShðSiso:etÞ. Therefore (denoting the

functor sending a presheaf to the associated sheaf by a) and making use of Proposi-

tion 3.25 (below) we obtain

e� � e�ðF Þ ¼ e� � a � e#ðF Þ ¼ a � e� � e#ðF Þ ¼ e� � e#ðF Þ ¼ F:

It follows that e� is fully-faithful.

Now we consider (iii). The obvious (inclusion) functor Shtr:in
sets ðBxSetÞ !

Shdes
setsðBxSetÞ preserves all colimits and finite limits and therefore by [SGA]4, IV,

3.13, may be written as f � for a map f of the corresponding topoi. Clearly this func-

tor is (fully)-faithful and, hence, conservative. &

Remark 3:20: In Theorem 3.27 we will prove that the functor e� is an equivalence

of categories, in general. Observe that the forgetful functor sending a presheaf of
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Abelian groups, or modules over a ring to the corresponding presheaf of sets

preserves limits. Therefore, it sends sheaves to sheaves and induces an equivalence

between the category of sheaves of, say Abelian groups and the sub-category of

Abelian-group objects of the category of sheaves of sets. This observation shows that

there exists a functor e� on the corresponding categories of sheaves of, say Abelian

groups. This will also be fully-faithful on the corresponding categories.

PROPOSITION 3.21. Let f : S1 ! S0 denote a representable map of algebraic stacks

finitely presented over S that is integral, radicial and surjective. Let x0 : X0! S0

denote an atlas, Bx0
S0 the corresponding simplicial algebraic space, x1 : X1 ¼

X0�S0
S1! S1 the induced atlas and Bx1

S1 the corresponding simplicial algebraic

space. Then f � defines equivalences

ShsetsðBx0
S0;etÞ ! ShsetsðBx1

S1;etÞ; Sh
tr:in
sets ðBx0

S0;etÞ ! Shtr:in
sets ðBx1

S1;etÞ:

Moreover, f � also induces an equivalence:

ShsetsðS0;iso:etÞ ! ShsetsðS1;iso:etÞ:

Proof. The induced map Bf� : Bx1
S1! Bx0

S0 is integral, radicial and surjective in

each degree. Moreover, so is the induced map BX1�S1
IS1
! BX0�S0

IS0
. One may

verify the latter by observing the Cartesian square where p is the map defined in

Proposition 3.9:

This proves the first assertion. Now f � induces a map ShsetsðS0;iso:etÞ ! ShsetsðS1;iso:etÞ.

Since the functors

e� : ShsetsðS0;iso:etÞ ! Shtr:in
sets ðBxS0;etÞ; e� : ShsetsðS1;iso:etÞ ! Shtr:in

sets ðBx1
S1;etÞ

are fully-faithful, it follows from the first assertion that f � : ShsetsðS0;iso:etÞ !

ShsetsðS1;iso:etÞ is also fully-faithful. Therefore, it suffices to show the following: given

S01 ! S1 isovariant and étale in the site S1;iso:et, there exists an isovariant étale map

S00 ! S0 so that S01 ¼ S00�S0
S1.

For this, observe that f � induces an equivalence of the étale sites

X0;et ! X1;et and ðX0�
S0

X0Þet! ðX1�
S1

X1Þet:

Therefore, one obtains equivalences of categories:

ShsetsðX0;etÞ ’ ShsetsðX1;etÞ; ShsetsððX0�
S0

X0ÞetÞ ’ ShsetsððX1�
S1

X1ÞetÞ:

In view of the equivalence of categories in Proposition 3.8, one observes that the

functor
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f � : ShsetsðX0;smtÞ ! ShsetsðX1;smtÞ ð3:1:10Þ

is also fully faithful.

Let S01 ! S1 denote an isovariant étale map in the site S1;iso:et; let X01 ¼ X1 �S1
S01.

The equivalence of the étale sites of X0 and X1 shows that there exists an étale map

X00! X0 so that f �ðX00Þ ¼ X01. Similarly, there exists an étale map X000 ! X0 �S0
X0

so that f �ðX000Þ ¼ X01 �S01 X01 ¼ X001. Let a1, b1 denote the two obvious maps

X001 ! X01: the map X001 !
a1�b1 X01 � X01 is separated and quasi-compact. By (3.1.10), it

follows that there exist two smooth maps a0, b0 : X000 ! X00 so that f �ða0Þ ¼ a1 and

f �ðb0Þ ¼ b1. Since the induced maps X01! X00 and X001 ! X000 are radicial and surjec-

tive (and hence universal homeomorphisms), one may see that the induced map

X000 !
a0;b0

X00 � X00 is separated and quasi-compact.

Therefore, X000
	!

a0

		!
b0

X00 defines an algebraic groupoid. (The groupoid law is defined

by requiring that f � applied to the the composition X000 �X0
0

X000 ! X000 is the composi-

tion X001 �X0
1

X001 ! X001. Similarly the remaining structure maps of the groupoid are

defined by requiring f � applied to a structure map of the groupoid is the correspond-

ing structure map of the groupoid X000
	!

a1

		!
b1

X00 that corresponds to the algebraic stack

S01.) Let S00 denote the corresponding algebraic stack. Clearly f �ðS00Þ ¼ S01 since

f �ðX00Þ ¼ X01 and f �ðX000Þ ¼ X001.

Now we proceed to show that S00! S0 is isovariant étale and that the induced

map S01! S00 is integral, radicial and surjective. The last assertion follows by faith-

fully flat descent since the maps X01 ! X00 and X001 ! X000 are both integral, radicial

and surjective. One may show the isovariance of S00! S0 as follows. First the iso-

variance of S01 ! S1 implies X1 �S1
IS1

acts trivially on the sheaf X01 where the action

is defined as in Proposition 3.10. The diagrams in (3.1.6) for X ¼ X1 and X0 (with the

corresponding stack S ¼ S1 and S0) correspond under pull-back by maps that are

integral radicial and surjective: therefore, the action of X0 �S0
IS0

on X00 is also

trivial. This shows X00 �S0
IS0
� X00 �S00 IS00 . Since the map S00! S0 sends IS00 to

IS0
, clearly X00 �S00 IS00 � X00 �S0

IS0
. Therefore X00 �S00 S

0
0 �S0

IS0
¼ X00 �S00 IS00 . Since

X00! S00 is faithfully flat, it follows that S00 �S0
IS0
¼ IS00 . This proves the map

S00 ! S0 is isovariant. To see it is also étale, observe the commutative diagram:

By comparison with the corresponding diagram involving S01 and S1, one may see

that the squares in the above diagram are in fact Cartesian; similarly,

X000 ¼ X00 �S00 X00. The two left vertical maps are étale and therefore, by faithfully flat

descent, the induced map S00! S0 is also étale. &
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THEOREM 3.22. Let i : S0! S denote a closed immersion of algebraic stacks

finitely presented over the base scheme S. Let a : S00! S0 denote an isovariant étale

map in S0;iso:et. Then there exists an isovariant étale map S0 ! S in Siso:et so that

i�ðS0Þ ¼ S00.
Proof. Let x : X! S denote a fixed atlas for S which we will assume is a sepa-

rated and quasi-compact scheme. Let S1 ¼ S 	 S0 and let xi : Xi ! Si denote the

induced atlases for Si, i ¼ 0; 1. Clearly X0 is a closed sub-scheme of X with open

complement X1.

Step 1. Next we begin with the following diagram:

X00

 

f0

X0 !
i X

where X00 ¼ S00 �S X. In this diagram, the map f0 is étale, while �i is a closed immer-

sion. By [EGA]IV, 18.1.1 the following hold: there exists a family fUi ! Xjig of étale

maps so that fUi �X X0! X0jig forms an étale cover of X0 and each of the maps

Ui �X X0 ! X0 factors through the map f0 : X00! X0, with the corresponding

map Ui �X X0! X00 a Zariski open immersion. Let ~X 0 ¼ tiUi and ~x0 : ~X 0 ! X be

the obvious induced map. This map is étale and the map ~X 0 �X X0! X0 factors

through an étale surjective map to X00.

Observe that ~X 0 �X X0 ¼ ~X 0 �X X�S S0 ffi ~X 0 �S S0. Therefore, the induced map

of this to S0 factors through a smooth surjective map to S00. i.e. ~X 0 �S S0 is also an

atlas for the stack S00.
Let

R0 ¼ ~X 0�
S
S0�

S00
~X 0�

S
S0 ð3:1:11Þ

Since the map ~X 0 �S S0! S00 is smooth surjective,

R0 : R0 	!
s

		!
t

~X 0�
S
S0 ð3:1:12Þ

defines an algebraic groupoid. (Observe that the map d ¼ ðs; tÞ : R0! ~X 0 �S S0�

~X 0 �S S0 is quasi-compact and separated in view of the hypotheses. The separated-

ness follows from the observation that ~X 0 �S S0 is a separated scheme. The groupoid

law is the obvious one.) Therefore, R0 defines an algebraic stack with ~X 0 �S S0 as an

atlas. By [L-MB] Remarque (4.8) this stack may be identified with the stack S00.
Next consider ~X 0 �X X1 where X1 ¼ X	 X0. Now the Cartesian square

~X 0 �
X

X1 !
~X 0

  

X1 ! X
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and the observation that the map ~X 0 ! X is étale, shows the induced map
~X 0 �X X1 ! X1 is also étale. Therefore, the image of this map is an open dense sub-

schemeofX1: call itW.Observe again that ~X 0 �X X1 ¼ ~X 0 �X X�S S1 ffi ~X 0 �S S1. Let

R1 ¼ ð ~X
0 �
S
S1Þ �

S1

ð ~X 0 �
S
S1Þ ð3:1:13Þ

Now

R1 : R1 	!
s

		!
t

~X 0�
S
S1 ð3:1:14Þ

defines an algebraic groupoid and therefore an algebraic stack with ~X 0 �S S1 as an

atlas. (Once again the separatedness and quasi-compactness of d ¼ ðs; tÞ follows

from that of ~X 0 �S S1.) We will denote this algebraic stack by S01. Clearly this maps

to S1. In order to show this defines an open sub-stack of S1 one may proceed as fol-

lows. First, using the construction of the algebraic stack S01, starting with the alge-

braic groupoid R1, one may observe that the map S01 ! S1 is a monomorphism

and hence also representable. (See [L-MB] Proposition (1.4.1.2).) The map from

the groupoid R1 to the groupoid ðX1 �S1
X1
	!
		! X1Þ factors through the sub-group-

oid given by the images of R1 in X1 �S1
X1 and W; this sub-groupoid also defines the

stack S01. Therefore, S01 is an open sub-stack of S1.

Step 2. Next we consider R ¼ R0 [ R1.

We claim that R defines an algebraic groupoid R on ~X 0 and that it is in fact an

open sub-algebraic space of ~X 0 �S ~X 0.

We consider the induced map:

s : ~X 0 �
S
S0�

S00
~X 0 �

S
S0! ~X 0 �

S
S0�S0

~X 0 �
S
S0: ð3:1:15Þ

Observe that the last term above may be identified with ~X 0 �S ~X 0 �S S0 ffi

ð ~X 0 �S S00Þ � S00 ð
~X 0 �S S0Þ. Clearly the latter maps by p ¼ ðid� aÞ � id to

ð ~X 0 �S S0Þ �S00 ð
~X 0 �S S0Þ. One may now readily verify that the composition p � s

is the identity. (One may verify this, for example, on the points of the algebraic

spaces we are considering.) Clearly p, being induced by a, is étale. Therefore, it fol-
lows that s (being a section to an étale map) is an open immersion.

Now observe that R1 ¼ ~X 0 �S S1 �S1
~X 0 �S S1 ffi ð ~X

0 �S ~X 0Þ �S S1. Let

F : R0 [ R1! ð ~X
0 �S ~X 0Þ �S S0 [ ð ~X

0 �S ~X 0Þ �S S1 ¼ ð ~X
0 �S ~X 0Þ �S S ¼ ~X 0 �S ~X 0

be the map induced by s on R0 to ð ~X 0 �S ~X 0Þ �S S0 and by the identity on R1 to

ð ~X 0 �S ~X 0Þ �S S1. Using the observation that s is an open immersion and that R1

maps by the identity to its image, one may readily see that the map F is in fact an

open immersion and hence in particular étale. Therefore, the compositions given

by F and the two projections ~X 0 �S ~X 0 ! ~X 0 are also smooth.

