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We propose a geometric framework to describe and analyse a wide array of operator
splitting methods for solving monotone inclusion problems. The initial inclusion
problem, which typically involves several operators combined throughmonotonicity-
preserving operations, is seldom solvable in its original form. We embed it in an
auxiliary space, where it is associated with a surrogate monotone inclusion problem
with a more tractable structure and which allows for easy recovery of solutions to
the initial problem. The surrogate problem is solved by successive projections onto
half-spaces containing its solution set. The outer approximation half-spaces are
constructed by using the individual operators present in the model separately. This
geometric framework is shown to encompass traditional methods as well as state-of-
the-art asynchronous block-iterative algorithms, and its flexible structure provides a
pattern to design new ones.
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488 P. L. Combettes

1. Introduction
Throughout, H is a real Hilbert space with scalar product 〈· | ·〉 and 2H stands
for the power set of H. Our main focus is on the following monotone inclusion
problem.

Problem 1.1. Let " : H→ 2H be a monotone operator, that is,

(∀G ∈ H)(∀H ∈ H)(∀G∗ ∈ "G)(∀H∗ ∈ "H) 〈G − H | G∗ − H∗〉 ≥ 0. (1.1)

The task is to find G ∈ H such that 0 ∈ "G.
Monotone inclusion problems are intimately linked to the birth of nonlinear

analysis. They first appeared as powerful models to establish existence, uniqueness
and stability results for various nonlinear problems (Browder 1968/1976, Ghizzetti
1969, Kačurovskiı̆ 1960, Zarantonello 1960, 1971). Over the past six decades,
monotone inclusion models have penetrated almost all areas of mathematics and
its applications. Nowadays, Problem 1.1 models a broad range of equilibria in
areas such as dynamical systems (Adly, Hantoute and Le 2017), ill-posed prob-
lems (Alber and Ryazantseva 2006), domain decomposition methods (Alduncin
2023, Attouch, Briceño-Arias and Combettes 2016, Attouch, Cabot, Frankel and
Peypouquet 2011), circuit theory (Anderson Jr and Trapp 1976, Chaffey and Sep-
ulchre 2024, Chaffey, Banert, Giselsson and Pates 2023a, Chaffey, Forni and Sep-
ulchre 2023b, Goeleven 2017), machine learning (Argyriou, Foygel and Srebro
2012, Combettes, Salzo and Villa 2018, Jenatton, Mairal, Obozinski and Bach
2011, Vaiter, Peyré and Fadili 2018), evolution equations (Attouch, Briceño-Arias
and Combettes 2010, Brézis 1973, Showalter 1997), partial differential equations
(Barbu 2010, Brézis and Browder 1998, Clason and Valkonen 2017, Ghoussoub
2009, Pascali and Sburlan 1978, Showalter 1997, Zeidler 1990), signal processing
(Beck and Teboulle 2010, Combettes and Pesquet 2011, Combettes andWajs 2005,
Potter and Arun 1993), image processing (Bednarczuk, Jezierska and Rutkowski
2018, Chambolle and Pock 2016, Combettes and Woodstock 2022, Glowinski,
Osher and Yin 2016, Pesquet, Repetti, Terris and Wiaux 2021), game theory
(Belgioioso, Nedich and Grammatico 2021, Börgens and Kanzow 2021, Briceño-
Arias and Combettes 2013, Bùi and Combettes 2022a, Cohen 1987, Facchinei
and Pang 2003, Facchinei, Fischer and Piccialli 2007, Gautam, Sahu, Dixit and
Som 2021), network flow problems (Bertsekas 1998, Bùi 2022a, Rockafellar 1984,
1995), equilibrium theory (Briceño-Arias 2012, Combettes and Hirstoaga 2005,
Moudafi and Théra 1999), mean-field games (Briceño-Arias, Deride, López-Rivera
and Silva 2023, Briceño-Arias, Kalise and Silva 2018), control theory (Brogliato
and Tanwani 2020, Brogliato, Lozano, Maschke and Egeland 2007, Camlibel and
Schumacher 2016, Doležal 1979a, Singh, Weiss and Tucsnak 2022), data science
(Chan, Wang and Elgendy 2017, Combettes and Pesquet 2021, Wright and Recht
2022), optimization (Combettes 2018, Eckstein and Bertsekas 1992, Gol’shtein
and Tret’yakov 1996, Tseng 1990, 1991), statistics (Combettes and Müller 2020,
Yan and Bien 2021), neural networks (Combettes and Pesquet 2020, Winston and
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Kolter 2020, Yi and Ching 2020), traffic equilibrium (Dafermos 1980, Fukushima
1996), systems theory (Desoer and Vidyasagar 1975, Doležal 1979b), mechanics
(Fortin and Glowinski 1983, Mercier 1980), optimal transportation (Papadakis,
Peyré and Oudet 2014) and minimax theory (Rockafellar 1970b).
Early numerical solution methods to solve Problem 1.1 can be found in Antipin

(1976), Bruck (1973, 1974), Korpelevič (1976), Lions (2010), Petryshyn (1966),
Sibony (1970), Vaı̆nberg (1960, 1961) and Zarantonello (1960, 1964). These
methods are of the explicit Euler type, meaning that, at iteration =, the update
G=+1 is determined by finding a point in "G=. An alternative method, which first
appeared in Lieutaud (1969a) and then in more detail in Rockafellar (1976b), is
the proximal point algorithm, where the update is obtained through the implicit
relation G= − G=+1 ∈ "G=+1. Such approaches have limited potential since they
can be directly implemented only in specific situations. For instance, the Euler
step methods of Bruck (1973, 1974, 1975) impose certain properties on " and
asymptotically vanishing step sizes, which is detrimental to numerical stability and
speed of convergence. On the other hand, the proximal point algorithm requires
explicit expressions for the resolvent of " , which is seldom possible. In most
problems, however, " has a complex structure and it is typically expressed in
terms of monotonicity-preserving operations involving simpler operators. The
principle governing splitting methods is to devise algorithms in which each of
the elementary operators arising in the decomposition of " are used individually,
hence breaking up Problem 1.1 into tasks that are more manageable.
The first monotone operator splitting methods arose in the late 1970s and were

motivated by applications in mechanics and partial differential equations (Fortin
and Glowinski 1983, Glowinski and Le Tallec 1989, Mercier 1980). The three
main algorithms that dominated the field were designed for problems in which

" = � + �, (1.2)

where � : H → 2H and � : H → 2H are maximally monotone: the forward–
backward method (Mercier 1979), the Douglas–Rachford method (Lions and Mer-
cier 1979) and Tseng’s forward–backward–forwardmethod (Tseng 2000). In recent
years, the field of monotone operator splitting algorithms has benefited from a new
impetus, fuelled by the emerging application areas mentioned above and their
demand for solving efficiently increasingly complex large-dimensional problems.
Thus, duality techniques have arisen to address composite models of the form

" = � + !∗ ◦ � ◦ !, (1.3)

where ! is a linear operator from H to a Hilbert space G and � : H → 2H and
� : G → 2G are maximally monotone (Briceño-Arias and Combettes 2011). These
techniques have been further developed to devise splitting algorithms for the more
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structured model (Boţ and Hendrich 2014, Combettes and Pesquet 2012, Vũ 2013)

" = � +
?∑
:=1

!∗: ◦
(
�−1
: + �

−1
:

)−1◦!: + �, (1.4)

where each linear operator !: maps H to a Hilbert space G: , and the operators
� : H → 2H, �: : G: → 2G: , �: : G: → 2G: and � : H → H are maximally
monotone. Splitting algorithms for models which are more finely structured than
(1.4) have also been proposed, as well as multivariate versions that capture coupled
systems of monotone inclusions; see Bùi and Combettes (2022b) and the refer-
ences therein. On a different front, block-iterative algorithms, which allow for the
activation of only a subgroup of operators present in the model at a given iteration,
have also been developed (Bùi 2022b, Bùi and Combettes 2022b, Combettes and
Eckstein 2018, Johnstone and Eckstein 2022). At the same time, a multitude of
splitting algorithms tailored to specific models have been elaborated. For instance,
if � : H → 2H and � : H → 2H are maximally monotone and � : H → H is
cocoercive, splitting algorithms have been proposed in Davis and Yin (2017) and
Raguet (2019) for the decomposition " = � + � +�, and in particular in Briceño-
Arias and Davis (2018) if � : H → H is Lipschitzian and in Latafat and Patrinos
(2017) if � : H→ H is linear and bounded.

Given the abundance of activity in monotone operator splitting techniques, it is
important to identify general structures and principles, as well as possible bonds
between algorithm design methodologies, in order not only to simplify and clarify
the state of the art but also to facilitate the developments of new methods in the
future. From the outset, fixed point theory has been a tool of choice to achieve this
goal. For instance, it has played an important role in the analysis of the proximal
point algorithm (Kryanev 1973, Martinet 1972, Rockafellar 1976b). Combettes
(2004) showed that fixed point iterations of averaged operators provide a conveni-
ent framework to investigate the asymptotic behaviour of classical splitting al-
gorithms such as the forward–backward, backward–backward, Douglas–Rachford
and Peaceman–Rachford algorithms. Further applications of averaged operator
iterations to design and analyse splitting methods can be found in Briceño-Arias
and Roldán (2023), Chambolle and Pock (2016), Combettes and Glaudin (2017),
Combettes and Pesquet (2021), Combettes and Yamada (2015), Condat, Kitahara,
Contreras and Hirabayashi (2023), Davis and Yin (2017), Raguet (2019), Raguet
and Landrieu (2015), Raguet, Fadili and Peyré (2013), Ryu, Taylor, Bergeling and
Giselsson (2020) and Xue (2023b). Fixed point modelling is also a central al-
gorithmic development tool in recent works such as those of Aragón-Artacho, Boţ
and Torregrosa-Belén (2023), Briceño-Arias and Davis (2018) and Malitsky and
Tam (2023). In spite of these achievements, fixed point methods seem less well
suited to capturing in simple terms the most flexible splitting methods, such as the
block-iterative asynchronous methods of Bùi (2022b), Bùi and Combettes (2022b),
Combettes and Eckstein (2018) and Johnstone and Eckstein (2022), which were
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built using geometric arguments. The purpose of the present paper is to provide a
standardized pattern for building and analysing splitting methods around the fol-
lowing geometric framework. It comprises an embedding step, where the initial
Problem 1.1 is replaced by a more tractable surrogate inclusion problem in an
auxiliary space X from which the solutions to the original problem can be easily
recovered. The second step is an iterative process in which the current iterate is
projected onto a closed half-space that serves as an outer approximation to the
surrogate solution set.

Framework 1.2. Geometric algorithmic template for solving Problem 1.1.

(i) Embedding. Find a real Hilbert space X, a maximally monotone operator
M : X→ 2X and an operator T : X→ H such that T (zerM) ⊂ zer" . We
call (X,M,T ) an embedding of Problem 1.1.

(ii) Iterations.

for = = 0, 1, . . .⌊
H= is a closed half-space of X such that zerM ⊂ H=
x=+1 is a relaxed projection of x= onto H=.