Therefore,

R 	!
F ~X

0
�
S

~X
0
	!

s

		!
t

~X
0

defines an algebraic groupoid and an associated algebraic stack. (Once again the

groupoid law is the obvious one.) We denote this stack by S0. The observation that
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R�S S0 ¼ R0 and R�S S1 ¼ R1 show that S0 �S S0 ffi S00 and S0 �S S1 ffi an open

sub-stack of S1.

Finally it suffices to show that the map S0 ! S is representable and is isovariant.

For the first it suffices to show that if z : Z! S is a map from an algebraic space,

Z�S S0 is an algebraic space. Now Z�S S0 �S0 S00 ! Z�S S0 is a closed immersion

while Z�S S0 �S0 S01! Z�S S0 is the complimentary open immersion. Both Z�S
S0�S0 S00 ffi Z�S S00 and Z�S S0 �S0 S01 ffi Z�S S01 are algebraic spaces: recall that

S00 ! S0! S and S01! S1! S are both representable morphisms. Therefore, it fol-

lows that Z�S S0 is also an algebraic space proving the map S0 ! S is representable.

Observe also that the maps S0i ! Si are isovariant: for i ¼ 0 this follows from the

hypothesis that S00! S0 is isovariant while for i ¼ 1 this follows from the observa-

tion that S01! S1 is an open immersion. &

Remark 3:23. The above theorem is established for quotient stacks in [T-3]

Lemma 2.14. Even for the action of a trivial group, such a result seems relatively

unknown and seems to hold only in the setting of algebraic spaces and not schemes.

The only result for schemes that holds in general, seems to be the result from [EGA]

IV, 18.1.1 that we used in Step 1 of the proof.

Throughout the next proposition PreshðCÞ will denote the category of presheaves of
sets on the site C. ShðCÞ will denote the corresponding category of sheaves of sets and

a : PreshðCÞ ! ShðCÞwill denote the functor sending a presheaf to its associated sheaf.

PROPOSITION 3.24. Let i : S0! S denote a closed immersion of algebraic stacks.

Let i# : PreshðS0;iso:etÞ ! PreshðSiso:etÞ be defined by GðV; i#PÞ ¼ GðV�S S0;PÞ.

i# : PreshsetsðBxS0;etÞ ! PreshsetsðBxSetÞ will denote the corresponding functor defined

similarly. Let i� : ShðSo;iso:etÞ ! ShðSiso:etÞ, i� : Sh
tr:in
ðBxS0;etÞ ! Shtr:in

ðBxSetÞ denote

the corresponding functors at the level of sheaves. Now i# induces a functor

Preshtr:in
sets ðBxS0;etÞ ! Preshtr:in

sets ðBxSetÞ and one obtains the equality

a � i# ¼ i� � a: ð3:1:16Þ

Moreover, if

e� : ShðSiso:etÞ ! Shtr:in
ðBxSÞ and e� : ShðS0;iso:etÞ ! Shtr:in

ðBx0
S0Þ

are the functors in Corollary 3:19, one also obtains the equality

e� � i� ¼ i� � e� ð3:1:17Þ

Proof. According to [SGA]4, II, Section 3, the sheafification functor a on any site

C is defined by

aðPÞ ¼ LLðPÞ; P 2 PreshðCÞ; ð3:1:18Þ

where PreshðCÞ denotes the category of presheaves of sets on the site C,

GðU;LðPÞÞ ¼ lim
R2JðU Þ
							!

HomPreshðCÞðR;PÞ ð3:1:19Þ
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and JðUÞ is the category of covering sieves of U, U 2 C. If R is generated by

fui : Ui ! Ujig,

HomPreshðCÞðR;PÞ ¼ Equalizer PG
i
ðUi;PÞ 	!

s

		!
s

PG
i;j
ðUi�

U
Uj;PÞ

 !
:

Recall that i� is just i# restricted to the category of sheaves. Therefore, it suffices to

show that i#L ¼ Li#. For U! S in Siso:et,

GðU;Li#PÞ ¼ lim
R2JðU Þ
							!

HomðR; i#PÞ ¼ lim
R2JðU Þ
							!

HomðR�
S
S0;PÞ ð3:1:20Þ

By Theorem 3.22, JðUÞ �
S
S0 is cofinal in JðUÞ �S S0. Therefore, the above colimit is

equal to the corresponding colimit lim
			!

R02JðU�SS0Þ

HomðR0;PÞ. One may identify this with

GðU�S S0;LðPÞÞ ¼ GðU; i#LðPÞÞ as required. This proves the first assertion for the

functor i� : ShðS0;iso:etÞ ! ShðSiso:etÞ. The remarks in 3.23 first show that the results

of the last theorem hold on the étale site of algebraic spaces and that functor

i# : PreshsetsðBxS0;etÞ ! PreshsetsðBxSetÞ preserves presheaves with descent and indu-

ces a functor i# : Presh
tr:in
sets ðBxS0;etÞ ! Preshtr:in

sets ðBxSetÞ. Now the identity in (3.1.16)

follows for the functor i� : Sh
tr:in
ðBxS0;etÞ ! Shtr:in

ðBxSetÞ by entirely similar argu-

ments as above.

Next we consider the second assertion. Let F denote a sheaf on Siso:et or on S0;iso:et.

According to [SGA] 4, III (1.3), e�ðF Þ is the sheafification of the presheaf e#F defined

by GðU; e#F Þ ¼ lim
			!

U!e	1ðWÞ

GðW;F Þ. Here e	1 : Siso:et ! BxStr:in
et is the inverse-image

functor associated to the map of sites e in Corollary 3.19. The colimit is taken over

the filtered category which is the opposite of the comma category U=e. (Recall the

objects of the category U=e are w : W! S in Siso:et along with a map

w0 : U! e	1ðWÞ. Morphisms from ðw1 : W1! S;w01Þ to ðw2 : W2! S;w02Þ are given

by maps f : W1!W2 in Siso:et so that w02 ¼ w01 � e	1ðfÞ. (A similar description

applies to the functor e# for e	1 : S0;iso:et ! BxStr:in
0;et .)

Next apply the identity in ( 3.1.16) for the map of sites Bx0
Str:in
0;et ! BxStr:in

et . There-

fore, i� � e� ¼ i� � a � e# ¼ a � i# � e#, i.e. i� � e�ðF Þ is the sheaf associated to the pre-

sheaf

GðU; i#e#F Þ ¼ GðU�
S
S0; e#F Þ ¼ lim

			!

ðU�
S

SOÞ!e	1ðw0Þ

GðW 0;F Þ ð3:1:21Þ

On the other hand, e�i�ðF Þ ¼ ae#i�F ¼ ae#i#F Þ which is the sheaf associated to the

presheaf

GðU; e#i#F Þ ¼ lim
			!

ðU!e	1ðwÞ

GðW; i#F Þ ¼ lim
			!

ðU!e	1ðwÞ

GðW�
S
S0;F Þ

The colimit is taken over the isovariant étale W! S provided with a map

U! e	1ðWÞ. By Theorem 3.22, the filtered category appearing in the last colimit

is cofinal in the filtered system appearing in the colimit in ( 3.1.21). Therefore, the
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colimits in ( 3.1.21) and ( 3.1.22) are isomorphic. This proves the second assertion of

the proposition. &

PROPOSITION 3.25. Let S denote an algebraic stack finitely presented over the base

scheme S. Let e� : PreshsetsðBxStr:in
Þ ! PreshsetsðSiso:etÞ denote the direct image functor

associated to the map of sites e : BxStr:in
! Siso:et. If a denotes the functor sending a

presheaf to the associated sheaf, then there is a natural isomorphism a � e� ffi e� � a.

Proof. Observe that if L is the functor as defined in ( 3.1.18), then a ¼ L � L.

Therefore, it suffices to show that e� commutes with the functor L. This will follow,

once we show that given any cover v : V! e	1ðUÞ in Shtr:in
ðBxSetÞ for any U 2 Siso:et,

one may find an isovariant étale u0 : U0 ! Uiso:et so that v ¼ e	1ðu0Þ : V ¼

e	1ðU0Þ ! e	1ðUÞ. Let V! e	1ðUÞ be a given cover. Observe that V is a sheaf of sets

with descent and with trivial action by the inertia on BxUet. Observe also that

e	1ðUÞ ! U is an atlas and, therefore,

e	1ðUÞ �
U

e	1ðUÞ
	!

s

	!
t e	1ðUÞ

is a presentation for the algebraic stack U. V is represented by an algebraic space

which will be denoted by V itself. Since V is sheaf with descent, there is an action

by the above groupoid on V (in the sense of 3.1.5) so that there is an isomorphism

F : s �ðVÞ ! t �ðVÞ satisfying cocycle conditions. Therefore one obtains an algebraic

groupoid s �ðVÞ 	!	!V which defines an algebraic stack u0 : U0 ! U. (The quasi-

compactness of the map d ¼ ðs; tÞ : s �ðVÞ ! V� V follows from hypothesis on S.
Observe that we may assume the atlas X is quasi-compact. The separatedness of d
may be deduced from that of ðs; tÞ : e	1ðUÞ �U e	1ðUÞ ! e	1ðUÞ � e	1ðUÞ.) The

map u0 will be étale by descent theory and the hypothesis that V has trivial action

by the inertia implies u0 is isovariant. (Observe that V has trivial action by the inertia

implies IU�U V ¼ IU0 �U0 V.) One may now show that v ¼ e	1ðu0Þ as in the proof of

Corollary 3.19. &

THEOREM 3.26. Let i : S0! S denote a closed immersion of algebraic stacks

finitely presented over the given base scheme S with open complement j : S1 ! S. Now j

induces an open immersion of the topoi with complementary closed immersion i (in the

sense of ½SGA� 4, IV, ð9:3:5ÞÞ:

ShðS0;iso:etÞ!
i�
ShðSiso:etÞ 

j�
ShðS1;iso:etÞ ð3:1:23Þ

Proof. By [SGA] 4, IV, (9.3.5), the assertions are equivalent to proving that i� and

j� are fully-faithful and that the image of i� is the subcategory of objects that j � sends

to f. Recall that we already established the corresponding assertions for the étale

topos of BxS and for the corresponding full subcategory of sheaves with trivial

action by the inertia – see (3.1.8) and (3.1.9). We will now use this to deduce that

(3.1.23) also holds. As j : S1! S is a mono-morphism in the site Siso:et, it is clear that
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j� : ShðS1;iso:etÞ ! ShðSiso:etÞ is an open immersion of topoi and therefore is fully-

faithful. (See [SGA]4, IV, 9.2 and VIII, 6.2.)

Showing that i� is fully-faithful is equivalent to showing the adjunction map

i � � i� ! id is an isomorphism in ShðS0;iso:etÞ. As e� : ShðS0;iso:etÞ ! Shtr:in
ðBx0

S0:etÞ

is faithful, it suffices to show that e�i �i� ! e� is an isomorphism in

Shtr:in
ðBx0

S0:etÞ. By the proposition 3.24, e�i �i� ¼ i �e�i� ¼ i �i�e
�. Therefore, it suffi-

ces to show that i � � i� ! id is an isomorphism as functors on Shtr:in
ðBx0

S0:etÞ, which

is true by (3.1.9). Finally, it remains to show that if F 2 ShðSiso:etÞ and j �F ¼ f, then
the natural map F! i�i

�F is an isomorphism. However, if j �ðF Þ ¼ f,
j �e�ðF Þ ¼ e�j �ðF Þ ¼ f and therefore e�ðF Þ ! i�i

�e�ðF Þ is an isomorphism in

Shtr:in
ðBxSetÞ. Since e� is faithful, the map F! i�i

�ðF Þ is an isomorphism as

required. &

THEOREM 3.27. Let S denote a finitely presented algebraic stack over the base

scheme S with x : X! S an atlas. Then the map

e� : ShðSiso:etÞ ! Shtr:in
ðBxSetÞ ð3:1:24Þ

is an equivalence of topoi. There is a finite filtration of S

S0 � S1 � � � � � Sn ¼ S ð3:1:25Þ

by locally closed algebraic substacks so that each ðSi 	 Si	1Þred is a gerbe over its

coarse moduli-space Mi ðwhich exists as an algebraic spaceÞ and ShððSi 	 Si	1Þiso:etÞ

is equivalent to the topos of sheaves on Mi;et. The isovariant étale site has a conservative

family of points and the points correspond to the geometric points of the coarse-moduli

space of Mi for all i.

Proof. First observe that a filtration as in ( 3.1.25) with each Si 	 Si	1 a gerbe

over its coarse moduli space exists for any reduced algebraic stack. Therefore, the

second statement follows immediately from Theorem 3.13. Moreover, the same

theorem shows that the functor e� induces an equivalence ShsetsððSi 	 Si	1Þiso:etÞ !

Shtr:in
sets ðBxi

ðSi 	 Si	1ÞetÞ where xi is the induced atlas for Si 	 Si	1. By the previous

theorem (and by Proposition 3.17), ShsetsðSiso:etÞ (Sh
tr:in
sets ðBxSetÞ) is obtained by gluing

the topoi ShsetsððSi 	 Si	1Þiso:etÞ (Sh
tr:in
sets ðBxi

ðSi 	 Si	1ÞetÞ, respectively). This proves the

first statement.

As shown in Theorem 3.13, the isovariant étale site of Si 	 Si	1 is equivalent to the

étale site of its coarse-moduli space Mi. Since the topos ShsetsðSiso:etÞ is obtained by

gluing the topoi ShsetsððSi 	 Si	1Þiso:etÞ, it follows that the geometric points of the

coarse moduli-space of all the Si 	 Si	1, all i, form a conservative family of

points. &

Remark 3:28: In view of Remark 3.20, the results of both the above theorems

extend to sheaves with values in other categories, like Abelian sheaves, sheaves of

modules over a ring etc.
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4. Hypercohomology on the Isovariant Étale Site

In this section we define and establish several properties for the hyper-cohomology

computed on the isovariant site with respect to a presheaf of spectra. In view of

Theorem 3.27, we may use the Godement resolutions to define this: in fact the gene-

ral framework of presheaves on a site with values in a complete pointed simplicial

category adopted in [J-2] and [J-3] is perfectly suitable for us. We begin by adding

a few more basic hypotheses.

4.1. FURTHER HYPOTHESES

Let J denote a set of primes in Z. Assume that the base scheme S is of finite Krull

dimension and that there is a uniform bound on the étale cohomological dimension

of the residue fields kðsÞ for all points s in S with respect to all l-torsion sheaves and

all l 2 J. (Observe that this hypothesis holds if S is of finite type over an algebraically

closed field or over Z½
ffiffiffiffi

	
p

1� or if 2 does not belong to J and S is of finite type over Z.)

Assume also that l is invertible in OX, for any X which is a finitely presented object

over the base scheme S that we consider.

4.2. CONVENTIONS

Let C denote a site which is closed under all finite inverse limits, let �C denote a set, let

ðsetsÞ denote the category of all small sets and let ðsetsÞ
�C denote the product of the

category (sets) indexed by �C. Assume that we are given a conservative family of

points of C indexed by �C: recall this means we are given a morphism �p: ðsetsÞ
�C
! C

of sites so that a sequence of sheaves F 0 ! F! F 00 (with values in any Abelian cate-

gory) is short-exact if and only if 0! �p �ðF 0Þ ! �p �ðF Þ ! �p �ðF 00Þ ! 0 is exact. For

the most part S will denote the category of fibrant spectra, though any of the other

categories appearing in [J-2] may also be used. Now PreshðC;SÞ will denote the cate-
gory of all presheaves on the site C taking values in S. If S denotes the category of

fibrant spectra and P 2 PreshðC;SÞ, pnðPÞ ~ will denote the sheaf associated to the

Abelian presheaf on C:U! pnðGðU;PÞÞ where pn is the nth (stable) homotopy

group. A map of presheaves f : P! P 0 in PreshðC;SÞ will be called a quasi-isomorph-

ism if it induces an isomorphism on pnð f Þ ~. (Throughout we will denote quasi-iso-

morphisms by ’ while isomorphisms will be denoted by ffi.)

4.2.1. Cohomology Truncation

In all cases, t4nP will denote an object in PreshðC;SÞ defined by piðGðU; t4 nPÞÞ ffi

piðGðU;PÞÞ if i4 n and ffi 0 otherwise, for any U in the site C. In the case of fibrant

spectra, the above truncation functors are defined by the canonical Postnikov trun-

cation functors. (See [T-5] Lemma (5.51), for example). One may observe that

fGðU; t4 nPÞjng is an inverse system of fibrations for each U in this case. Moreover,

the natural map P! lim1 n t4 nP is an isomorphism of presheaves.
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4.2.2. Homotopy Inverse Limits

Observe that there exists a bi-functor:

� : (pointed simplicial sets)� PreshðC;SÞ ! PreshðC;SÞ

(The functor � is defined in [J-2] Section 6 as a colimit and therefore commutes with

colimits in either argument.) Let LðConstÞ : PreshðC;SÞ ! PreshðC;SÞD denote the

functor sending an object M 2 S to the cosimplicial object n 7!D½n�þ �M.

The above functor has a right adjoint which is called the homotopy inverse limit

along D and denoted holim
D

. This will be defined as an end and therefore will com-

mute with inverse limits. (See [J-2], Section 6, for details on the homotopy inverse

limit.)

In the above situation, a map f : X � ! Y � between two cosimplicial objects in

PreshðC;SÞ will be called a quasi-isomorphism if for each n, the map f n : X n ! Y n

is a quasi-isomorphism. In the above situations, the functor holim
D

preserves quasi-

isomorphisms (and therefore defines a functor at the level of the associated derived

categories). (See [J-2] (6.3.4) for a discussion of these.)

4.2.3. The Canonical Resolutions of Godement

We will assume the situation of 4.2. Let C denote a site as there. Assume that we are

given a conservative family of points of C indexed by �C as above. (For each point p of
�C is associated a point of the site C indexed by p itself.) Let a denote the functor send-

ing a presheaf on ðsetsÞ
�C to its associated sheaf and let U denote the forgetful functor

sending a sheaf on the site C to its underlying presheaf. Now the functors U � �p� and
a � �p� define a triple; let G ¼ U � �p� � a � �p� ¼ �p� �U � a � �p�. Observe that

G ¼ P
p2 �C

p� �U � a � p � where, for each point p of �C is the associated map of sites

p : ðsetsÞ ! C. Let P 2 PreshðC;SÞ.
The above triple defines an augmented cosimplicial object G�P : P!

d	1

GP . . .Gnþ1P

in PreshðC;SÞ. We define

GP ¼ holim
D
fGnPjng; i:e: GðU;GPÞ ¼ holim

D
fGðU;GnPÞjng

for any U in the site C.
Let C, C0 denote two sites and let f� : PreshðC0;SÞ ! PreshðC;SÞ denote a left-

exact functor. We define the right-derived functor Rf� : PreshðC0;SÞ ! PreshðC;SÞ
by

Rf�ðPÞ ¼ holim
D
ffðGnPÞjng: ð4:2:4Þ

This is the presheaf defined by

U! GðU;Rf�ðPÞÞ ¼ holim
D
fGðU;f�ðG

nPÞÞjng:
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The spectral sequence of [J-2], (6.3.6) provides a spectral sequence

E s;t
2 ¼ Rsf�ðp

	tðPÞÞ ) Rsþtf�ðPÞ: ð4:2:5Þ

We also define the global section functor for presheaves. For this purpose let pt

denote the site with one object, pt, and one morphism which is the identity map

of pt. (This category is made into a site in the obvious trivial manner.) Now one

may identify presheaves on pt with values in a category S with the category S itself.

If C is a site with a terminal object X, we define a map of sites p : C! pt by sending pt

to X. We let GðC;PÞ ¼ GðX;PÞ ¼ p�ðPÞ for any P 2 PreshðC;SÞ and

HCðX;PÞ ¼ RGðX;	ÞðPÞ; 4:2:6

where the right-hand side is defined as in ( 4.2.4). This defines the hyper-cohomology

on the isovariant étale site with respect to any presheaf of spectra P. This will be

denoted Hiso:etðX;PÞ.

PROPOSITION 4.1. Assume in addition to the above situation that there exists a

functor f � left adjoint to f�. Then the obvious map Rf�ðPÞ ! lim
1 n

Rf�ðt4 nPÞ is a

quasi-isomorphism for any P 2 PreshðC0;SÞ.
Proof. See [J-2] (3.4.1) for a proof. &

COROLLARY 4.2. Assume that both the sites above are closed under finite inverse

limits.

ðiÞ Next assume the following in addition to the hypothesis of ð4:2:4Þ. Let C be a full

sub-category of C0, let f : C0 ! C be the map of sites associated to a fully-faithful

functor �f: C! C0 and let f� be the direct image functor of presheaves associated

to f. Assume that every C-covering of any object U in C is a C0-covering and that

every C0-covering of such an object is dominated by a C-covering. If

P 2 PreshðC0;SÞ, the natural map f�ðPÞ ! Rf�ðPÞ is a quasi-isomorphism.

ðiiÞ Assume the following in addition to the hypotheses of ð4:2:4Þ. There exists a map

of sites f : C0 ! C so that f � is the inverse image functor of presheaves associated

to f. If P 2 PreshðC;SÞ, the obvious map P! Rf�f
�
ðPÞ is a quasi-isomorphism

if the corresponding map F! Rf�f
�
ðF Þ is a quasi-isomorphism for any Abelian

sheaf F on the site C.

Proof. We consider (i) first. The hypotheses readily imply that the functor f� on
Abelian sheaves is exact. (See [Mi] p. 111.) It follows also that the spectral sequence

in (4.2.5) degenerates identifying pkðRf�ðPÞÞ
~ with f�ðpkðPÞÞ

~. Since the sites are all

closed under finite inverse limits, the direct limits involved in the definition of the

stalks are all filtered direct limits and commute with taking pk. The hypotheses imply

that the stalks of pkðf�ðPÞÞ and f�pkðPÞ are both isomorphic to the stalks of the

presheaf p�ðPÞ. It follows that the natural map pkðf�ðPÞÞ
~
! f�ðpkðPÞÞ

~ is an iso-

morphism. This proves (i).
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First we show that (ii) holds when P is replaced by t4nP for any fixed integer n.

Recall f � is exact in the sense it commutes with finite direct and inverse limits. (This

follows from the hypothesis that the sites are closed under finite inverse limits.) It

follows that the spectral sequence in [J -1](6.3.6) for Rf� � f
�
ðPÞ now reduces to

the spectral sequence in ( 4.2.5) for Rf� applied to f �ðPÞ. The hypothesis on P

ensures that this spectral sequence converges strongly. Therefore, we reduce to show-

ing that the map ptðPÞ ~! Rf�f
�
ðptðPÞ ~ Þ is a quasi-isomorphism for all t. This

proves (ii) holds when P is replaced by any t4nP.