(1.5)

In optimization, the use of half-spaces as outer approximations to the solution set
goes back to the cutting plane methods of Cheney and Goldstein (1959a), Kelley
(1960) and Levitin and Polyak (1966); see also Laurent and Martinet (1970),
Veinott (1967) and Zangwill (1969). In monotone inclusion problems, modelling
iterations as successive projections onto separating half-spaces occurs in several
papers (Bauschke and Combettes 2001, Combettes 2001a, Solodov and Svaiter
1999a,b). We aim at showing that Framework 1.2 is sufficiently broad and flexible
to encompass a wide array of existing methods while providing a template to create
new ones. It will allow us to derive in a unified fashion simple proofs of existing
convergence results. It will also make it possible to establish seamlessly strongly
convergent variants of these algorithms. The proofs we provide are new, and so are
some of the results.
The remainder of the paper is organized as follows. To make our presenta-

tion self-contained, Section 2 covers the necessary mathematical background on
monotone operator theory. It also contains various examples of maximally mono-
tone operators and a detailed history of the field. In Section 3 we present several
models for decomposing " in Problem 1.1. These decompositions will gen-
erate the embeddings required in Framework 1.2 and form the backbone of the
splitting methods discussed in the paper. The geometric principles underlying
our approach are presented in Section 4, where the main convergence theorems
are laid out. In Section 5 we study the proximal point algorithm and explore
several of its facets. In Sections 6, 7 and 8 we study, respectively, the Douglas–
Rachford, forward–backward–forward and forward–backwardmethods through the
lens of Framework 1.2 and capture a broad range of algorithms and applications by
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embedding them in bigger spaces. Block-iterative Kuhn–Tucker and saddle pro-
jective splitting methods are addressed in Sections 9 and 10, respectively. Finally,
several extensions and variants of the results are discussed in Section 11.

2. Monotone operators
2.1. Notation and basic definitions

The material of this section can be found in Bauschke and Combettes (2017).

2.1.1. General notation
H and G are real Hilbert spaces, B(H,G) is the space of bounded linear operators
from H to G, B(H) = B(H,H), and H ⊕ G denotes the Hilbert direct sum of H
and G. The identity operator ofH is denoted by IdH, its scalar product by 〈· | ·〉H,
and the associated norm by ‖ · ‖H (the subscripts will be omitted when the context
is clear). The weak convergence of a sequence (G=)=∈N to G is denoted by G= ⇀ G,
whereas G= → G denotes its strong convergence; the set of weak sequential cluster
points of (G=)=∈N is denoted byW(G=)=∈N.

2.1.2. Sets
Let � be a subset of H. The interior of � is int�, the indicator function of � is

]� : H→ ]−∞, +∞] : G ↦→
{

0, if G ∈ �,
+∞, otherwise,

(2.1)

the support function of � is

f� : H→ [−∞, +∞] : G∗ ↦→ sup
G∈�
〈G | G∗〉, (2.2)

and the distance function to � is

3� : H→ ]−∞, +∞] : G ↦→ inf
H∈�
‖G − H‖. (2.3)

Suppose that � is convex. We let cone� denote the smallest cone that contains �
and let sri� denote the strong relative interior of �, that is,

sri� = {G ∈ � | cone(−G + �) is a closed vector subspace of H}. (2.4)

If H is finite-dimensional, sri� coincides with the relative interior ri� of �, i.e.
the interior of� relative to the smallest affine subspace ofH containing�. Suppose
that � is nonempty, closed and convex. For every G ∈ H,

proj� G is the unique point in � such that 3�(G) = ‖G − proj� G‖. (2.5)

This process defines the projection operator proj� : H → H of �. The simple
case of a closed half-space is central to our approach.
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Example 2.1 (Bauschke and Combettes 2017, Example 29.20). Let D∗ ∈ H,
let [ ∈ R, and suppose that � = {I ∈ H | 〈I | D∗〉 ≤ [} ≠ ∅. Let G ∈ H and
set

3 =


〈G | D∗〉 − [
‖D∗‖2

D∗, if 〈G | D∗〉 > [,

0, otherwise.
(2.6)

Then proj� G = G − 3.

2.1.3. Functions
The set of minimizers of a function 5 : H → ]−∞, +∞] is denoted by Argmin 5
and, if it is a singleton, its unique element is denoted by argminG∈H 5 (G). The
infimal convolution of 5 : H→ ]−∞, +∞] and ℎ : H→ ]−∞, +∞] is

5 � ℎ : H→ [−∞, +∞] : G ↦→ inf
H∈H

( 5 (H) + ℎ(G − H)). (2.7)

Let Γ0(H) denote the class of functions 5 : H → ]−∞, +∞] which are lower
semicontinuous, convex, and such that dom 5 = {G ∈ H | 5 (G) < +∞} ≠ ∅. Let
5 ∈ Γ0(H). The conjugate of 5 is

Γ0(H) 3 5 ∗ : G∗ ↦→ sup
G∈H

(〈G | G∗〉 − 5 (G)). (2.8)

For every G ∈ H,

prox 5 G is the unique minimizer overH of H ↦→ 5 (H) + 1
2
‖G − H‖2. (2.9)

This process defines the proximity operator prox 5 : H→ H of 5 . We have

(∀W ∈ ]0, +∞[)(∀G ∈ H) G = proxW 5 G + W prox 5 ∗/W(G/W). (2.10)

The Moreau envelope of 5 of parameter W ∈ ]0, +∞[ is

W 5 = 5 �

(
1

2W
‖ · ‖2

)
. (2.11)

2.1.4. Set-valued operators
Let " : H→ 2H. The graph of " is

gra" = {(G, G∗) ∈ H ×H | G∗ ∈ "G}. (2.12)

The inverse of " is the operator "−1 : H→ 2H defined through the relation

(∀(G, G∗) ∈ H ×H) G∗ ∈ "G ⇔ G ∈ "−1G∗. (2.13)

Thus,
gra"−1 = {(G∗, G) ∈ H ×H | (G, G∗) ∈ gra"}. (2.14)

The set of fixed points of " is

Fix" = {G ∈ H | G ∈ "G}, (2.15)
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the set of zeros of " is

zer" = "−10 = {G ∈ H | 0 ∈ "G}, (2.16)

and the resolvent of " is the operator

�" = (Id + ")−1. (2.17)

In other words,

(∀G ∈ H)(∀? ∈ H) ? ∈ �"G ⇔ (?, G − ?) ∈ gra", (2.18)

and therefore
zer" = Fix �" . (2.19)

We have
(∀W ∈ ]0, +∞[)(∀G ∈ H) G − �W"G = W �"−1/W(G/W). (2.20)

The Yosida approximation of index W ∈ ]0, +∞[ of " is

W" =
Id − �W"

W
= (WId + "−1)−1 = (�W−1"−1) ◦ W−1Id (2.21)

and it satisfies
zer" = zer W". (2.22)

The domain of " is
dom" = {G ∈ H | "G ≠ ∅} (2.23)

and the range of " is

ran" =
⋃

G∈dom"
"G = {G∗ ∈ H | (∃ G ∈ dom") G∗ ∈ "G}. (2.24)

We have
dom"−1 = ran" and ran"−1 = dom". (2.25)

If, for some G ∈ H, "G is a singleton, we let "G denote its single element. We say
that " is injective if (∀G ∈ H)(∀H ∈ H) "G ∩ "H ≠ ∅ ⇒ G = H. Finally, given
� : H→ 2H, � : G → 2G , ! ∈ B(H,G) and U ∈ R, we set

� + U!∗ ◦ � ◦ ! : H → 2H
G ↦→ {G∗ + U!∗H∗ | G∗ ∈ �G and H∗ ∈ �(!G)}. (2.26)

2.1.5. Monotone operators
Let " : H→ 2H. Then " is monotone if

(∀(G, G∗) ∈ gra")(∀(H, H∗) ∈ gra") 〈G − H | G∗ − H∗〉 ≥ 0 (2.27)
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H

H

G0

|

G
∗

0
− b

(a)

H

H

(b)

Figure 2.1. (a) Graph of a monotone, but not maximally monotone, operator: the
point (G0, G

∗
0) can be added to the graph and the resulting graph remains monotone.

(b) Graph of a maximally monotone operator: adding any point to the graph does
not preserve its monotonicity.

andmaximally monotone if, further, there exists nomonotone operator � : H→ 2H
such that gra" ⊂ gra � ≠ gra" , that is (see Figure 2.1),

(∀(G, G∗) ∈ H ×H)
[(G, G∗) ∈ gra" ⇔ (∀(H, H∗) ∈ gra") 〈G − H | G∗ − H∗〉 ≥ 0] . (2.28)

We have

" maximally monotone ⇒ zer" is closed and convex. (2.29)

Let V ∈ ]0, +∞[. Then " is V-strongly monotone if " − VId is monotone, that is,

(∀(G, G∗) ∈ gra")(∀(H, H∗) ∈ gra") 〈G − H | G∗ − H∗〉 ≥ V‖G − H‖2. (2.30)

Now let � be a nonempty subset ofH, let U ∈ ]0, +∞[, and let " : � → H. Then
" is nonexpansive if

(∀G ∈ �)(∀H ∈ �) ‖"G − "H‖ ≤ ‖G − H‖, (2.31)

U-averaged if U ≤ 1 and Id + U−1(" − Id) is nonexpansive, U-cocoercive if "−1 is
U-strongly monotone, that is,

(∀G ∈ �)(∀H ∈ �) 〈G − H | "G − "H〉 ≥ U‖"G − "H‖2, (2.32)

and firmly nonexpansive if it is 1-cocoercive. Alternatively,

" is firmly nonexpansive ⇔ 2" − Id is nonexpansive. (2.33)
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The following result is known as the Baillon–Haddad theorem.

Lemma 2.2 (Baillon and Haddad 1977). Let U ∈ ]0, +∞[ and let 5 : H → R
be convex, Fréchet-differentiable, and such that ∇ 5 is 1/U-Lipschitzian. Then ∇ 5
is U-cocoercive.

2.2. History

Monotonicity goes back to classical calculus and the notion of an increasing real-
valued function defined on an interval � ⊂ R, i.e. a function 5 : � → R that
satisfies

(∀G ∈ �)(∀H ∈ �) (G − H)( 5 (G) − 5 (H)) ≥ 0. (2.34)

The special properties enjoyed by such functions have long been recognized; see
for instance Darboux (1875), Froda (1929) and Hahn (1921). The monotonicity
condition (2.34) is also tied to the infancy of the theory of convex functions. Thus
Jensen (1906) showed that, if � is open and 6 : � → R is a twice differentiable
function with derivative 5 , then (2.34) implies that 6 is convex. On the numerical
side, (2.34) is an important property in connection with solving iteratively the root
finding problem (Papakonstantinou and Tapia 2013)

find G ∈ � such that 5 (G) = 0. (2.35)

Monotone operators on R also appeared in nonlinear circuit theory in the 1940s
in the form of quasi-linear resistors (Duffin 1946, 1947, 1948). A quasi-linear
resistor is a two-pole circuit element characterized by the property that the current
going through it increases smoothly with the voltage across it. In other words, the
transformation underlying its current–voltage characteristic is differentiable and
increasing. Dipoles with monotonic characteristics were further investigated in
Millar (1951). To study networks involving a broader range of devices,Minty (1960,
1961) extended this concept to maximally monotone set-valued transformations on
R; see Figure 2.2 and Cederbaum (1962) for examples. Interestingly, as will be
discussed shortly, Minty turned out to be one of the founders of monotone operator
theory. For further relevant early work on the connections between monotone
operators and network theory, see Berge and Ghouila-Houri (1962) and Desoer
and Wu (1974) and, for more abstract ramifications, see Doležal (1979b) and
Rockafellar (1984).
Another precursor of monotonicity is found in linear functional analysis, where

a linear operator " : H ⊃ � → H is declared accretive if (Kato 1980)

(∀G ∈ �) 〈G | "G〉 ≥ 0. (2.36)

In this context, the notion of a maximally accretive operator was introduced in
Phillips (1959). Accretive operators are also central to passive linear network
theory (Beltrami 1972, Zames and Falb 1968). One of the first instances of (2.36)
in electrical networks is the current–voltage transformation of the four-pole circuit
element known as an ideal gyrator (Tellegen 1948).
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current

voltage

(a)

current

voltage

(b)

current

voltage

(c)

current

voltage

(d)

Figure 2.2. Current–voltage characteristics of quasi-linear resistors as mono-
tone operators from R to 2R. (a) Breakdown diodes in series (Reich 1961).
(b) Breakdown diode and resistance in series (Reich 1961). (c) Anode–dynode
beam-deflection tube (Reich 1961). (d) The maximally monotone current–voltage
characteristic of Minty (1961).
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The above notions of increasing functions and positive operators can be brought
together by considering an operator " : H ⊃ � → H such that

(∀G ∈ �)(∀G ∈ �) 〈G − H | "G − "H〉 ≥ 0. (2.37)

Instances of (2.37) appear implicitly in Golomb (1935) and, more explicitly, in
Vaı̆nberg (1956, 1959) in connectionwith the existence of solutions toHammerstein
integral equations; see also Golomb (1936) for more general types of equations.
Another instance, which corresponds to what is now called strict monotonicity,
appears in Buck (1956), where H is the standard Euclidean space. The systematic
study of operators satisfying (2.37) started in 1960 and opened an important new
chapter of nonlinear functional analysis. Three independent papers submitted that
year are associated with the birth of monotone operator theory.
• Kačurovskiı̆ (1960), in an article submitted in February 1960, used the term
monotone to describe an operator that satisfies (2.37). This paper concerned
the monotonicity of the gradient of a differentiable convex function (see also
Vaı̆nberg and Kačurovskiı̆ 1959) and the existence of solutions to certain
nonlinear equations. It also introduced strongly monotone operators.
• Zarantonello (1960), in a technical report completed in June 1960, called
(2.37) an (isotonically) monotonicity property and discussed supra-unitary
(in modern language, strongly monotone) operators. In connection with the
solution of nonlinear equations, an important result of Zarantonello (1960) is
that, if " : H→ H is monotone and Lipschitzian, then Id + " is surjective.
• Minty (1962), in an article submitted in December 1960, also called" : � →
H monotone if it satisfies (2.37). In addition, he introduced the fundamental
concept of maximal monotonicity and established key connections with non-
expansive operators. Although, strictly speaking, his definitions dealt with
single-valued operators, he established results on monotone relations that nat-
urally suggest extensions to the set-valued case (1.1). According to Browder
(1965), who initiated the study of set-valued monotone operators in Banach
spaces, the Hilbertian setting was worked out by Minty in unpublished notes.

Accounts of the history of the development of monotone operator theory in the
1960s can be found in Borwein (2010), Browder (1968/1976), Kačurovskiı̆ (1968),
Lions (1969, Section 2.12), Minty (1969) and Vaı̆nberg (1972, Chapter VI). In
that period, the main mathematical areas of applications were nonlinear equations,
partial differential equations, boundary-value problems, nonexpansive semigroups,
convex analysis, evolution equations and variational inequalities; see Brézis (1966),
Browder (1963, 1968/1976), Ghizzetti (1969), Kōmura (1967), Leray and Lions
(1965), Moreau (1966–1967), Vishik (1961) and Zarantonello (1971), and their
bibliographies. At the same time, monotonicity continued to be used in the ana-
lysis of networks and systems, for instance in Zames (1966a,b), where it is known
as incremental positiveness; see also Desoer and Vidyasagar (1975), where mono-
tonicity is called incremental passivity. The main use of monotone operators was to
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establish existence, uniqueness or stability results in a variety of nonlinear problems
in analysis.

2.3. Examples of maximally monotone operators

The following example concerns single-valued operators; Examples 2.4–2.10 fol-
low from it (Bauschke and Combettes 2017, Chapter 20).

Example 2.3 (Minty 1963). Let � : H → H be monotone and hemicontinuous
(in particular, continuous) in the sense that

(∀(G, H, I) ∈ H3) lim
0<U↓0

〈I | �(G + UH)〉 = 〈I | �G〉. (2.38)

Then � is maximally monotone.

Example 2.4. Let ) : H → H be nonexpansive and let U ∈ [−1, 1]. Then
Id+U) is maximally monotone. In particular, set � = Id−) . Then � is maximally
monotone and zer � = Fix) .

Example 2.5. Let � : H→ H be cocoercive. Then � is maximally monotone.

Example 2.6. Let " : H→ 2H be maximally monotone and set � = �" . Then
� is maximally monotone and zer � = zer"−1.

Example 2.7. Let " : H → 2H be maximally monotone, let W ∈ ]0, +∞[, and
set � = W" (see (2.21)). Then � is W-cocoercive, hence maximally monotone, and
zer � = zer" .

Example 2.8. Let 5 ∈ Γ0(H) and set � = prox 5 . Then � ismaximallymonotone.

Example 2.9. Let� be a nonempty closed convex subset ofH and set � = proj� .
Then � is maximally monotone.

Example 2.10. Let � ∈ B(H) be a skew operator, i.e. �∗ = −�. Then � is
maximally monotone.

Here is an elementary example of a maximally monotone set-valued operator on
the real line.

Example 2.11. Let 0 ∈ R and 1 ∈ R be such that 0 < 1, let 5 : [0, 1] → R be
increasing (see (2.34)), and define

(∀G ∈ R) �G =


∅, if G ∉ [0, 1],
]−∞, 5 (0)], if G = 0,
[ 5 (1), +∞[, if G = 1,
[sup 5 ([0, G [), inf 5 (]G, 1])], if G ∈ ]0, 1[.

(2.39)

Then � is maximally monotone.
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The following example is a central result in variational methods; for a special
case see Minty (1964, corollary on page 244).

Example 2.12 (Moreau 1965). Let 5 : H → ]−∞, +∞] be proper. Then the
subdifferential

m 5 : H→ 2H : G ↦→ {G∗ ∈ H | (∀H ∈ H) 〈H − G | G∗〉 + 5 (G) ≤ 5 (H)} (2.40)

of 5 is monotone and (Fermat’s rule) zer m 5 = Argmin 5 . If 5 ∈ Γ0(H), then m 5
is maximally monotone and (m 5 )−1 = m 5 ∗.

Example 2.13 (Rockafellar 1970a, Theorem 24.3). Let � : R → 2R be maxi-
mally monotone. Then there exists 5 ∈ Γ0(R) such that � = m 5 .

Example 2.14. Let � be a nonempty convex subset of H. Then, setting 5 = ]�
in Example 2.12, we conclude that the normal cone operator

#� = m]� : H → 2H

G ↦→
{
{G∗ ∈ H | (∀H ∈ �) 〈H − G | G∗〉 ≤ 0}, if G ∈ �,
∅, otherwise

(2.41)
of � is monotone and that it is maximally monotone if � is closed, in which case
(#�)−1 = mf� .

Example 2.15. Let + be a closed vector subspace of H. Then it follows from
Example 2.14 that

#+ : H→ 2H : G ↦→
{
+⊥, if G ∈ + ,
∅, otherwise

(2.42)

is maximally monotone and (#+ )−1 = #+ ⊥ .

The next two examples involve the Laplacian operator and are central to partial
differential equations (Attouch, Buttazzo and Michaille 2014, Barbu 2010, Brézis
1971, Ghoussoub 2009, Zeidler 1990).

Example 2.16 (Attouch et al. 2014, Theorem 17.2.10). Let Ω be a nonempty
bounded open subset of R# , suppose that H = !2(Ω), and set

� : H→ 2H : G ↦→
{
−ΔG, if G ∈ �1

0(Ω) and ΔG ∈ H,
∅, otherwise.

(2.43)

Then it follows from Example 2.12 that � is maximally monotone as the subdiffer-
ential of the function

5 : H→ ]−∞, +∞] : G ↦→


1
2

∫
Ω

‖∇G(l)‖2 dl, if G ∈ �1
0(Ω),

+∞, otherwise,
(2.44)
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which is in Γ0(H). In addition, if bdryΩ is of class �2, then dom m 5 = �2(Ω) ∩
�1

0(Ω).

Example 2.17 (Attouch et al.2014,Section17.2.9). LetΩ be a nonempty bounded
open subset of R# such that bdryΩ is of class �2, let m/ma denote the outward
normal derivative to bdryΩ, suppose that H = !2(Ω), let ℎ ∈ H, and set

� : H→ 2H

G ↦→
{
−ΔG − ℎ, if G ∈ �2(Ω) and mG/ma = 0 a.e. on bdryΩ,
∅, otherwise.

(2.45)

Then it follows from Example 2.12 that � is maximally monotone as the subdiffer-
ential of the function

5 : H→ ]−∞, +∞]

G ↦→


1
2

∫
Ω

‖∇G(l)‖2 dl −
∫
Ω

G(l)ℎ(l) dl, if G ∈ �1(Ω),

+∞, otherwise,

(2.46)

which is in Γ0(H).

The next scenario arises in the study of evolution equations by monotonicity
methods (Brézis 1971, 1973, Showalter 1997, Zeidler 1990).

Example 2.18 (Brézis 1971, Example 4; Showalter 1997, Chapter IV; Zeidler
1990, Chapter 32). Let H be a separable real Hilbert space, let ) ∈ ]0, +∞[,
and suppose that H = !2([0, )]; H). For every H ∈ H, the function G : [0, )] →
H : C ↦→

∫ C
0 H(B) dB is differentiable a.e. on ]0, ) [ with G ′ = H a.e. Define

�1([0, )]; H) = {G ∈ H | G ′ ∈ !2([0, )]; H)}, (2.47)

let x0 ∈ H, and set

� : H→ 2H : G ↦→
{
{G ′}, if G ∈ �1([0, )]; H) and G(0) = x0,
∅, otherwise

(2.48)

and

� : H→ 2H : G ↦→
{
{G ′}, if G ∈ �1([0, )]; H) and G(0) = G()),
∅, otherwise.

(2.49)

Then � and � are maximally monotone.

Example 2.19 (Brézis 1973, Exemple 2.3.3). Let (Ω,F , `) be a measure space,
let H be a separable real Hilbert space, let A : H → 2H be maximally monotone,
and setH = !2((Ω,F , `); H). Define � : H→ 2H via

(∀G ∈ H)(∀G∗ ∈ H) (G, G∗) ∈ gra � ⇔
for `-almost every l ∈ Ω, (G(l), G∗(l)) ∈ gra A, (2.50)
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and suppose that one of the following holds:

(i) `(Ω) < +∞.
(ii) 0 ∈ A0.

Then � is maximally monotone.

We now turn to an equilibrium problem in the sense of Blum and Oettli (1994).

Example 2.20 (Aoyama, Kimura and Takahashi 2008). Let � be a nonempty
closed convex subset ofH and suppose that � : � ×� → R satisfies the following:

(i) (∀G ∈ �) �(G, G) = 0.
(ii) (∀G ∈ �)(∀H ∈ �) �(G, H) + �(H, G) ≤ 0.
(iii) For every G ∈ �, �(G, ·) : � → R is lower semicontinuous and convex.
(iv) (∀G ∈ �)(∀H ∈ �)(∀I ∈ �) lim0<Y→0 �((1 − Y)G + YI, H) ≤ �(G, H).

Set
� : H → 2H

G ↦→
{
{G∗ ∈ H | (∀H ∈ �) �(G, H) + 〈G − H | G∗〉 ≥ 0}, if G ∈ �,
∅, otherwise.

(2.51)

Then � is maximally monotone and zer � = {G ∈ � | (∀H ∈ �) �(G, H) ≥ 0} is the
set of equilibria of �.

We conclude with an example in the theory of saddle functions.