Now P ffi lim1 n t4 nP. Applying Proposition 4.1 to P replaced by f �ðPÞ, it suf-
fices to show that f �ðt4nPÞ ’ t4nðf

�
ðPÞÞ as presheaves. Since the functor t4n is

characterized by pkðt4nPÞ ffi pkðPÞ if k4 n and ffi 0 otherwise, it suffices to show

pkðf
�
ðPÞÞ ffi f �ðpkðPÞÞ as Abelian presheaves. Since f � is assumed to be the inverse

image functor associated to a map of sites it is defined by a filtered direct limit which

commutes with taking pk. &

PROPOSITION 4.3. Let S denote an algebraic stack finitely presented over the base

scheme S. Under the above hypotheses, there is a uniform bound M >> 0 so that for

every S0 ! S in the site Siso:et, Hn
iso:etðS0;F Þ ¼ 0 for all n > M and all sheaves F of

ZðJÞ-modules on Siso:et. ðHere ZðJÞ denotes the localization of Z by inverting all primes

not in J.Þ

Proof. The proof is by Noetherian induction. We will assume inductively that

the proposition is true for every proper closed immersion S0! S of algebraic

stacks. By Theorem 3.27, we may assume without loss of generality that S is

reduced and that there exists such a closed immersion so that if S1 denotes the

complement of S0, S1 is a gerbe over its coarse moduli space M1. Now M1 is an

algebraic space finitely presented over the base scheme S and therefore, there exists

a uniform bound on the étale cohomological dimension of M01!M1 in the étale

site of M1. By the equivalence of topoi as in Theorem 3.13, the conclusion of the

proposition now holds for S1. Let M1 denote the uniform bound on the coho-

mological dimension here and let M0 denote the uniform bound on the cohomo-

logical dimension on S0. Now M ¼M1 þM0 þ 1 will be a uniform cohomological

bound on Siso:et. This argument follows exactly as in [T-3] pp. 607–608 and is

therefore skipped. &

PROPOSITION 4.4. Let S denote an algebraic stack that is Noetherian. Then the

isovariant étale site of S as well as the corresponding topos is algebraic and coherent in

the sense of ½SGA� 4, VI, 2:3. Therefore, if fPajag is a filtered direct limit of Abelian

presheaves,

colim
a

Hiso:etðS;PaÞ ’ Hiso:etðS; colim
a

PaÞ:

The same conclusion holds if fPajag is a filtered direct system of presheaves taking

values in S so that p�ðPaÞ ~ are all sheaves of modules over ZðJÞ.
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Proof. The site Siso:et consists of Noetherian algebraic stacks and is closed

under fibered products. Moreover, every isovariant étale cover for an object in

Siso:et has a finite subcover. Therefore, every object U in this site is both quasi-

compact and quasi-separated both in the site and also when viewed as an ele-

ment of the topos ShsetsðSiso:etÞ. (See [SGA] 4, VI, 2.1.1, 1.1 and 1.2.) By [SGA]

4, 2.3, 2.4.1, the site Siso:et and the topos ShsetsðSiso:etÞ are both algebraic and

coherent. This proves the first assertion. Now the second assertion holds when

fPajag is a filtered direct system of Abelian sheaves by [SGA] 4, 8.7.3, 3.1 and

VII, 5.7.

Observe that the spectral sequence ( 4.2.5) with f ¼ Hiso:etðS; Þ converges

strongly for every presheaf P with values in S so that p�ðPÞ~ is a sheaf of mod-

ules over ZðJÞ. Therefore, the hyper-cohomology also commutes with filtered

colimits of presheaves taking values in S satisfying the hypotheses of the propo-

sition. &

PROPOSITION 4.5. Let fSa 
fa;b Sbja; b 2 Ig denote a filtered direct system of

Noetherian algebraic stacks where each map fa;b is representable and affine.

ðiÞ Then the inverse limit lim
a

Sa ¼ S exists as an algebraic stack. There exists a com-

patible system of projections fpa : S! Sajag.
ðiiÞ For each a, let Pa denote a presheaf on Sa;iso:et with values in S so that p�ðPaÞ ~are

sheaves of modules over ZðJÞ. Assume further that for each b5a, there is given a

map f �a;bðPaÞ ! Pb so that the collection of such maps are compatible ðin the

obvious senseÞ. Let P = the direct limit of the filtered direct system fp �a ðPaÞjag
of presheaves on Siso:et. Now the canonical map

colim
a

Hiso:etðSa;PaÞ!
’
Hiso:etðS; colim

a
p �a PaÞ

is a quasi-isomorphism.

Proof. We will first show that S exists. Pick an a0 E I and consider the cofinal

system of b E I so that b 7! a0. Let xa0 : Xa0 ! Sa0 denote an atlas and let

Xa0�Sao

Xa0
	!
sa0

	!
ta0

Xa0 ð4:2:7Þ

denote the corresponding algebraic groupoid. Since each fa0;b:Sb ! Sa0 is represen-

table, one may take pull-backs by this map of the algebraic groupoid in (4.2.7) to

obtain the algebraic groupoid

Xb�
Sb

Xb
	!

sb

	!
ta

Xb; b5a0 ð4:2:8Þ

The induced maps of the corresponding algebraic groupoids are affine and therefore,

one may take the inverse limit to define an algebraic groupoid
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X1 ¼ lim
b
ðXb�Sb

XbÞ
	!
	!

limsb
b

limsa
b

X0 ¼ lim
b

Xb ð4:2:9Þ

Since s ¼ limb sb and t ¼ limb tb the diagonal map d ¼ ðs; tÞ ¼ limbðsb; tbÞ : X1!

X0�X0 is also quasi-compact and separated. Therefore, by [L-MB] Corollaire (4.7),

the above groupoid defines an algebraic stack S. Clearly the projections pa:S! Sa

exist. These prove the first assertion. The second assertion for the case of Abelian

sheaves follows readily from [SGA] IV, Exposé VI, 8.7.4. The general case follows

as in the proof of Proposition 4.4. &

We end this section by briefly considering �Cech hyper-cohomology on the isovari-

ant site.

DEFINITION 4.6. Weakly cofinal system of coverings. Let S denote an algebraic

stack. A system, fSajag, of isovariant étale coverings of S is weakly cofinal in the

system of all isovariant étale coverings of S, if each isovariant étale covering has a

refinement in the given system.

PROPOSITION 4.7. Let S denote an algebraic stack as before and let P denote a

presheaf on Siso:et with values in S so that p�ðPÞ ~ is a sheaf of modules over ZðJÞ. Let

�Hiso:etðS;PÞ ¼ holim
D

lim
!

Gðcosk0ðuÞ;PÞ; ð4:2:10Þ

where the colimit is over a weakly cofinal system of isovariant étale coverings u:U! S
of S. Now there exists quasi-isomorphisms

Hiso:etðS;PÞ ’ �Hiso:etðS;Hiso:etð ;PÞÞ: ð4:2:11Þ

Let ðalg:stacks=SÞiso:et denote the big isovariant étale site of algebraic stacks over S, i.e.

objects are algebraic stacks over S, morphisms are morphisms over S and coverings are

isovariant étale coverings. Let P denote a presheaf on ðalg:stacks=SÞiso:et which has the

localization property: i.e. for each closed immersion S0 ! S of algebraic stacks with

open complement S1! S, one obtains a fibration sequence of presheaves

GðS0;PÞ ! GðS;PÞ ! GðS1;PÞ in the sense of Definition 5.6. In this case, one also

obtains the quasi-isomorphism: �Hiso:etðS;Hiso:etð ;PÞÞ ’ �Hiso:etðS;PÞ.

Proof. In view of the hypotheses, there is a uniform cohomological bound which

shows that the hypotheses of [T-5] Theorem 1.46 are met. This proves the first quasi-

isomorphism. Again, by the hypotheses, one has a uniform cohomological bound,

which enables one to prove the last quasi-isomorphisms as in [T-5] Proposition 1.54.

(Using the observation that �Hiso:etð ;	Þ and Hiso:etð ;	Þ preserve fibration

sequences, one may in fact use devissage as in Theorem 3.27 to reduce to the case

where the isovariant étale site is replaced by the étale site of the coarse moduli space.

At this point one may invoke [T-5] Proposition 1.54 to finish the proof.) &
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5. Isovariant Étale and Étale Cohomological Descent

5.1. ADDITIONAL HYPOTHESES

In this section we need to put additional hypotheses as in [T-3] (3.1) on the base

scheme S, in addition to the ones in (4.1). We will assume the following: There is

a Tate-Tsen filtration on the separable closure of the residue fields kðsÞ at all points

of S as in [T-5] 2.112. This hypothesis is satisfied if kðsÞ is of finite transcendence

degree over Q, Qp̂, Fp, FpððtÞÞ or over a separably closed field �k.

DEFINITION 5.1. Let S denote an algebraic stack and let G denote an affine

smooth group-scheme both defined over a a Noetherian base ring S. A representable

morphism m:G� S! S defines an action of G on S if it satisfies the following

conditions:

(lax associativity and lax unit): viewing G� G� S, G� S and S as lax-functors

ðschemes=SÞop
! ðgroupoidsÞ the obvious associativity and unit axiom for group-

actions hold in the 2-category of lax-functors.

Remarks 5:2: (1) Recall a lax-functor F : ðschemes=SÞop
! ðgroupoidsÞ is a not a

functor, but the following data: for each X E ðschemes=SÞ, one is given a groupoid

FðX Þ and for each morphism f : Y! X of schemes over S, one is given a morphism

Fð f Þ : FðX Þ ! FðY Þ so that if g : Z! Y is another morphism of schemes, one is

given a natural isomorphism Eg;f : FðgÞ � Fð f Þ!
’

Fðg � f Þ so that the natural iso-

morphisms satisfy an obvious associativity and unital condition. (See [Hak], Cha-

pitre I, for details: Lax-functors are called 2-functors there.) An algebraic stack may

be viewed, therefore, as a lax-functor in the above sense satisfying certain other

conditions.

(2) In general, there may not exist an atlas for the stack onto which the group-

scheme action extends. This is similar to the situation where an algebraic group acts

on a scheme, and in general, there may not be an affine cover of the scheme, which is

stable by the group action. Assume that G is a torus or a diagonalizable group

scheme acting on a stack S that is normal. By [Sum] and [J-2], we see that any atlas

onto which the action extends may be refined to an atlas that is affine.

(3) Suppose in addition to the hypothesis in Definition 5.1, that a coarse moduli

space M exists (as an algebraic space) for the stack S. Then G�M is a coarse-

moduli space for the stack G� S. The universal property of the coarse-moduli space

for maps from algebraic stacks to algebraic spaces shows that the composition

G� S!m S!M factors through G�M, where m denotes the group-action. It

follows that one obtains an induced action of G on the coarse-moduli space M.

(4) A particularly simple example of a group action on an algebraic stack is the

following. Assume that the stack S in Definition 5.1 is in fact the quotient stack

½X=H� associated to the action of a group-scheme H on the algebraic space X. We

will, assume in this situation, that X itself is the atlas of ½X=H� onto which the
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G-action lifts and that the actions of G and H on X commute. Therefore, we obtain

an action of the group-scheme G�H on X.

DEFINITION 5.3. Let G denote an affine smooth group scheme acting on the

algebraic stack S. We say the action is trivial if there is a splitting to the top-row in

the diagram (i.e. there is a 1-morphism s : G� S! P so that there is given a

2-isomorphism E � s!
’
idG�S):

P !
E G� S

  

ðm;pr2Þ

S !
D S � S

ð5:1:1Þ

(Equivalently the two morphisms m; pr2 : G� S! S may be identified in the

2-category of lax-functors ðschemes=SÞop
! ðgroupoidsÞ and lax-natural transforma-

tions between them.)

DEFINITION5.4. LetS denote an algebraic stack and letSsmt denote the smooth site

of S. A sheaf F of OS-modules on Ssmt is a coherent sheaf (a vector bundle) if for any

atlas x : X! S, x�ðF Þ is a coherent sheaf (a vector bundle, respectively) on Xsmt. One

may see that the category of coherent sheaves (vector bundles) is Abelian (exact) and

also symmetric monoidal under the direct sum operation. The former (latter) category

will be denoted CohðSÞ (VectðSÞ, respectively).We letGðSÞ (KðSÞ) denote the algebraic
K-theory spectrum of the category of coherent sheaves (vector bundles, respectively).

One may also consider the corresponding presheaves of fibrant spectra on the site

Siso:et: these are denotedG andK, respectively. In addition,wemay need to consider the

situation where a smooth group scheme G acts on an algebraic stack S as in Definition

5.1. Making use of Proposition (7.1) in the appendix, one may observe that G-equiv-

ariant coherent sheaves (vector bundles) on the stackS correspond to coherent sheaves

(vector bundles, respectively) on the quotient stack ½S=G�. i.e. If we let CohðS;GÞ

ðVectðS;GÞ) denote the category of coherent sheaves (vector bundles, respectively) on

the stack S that are equivariant with respect to the action of G, then there is an

equivalence of categories CohðS;GÞ ’ Cohð½S=G�Þ and VectðS;GÞ ’ Vectð½S=G�Þ.

(Recall a coherent sheaf F on S is G-equivariant, if there exists an isomorphism

f : pr�2ðF Þ ! m�ðF Þ satisfying the usual conditions. Here pr2 (mÞ : G� S! S is the

projection to the second factor (group action, respectively). Now these conditions

correspond to the descent data for a coherent sheaf (vector bundle) on the stack S to

descend to the stack ½S=G�.) Therefore, making use of Proposition (7.1), one may

incorporate the equivariant theory into the following discussion.

Remark 5:5: It is often advantageous to replace the presheaf K by the presheaf of

K-theory spectra corresponding to perfect complexes on a stack. Then it is shown in

[J-3] that, if the stack S is smooth, one obtains a weak-equivalence KðSÞ ’ GðSÞ
where GðSÞ is the same G-theory considered above.
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DEFINITION 5.6. Let C denote a site. One may define fibration sequences of

presheaves of spectra on C in the following manner. First one has the notion of a

Path object associated to any presheaf P. One defines this as MapðD½1�þ;PÞ along

with the obvious maps d i ¼Mapðdi;PÞ : MapðD½1�þ;PÞ !MapðD½0�þ;PÞ ffi P,

i ¼ 0; 1. We will denote this object as PathðPÞ. Observe that since GðU;PÞ is a fibrant

spectrum, the maps GðU; d iÞ are fibrations for each U in the site C; if f : P0 ! P is a

map of presheaves, one defines Pathð f Þ ¼ �Pf;Y;d�
PathðPÞ and Oð f Þ ¼ the kernel of

the map Pathð f Þ ! P induced by the map d1. We call Oð f Þ the canonical homotopy

fibre of f. A diagram Q! P!
f

P00 of presheaves of spectra is called a fibration

sequence of presheaves if there exists a map Q! Oð f Þ which is a quasi-isomorphism

and fitting in a commutative diagram

Q 	! P 	!
f

P00

 

id

 

id

 

Oð f Þ 	! P 	!
f

P00

PROPOSITION 5.7. ðiÞ Let i : S0! S denote a closed immersion of algebraic stacks

finitely presented over the base scheme S with open complement j : S1 ! S. Denoting

by i# (j#) the direct image functor for presheaves, one obtains a fibration sequence

i#GS0
ð Þ ! GSð Þ ! j#GS1

ð Þ; ð5:1:2Þ

where GSi
ð Þ ðGSð ÞÞ denotes the presheaf of spectra defined by Gð Þ on Si;iso:et

ðSiso:et, respectivelyÞ.

ðiiÞ Assume the following in addition to the hypotheses of ðiÞ: S denotes an algebraic

stack provided with the action of a smooth group scheme G and that p : S! X is a

G-equivariant map to an algebraic space X provided with an action of G. Let

i : X0! X ðj : X1 ¼ X	 X0! X Þ denote the G-equivariant closed immersion of a

closed sub-algebraic space ðthe G-equivariant open immersion of its complement,

respectivelyÞ. Let Si ¼ Xi �X S and pi : Si ! Xi denote the induced maps. Then one

obtains the fibration sequence on ð½X=G�Þiso:et

i#p0#G½S0=G�ð Þ ! p#G½S=G�ð Þ ! j#p1#G½S1=G�ð Þ; ð5:1:3Þ

where G½Si=G�ð Þ ðG½S=G�ð ÞÞ denotes the presheaf of spectra defined by Gð Þ on

½Si=G�iso:et ðð½S=G�Þiso:et, respectivelyÞ and p#, pi# are the obvious direct image functors

of presheaves.

Proof. ðiÞ Let S0 ! S denote an object in the site Siso:et. Now S0 �S S0! S0 is a
closed immersion with open complement S0�

S
S1! S0. The commutative diagram

GðS0; i#GS0
ð ÞÞ ! GðS0;GSð ÞÞ ! GðS0; j#GS1

ð ÞÞ

¼

 

¼

  

¼

GðS0�
S
S0Þ ! GðS0Þ ! GðS0�

S
S1Þ
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shows it suffices to prove the bottom row is a fibration sequence of spectra. By

invoking Quillen’s localization theorem for Abelian categories, it suffices to show

that the restriction map induces a weak-equivalence of K-theory spectra:

KðCohðS0Þ=CohðS00ÞÞ ! KðCohðS01ÞÞ, where S00 ¼ S0 �S S0 and S01 ¼ S0 �S S1 . Let

J be the sheaf of ideals defining S0 in S. In order to apply Quillen’s localization the-

orem one needs to show that every coherent sheaf F on the stack S1 admits an exten-

sion to a coherent sheaf on the stack S: this follows from [L-MB] Proposition (8.5).

This completes the proof of (i). An entirely similar argument applies to complete the

proof of (ii). The only additional observation needed is that the map p (pi) induces a

map of sites ½S=G�iso:et ! ½X=G�iso:et (½Si=G�iso:et ! ½Xi=G�iso:et, respectively). This is

clear by Lemma 3.2 (ii). &

PROPOSITION 5.8. Let i : S0! S denote a closed immersion of algebraic stacks and

let P denote a presheaf of fibrant spectra on So;iso:et. Denoting by i# the direct image

functor for presheaves, one obtains a weak-equivalence of spectra Hiso:etðS0;PÞ ’

Hiso:etðS; i#PÞ that is natural in P.

Proof. In view of Proposition 4.1, it suffices to prove this proposition with P

replaced by t nP for some n. In this case the spectral sequence in (4.2.5) applied to

Hiso:etðS; Þ and Hiso:etðS; Þ � i# reduces the problem to showing an isomorphism at

the E2-terms of the corresponding spectral sequences. i.e. we obtain an isomorphism

Hn
iso:etðS0; aHmðPÞÞ!

’
Hn

iso:etðS; aHmði#PÞÞ: ð5:1:4Þ

Observe thatHmði#PÞ ffi i#ðHmðPÞÞ and by Proposition 3.24, a � i# ¼ i� � a so that the

right-hand side identifies with Hn
iso:etðS; i�aHmðPÞÞ. Observe from Theorem (3.26)

that i� is a closed immersion of topoi and therefore, by [SGA] 4, IV, Section 14, is

an exact functor, i.e. one may identify i� with Ri�. Therefore, the isomorphism in

(5.1.4) follows. &

5.1.5. Localization of K-Theory Spectra and Other Variants

Let S denote an algebraic stack as before and let Gð Þ denote the presheaf of

G-theory spectra on Siso:et. Denoting by K ¼ topological K-homology, one obtains

the presheaf of spectra GKð Þ which is a localization of Gð Þ by K in the sense

of Bousfield. (See [Bous].) Given a set of primes J in Z as before, one may now loca-

lize the above presheaf by inverting all primes that are not in J. The resulting pre-

sheaf of spectra will be denoted GKð Þ � ZðJÞ. One may also smash Gð Þ with

the Moore spectrum Mðl nÞ, n� 0 to obtain the presheaf G=l nð Þ. Finally, one

may also invert the Bott element b to obtain the presheaf G=l n½b	1�ð Þ. (See [T-5],

Chapter 5 for more details.) In addition, one may consider the localization of

Gð Þ at Q in the sense of [B-K] or [T-5]: this will be denoted Gð Þ �Q.

PROPOSITION 5.9. All of the above presheaves are continuous in the following sense.

Let fSa 
fa;b

Sbja; b 2 Ig denote a filtered direct system of Noetherian algebraic stacks
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where each map fa;b is representable and affine. Let S ¼ lima Sa. Now colimGa

ðSa;PÞ ’ GðS;PÞ if P denotes any of the above presheaves.

Proof. The existence of the inverse limit stack is shown in Proposition 4.5.

Observe that a coherent sheaf F on an algebraic stack S is given by a coherent sheaf

F0 on an atlas x : X! S along with descent data. In the above situation, if

xa : Xa! Sa are atlases, a coherent sheaf F on X ¼ lim
a

Xa along with descent data

correspond to a compatible collection of coherent sheaves fFa on Xa along with

descent datajag. It follows that the presheaf G is continuous. One may prove simi-

larly that the presheaf K is also continuous. Since localizations of spectra as well as

smashing with a fixed spectrum commute with filtered colimits the remaining pre-

sheaves in (5.1.5) are also continuous. &

THEOREM 5.10. ðiÞ Let S denote an algebraic stack finitely presented over the base

scheme S. Then the presheaves of spectra GKð Þ � ZðJÞ, G=l n½b	1�ð Þ as well as

Gð Þ �Q have cohomological descent on the isovariant étale site of S. i.e. the obvious

augmentations

GKðSÞ � ZðJÞ !
’
Hiso:etðS;GKð Þ � ZðJÞÞ;

GðSÞ=l n½b	1�!
’
Hiso:etðS;G=l n½b	1�ð ÞÞ

and

GðSÞ �Q!
’
Hiso:etðS;Gð ;GÞ �QÞ

are weak equivalences.

ðiiÞ Assume in addition to the hypotheses in ðiÞ that the stack S is provided with the

action by a smooth group scheme G. Let p : S! X denote a G-equivariant map

to an algebraic space provided with a G-action. Then the augmentations

GKð½S=G�Þ � ZðJÞ !
’
Hiso:etð½X=G�; p#GKð Þ � ZðJÞÞ;

Gð½S=G�Þ=l n½b	1�!
’
Hiso:etð½X=G�; p#G=l n½b	1�ð ÞÞ

and

Gð½S=G�Þ �Q!
’
Hiso:etð½X=G�; p#Gð Þ �QÞ

are weak equivalences.

Proof. (i) Since the proofs of the last two quasi-isomorphisms are entirely similar

to the first, we will explicitly consider only the first. Since hyper-cohomology on any

site sends fibration sequences of presheaves (of spectra) to fibration sequences of

spectra, and in view (5.1.2), it should be clear that both sides define localization

sequences, i.e. if S0 ! S is a closed immersion with open complement S1! S, one
obtains a commutative diagram whose rows are fibration sequences:

GðS0ÞK�ZðJÞ ! GðSÞK�ZðJÞ ! GðS1ÞK�ZðJÞ

   

Hiso:etðS0;GKð ;GÞ�ZðJÞÞ !Hiso:etðS;GKð ;GÞ�ZðJÞÞ !Hiso:etðS1;GKð ;GÞ�ZðJÞÞ
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Therefore, (see Theorem 3.27) it suffices to consider the situation when the stack S
is a gerbe over its coarse moduli space M. In this case, the equivalence of sites as in

Theorem 3.13, shows that one may identify Hiso:etðS;GKð Þ � ZðJÞÞ with HetðM; p#
ðGKð Þ � ZðJÞÞÞ. Here p#ðGKð Þ � ZðJÞÞ is the presheaf on Met defined by

GðU; p#ðGKð Þ � ZðJÞÞÞ ¼ GðU�
m
SÞ;GKð Þ � ZðJÞ ¼ GKðU�

m
SÞ � ZðJÞ:

Therefore, GðM; p#ðGKð Þ � ZðJÞÞÞ ¼ GðS;GKð Þ � ZðJÞÞ. i.e. It suffices to show

that we have cohomological descent on the étale site of the algebraic space M for

the presheaf of spectra p#ðGKð Þ � ZðJÞÞ. The continuity property and the localiza-

tion sequence (5.1.2) reduce to establishing cohomological descent for the case M is

replaced by an Artin local ring–see [T-5], Section 2. Moreover, observe that the map

GðS0Þ ! GðSÞ induces a weak equivalence for any closed immersion S0! S of alge-

braic stacks defined by a nilpotent ideal. As in [T-5] Lemma (2.10), this shows it suf-

fices to establish cohomological descent for the presheaf p#ðGKð Þ � ZðJÞÞ on the

étale site of fields.

At this point, one needs to show that the presheaf of spectra p#ðGKð Þ � ZðJÞÞ has

hyper-transfer in the sense of Thomason, [T-5] (2.25). (Given such a hypertransfer,

Lemma (3.10) of [T-3] applies to complete the proof.) For this we will use the follow-

ing arguments as outlined in [T-5] Example (2.30). First we begin with the definition of

the hyper-transfer as in [T-5], Section (2.21). Let G denote a discrete group acting on a

spectrum F. We consider G as a category with one object and whose morphisms are

the elements of G. Now F may be viewed as a functor from this category to the cate-

gory of spectra. One defines the hyper-homology of G with respect to F to be given by

H�ðG;F Þ ¼ hocolim
G

F: ð5:1:6Þ

This functor preserves weak-homotopy equivalences and homotopy (co-)fibre

sequences in F and moreover the homotopy colimit is characterized by a universal

mapping property as shown in [T-5] (5.15). The group hyper-homology considered

above has several properties of which the most important is the following:

Induction weak-equivalence (see [T-5] Lemma (2.22).). Let G denote a group with

sub-group H and let F denote a spectrum on which H acts. Let tG=H F denote the

wedge (¼ the co-product in the category of spectra) indexed by G=H. Now the inclu-

sion of H! G and the map F! tG=H F induce a weak-equivalence:

H�ðH;F Þ!
’
H�ðG; t

G=F
F Þ: ð5:1:7Þ

DEFINITION 5.11. Let F denote a presheaf of spectra on the étale site of the

spectrum of a field L. F is said to have a hyper-transfer if for all finite Galois

extensions L0=L and all algebras A over L, there is a map of spectra

T : H�ðGalðL0=LÞ;F ðA�
L

L0ÞÞ ! F ðAÞ satisfying the following conditions:

. the transfer map T must be natural in A

. whenever A ¼ L00 is a separable extension of L containing L0, there is a homo-

topy commutative diagram formed
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from the hyper-transfer T and the maps in the induction weak equivalence

above.