Example 2.21 (Rockafellar 1970b). Let � : H ⊕ G → [−∞, +∞] be a saddle
function, i.e. a convex–concave function which is proper and closed in the sense of
Rockafellar (1970b, 1971) (e.g. for every G ∈ H and every H ∈ G, −�(G, ·) ∈ Γ0(G)
and �(·, H) ∈ Γ0(H)). Set

(∀G ∈ H)(∀H ∈ G) �(G, H) = m�(·, H)(G) × m(−�(G, ·))(H). (2.52)

Then � is maximally monotone and

zer � = {(G, H) ∈ H ⊕ G | �(G, H) = inf �(H, H) = sup �(G,G)} (2.53)

is the set of saddle points of �.

The following illustration is set in the powerful perturbation framework of
Rockafellar (1969, 1970b, 1974) (see also Joly and Laurent 1971), which provides
a systematic tool to construct duality frameworks in minimization problems.

Example 2.22. Let V be a real Hilbert space, let 5 : H→ ]−∞, +∞] be a proper
function, and consider the primal problem

minimize
G∈H

5 (G). (2.54)
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Let � : H ⊕ V → ]−∞, +∞] be a perturbation of 5 , i.e. (∀G ∈ H) 5 (G) = �(G, 0).
The associated Lagrangian is

ℒ� : H ⊕ V ↦→ [−∞, +∞] : (G, E∗) ↦→ inf
E∈V

(�(G, E) − 〈E | E∗〉), (2.55)

the associated dual problem is

minimize
E∗∈V

sup
G∈H

(−ℒ� (G, E∗)), (2.56)

and the associated saddle operator is

S� : H ⊕ V → 2H⊕V : (G, E∗) ↦→ m(ℒ� (·, E∗))(G) × m(−ℒ� (G, ·))(E∗). (2.57)

It follows from Example 2.21 that S� is maximally monotone. In addition, if
(G, E∗) ∈ zerS� , then G solves (2.54) and E∗ solves (2.56).

2.4. Basic theory

2.4.1. Operations preserving maximal monotonicity
The examples of Section 2.3 can be combined in various fashions to create maxi-
mally monotone operators.

Lemma 2.23 (Bauschke and Combettes 2017, Proposition 20.22). Let � : H→
2H be maximally monotone, let I ∈ H, let D ∈ H, and let W ∈ ]0, +∞[. Then �−1

and G ↦→ D + W�(G + I) are maximally monotone.

Lemma 2.24 (Bauschke and Combettes 2017, Proposition 23.18). Let (H8)8∈�
be a finite family of real Hilbert spaces, set

H =
⊕
8∈�

H8 , (2.58)

and, for every 8 ∈ �, let �8 : H8 → 2H8 be maximally monotone. Set

G : H→ 2H : (G8)8∈� ↦→ ×
8∈�
�8G8 . (2.59)

Then G is maximally monotone.

Lemma 2.25. Let V ∈ ]0, +∞[, let � : H → 2H, let * ∈ B(H) be self-adjoint
and V-strongly monotone, and letX be the real Hilbert space obtained by endowing
H with the scalar product (G, H) ↦→ 〈*G | H〉. Then the following hold:
(i) zer(*−1 ◦ �) = zer �.
(ii) Suppose that � : H→ 2H is maximally monotone. Then*−1 ◦ � : X → 2X

is maximally monotone.
(iii) Let U ∈ ]0, +∞[ and suppose that � : H → H is U-cocoercive. Then

*−1 ◦ � : X → 2X is UV-cocoercive.

Proof. We note that (i) is clear and (ii) is proved in Combettes and Vũ (2014,
Lemma 3.7(i)).
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(iii) Take (G, H) ∈ H ×H. Then

〈G − H | (*−1 ◦ �)G − (*−1 ◦ �)H〉X = 〈G − H | �G − �H〉H
≥ U‖�G − �H‖2H. (2.60)

However, ‖*−1G‖2X = 〈G | *−1G〉H ≤ ‖*‖−1 ‖G‖2H and ‖*‖−1 ≤ V−1 (Kato 1980,
Section VI.2.6).

Lemma 2.26 (Bauschke and Combettes 2017, Theorem 25.3; Boţ 2010, Section
24; Pennanen 2000, Corollary 4.2(a)). Let � : H → 2H and � : G → 2G be
maximally monotone, let ! ∈ B(H,G), and suppose that

cone(!(dom �) − dom �) is a closed vector subspace of G . (2.61)

Then � + !∗ ◦ � ◦ ! is maximally monotone.

Lemma 2.27 (Bauschke and Combettes 2017, Corollary 25.5). Let � : H→ 2H
and � : H→ 2H be maximally monotone and such that one of the following holds:

(i) cone (dom � − dom �) is a closed vector subspace of H.
(ii) dom � = H.
(iii) dom � ∩ int dom � ≠ ∅.

Then � + � is maximally monotone.

Lemma 2.28 (Alimohammady, Ramazannejad and Roohi 2014). Let � : H→
2H be maximally monotone and let � : H → 2H be monotone and such that
dom � = H and � − � is monotone. Then � − � is maximally monotone.

Lemma 2.29. Let � : H → 2H and � : H → 2H be maximally monotone.
Define the parallel sum of � and � as

�� � = (�−1 + �−1)−1 (2.62)

and suppose that cone (ran �− ran �) is a closed vector subspace ofH. Then �� �
is maximally monotone.

Proof. This follows from (2.25), Lemma 2.23 and Lemma 2.27(i).

Lemma 2.30 (Becker and Combettes 2014). Let � : H → 2H and � : G → 2G
be maximally monotone, and let ! ∈ B(H,G). Define the parallel composition of
� with ! as

! ⊲ � = (! ◦ �−1 ◦ !∗)−1. (2.63)

Suppose that

cone(ran � − !∗(ran �)) is a closed vector subspace of H. (2.64)
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Then (! ⊲ �)� � is a maximally monotone operator from G to 2G .

Example 2.31 (Combettes 2023). Let ! ∈ B(H,G) be such that ‖!‖ ≤ 1 and let
� : G → 2G be maximally monotone. Define the resolvent composition of � with
! as

! �� = !∗ ⊲ (� + IdG) − IdH (2.65)

and the resolvent cocomposition of � with ! as ! �� = (! ��−1)−1. Then ! �� and
! �� are maximally monotone operators fromH to 2H.

Example 2.32. Let 0 < ? ∈ N, let (l:)1≤:≤? be a family in ]0, 1] such that∑?

:=1 l: = 1, and let (�:)1≤:≤? be maximally monotone operators fromH to 2H.
Then the resolvent average ( ?∑

:=1
l:��:

)−1
− IdH (2.66)

is maximally monotone. This result was originally established in Bartz, Bauschke,
Moffat and Wang (2016, Proposition 2.7) and derived from Example 2.31 in
Combettes (2023, Remark 4.10(ii)).

Example 2.33. Let � : H→ 2H be a maximally monotone operator and let + be
a closed vector subspace of H. The partial inverse of � with respect to + is the
operator �+ : H→ 2H with graph

gra �+ = {(proj+ G + proj+ ⊥ G
∗, proj+ G

∗ + proj+ ⊥ G) | (G, G∗) ∈ gra �}. (2.67)

This construction was introduced in Spingarn (1983), which contains the following
(see Spingarn 1983, Section 2):

(i) �+ is maximally monotone.

(ii) Let G ∈ H. Then G ∈ zer �+ ⇔ (proj+ G, proj+ ⊥ G) ∈ gra �.

2.4.2. Resolvent
In terms of solving inclusion problems, the resolvent of (2.17) is the most important
operator attached to a monotone operator �. First, as seen in (2.18), it can be
employed as a device to generate points in the graph of �. Second, as seen in
(2.19), its fixed point set coincides with the set of zeros of �. Third, resolvents
provide an effective bridge between the theory of nonexpansive operators and that
of monotone operators. This connection goes back to the theory of semigroups
of linear nonexpansive operators. The following result, essentially due to Minty
(1962), establishes such a connection in the nonlinear case. It states in particular
that the resolvent of a maximally monotone operator is a firmly nonexpansive
operator which is defined everywhere.
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Figure 2.3. Illustration of Minty’s theorem (Lemma 2.34). From left to right on
each row: graph of �, graph of Id + � and graph of ��. (a) � is not monotone:
ran(Id+�) = dom �� ≠ H and �� is not firmly nonexpansive. (b) � is monotone but
notmaximallymonotone: �� is firmly nonexpansive but ran(Id+�) = dom �� ≠ H.
(c) � is maximally monotone: �� is firmly nonexpansive with ran(Id + �) =
dom �� = H.
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Lemma 2.34 (Bauschke and Combettes 2017, Proposition 23.8). Let � be a
nonempty subset of H, let ) : � → H, and set � = )−1 − Id. Then the following
hold (see Figure 2.3):
(i) � = ran(Id + �) and ) = ��.
(ii) ) is firmly nonexpansive if and only if � is monotone.
(iii) ) is firmly nonexpansive and � = H if and only if � is maximally monotone.

Here are a few examples of resolvents that will be explicitly needed; see Bauschke
and Combettes (2017), Chierchia, Chouzenoux, Combettes and Pesquet (2016) and
Combettes and Pesquet (2011) for additional examples with closed-form expres-
sions and, in particular, instances of proximity operators.

Example 2.35 (Moreau 1965). Let 5 ∈ Γ0(H). Then �m 5 = prox 5 .

Example 2.36 (Moreau 1962). Let � be a nonempty closed convex subset ofH.
Then �#� = prox ]� = proj� .

Example 2.37 (Bauschke and Combettes 2017, Proposition 23.18). Let 0 < < ∈
N, let (H8)1≤8≤< be real Hilbert spaces, set

H =

<⊕
8=1

H8 , (2.68)

and, for every 8 ∈ {1, . . . , <}, let �8 : H8 → 2H8 be maximally monotone. Set

G : H→ 2H : (G8)1≤8≤< ↦→ ×
1≤8≤<

�8G8 . (2.69)

Then G is maximally monotone (Lemma 2.24) and

�G : H→H : (G8)1≤8≤< ↦→ (��8G8)1≤8≤<. (2.70)

Example 2.38. Let � : H→ 2H bemaximally monotone, let+ be a closed vector
subspace of H, and let �+ be the partial inverse of Example 2.33. In addition, let
G ∈ H and ? ∈ H. Then

? = ��+ G ⇔ proj+ ? + proj+ ⊥(G − ?) = ��G. (2.71)

Proof. This is implicit in Spingarn (1983, Section 4); see Alghamdi, Alotaibi,
Combettes and Shahzad (2014, Lemma 2.2) for a proof.

Example 2.39 (Combettes and Vũ 2014). As in Lemma 2.25(ii), � : H → 2H
is maximally monotone, * ∈ B(H) is self-adjoint and strongly monotone, and
X is the real Hilbert space obtained by endowing H with the scalar product
(G, H) ↦→ 〈*G | H〉. Then �*−1◦� = (* + �)−1 ◦*.
Example 2.40 (Combettes 2023). Let ! ∈ B(H,G) be such that ‖!‖ ≤ 1, let
� : G → 2G be maximally monotone, and consider the resolvent compositions of
Example 2.31. Then

�! �� = !
∗ ◦ �� ◦ ! and �! �� = IdH − !∗ ◦ ! + !∗ ◦ �� ◦ !. (2.72)
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2.4.3. Warped resolvents
A generalization of the notion of a resolvent is the following.

Definition 2.41 (Bùi and Combettes 2020b). Let � be a nonempty subset ofH,
let* : � → H, and let " : H→ 2H be such that ran* ⊂ ran(* +") and* +" is
injective. Thewarped resolvent of" with kernel* is �*

"
= (*+")−1◦* : � → �.