. finally the following diagram homotopy commutes:

Given this, one needs to check the hypotheses in [T-3] Lemma (3.10) hold for the

presheaf F ¼ p#ðGKð ;GÞ � ZðJÞÞ. (Recall that these are the following:

(i) The presheaf F above is a presheaf of module spectra over the presheaf of

K-theory spectra. (i.e. FðAÞ is a module spectrum over KðAÞ where KðAÞ is

the algebraic K-theory spectrum of A for all A as above and this structure is

compatible with the structure of presheaves on the étale site of the field L).

(ii) The hypertransfer in Definition 5.11 is a map of KðAÞ-module spectra (i.e. the

projection formula holds).

(iii) The hypertransfer in Definition 5.11 is compatible (in the sense of [T-3] (3.13))

with the hypertransfer for the presheaf of K-theory spectra).

The arguments as in [T-5] Example (2.30) and [T-4] (3.20) through (3.22) (see also

Example (2.30) in [T-5]) apply to define a hyper-transfer for the presheaf

F ¼ p#ðGð ÞÞ defined on the étale site of M by GðU; p#ðGð ÞÞÞ ¼ GðU�M SÞ: one
may readily verify the above hypotheses. Now p#ðGKð Þ � ZðJÞÞ inherits this

hyper-transfer.

This completes the proof of (i) for the two presheaves GKð Þ � ZðJÞ and

Gð Þ=l n½b	1�. The proof for the presheaf Gð Þ �Q is simpler since one has a strict

transfer or what is called a weak-transfer in [T-5] and [J-1]: the same proof as above

using the hyper-transfer works as well.

RIEMANN–ROCH FOR ALGEBRAIC STACKS: I 155

https://doi.org/10.1023/A:1022849624526 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022849624526


Now we consider the proof of (ii). We will first consider the case when the group G

is trivial and the stack is Deligne–Mumford. In this case, the localization sequence in

(5.1.3) enables one to reduce to the case when the stack S is the quotient stack asso-

ciated to a finite group action on a scheme: this case now follows from [T-3] Theorem

(3.8). In case the map p: S! X is the identity (i.e. S itself) is an algebraic space, (ii)

also follows from [T-3] Theorem (3.8). Next we consider the general case. The loca-

lization sequence (5.1.3) enables one to reduce to the case when the quotient stack

½X=G� is a gerbe over its coarse moduli space which can be assumed to be a scheme:

the coarse moduli space is a scheme-theoretic quotient in the sense of [T-3] Definition

(2.3), which is also a geometric quotient. Therefore, we will denote this by X=G. If

�p: ½X=G� ! X=G is the obvious map, now it suffices to establish cohomological des-

cent for the presheaf �p#ð p#ðGKð Þ � ZðJÞÞÞ on ðX=GÞet. The continuity property of

the presheaf GKð Þ enables one to reduce to the case where X=G has been replaced

by the spectrum of a local ring and the localization property as in (5.1.2) enables one

to reduce to the case when X=G has been replaced by the spectrum of an Artin local

ring. (See [T-5], Section 2 for details.) Moreover, as in the proof of (i), we may reduce

to the case of fields. Now it suffices to show that a hypertransfer exists for the pre-

sheaf �p#ð p#ðGKð Þ � ZðJÞÞÞ when X=G has been replaced by the spectrum of a field.

The rest of the proof is entirely similar. &

COROLLARY 5.12 (Atiyah	Hirzebruch spectral sequences). (i) Assume the hypo-

theses of Theorem 5:10 (i). Then there exists a strongly-convergent spectral sequence:

Es;t
2 ¼ Hs

iso:etðS; ptðGKð Þ � ZðJÞÞÞ ) p	sþtðGKðSÞ � ZðJÞÞ:

ðiiÞ Assume the hypotheses of Theorem 5:10 ðiiÞ. Then there exists a strongly-conver-

gent spectral sequence:

Es;t
2 ¼ Hs

iso:etð½X=G�; ptðp#GKð Þ � ZðJÞÞÞ ) p	sþtðGKð½S=G�Þ � ZðJÞÞ:

The corresponding statements also hold with the presheaf GK replaced by G=l n½b	1� and

GQ.

Proof. (i) This spectral sequence is provided by (4.2.5) with f ¼ Hiso:etðS; Þ. The
strong convergence follows from the observation that the hypotheses imply Es;t

2 ¼ 0

for s� 0. The proofs of (ii) and the last assertion are similar. &

Remark 5:13: Observe that Theorem 5.10 and Corollary 5.12 extend the results of

[T-3]: if the stacks are assumed to be algebraic spaces, we recover these results.

Moreover, taking the group G to be trivial in the statements (ii) of Theorem 5.10 and

the corollary 5.12, we see that the presheaves p#GK and p#GQ have descent on the

étale site of the moduli spaceM provided it exists as an algebraic space with a proper

map p: S!M.

Remark 5:14: In order to be able to use Theorem 5.10, one needs to be able to

identify the stalks of the presheaf GK � ZðJÞ on the isovariant étale site. The fol-

lowing result shows that it is possible to do this generically, in general in char-
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acteristic 0, and globally for Deligne–Mumford stacks, which suffices for the

applications. It suffices to do this for the nonequivariant case.

PROPOSITION 5.15. Let S denote an algebraic stack as before so that it is a gerbe

over its coarse moduli space M. Let p : S!M denote the obvious map, let

�x : Spec O!M denote a fixed geometric point and let Rð �xÞ denote the corre-

sponding strict Henselization of OM at �x. Then one obtains the identification of the

stalk of the presheaf p#ðGK � ZðJÞÞ at �x

p#ðGK � ZðJÞÞ �x ’ GKðSRð �xÞÞ � ZðJÞ

where SRð �xÞ ¼ ðSpec Rð �xÞÞ�MS. ðIf the stack S is smooth and K denotes the K-theory

of perfect complexes, one obtains a weak-equivalence GKðSRð �xÞÞ ’ KKðSRð �xÞÞ.Þ

ðiÞ If, in addition, S is smooth over its coarse moduli space ðor more generally, if SRð �xÞ

is smooth over Spec Rð �xÞÞ, SRð �xÞ is neutral gerbe over Spec Rð �xÞ. ðIn particular

this holds generically if the map p : S!M is smooth generically and the base

scheme S is the spectrum of a field or more generally is an excellent scheme.Þ

Moreover, in this case KKðSRð �xÞÞ � ZðJÞ ’ KKðSpec Rð �xÞ;G �xÞ where G �x is the

stabilizer at Rð �xÞ in the stack SRð �xÞ.

ðiiÞ Moreover, if �x corresponds to a regular point of M ðor if K denotes the K-theory

of perfect complexesÞ and the stack SRð �xÞ is smooth over Spec Rð �xÞ, the stalk

GðSRð �xÞÞ=l n½b	1� ’ KðSRð �xÞÞ=l n½b	1� ’ KðSkð �xÞÞ=l n½b	1�.
ðiiiÞ If the stack is Deligne–Mumford, SRð �xÞ is the quotient stack associated to a finite

group-scheme action for all geometric points �x of M.

Proof. The continuity property of the presheaf p#ðGK � ZðJÞÞ provides the first

weak-equivalence. Let x: X! S denote an atlas for the stack. If the stack is smooth

over Spec Rð �xÞ, one may find a lifting of idRð �xÞ to a map Spec Rð �xÞ ! XRð �xÞ over

Spec Rð �xÞ. Now the structure map of the stack SRð �xÞ ! Spec Rð �xÞ has a section

which shows SRð �xÞ is a neutral gerbe. This proves (i). In view of (i), the first weak

equivalence in (ii) follows from the weak equivalence between the equivariant G-

theory and equivariant K-theory of regular schemes: see [T-1]. The last weak

equivalence in (ii) follows by the rigidity theorem for mod-l n topological K-theory of

regular schemes. In order to prove (iii), observe that if the stack is Deligne–Mumford,

one may localize on the étale topology of the moduli-space and assume the stack is a

quotient stack. &

PROPOSITION 5.16 (See [Toe-1]) (Poincaré duality for smooth Deligne–Mumford

stacks). Assume that S is a Deligne–Mumford stack which is regular. Now the obvious

map GKðSÞ � ZðJÞ ’ HetðM; p#GKð Þ � ZðJÞÞ  HetðM; p#KKð Þ � ZðJÞÞ is a weak

equivalence.

Proof. It suffices to show the map is a weak equivalence locally on the étale

topology of the moduli space. Therefore, we reduce to the case when the stack is a
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quotient stack for the action of a finite group. In this case the above weak-equi-

valence follows from [T-1]. &

5.1.8. We end this section with the following criterion for cohomological descent on

the étale site of an algebraic space for presheaves of spectra that come up often in

this paper. Let G denote a fixed smooth group scheme over the base scheme S

and let (alg:stacks=S;G) denote the category with objects all algebraic stacks over

the base scheme S that are Noetherian and provided with a G-action. The morphisms

are all G-equivariant maps of algebraic stacks. Let P denote a presheaf of spectra on

this category having the following properties:

(i) There exists a Gysin map i�: PðS0Þ ! PðSÞ for any G-equivariant closed immer-

sion i: S0! S (which is a weak-equivalence if the closed immersion is given by

a nilpotent sheaf of ideals). The Gysin map is functorial in i.

(ii) Given a G-equivariant closed immersion as in (i) with open complement

j: S1 ¼ S 	 S0 ! S, there exists a fibration sequence i#i �P! P! j#j�P of pre-

sheaves where i#, j# (i �, j�) are the obvious direct image functors (inverse image

functors, respectively) (as in Section 5). Moreover, the map i#i �P! P is given

by the Gysin map in (i).

(iii) The presheaf P has the following continuity property: let fSajag denote an

inverse system of algebraic stacks with G-action and where the structure maps

of the inverse system are affine. Now the obvious map colimaGðSa;PÞ !

GðS;PÞ is a weak-equivalence.

Let S denote a given algebraic stack, finitely presented over the base scheme S,

with a G-action, X a given algebraic space (with trivial action by G) and p: S! X

a G-equivariant map. We define a presheaf p#ðPÞ on Xet by GðU; p#PÞ ¼ GðU�XS;PÞ.

PROPOSITION 5.17. Assume the above situation.

ðiÞ Then the presheaf p#ðPÞ has cohomological descent on the étale site of X if for

every L ¼ a field that is étale over a residue field of X, one has cohomological des-

cent for the restriction of p#ðPÞ to the étale site of L

ðiiÞ If the presheaf of homotopy groups pnðp#PÞ are all Q-vector spaces, the conclusion

of ðiÞ holds if the presheaf p#ðPÞ restricted to the étale site of every field L as in ðiÞ

has the weak-transfer property ðas in [T-5] ð2:12Þ or see Remark 5.18 belowÞ

Proof. This is essentially in [T-5], Section 2. &

Remark 5:18: The weak-transfer property for a presheaf F on the étale site of a field

Lmeans that for every finite étalemap l: Spec L0 ! Spec L, there is given a transfer

map l�: FðSpec L0Þ ! FðSpec LÞ satisfying the hypotheses in [T-5] Defini-

tion (2.12). The existence of a weak transfer suffices to obtain étale cohomological
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descent for presheaves of spectra satisfying the hypotheses in 5.18 whose homotopy

groups are allQ-vector spaces. The hypertransfer is a variant of the transfer that also

provides étale cohomological descent for presheaves of spectra whose homotopy

groups are not necessarily Q-vector spaces.