The properties of warped resolvent generalize those of classical ones. In this
respect, here is an extension of (2.18)–(2.19).

Lemma 2.42. Let � and � be nonempty subsets of H, let * : � → H, let
� : � → H, and let , : H → 2H be such that ran* ⊂ ran(* + , + �) and
* +, + � is injective. Then the following hold:

(i) Let G ∈ � and ? ∈ �. Then ? = �*
, +�G⇔ (?,*G −*? − �?) ∈ gra, .

(ii) Fix �*
, +� = � ∩ zer(, + �).

Proof. Note that �*
, +� : � → � is well defined.

(i) ? = �*
, +�G⇔ ? = (*+,+�)−1(*G)⇔*G ∈ *?+,?+�?⇔*G−*?−�? ∈

,?.

(ii) Let G ∈ H. Then (i) yields G = �*
, +�G ⇔ [G ∈ � and (G,−�G) ∈ gra,]⇔

[G ∈ � and G ∈ zer(, + �)].

An instance of a warped resolvent with a linear kernel appears in Example 2.39,
where � = H and * ∈ B(H) is a self-adjoint strongly monotone operator. Self-
adjoint monotone operators which are not strongly monotone have also been used
as kernels; see Bredies, Chenchene, Lorenz and Naldi (2022) and Xue (2023b).
The next example features a monotone kernel in B(H) which is not self-adjoint.

Example 2.43. Let � : H → 2H and � : G → 2G be maximally monotone, and
suppose that 0 ≠ ! ∈ B(H,G). Set X = H ⊕ G and{

K : X→ 2X : (G, H∗) ↦→ (�G + !∗H∗) × (�−1H∗ − !G),
[ : X→ X : (G, H∗) ↦→ (G − !∗H∗, !G + H∗).

(2.73)

As will be seen in Lemma 3.8,K is the Kuhn–Tucker operator associated with the
problem of finding a zero of � + !∗ ◦ � ◦ !. It follows from (2.73) that

�[K : X→ X : (G, H∗) ↦→ (��(G − !∗H∗), ��−1(!G + H∗)), (2.74)

whereas �K is typically intractable.

The next examples employ nonlinear kernels.

Example 2.44. Let " : H→ 2H be maximally monotone and such that zer" ≠

∅, let 5 : H → ]−∞, +∞] be a Legendre function such that dom" ⊂ int dom 5 ,
and set � = int dom 5 and * = ∇ 5 . Then it follows from Bauschke, Borwein
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and Combettes (2003, Corollary 3.14(ii)) that �*
"

: � → � is a well-defined
warped resolvent, called the �-resolvent of " . It is an essential tool in the study
of algorithms based on Bregman distances which goes back to Brègman (1967),
Censor and Zenios (1992), Eckstein (1993) and Teboulle (1992).

Example 2.45. Let � : H → 2H and � : H → 2H be maximally monotone, and
let 5 ∈ Γ0(H) be essentially smooth (Bauschke, Borwein and Combettes 2003).
Suppose that � = (int dom 5 ) ∩ dom � is a nonempty subset of int dom �, that
� is single-valued on int dom �, that ∇ 5 is strictly monotone on �, and that
(∇ 5 − �)(�) ⊂ ran(∇ 5 + �). Set " = � + � and * : � → H : G ↦→ ∇ 5 (G) − �G.
Then the warped resolvent coincides with the Bregman forward–backward operator
�*
"
= (∇ 5 + �)−1 ◦ (∇ 5 − �) investigated in Bùi and Combettes (2021), where it

is shown to capture a construction found in Renaud and Cohen (1997) and known
as the auxiliary principle. In the case when � and � are subdifferentials, �*

"
is the

operator studied in Nguyen (2017) and, in Euclidean spaces, in Bauschke, Bolte
and Teboulle (2017). Scenarios in which �*

"
is more manageable than �" are

discussed in Bauschke et al. (2017), Bùi and Combettes (2021), Lu, Freund and
Nesterov (2018), Nguyen (2017), Renaud and Cohen (1997) and Teboulle (2018).

Example 2.46. Let � : H → 2H, let � : H → H be cocoercive, let & : H → H
be monotone and Lipschitzian, and let W ∈ ]0, +∞[. The underlying problem is
to find a point in zer(� + � + &) and we recover the nonlinear forward–backward
operator ofGiselsson (2021) as awarped resolvent as follows. Set" = W(�+�+&),
let  : H→ H be strongly monotone and Lipschitzian, and set* =  − W(� +&).
Then �*

"
= ( +W�)−1◦( −W(�+&)), which is the operator driving the algorithms

of Giselsson (2021).

Remark 2.47. If � is cocoercive and 5 = ‖ · ‖2/2 in Example 2.45, or if  = Id
and & = 0 and � = � in Example 2.46, then �*

"
= �W� ◦ (Id − W�). This operator

will arise in the forward–backward algorithm of Section 8.

Lemma 2.48. Let & : H → H be Lipschitzian with constant V ∈ ]0, +∞[, let
 : H → H be strongly monotone with constant U ∈ ]0, +∞[, let Y ∈ ]0, U[, and
set* =  − W&. Then the following hold:

(i) Let W ∈ ]0, (U − Y)/V]. Then * is Y-strongly monotone (Bùi and Combettes
2020b, Lemma 5.1(i)).

(ii) Suppose that U = 1 and  = Id, and let W ∈ ]0, (1 − Y)/V]. Then * is
cocoercivewith constant 1/(2−Y) (Bùi andCombettes 2020b, Lemma5.1(ii)).

(iii) Suppose that U = 1,  = Id, and & is 1/V-cocoercive, and let W ∈ ]0, 2/V[.
Then* is WV/2-averaged, hence nonexpansive (Combettes 2004, Lemma2.3).

2.4.4. Topological properties
We record key properties of the graphs of monotone operators.
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Lemma 2.49 (Bauschke and Combettes 2017, Proposition 20.38(ii)). Let" :
H → 2H be maximally monotone. Then gra" is sequentially closed in Hweak ×
Hstrong, that is, for every sequence (G=, G∗=)=∈N in gra" and every (G, G∗) ∈ H×H,
if G= ⇀ G and G∗= → G∗, then (G, G∗) ∈ gra" .

Lemma 2.50 (Bauschke and Combettes 2017, Corollary 26.6). Let � : H→ 2H
and � : H → 2H be maximally monotone, let (G=, G∗=)=∈N be a sequence in gra �,
let (H=, H∗=)=∈N be a sequence in gra �, let G ∈ H, and let G∗ ∈ H. Suppose that

G= ⇀ G, G∗= ⇀ G∗, G= − H= → 0 and G∗= + H∗= → 0. (2.75)

Then G ∈ zer(� + �), −G∗ ∈ zer(−�−1 ◦ (−Id)+ �−1), (G, G∗) ∈ gra � and (G,−G∗) ∈
gra �.

2.4.5. Subdifferentials
The subdifferential operator of Example 2.12 is an essential tool in variational
analysis.

Lemma 2.51 (Bauschke and Combettes 2017, Proposition 16.6 and Theorem
16.47(i)). Let 5 ∈ Γ0(H), 6 ∈ Γ0(G) and ! ∈ B(H,G) be such that (!(dom 5 )) ∩
dom 6 ≠ ∅. Then the following hold:

(i) zer(m 5 + !∗ ◦ (m6) ◦ !) ⊂ zer m( 5 + 6 ◦ !) = Argmin ( 5 + 6 ◦ !).
(ii) Suppose that one of the following is satisfied:

(a) 0 ∈ sri(!(dom 5 ) − dom 6).
(b) !(dom 5 ) − dom 6 is a closed vector subspace of G.
(c) dom 6 = G.
(d) G is finite-dimensional and (ri !(dom 5 )) ∩ (ri dom 6) ≠ ∅.

Then m( 5 + 6 ◦ !) = m 5 + !∗ ◦ (m6) ◦ !.

3. Structured monotone inclusions
Our master problem is the following two-operator inclusion.

Problem 3.1. Let � : H → 2H and � : H → 2H be maximally monotone. The
objective is to

find G ∈ H such that 0 ∈ �G + �G. (3.1)

3.1. Two-operator formulations

We provide problem formulations which correspond to specific choices of the
operators � and � in Problem 3.1 from the examples of Section 2.3.
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Problem 3.2. In Problem 3.1, let 5 ∈ Γ0(H), set � = m 5 , and suppose that �
is at most single-valued. Then (3.1) reduces to the variational inequality problem
(Lions 1969)

find G ∈ H such that (∀H ∈ H) 〈G − H | �G〉 + 5 (G) ≤ 5 (H). (3.2)

Problem 3.3. In Problem 3.2, let � be a nonempty closed convex subset of H
and set 5 = ]� . Then (3.2) reduces to the standard variational inequality problem
(Fichera 1963, Kinderlehrer and Stampacchia 1980)

find G ∈ � such that (∀H ∈ �) 〈G − H | �G〉 ≤ 0. (3.3)

Problem 3.4. In Problem 3.3, suppose that � is a cone with dual cone �⊕. Then
(3.3) reduces to the complementarity problem (Facchinei and Pang 2003)

find G ∈ � such that G ⊥ �G and �G ∈ �⊕. (3.4)

Problem 3.5. In Problem 3.1, let 5 ∈ Γ0(H) and 6 ∈ Γ0(H), and set � = m 5 and
� = m6. Suppose that one of the following holds:

(i) 0 ∈ sri(dom 5 − dom 6).
(ii) 6 : H→ R is differentiable.

Then the objective is to
minimize

G∈H
5 (G) + 6(G). (3.5)

Problem 3.6. In Problem 3.5, let � be a nonempty closed convex subset of H
and set 5 = ]� . Suppose that one of the following holds:

(i) 0 ∈ sri(� − dom 6).
(ii) 6 : H→ R is differentiable.

Then the objective is to
minimize

G∈�
6(G). (3.6)

3.2. Composite problems

We start by presenting a duality framework for monotone inclusions introduced
in Pennanen (2000) and Robinson (1999, 2001); for special cases, see Alduncin
(2005), Attouch and Théra (1996), Eckstein and Ferris (1999), Fukushima (1996),
Gabay (1983), Mercier (1980), Mosco (1972) and Robinson (1998).

Problem 3.7. Let � : H→ 2H and � : G → 2G be maximally monotone, and let
! ∈ B(H,G). The objective is to solve the primal inclusion

find G ∈ H such that 0 ∈ �G + !∗(�(!G)) (3.7)

together with the dual inclusion

find H∗ ∈ G such that 0 ∈ −!(�−1(−!∗H∗)) + �−1H∗. (3.8)
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Lemma 3.8 (Briceño-Arias and Combettes 2011). In the setting of Problem3.7,
let X = H ⊕ G, let / and /∗ be the sets of solutions to (3.7) and (3.8), respectively,
and set {

S : X→ 2X : (G, H∗) ↦→ �G × �−1H∗,

Y : X→ X : (G, H∗) ↦→ (!∗H∗,−!G).
(3.9)

Define the Kuhn–Tucker operator of Problem 3.7 as

K = S + Y (3.10)

and the set of Kuhn–Tucker points as zerK. Then the following hold:
(i) S is maximally monotone.
(ii) Y ∈ B(X) is skew and maximally monotone, with ‖Y‖ = ‖!‖.
(iii) K is maximally monotone.
(iv) zerK is a closed convex subset of / × /∗ in X.
(v) / ≠ ∅⇔ zerK ≠ ∅⇔ /∗ ≠ ∅ (see also Eckstein and Ferris 1999, Pennanen

2000, Robinson 1999).