6. Riemann–Roch Theorems for Algebraic vs. Topological G-Theory

In this section we obtain a general Riemann–Roch theorem relating algebraic and

topological G-theories for algebraic stacks.

DEFINITION 6.1. Let S denote an algebraic stack as before provided with the

action of a smooth group scheme G. Let J denote a set of primes in Z. We define the

G-equivariant topological G-theory of S to be GðS;GÞK � ZðJÞ. We will also often call

GðS;GÞ=l n½b	1� G-equivariant topological G-theory of S. Either of these will be

denoted GtopðS;GÞ in this section.

Remark 6:2: Theorem 5.10 shows that the G-equivariant topological G-theory has

descent on the isovariant étale site of the stack ½S=G� and therefore justifies being

called topological G-theory. The following Riemann–Roch theorem might seem like

a tautology: however the fact that topological G-theory has descent on the isovariant

étale site makes the right-hand side computable by means of the spectral sequence in

Corollary 5.12, whereas there is no such spectral sequence for the left-hand side.

THEOREM 6.3 (Riemann–Roch). Let f : S0 ! S denote a proper map between

algebraic stacks that are finitely presented over S. Assume that a smooth group scheme

G acts on both the stacks making f G-equivariant and that f has finite cohomological

dimension. Then the following square

GðS0;GÞ ! GtopðS0;GÞ

f�

  

f�

GðS;GÞ ! GtopðS;GÞ

commutes.

Proof. This is clear since the right-hand side is simply the localization of the

left-hand side. &

We consider group actions on algebraic stacks and the resulting Lefschetz–

Riemann–Roch in the rest of this section. We begin first by defining actions by group

schemes on algebraic stacks and their fixed point stacks.

6.0.9. Throughout the rest of this section, the base scheme S is assumed to be the

spectrum of an algebraically closed field k. We will further restrict to actions of alge-

braic groups G on smooth Deligne–Mumford stacks S, all over k. It seems, to us,

that the more systematic definition of the fixed point stack S would make it not a
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closed algebraic substack of S, but one that is unramified over S. However, the fol-

lowing approximation to the fixed point stack seems sufficient for the situation con-

sidered above.

DEFINITION 6.4. Let MG denote the fixed point algebraic subspace of the coarse

moduli space. We let SG
¼MG

�MS. We adopt this as the definition of the fixed

point stack.

Remark 6:5: Since the coarse moduli space of SG has the same points as MG, it

follows that the points of the group G act trivially on the points of the stack SG.

However, the group G may not act trivially on residual gerbes at each point. Since

the base scheme is assumed to be the spectrum of an algebraically closed field k, these

residual gerbes may be identified with quotient stacks for the action of finite groups.

The following result will, however, show that, we may find a finite étale cover of the

group G that acts trivially on the stack SG, provided we work over an algebraically

closed field k and the group G is a torus.

PROPOSITION 6.6. Assume the base scheme is the spectrum of an algebraically

closed field k and the group G ¼ T is a torus, that the stack S is smooth and the coarse

moduli space M is an algebraic space of finite type over k. Then there exists a finite

étale cover T ffi ~T! T so that the torus ~T ðwith the obvious induced actionÞ acts tri-

vially on the stack ST. We may now identify ST with S ~T.

Proof. We begin with the Cartesian square

IT

S0T !
d T� ST

p

  

ðm;pr2Þ

ST
!

D
ST
� ST

ð6:0:10Þ

defining IT
ST . Let X! ST denote an atlas for the stack ST. The right column is the

map defined by the two maps m: T� ST
! ST and the projection

pr2: T� ST
! ST. Clearly IT

ST �ST X is a group scheme over X. Moreover, the

obvious map d0: IT
ST �ST X! T� X induced by d is unramified and surjective. (To

see d is surjective, one may take points of the diagram (6.0.10). Observe from

[L-MB] Proposition (5.3.1) that the induced map jIT
ST j ! jST

j �ST�ST jT� ST
j is

surjective. The definition of the fixed point stacks above shows the last term is

isomorphic to

jMT
j �
jMT
j�jMT

j

jTj � jMT
j ffi jMT

�
MT
�MT

T�MT
j:

The latter is the set of points of the inertia stack associated to the trivial action of T

on the moduli space MT. Therefore, it maps surjectively to jT�MT
j and hence d

itself is surjective.) Since X is generically integral (recall the base scheme is a field),

it follows that the map d0 is generically flat and, hence, finite étale. One may now
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stratify X by locally closed subschemes, Ui, which are the atlases of locally closed

substacks of ST, so that over Ui 	Ui	1 the map d0 is finite étale of degree ni. Let

ST
i denote the algebraic substack corresponding to Ui 	Ui	1.

If �x : Spec k! Ui 	Ui	1 is any geometric point of Ui 	Ui	1, IT
ST �ST X�X �x ¼

T �x is a torus isomorphic to T, but the map T �x ! T induced by d is finite étale of

degree ¼ ni. If Spec Rð �xÞ denotes the strict Henselization of X at �x, the correspond-

ing induced map TSpec Rð �xÞ ! T� Spec Rð �xÞ induced by d will also be finite étale

of the same degree. Therefore, we may find an étale covering V! Ui 	Ui	1 so that

IT
ST �ST V ffi T� V with the induced map to T� ST

�ST V (¼ T� V) is finite étale of

the same degree. We will denote the torus T appearing in the former by T 0i: this is a

finite étale cover of the original torus T. The algebraic groupoid T 0i � V�ST V
!
! T 0i � V defines the algebraic stack IT

ðST Þi
¼ IT

ST �ST ðST
Þi. Therefore, we obtain

the diagram with both squares cartesian:

I
T 0i

S
T 0

i
i

! T 0i � ðST
Þi

  

ðIT
STÞi ffi T 0i � ðST

Þi !
d T� ðST

Þi

 

p

 

ðST
Þi !

D
ðST
Þi � ðST

Þi

ð6:0:11Þ

Clearly the top row has a splitting. Therefore, if we consider the étale cover of T,

T 0i ! T of degree ni, and we let T 0i act through the action of T, it will act trivially

on the locally closed substack ðST
Þi : see (5.1.1). Therefore, let ~T! T denote an

étale cover of sufficiently large degree (> ni, for all i) and let it act on the stack

through the action of T and the homomorphism ~T! T. Then the action of ~T on

ST will be trivial. Since the homomorphism ~T! T is surjective, we see that

ST
¼ S ~T. &

LEMMA 6.7. Assume the above hypotheses. Then one may find a finite subgroup

scheme F of T of order prime to the characteristic of k so that MT
¼MF.

Proof. Observe that the elements of T of finite order different from the char-

acteristic p are dense in T. If Tf denotes the subgroup generated by these elements,

one may observe that MT
¼MTf . On the other hand, Tf can be written as the union

[iT
ðniÞ

f where T
ðniÞ

f denotes the elements of order ni in Tf, for a sequence of integers ni

different from the characteristic. Therefore MT
¼ \iM

T
ðniÞ

f . Since M is Noetherian by

hypothesis, it follows that MT
¼MT

ðni Þ

f for some i. (We thank Michel Brion for

supplying this lemma.) &

PROPOSITION 6.8. Assume the above situation. Then ST
red is smooth.
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Proof. Let �x : Spec k!MT denote a fixed geometric point of MT, let

x : Spec k! ST denote lifting of �x and let Gx denote the corresponding residual

gerbe. One may observe that Gx is the neutral gerbe associated to a finite group

scheme since the stack is assumed to be Deligne–Mumford. Moreover, we may

therefore assume that x represents an atlas for this residual gerbe.

Let I denote the sheaf of ideals defining ST as a closed sub-stack of S: we will show
that Ix is defined by a regular sequence in OS;x which is strict Henselization of OS at

x. If mx is the maximal ideal of OS;x, let �x1; . . . ; �xk; �xkþ1; . . . ; �xn denote a basis for

kðxÞ ¼ mx=m2
x. Lift these basis vectors to x1; . . . ; xn in mx: now they form a regular

sequence in mx.

By the preceding lemma, we may now find a finite subgroup scheme F of ~T of

order prime to the characteristic p, so that MF
¼MT. Observe that, by our defini-

tion, SF
¼ ST. We may further find a map ~Y! S and a lift ~y of the point x so that

~Y is an affine scheme, with an action of F, ~y is fixed by F and with y1; . . . ; yn in its co-

ordinate ring so that each xi maps to the image of yi in the strict Henselization of the

local ring at ~y. Moreover, the action of F on ~Y is compatible with the action of ~T on

S. We may define ~Y as follows. We may first find an affine smooth scheme with an

étale map a: �Y! S provided with a lift �y of the point x and �yi in its co-ordinate ring

so that each xi maps to the image of �yi in the strict Henselization of the local ring at

�y. �Y may not have an action by F. Next replace �Y by the iterated fibered product of

fð �YÞ, (over S), f 2 F: fð �Y Þ is the fibered product of �Y over S and the map f	1: S! S
with the map from fð �Y Þ ! S being the induced map (¼ f � a � f	1�Y , where

f	1�Y : fð �Y Þ ! �Y is the map induced by f	1:S! S). This is a smooth separated scheme

provided with an (obvious) action by F (which we denote by Ŷ), with an étale map to

S, a lift of the point x fixed by F (which we denote by ŷ) and y1; . . . ; yn in the stalk of

its structure sheaf at the chosen point ŷ so that xi maps to the image of yi in the strict

Henselization of the local ring at ŷ. Observe that the action by F on Ŷ is compatible

with the action of ~T on S. However, Ŷ is not necessarily affine. Now take an affine

open neighborhood Nŷ of ŷ in Ŷ: since Ŷ is separated, ~Y ¼ \f2Ff:Nŷ is an affine open

neighborhood of ŷ stable by F. This also shows that such neighborhoods are co-final

in the system of affine neighborhoods of ŷ in Ŷ, so that we may lift the yi to one such

neighborhood. Since the group F is linearly reductive, we may also assume that F

acts on yj with nontrivial character wj, j ¼ kþ 1; . . . ; n and trivially on y1; . . . yk.

Observe that Y ¼ S ~T
�S ~Y is a closed subscheme of ~Y defined by a sheaf of ideals

I. Moreover, Y! ST is an atlas for ST.

We will next show that F acts trivially on Y and that the map Y! ST is fixed by

every element of F. To see this recall F acts on ST through the action of ~T on S : ~T

acts trivially on ST and therefore the action of F on ST is trivial. Now recall the defi-

nition of Ŷ as the iterated fibered product of fð �Y Þ, f 2 F. Here fð �Y Þ is the fibered pro-

duct of �Y!
a S and f	1:S! S. Since F acts trivially on ST, the composition

ST
! S	!

f	1

S is simply the original closed immersion ST
! S; therefore

ST
�S f � a � f	1�Y :ST

�S fð �Y Þ ! ST identifies with ST
�S a. It follows that F leaves

every point of Y fixed and fixes the map Y! ST.

162 ROY JOSHUA

https://doi.org/10.1023/A:1022849624526 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022849624526


Let j > k denote a fixed integer and let wj denote the corresponding character by

which F acts on yj. Recall ~Y is affine; therefore the fyjj jg are elements of the co-ordinate

ring of ~Y. Let y0 2 Y denote an arbitrary (closed) point. If yj does not vanish at the

point y0 2 Y, the stabilizer Fy0 must be contained in kerðwjÞ. Since kerðwjÞ is properly

contained in F (otherwise F would act trivially on yj contrary to the choice of yj), it

follows that y0 would not be a fixed point for F. (Recall F acts trivially on every

point y0 of Y ). Therefore, it follows that yj vanishes at every point of Y: i.e.

ð ykþ1; . . . ; ynÞ � I. Since ~YF is defined by the ideal ð ykþ1; . . . ; ynÞ, it follows that

Y � ~YF. Now observe that OS;x ffi Osh
~Y; ~y
¼ the strict Henselization of O ~Y; ~y at ~y and

that Ix ffi I ~y�O ~Y; ~y
Osh

~Y; ~y
when I ~y ¼ I�Gð ~Y;O ~Y; ~yÞ

O ~Y; ~y. Therefore, it follows that

ðxkþ1; . . . ; xnÞ � Ix.