The best known instance for Problem 3.7 is the classical Fenchel–Rockafellar
duality framework (Rockafellar 1967).

Problem 3.9. Let 5 ∈ Γ0(H), 6 ∈ Γ0(G) and ! ∈ B(H,G) be such that

0 ∈ sri(!(dom 5 ) − dom 6). (3.11)

Set � = m 5 and � = m6 in Problem 3.7. Then it follows from Lemma 2.51 that
(3.7) is the primal problem

minimize
G∈H

5 (G) + 6(!G), (3.12)

(3.8) is the Fenchel–Rockafellar dual problem

minimize
H∗∈G

5 ∗(−!∗H∗) + 6∗(H∗), (3.13)

and (3.10) yields the Kuhn–Tucker operator

K : (G, H∗) ↦→ (m 5 (G) + !∗H∗) × (−!G + m6∗(H∗)). (3.14)

Problem 3.10. Let + be a closed vector subspace of H and let � : H → 2H be
maximally monotone. Then, in the case when G = H and ! = Id, the Kuhn–Tucker
operator (3.10) associated with the operators #+ and � is

K : H ⊕H→ 2H⊕H : (G, G∗) ↦→ (#+ G + G∗) × (�−1G∗ − G). (3.15)

In view of Example 2.15, the problem of finding a zero of the maximally monotone
operator K reduces to

find G ∈ + and G∗ ∈ +⊥ such that G∗ ∈ �G. (3.16)

This formulation was first considered by Spingarn (1983).
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An extension of Problem 3.7 involving several linearly composed terms is the
following.

Problem 3.11. Let 0 < ? ∈ N, let � : H → 2H be maximally monotone, and,
for every : ∈ {1 . . . , ?}, let G: be a real Hilbert space, let �: : G: → 2G: be
maximally monotone, and let !: ∈ B(H,G:). The objective is to solve the primal
inclusion

find G ∈ H such that 0 ∈ �G +
?∑
:=1

!∗:(�:(!:G)) (3.17)

together with the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that(

∃ G ∈ �−1
(
−

?∑
:=1

!∗: H
∗
:

))
(∀: ∈ {1, . . . , ?}) !:G ∈ �−1

: H
∗
: . (3.18)

Lemma 3.12. In the setting of Problem 3.11, set X = H ⊕ G1 ⊕ · · · ⊕ G? and
let / and /∗ be the sets of solutions to (3.17) and (3.18), respectively. Define the
Kuhn–Tucker operator of Problem 3.11 as

K : X→ 2X : (G, H∗1, . . . , H
∗
?) ↦→(

�G +
?∑
:=1

!∗: H
∗
:

)
×
(
−!1G + �−1

1 H∗1
)
× · · · ×

(
−!?G + �−1

? H
∗
?

)
(3.19)

and the set of Kuhn–Tucker points as zerK. Then the following hold:

(i) K is maximally monotone.
(ii) zerK is a closed convex subset of / × /∗ in X.
(iii) / ≠ ∅⇔ zerK ≠ ∅⇔ /∗ ≠ ∅.

Proof. The proof is similar to that of Lemma 3.8.

An alternative angle on Problem 3.9 is provided by the Lagrangian approach
of Example 2.22. Set f : H ⊕ G → ]−∞, +∞] : x = (G, H) ↦→ 5 (G) + 6(H),
R : H ⊕ G → G : (G, H) ↦→ !G − H and X = H ⊕ G ⊕ G. Then the primal problem
(3.12) is equivalent to

minimize
x∈ker R

f (x) (3.20)

and its standard perturbation function is (Rockafellar 1974, Example 4′; see also
Bauschke and Combettes 2017, Proposition 19.21)

L : X→ ]−∞, +∞] : (x, E) ↦→ f (x) + ]{0}(Rx + E). (3.21)

We derive from (2.55) that the associated Lagrangian is

ℒL : X→ ]−∞, +∞] : (x, E∗) ↦→ f (x) + 〈Rx | E∗〉, (3.22)
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from (2.56) that the associated dual problem is (3.13), and from (2.57) that the
associated saddle operator is

SL : X→ 2X : (x, E∗) ↦→ (m f (x) + R∗E∗) × {−Rx}, (3.23)

that is,
SL : X → 2X

(G, H, E∗) ↦→ (m 5 (G) + !∗E∗) × (m6(H) − E∗) × {−!G + H}. (3.24)

We saw in Example 2.22 that, if (G, H, E∗) ∈ zerSL , then G solves the primal
problem (3.12) and E∗ solves the dual problem (3.13). A version of this result for
Problem 3.7 is the following where, although there is no notion of a Lagrangian,
we can introduce a saddle operator.

Lemma 3.13. In the setting of Problem 3.7, set X = H ⊕ G ⊕ G and let / and /∗
be the sets of solutions to (3.7) and (3.8), respectively. Define the Kuhn–Tucker
operatorK as in (3.10) and define the saddle operator of Problem 3.7 as

S : X → 2X

(G, H, E∗) ↦→ (�G + !∗E∗) × (�H − E∗) × {−!G + H}. (3.25)

Then the following hold:

(i) S is maximally monotone.
(ii) zerS is closed and convex.
(iii) Suppose that (G, H, E∗) ∈ zerS. Then (G, E∗) ∈ zerK ⊂ / × /∗.
(iv) /∗ ≠ ∅⇔ zerS ≠ ∅⇔ zerK ≠ ∅⇔ / ≠ ∅.
Proof. This is a special case of Bùi and Combettes (2022b, Proposition 1(i)–
(v)(a)).

3.3. Examples of embeddings in Framework 1.2

Example 3.14. Suppose that it is computationally feasible solve Problem 1.1
directly in the original space H. Then an embedding of Problem 1.1 is just
(H, ", Id).

Example 3.15. Let " : H → 2H be a maximally monotone operator, let * ∈
B(H) be a self-adjoint strongly monotone operator, let X be the real Hilbert space
obtained by endowing H with the scalar product (G, H) ↦→ 〈*G | H〉, let M =

*−1 ◦" , and set T = Id. Then it follows from Lemma 2.25(i)–(ii) that (X,M,T )
is an embedding of Problem 1.1.

Example 3.16. Let U ∈ ]0, 1] and let ) : H→ H be U-averaged. In Problem 1.1,
suppose that " = Id − ) (see Example 2.4) and set

X = H, M =

(
Id + 1

2U
() − Id)

)−1
− Id and T = Id. (3.26)
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Then (X,M,T ) is an embedding of Problem 1.1. Indeed, since Id + U−1() − Id)
is nonexpansive, we derive from Bauschke and Combettes (2017, Proposition 4.4)
that Id + (2U)−1() − Id) is firmly nonexpansive, and hence from Lemma 2.34(iii)
that M is maximally monotone, with zerM = zer" = Fix) .

Example 3.17. Let � : H → 2H and � : H → 2H be maximally monotone, and
let W ∈ ]0, +∞[. Let

X = H, M = (�W� ◦ (2�W� − Id) + Id − �W�)−1 − Id and T = �W� . (3.27)

Then it follows from Eckstein and Bertsekas (1992, Section 4) that (X,M,T ) is
an embedding of Problem 3.1. In this setting, we actually have T (zerM) = zer"
(Combettes 2004, Lemma 2.6(iii)).

Example 3.18. Let � : H→ 2H and � : H→ 2H be maximally monotone. Let
X = H ⊕ H, M : X → 2X : (G, G∗) ↦→ (�G + G∗) × (−G + �−1G∗) and T : X →
H : (G, G∗) ↦→ G. Then applying Lemma 3.8 with G = H and ! = Id shows
that (X,M,T ) is an embedding of Problem 3.1. This embedding is implicitly
present in the projective splitting algorithm of Eckstein and Svaiter (2008), which
is therefore an instance of Framework 1.2.

We now discuss structured inclusion problems that offer greater modelling flex-
ibility by involving three or more operators. The principle of a splitting algorithm,
which is to involve each operator individually, faces a serious challenge in the
presence of such formulations. Indeed, since inclusion is a binary relation, for
reasons discussed in Briceño-Arias and Combettes (2011) and Combettes (2013a),
and analysed in more depth in Ryu (2020), it is not possible to split problems that
involve more than two set-valued operators. A purpose of Framework 1.2 is to
circumvent this fundamental limitation by seeking more tractable reformulations
in bigger spaces.

Example 3.19. Let 0 < ? ∈ N and, for every : ∈ {1, . . . , ?}, let �: : H → 2H
be maximally monotone. The problem is to

find G ∈ H such that 0 ∈
?∑
:=1

�:G. (3.28)

Let X be the ?-fold Hilbert direct sumH? and set
\ = {(G1, . . . , G?) ∈ X | G1 = · · · = G?},
G : X→ 2X : (G1, . . . , G?) ↦→ �1G1 × · · · × �?G?,
M = G + #\ ,

T : X→ H : (G1, . . . , G?) ↦→ G1.

(3.29)

Then

\⊥ =

{
(G∗1, . . . , G

∗
?) ∈ X

����� ?∑
:=1

G∗: = 0

}
, (3.30)
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and it follows from Example 2.15 that (X,M,T ) is an embedding of (3.28). This
setting to split the sum of ? > 2 monotone operators was introduced by Spingarn
(1983, Section 5); see also Gol’shtein (1987). It reduces the ?-operator problem
(3.28) to the two-operator inclusion 0 ∈ Gx + #\ x. The idea of rephrasing multi-
operator problems in product spaces finds its roots in convex feasibility problems
(Pierra 1976, 1984), where the problem of finding a point in the intersection⋂?

:=1�: of closed convex subsets (�:)1≤:≤? of H is associated with that of
finding a point in I ∩ \ in X, where I = �1 × · · · × �?.

Example 3.20. In the setting of Problem 3.7, set X = H ⊕ G, define S and Y as
in (3.9), let K = S + Y be the Kuhn–Tucker operator of (3.10), and let T : X →
H : (G, H∗) ↦→ G. Then, in view of Lemma 3.8(iv), (X,K,T ) is an embedding
of (3.7). This embedding, which underlies the monotone+skew framework of
Briceño-Arias and Combettes (2011), reduces Problem 3.7, which involves three
operators in the primal space H (namely, �, � and !), to a problem in X that
involves the two operators S and Y.

Example 3.21. In the setting of Problem 3.11, set X = H ⊕ G1 ⊕ · · · ⊕ G?, letK
be the Kuhn–Tucker operator of (3.19), and let

T : X→ H : (G, H∗1, . . . , H
∗
?) ↦→ G. (3.31)

Then it follows from Lemma 3.12(ii) that (X,K,T ) is an embedding of (3.17).

Next, we consider an embedding for strongly monotone problems.

Example 3.22. Let d ∈ ]0, +∞[, let 0 < ? ∈ N, let I ∈ H, and let � : H → 2H
be maximally monotone. For every : ∈ {1, . . . , ?}, let �: : G: → 2G: and
�: : G: → 2G: be maximally monotone, and suppose that 0 ≠ !: ∈ B(H,G:).
The problem is to

find G ∈ H such that I ∈ �G +
?∑
:=1

!∗:((�: ��:)(!:G)) + dG. (3.32)

Let X = G1 ⊕ · · · ⊕ G?, let

M : X → 2X

(H∗1, . . . , H
∗
?) ↦→

(
−!1

(
��/d

(
1
d

(
I −

?∑
:=1
!∗: H

∗
:

)))
+ �−1

1 H∗1 + �
−1
1 H∗1

)

×· · ·×
(
−!?

(
��/d

(
1
d

(
I−

?∑
:=1

!∗: H
∗
:

)))
+�−1

? H
∗
?+�−1

? H
∗
?

)
, (3.33)

and let

T : X→ H : (H∗1, . . . , H
∗
?) ↦→ ��/d

(
1
d

(
I −

?∑
:=1

!∗: H
∗
:

))
. (3.34)
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Then it follows from Combettes and Vũ (2014, Proposition 5.2(iii)) that (X,M,T )
is an embedding of (3.32).

Our last example concerns an embedding based on a saddle operator.

Example 3.23. In the setting of Problem 3.7, set X = H ⊕ G ⊕ G, let S be the
saddle operator of (3.25), and let T : X→ H : (G, H, E∗) ↦→ G. Then it follows from
Lemma 3.13(iii) that (X,S,T ) is an embedding of (3.7).

Additional examples of embeddings will be provided by Examples 7.9, 9.8
and 10.4.

4. Two geometric convergence principles
4.1. Overview

The methodology of Framework 1.2 is to identify a target set / in a suitable Hilbert
space in such a way that every point in / yields a solution to the original problem
of interest. The algorithms we shall consider are Fejérian in the sense that every
iteration brings the current iterate closer to every point in / .

4.2. Fejér monotone scheme

Let us first recall some basic facts about weak and strong convergence in Hilbert
spaces.

Lemma 4.1 (Bauschke and Combettes 2017, Section 2.5). Let (G=)=∈N be a se-
quence inH and let G ∈ H. Then the following hold:

(i) Let / be a nonempty subset of H. Suppose thatW(G=)=∈N ⊂ / and that, for
every I ∈ / , (‖G= − I‖)=∈N converges. Then (G=)=∈N converges weakly to a
point in / .

(ii) G= ⇀ G ⇔ [(G=)=∈N is bounded andW(G=)=∈N = {G}].
(iii) G= → G ⇔ [G= ⇀ G and lim ‖G=‖ ≤ ‖G‖].

Theorem 4.2. Let / be a nonempty closed convex subset of H, let (_=)=∈N be a
sequence of relaxation parameters in ]0, 2[, and let G0 ∈ H. Iterate (see Figure 4.1)

for = = 0, 1, . . .
�= is a closed half-space such that / ⊂ �=
?= = proj�= G=
G=+1 = G= + _=(?= − G=).

(4.1)

Then the following hold:

(i) Fejér monotonicity: (∀I ∈ /)(∀= ∈ N) ‖G=+1 − I‖ ≤ ‖G= − I‖.
(ii)

∑
=∈N _=(2 − _=)‖?= − G=‖2 < +∞.
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(iii) Suppose that sup=∈N _= < 2. Then
∑
=∈N ‖G=+1 − G=‖2 < +∞.

(iv) Suppose thatW(G=)=∈N ⊂ / . Then (G=)=∈N converges weakly to a point in / .

Proof. Let I ∈ / . Then, for every = ∈ N, �= = {D ∈ H | 〈D − ?= | G= − ?=〉 ≤ 0}
and, since I ∈ �=, (4.1) yields

‖G=+1 − I‖2 = ‖G= − I‖2 + 2_=〈G= − I | ?= − G=〉 + _2
=‖?= − G=‖2

= ‖G= − I‖2 − _=(2 − _=)‖?= − G=‖2 + 2_=〈I − ?= | G= − ?=〉
≤ ‖G= − I‖2 − _=(2 − _=)‖?= − G=‖2 (4.2)

= ‖G= − I‖2 −
2 − _=
_=
‖G=+1 − G=‖2 (4.3)

≤ ‖G= − I‖2. (4.4)

(i) See (4.4).

(ii) Fix # ∈ N. Then (4.2) yields
#∑
== 0

_=(2 − _=)‖?= − G=‖2 ≤ ‖G0 − I‖2 (4.5)

and we conclude by letting # → +∞.

(ii)⇒(iii) This follows from (4.3).

(iv) In view of (i), (‖G= − I‖)=∈N converges. The claim therefore follows from
Lemma 4.1(i).

Remark 4.3. Fejér (1922) studied the following problem: given a nonempty
closed set / ⊂ R# and a point H ∉ / , can one find a point G ∈ R# such that

(∀I ∈ /) ‖G − I‖ < ‖H − I‖. (4.6)

This led Motzkin and Schoenberg (1954) to adopt the terminology Fejér monotone
to describe sequences satisfying property (i) in Theorem 4.2. In their paper (see also
Agmon 1954), an algorithmwas developed to solve systems of linear inequalities in
R# by successive projections onto the half-spaces defining the polyhedral solution
set / , and Fejér monotonicity was shown to be an adequate tool to study the
convergence of this algorithm. Further analysis of Fejérmonotonicitywas proposed
in Brègman (1965), Eremin (1968a,b) and Raik (1967, 1969), and nowadays it
constitutes a central tool to analyse the asymptotic behaviour of various algorithms
(Bauschke and Combettes 2017).

Remark 4.4. In general, the convergence of (G=)=∈N to G ∈ / in Theorem 4.2(iv)
is only weak and, even if it were strong, there exists no rate of convergence on
(‖G= − G‖)=∈N, even in Euclidean spaces (Bauschke, Deutsch and Hundal 2009,
Gubin, Polyak and Raik 1967, Youla 1987). In particular, achieving a linear rate of
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�= = �(G=, ?=)

•

/

G=

•?=

Figure 4.1. Iteration = of the Fejérian algorithm (4.1).

convergence, that is, securing the existence of ^ ∈ ]0, +∞[ and d ∈ ]0, 1[ such that

(∀= ∈ N) ‖G= − G‖ ≤ ^d=, (4.7)

requires stringent additional assumptions on the problem. In our inclusion context,
a typical assumption is strong monotonicity; see Bauschke and Combettes (2017,
Proposition 26.16) for an example. In the broader context of Theorem 4.2(i),
it is clear that (3�(G=))=∈N decreases and that, for every = ∈ N and < ∈ N,
‖G= − G=+<‖ ≤ ‖G= − proj� G=‖ + ‖G=+< − proj� G=‖ ≤ 23�(G=). Hence, (4.7) will
hold with ^ = 23�(G0) if the decreasing property can be strengthened to (∀= ∈ N)
3�(G=+1) ≤ d3�(G=).

Remark 4.5. The implementation of (4.1) is said to be unrelaxed if (∀= ∈ N)
_= = 1.

4.3. Haugazeau-like scheme

Theorem 4.2 guarantees only weak convergence to an unspecified point in / and,
as will be seen on several occasions later, strong convergence fails in general
(many of these examples will be based on a scenario of Hundal (2004) concerning
the method of alternating projections). However, in some infinite-dimensional
applications in areas such as inverse problems, control, mechanics, PDEs, optics
and analogue computing, weak convergence does not offer sufficient guarantees
and strong convergence is required. The geometric approach described in this
section emanates from ideas found in the work of Haugazeau (1967, 1968) on the
convex feasibility problem. It will provide strong convergence to a specific point in
/ , namely the projection of the initial point onto / . This means that the resulting
algorithm is also of interest, even in Euclidean spaces, as a best approximation
method.
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The following technical fact from Haugazeau (1968, Théorème 3-1) will be
employed repeatedly; see also Bauschke and Combettes (2017, Corollary 29.25).

Lemma 4.6 (Haugazeau 1968). Let (G, H, I) ∈ H3. Define

�(G, H) = {I ∈ H | 〈I − H | G − H〉 ≤ 0}, (4.8)

� = �(G, H) ∩ �(H, I), and, if � ≠ ∅,

Q(G, H, I) = proj� G. (4.9)

Set j = 〈G − H | H − I〉, ` = ‖G − H‖2, a = ‖H − I‖2 and d = `a − j2. Then exactly
one of the following holds:

(i) d = 0 and j < 0, in which case � = ∅.
(ii) [d = 0 and j ≥ 0] or d > 0, in which case � ≠ ∅ and

Q(G, H, I) =


I, if d = 0 and j ≥ 0,
G + (1 + j/a)(I − H), if d > 0 and ja ≥ d,
H + (a/d)(j(G − H) + `(I − H)), if d > 0 and ja < d.

(4.10)

The essential components of the following theorem are found in the unpublished
thesis of Haugazeau (1968) (see Haugazeau 1967 for a preliminary variant), where
he considered the specific problem of projecting a point onto the intersection of
finitely many sets using their individual projection operators cyclically.

Theorem 4.7. Let / be a nonempty closed convex subset of H, let (_=)=∈N be a
sequence of relaxation parameters in ]0, 1], and let G0 ∈ H. Iterate (see Figure 4.2)

for = = 0, 1, . . .
�= is a closed half-space such that / ⊂ �=
?= = proj�= G=
A= = G= + _=(?= − G=)
G=+1 = Q(G0, G=, A=).

(4.11)

Then the sequence (G=)=∈N is well defined and the following hold:

(i) (∀= ∈ N) / ⊂ �(G0, G=) ∩ �(G=, A=).
(ii) (∃ ℓ ∈ [0, +∞[) ‖G= − G0‖ ↑ ℓ ≤ 3/ (G0).
(iii)

∑
=∈N ‖G=+1 − G=‖2 < +∞.

(iv)
∑
=∈N _

2
=‖?= − G=‖2 < +∞.

(v) Suppose thatW(G=)=∈N ⊂ / . Then (G=)=∈N converges strongly to proj/ G0.

Proof. First, recall that the projector onto a nonempty closed convex subset � of
H is characterized by (Bauschke and Combettes 2017, Theorem 3.16)

(∀G ∈ H) proj� G ∈ � and � ⊂ �(G, proj� G). (4.12)
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We also observe that (4.11) implies that

(∀= ∈ N) �(G=, ?=)
= {I ∈ H | 〈I − ?= | G= − A=〉 ≤ 0}
= {I ∈ H | 〈I − A= | G= − A=〉 ≤ 〈?= − A= | G= − A=〉}
= {I ∈ H | 〈I − A= | G= − A=〉 ≤ −_=(1 − _=)‖G= − ?=‖2}
⊂ �(G=, A=). (4.13)

(i) Let = ∈ N be such that G= exists. It follows from (4.11) and (4.13) that / ⊂ �= =
�(G=, ?=) ⊂ �(G=, A=). It is therefore enough to show that / ⊂ �(G0, G=). This
inclusion certainly holds for = = 0 since �(G0, G0) = H. Furthermore, it follows
from (4.12) and (4.11) that

/ ⊂ �(G0, G=) ⇒ / ⊂ �(G0, G=) ∩ �(G=, A=)
⇒ / ⊂ �(G0,Q(G0, G=, A=))
⇔ / ⊂ �(G0, G=+1), (4.14)

which establishes the assertion by induction. This also shows that �(G0, G=) ∩
�(G=, A=) ≠ ∅ and hence that G=+1 is well defined.