Conversely we will show Ix � ðxkþ1; . . . ; xnÞ. For this, it suffices to show that
~YF � Y which implies that I � ð ykþ1; . . . ; ynÞ. Since Y ¼ ST

�S ~Y, the closed immer-

sion ~YF ! ~Y factors through Y. Now an argument as in the last paragraph shows

Ix ¼ ðxkþ1; . . . ; xnÞ which is a regular sequence in OS;x. Therefore, OST;x is a regular

local ring for every closed point x of ST. This proves ST
red is smooth. &

6:0:12: Proof of Theorem 1:3: It follows from the above proposition that the

closed immersion i : ST
red ! S is a regular immersion. Let N denote the conormal

sheaf associated to this closed immersion. &

PROPOSITION 6.9. Assume that the above situation is correct. ðiÞ Then the class

l	1ðNÞep0ðGðS
~T 0 ; ~T 0ÞÞðpÞ �Z Q is a unit. ðiiÞ Moreover the Gysin map i� :

p�ðGðS
~T 0 ; ~T 0ÞÞðpÞ ! p�ðGðS; ~T 0ÞÞðpÞ is an isomorphism. ðiiiÞ The inverse to this iso-

morphism tensored with Q is provided by i �ð Þ \ l	1ðNÞ
	1.

Proof. Throughout the proof, we will identify the G-theory of an algebraic stack

with the G-theory of the associated reduced stack. We will first prove the first

statement. We first recall the canonical isomorphism (see: 1.0.3):

p�ðGðS; ~T 0ÞÞ ffi Z½M0� �
Z
p�ðGðSÞÞ ð6:0:13Þ

where M0 is the character group of ~T 0 and ~T 0 acts trivially on the stack S. Through-
out the proof we will let Gð ; ~T 0ÞS ~T 0 ðKð ; ~T 0ÞS ~T 0 Þ denote the presheaf of spectra

associated to the category of ~T 0-equivariant coherent (coherent and locally free,

respectively) sheaves on the stack S ~T 0 .

Let p:S!M and p
~T
0

:S ~T
0

!MT denote the obvious maps. Using the notation as

in 5.10, the presheaf p
~T
0

# ðGð ; ~T
0
ÞS ~T

0 Þ �Q satisfies the hypotheses in Proposition

5.17. Therefore, we obtain a spectral sequence:

Es;t
2 ¼ Hs

etðM
~T
0

; ptðp
~T
0

# ðGð ; ~T
0
ÞÞS ~T

0 �QÞÞ ! pt	sðGðS
~T
0

; ~T
0
Þ �QÞ ð6:0:14Þ

In view of the hypotheses, this spectral sequence converges strongly. One may loca-

lize this spectral sequence at the prime ideal p in RðT Þ corresponding to the subtorus
~T
0
: clearly the resulting spectral sequence also converges strongly. Therefore, the ker-

nel of the edge map
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e: p0ðGðS
~T
0

; ~T
0
Þ �QÞðpÞ ! E0;0

1 ! E0;0
2

¼ H0
etðM

T; p0ðp
~T
0

# ðGð ; ~T
0
ÞS ~T

0 Þ �QÞðpÞÞ

is nilpotent and it suffices to show that eðl	1ðNÞÞ is a unit. Next observe that

eðl	1ðNÞÞ is in the image of the natural map

H0
etðM

~T
0

; p0ðp
~T
0

# ðKð ; ~T
0
ÞS ~T

0 Þ �QÞðpÞÞ

!
E

H0
etðM

T; p0ðp
~T
0

# ðGð ; ~T
0
ÞS ~T

0 Þ �QÞðpÞÞ ð6:0:15Þ

Therefore, we will denote by eðl	1ðNÞÞ the corresponding class on the left-hand side

of the previous equation. The isomorphism in (6.0.13) for K-theory (and the obser-

vation that ~T 0 indeed acts trivially on the stack S ~T 0) enables one to obtain the iso-

morphism:

H0
etðM

~T
0

; p0ðp
~T
0

# ðKð ; ~T
0
ÞS ~T

0 Þ �QÞðpÞÞ

ffi Z½M0�ðpÞ �
Z

H0
etðM

~T
0

; p0ðp
~T
0

# ðKð ÞS ~T
0 Þ �QÞÞ: ð6:0:16Þ

Next, in order to show eðl	1ðNÞÞ is a unit, it suffices to show that it maps to a unit at

each of the stalks (taken at the geometric points of the moduli space M
~T 0) of the pre-

sheaf Z½M�0ðpÞ �Z p0ð p
~T
0

# ðKð ÞS ~T
0 �QÞÞ. Since the stack is Deligne–Mumford, one

may localize on the moduli space M
~T 0 and assume the stack is a quotient stack asso-

ciated to a finite group action. Therefore, we reduce to showing that the class l	1ðNÞ
is a unit in Z½M0�ðpÞ �Z p0ðKðS

~T 0
ÞÞ �Z Q when the stack S ~T 0 is a quotient stack asso-

ciated to the action of a finite group on a scheme of finite type over k.

At this point, one observes that the g-filtration on the Grothendieck group of

equivariant vector bundles on a scheme of finite type over k, equivariant with respect

to the action of a finite group is nilpotent modulo torsion. (See [A].) Therefore, it suf-

fices to show that the image of l	1ðNÞ in Z½M0�ðpÞ �Z Q is a unit. In fact it suffices to

do this for the image of l	1ðNÞ in Z½M0�ðpÞ. The stalk N �x is the sum of nontrivial one-

dimensional representations Simi: therefore the image of ðl	1ðNÞÞ ¼ P
i
ð1	miÞ. One

may readily show mi 6¼ 1ðmodÞp. It follows that ð1	miÞ is a unit in Z½M0�ðpÞ for all i:

i.e. ðl	1ðNÞÞ maps to a unit in the given stalk.

This completes the proof of the first statement of the proposition.

Next we will show the Gysin map

i� : p�ðGðS
~T 0 ; ~T

0
ÞÞðpÞ ! p�ðGðS; ~T

0
ÞÞðpÞ ð6:0:17Þ

is an isomorphism. By the localization sequence in G-theory and induction on the

dimension of the stack, it suffices to prove that on any sufficiently small open sub-

stack SV of S 	 S ~T 0 , p�ðGðSV; ~T 0ÞÞðpÞ ’ 0. Let V �M	M
~T 0 denote any open non-

empty ~T 0-stable and smooth subalgebraic space. We may in fact assume that it is a

scheme. Let SV ¼ S�M V. Observe that GðV; ~T 0Þ ’ KðV; ~T 0Þ since V is regular and

that GðSV; ~T 0Þ is a module over KðV; ~T 0Þ. The latter is trivial on localization at the
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prime ideal p by [T-2]. Therefore, p�ðGðSV; ~T 0ÞÞðpÞ ’ 0 and hence

p�ðGtopðSV; ~T 0ÞÞðpÞ ’ 0. This shows that the Gysin map in ( 6.0.17) is an isomorphism

and completes the proof of the second statement of the proposition. The last asser-

tion follows readily since the composition of i� and i � corresponds to multiplying by

l	1ðNÞ. This completes the proof of the proposition. &

6:0:18: Proof of Theorem 1:3: This is clear in view of the previous proposition. The

key observation is that the map C commutes with proper push-forward by [Toe-1],

Lemme (4.12). In fact, in [Toe-1] Lemme (4.12) is stated in a restrictive form with the

hypothesis that every coherent sheaf on the stacks S ~T 0 and S0 ~T 0 is a quotient of a

locally free coherent sheaf. This is a very restrictive hypotheses which, fortunately

may be removed as follows. Let S denote either of the above stacks: recall these are

both smooth. It suffices to show that there exists a Chow envelope ~S! S which is

strongly projective, i.e. factors through a closed immersion into ProjðEÞ where E is a

locally free coherent sheaf on S followed by the obvious projection to S. Since the

stack S is smooth and defined over a field k, one may find such a ~S as follows. Since S
is smooth, it is well known that S is a gerbe over S0 where the latter is another smooth

Deligne–Mumford stack which is generically a scheme. By Theorem 2.18, [EHKV], S0

is a quotient stack and therefore every coherent sheaf on S0 is the quotient of a locally

free coherent sheaf. Therefore every morphism S0 ! S0 that factors as the compo-

sition of a closed immersion into ProjðEÞ, with E a coherent sheaf on S0 and the

obvious projection is in fact strongly projective in the sense above, i.e. one may

assume without loss of generality that E is in fact locally free. In particular, if S00! S0

is a Chow envelope, it is strongly projective. Now one takes the pull-back
~S ¼ S00�S0

S! S. This is strongly projective and is a Chow envelope, since S! S0

is a gerbe. Therefore one may apply Lemme (4.12) of Toen without further restric-

tions on the stacks. (We thank Bertrand Toen for supplying the above argument.) The

map i �ð Þ \ l	1ðNÞ
	1 being inverse to i� also commutes with proper push-forward

for equivariant maps. &

6:0:19 Proof of Corollary 1:4: This is also clear in view of the previous results.

Étale cohomological descent for the presheaf Kð ÞÞ �Q provides the isomorphism

p0ðKðX; ~T
0
ÞÞðpÞ �Z Qðm1Þ ffi p0ðKetðX; ~T 0ÞÞðpÞ �Z Qðm1Þ.

7. Appendix: Quotient Stacks of Algebraic Stacks

In this section we will briefly show that the quotient of an algebraic stack by the

action of a smooth group scheme exists as an algebraic stack. This seems well known,

though nothing appears in the literature.

7.1. Let S denote an algebraic stack with an action by a smooth group scheme G.

We define the category, ½S=G� fibered in groupoids over schemes as follows. For a
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given scheme T, the objects of the category ½S=G�ðT Þ are given by diagrams of the

following form:

c0

 

s

c !
g

T

ð7:1:1Þ

where g is a principal G-bundle over T, s corresponds to an object in the stack S over

c, the object c is provided with an action by G, so that if m, pr2:G� c! c are the

group action and the projection, then there is given an isomorphism f: m �ðsÞ ffi pr �2 ðsÞ

satisfying an obvious co-cycle condition on further pull-back to G� G� c by the

obvious maps and so that the pull-back to c by the identity section e:c! G� c
is the identity. A morphism between two such objects in the category ½S=G�ðT Þ is

an isomorphism preserving all the structure.

PROPOSITION 7.1. Assume the above situation. Then ½S=G� is an algebraic stack so

that there exists a representable smooth map S! ½S=G� of algebraic stacks. If

x:X! S is an atlas for the stack S, the composition X! S! ½S=G� defines an atlas

for the stack ½S=G�.

Proof. We skip the verification that ½S=G� is a stack. The map S! ½S=G� is given

by sending an object Z0 in SðT Þ to the diagram

c0 ¼G� Z0

 

G� T !
pr2 T

ð7:1:2Þ

One may verify that the map S! ½S=G� is representable. Finally, to show that the

stack ½S=G� is algebraic, one may proceed as follows. First let x0:X0! S denote an

atlas for the stack S with X0 a separated scheme. If m:G� S! S and

pr2:G� S! S are the projections, one obtains an isomorphism (not necessarily

satisfying any co-cycle conditions) between the two pull-backs m �ðX0Þ and pr �2 ðX0Þ.

We will denote pr �2 ðX0Þ by X1. Making use of this isomorphism, one obtains the com-

mutative square:

where the two maps in the bottom row are the obvious ones induced by the ones in

the top row. Now the square is Cartesian with the maps m and m0 (pr2 and pr02, respec-

tively). Moreover, all the maps are smooth and the schemes are all separated (and

quasi-compact). We may now extend this to the diagram:
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Once again all the maps are smooth and the schemes are all separated (and quasi-

compact). Therefore, the diagonal of the above diagram:

X1 �
G�S

X1		!
		!

X0

defines an algebraic groupoid. (Observe that X1 ffi G� X0. Therefore one obtains a

composition X1�X0
X1 ! X1 induced by the group-law G� G! G. Next observe

that, since G� S is an algebraic stack, X1�G�S X1		!
		!

X1 is an algebraic groupoid.

Therefore one has a composition

X1 �
G�S

X1�
X1

X1 �
G�S

X1! X1 �
G�S

X1:

Combining these two compositions, one obtains a composition

X1 �
G�S

X1�
X0

X1 �
G�S

X1! X1 �
G�S

X1

that defines the groupoid law. Now one needs to verify that the required identities

hold.) The associated stack may be identified with ½S=G�. &
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