(ii)–(iii) Let = ∈ N. By construction, G=+1 = Q(G0, G=, A=) ∈ �(G0, G=) ∩ �(G=, A=).
Consequently, since G= is the projection of G0 onto �(G0, G=) and G=+1 ∈ �(G0, G=),
we have ‖G0−G=‖ ≤ ‖G0−G=+1‖. On the other hand, since proj/ G0 ∈ / ⊂ �(G0, G=),
we have ‖G0 − G=‖ ≤ ‖G0 − proj/ G0‖. It follows that (‖G0 − G: ‖):∈N converges to
some ℓ ∈ [0, ‖G0 − proj/ G0‖], which establishes (ii), and that

lim ‖G0 − G: ‖ ≤ ‖G0 − proj/ G0‖. (4.15)

However, since G=+1 ∈ �(G0, G=), we have

‖G=+1 − G=‖2 ≤ ‖G=+1 − G=‖2 + 2〈G=+1 − G= | G= − G0〉
= ‖G0 − G=+1‖2 − ‖G0 − G=‖2. (4.16)

Hence,
=∑
:=0
‖G:+1 − G: ‖2 ≤ ‖G0 − G=+1‖2 ≤ ‖G0 − proj/ G0‖2 (4.17)

and therefore ∑
:∈N
‖G:+1 − G: ‖2 < +∞. (4.18)

(iv) For every = ∈ N, we derive from the inclusion G=+1 ∈ �(G=, A=) that

‖A= − G=‖2 ≤ ‖G=+1 − A=‖2 + ‖G= − A=‖2

≤ ‖G=+1 − A=‖2 + 2〈G=+1 − A= | A= − G=〉 + ‖G= − A=‖2

= ‖G=+1 − G=‖2. (4.19)
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�= = �(G=, ?=) �(G0, G=)

•

/

G0

G=

•

•

•

?=

G=+1

Figure 4.2. Iteration = of the Haugazeau-like algorithm (4.11) with _= = 1.

Hence, by (iii) and (4.11),∑
=∈N

_2
=‖?= − G=‖2 =

∑
=∈N
‖A= − G=‖2 < +∞. (4.20)

(v) Let us note that (ii) implies that (G=)=∈N is bounded. Now let G ∈ W(G=)=∈N, say
G:= ⇀ G. Then, by weak lower semicontinuity of ‖ · ‖ (Bauschke and Combettes
2017, Lemma 2.42) and (ii),

‖G0 − G‖ ≤ lim ‖G0 − G:= ‖ ≤ ‖G0 − proj/ G0‖ = inf
I∈/
‖G0 − I‖. (4.21)

Hence, since G ∈ / , G = proj/ G0 is the only weak sequential cluster point of
(G=)=∈N and it follows from Lemma 4.1(ii) that G= ⇀ proj/ G0. In turn, (ii) yields

‖G0 − proj/ G0‖ ≤ lim ‖G0 − G=‖ = lim ‖G0 − G=‖ ≤ ‖G0 − proj/ G0‖. (4.22)

Thus, G0 − G= ⇀ G0 − proj/ G0 and ‖G0 − G=‖ → ‖G0 − proj/ G0‖. We therefore
derive from Lemma 4.1(iii) that G0 − G= → G0 − proj/ G0, i.e. G= → proj/ G0.

4.4. Graph-based cuts

We consider the problem of finding a zero of a maximally monotone operator
" : H → 2H decomposed as " = , + �, where , : H → 2H is maximally
monotone and � : H→ H is cocoercive, using the geometric principles of Theor-
ems 4.2 and 4.7. To this end, we shall construct half-spaces by selecting points in
the graph of, . Let us start with a weak convergence result.

Theorem 4.8. Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H → H be U-cocoercive and such that / = zer(, + �) ≠ ∅, let G0 ∈ H, and
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let (_=)=∈N be a sequence in ]0, 2[. Iterate

for = = 0, 1, . . .

(F=, F∗=) ∈ gra,, @= ∈ H
C∗= = F

∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @=‖2/(4U)

3= =


X=

‖C∗=‖2
C∗=, if X= > 0,

0, otherwise
G=+1 = G= − _=3=.

(4.23)

Then the following hold:

(i) (G=)=∈N is bounded.
(ii)

∑
=∈N _=(2 − _=)‖3=‖2 < +∞.

(iii) Suppose thatF=−G= ⇀ 0, F=−@= → 0 and C∗= → 0. Then (G=)=∈N converges
weakly to a point in / .

Proof. We first observe that (4.23) is well defined since (∀= ∈ N) X= > 0 ⇒
C∗= ≠ 0. It follows from Example 2.5 and Lemma 2.27(ii) that

, + � is maximally monotone, (4.24)

and hence from (2.29) that / is a nonempty closed convex subset of H. Set

(∀= ∈ N) �= =

{
I ∈ H

���� 〈I − F= | C∗=〉 ≤ ‖F= − @=‖24U

}
(4.25)

and let I ∈ / . For every = ∈ N, since (I,−�I) ∈ gra, and (F=, F∗=) ∈ gra, , it
results from the monotonicity of , that 〈F= − I | F∗= + �I〉 ≥ 0. Hence, since �
is U-cocoercive,

(∀= ∈ N) 〈I − F= | C∗=〉
= 〈I − F= | F∗= + �@=〉
≤ 〈I − F= | �@= − �I〉 (4.26)
= 〈@= − F= | �@= − �I〉 + 〈I − @= | �@= − �I〉
≤ 〈@= − F= | �@= − �I〉 − U‖�@= − �I‖2 (4.27)

= 2
〈
@= − F=√

4U

���� √U(�@= − �I)
〉
−



√U(�@= − �I)


2

=
‖F= − @=‖2

4U
−





√U(�@= − �I) +
F= − @=√

4U





2

≤ ‖F= − @=‖
2

4U
. (4.28)
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This shows that (∀= ∈ N) / ⊂ �=. In addition, it results from (4.23) and Ex-
ample 2.1 that

(∀= ∈ N) G=+1 = G= + _=(proj�= G= − G=), (4.29)

which corresponds to the setting of Theorem 4.2.

(i) This follows from Theorem 4.2(i).

(ii) This follows from Theorem 4.2(ii).

(iii) Let G ∈ W(G=)=∈N, say G:= ⇀ G. Then F:= = G:= + (F:= − G:=) ⇀ G. On the
other hand, since � is 1/U-Lipschitzian,

‖F∗= + �F=‖ = ‖C∗= + �F= − �@=‖ ≤ ‖C∗=‖ +
‖F= − @=‖

U
→ 0. (4.30)

In addition, since (F=, F∗=)=∈N is in gra, , (F=, F∗= + �F=)=∈N is in gra(, + �).
It then follows from (4.24) and Lemma 2.49 that G ∈ / . We conclude by invoking
Theorem 4.2(iv).

We now turn to strong convergence.

Theorem 4.9. Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H → H be U-cocoercive and such that / = zer(, + �) ≠ ∅, let G0 ∈ H, and
let (_=)=∈N be a sequence in ]0, 1]. Iterate

for = = 0, 1, . . .

(F=, F∗=) ∈ gra,, @= ∈ H
C∗= = F

∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @=‖2/(4U)

3= =


X=

‖C∗=‖2
C∗=, if X= > 0,

0, otherwise
A= = G= − _=3=
G=+1 = Q(G0, G=, A=),

(4.31)

where Q is defined in Lemma 4.6. Then the following hold:

(i) (G=)=∈N is bounded.
(ii)

∑
=∈N ‖G=+1 − G=‖2 < +∞.

(iii)
∑
=∈N _

2
=‖3=‖2 < +∞.

(iv) Suppose thatF=−G= ⇀ 0, F=−@= → 0 and C∗= → 0. Then (G=)=∈N converges
strongly to proj/ G0.

Proof. Define (�=)=∈N as in (4.25) and note that (4.28) yields / ⊂ ⋂
=∈N �=.

Furthermore, we derive from (4.31) and Example 2.1 that (∀= ∈ N) A= = G= +
_=(proj�= G= − G=). This places us in the setting of Theorem 4.7.

(i) This follows from Theorem 4.7(ii).

https://doi.org/10.1017/S0962492923000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000065


The geometry of monotone operator splitting methods 525

(ii) See Theorem 4.7(iii).

(iii) This follows from Theorem 4.7(iv).

(iv) As in the proof of Theorem 4.8(iii), W(G=)=∈N ⊂ / . The claim follows from
Theorem 4.7(v).

In the absence of the cocoercive operator �, we can choose (@=)=∈N = (F=)=∈N
in (4.23) and (4.31), and Theorems 4.8 and 4.9 simplify as follows.

Proposition 4.10. Let " : H→ 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let G0 ∈ H, and let (_=)=∈N be a sequence in ]0, 2[. Iterate

for = = 0, 1, . . .

(<=, <∗=) ∈ gra"

3= =


〈G= − <= | <∗=〉
‖<∗=‖2

<∗=, if 〈G= − <= | <∗=〉 > 0,

0, otherwise
G=+1 = G= − _=3=.

(4.32)

Then the following hold:

(i)
∑
=∈N _=(2 − _=)‖3=‖2 < +∞.

(ii) Suppose that <= − G= ⇀ 0 and <∗= → 0. Then (G=)=∈N converges weakly to
a point in / .

Proposition 4.11. Let " : H→ 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let G0 ∈ H, and let (_=)=∈N be a sequence in ]0, 1]. Iterate

for = = 0, 1, . . .

(<=, <∗=) ∈ gra"

3= =


〈G= − <= | <∗=〉
‖<∗=‖2

<∗=, if 〈G= − <= | <∗=〉 > 0,

0, otherwise
A= = G= − _=3=
G=+1 = Q(G0, G=, A=),

(4.33)

where Q is defined in Lemma 4.6. Then the following hold:

(i)
∑
=∈N _

2
=‖3=‖2 < +∞.

(ii) Suppose that <= − G= ⇀ 0 and <∗= → 0. Then (G=)=∈N converges strongly to
proj/ G0.

4.5. Warped resolvent cuts

Algorithms (4.23) and (4.31) are conceptual in the sense that they do not provide
an explicit mechanism to find points in the graph of, . In this section, we propose
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implementable versions that pick points in gra, using the warped resolvents of
Lemma 2.42.

Theorem 4.12. Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H→ H be U-cocoercive and such that / = zer(, +�) ≠ ∅, let G0 ∈ H, and let
(_=)=∈N be a sequence in ]0, 2[. Further, for every = ∈ N, let *= : H → H be an
operator such that ran*= ⊂ ran(*= +, + �) and*= +, + � is injective. Iterate

for = = 0, 1, . . .

F= = �
*=
, +�G=

F∗= = *=G= −*=F= − �F=
@= ∈ H
C∗= = F

∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @=‖2/(4U)

3= =


X=

‖C∗=‖2
C∗=, if X= > 0,

0, otherwise
G=+1 = G= − _=3=.

(4.34)

Then the following hold:
(i)

∑
=∈N _=(2 − _=)‖3=‖2 < +∞.

(ii) Suppose that one of the following is satisfied:
(a)

∑
=∈N _=(2 − _=) = +∞ and (‖3=‖)=∈N converges,

(b) inf=∈N _= > 0 and sup_= < 2,
together with one of the following:
(c) F= − G= ⇀ 0,*=F= −*=G= → 0 and F= − @= → 0,
(d) @= − G= → 0 and there exist V1 ∈ ]1/(4U), +∞[ and V2 ∈ ]0, +∞[ such

that the kernels (*=)=∈N are V1-strongly monotone and V2-Lipschitzian.
Then (G=)=∈N converges weakly to a point in / .

Proof. Lemma 2.42(i) indicates that (4.34) is governed by the scenario of The-
orem 4.8.
(i) See Theorem 4.8(ii).
(ii) A consequence of (i) under (iia) or (iib) is that

‖3=‖ → 0. (4.35)

Indeed, the claim is clear under (iib), whereas under (iia) we have lim ‖3=‖ = 0
and therefore lim ‖3=‖ = 0. Next, let us assume that (iic) holds. Then it follows
from (4.34) and (2.32) that

(∀= ∈ N) ‖C∗=‖ = ‖*=F= −*=G= + �F= − �@=‖
≤ ‖*=F= −*=G=‖ + ‖�F= − �@=‖ (4.36)
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≤ ‖*=F= −*=G=‖ +
‖F= − @=‖

U

→ 0. (4.37)

In view of Theorem 4.8(iii), the claim is established. It remains to show that
(iid)⇒(iic). Because the operators (*= + , + �)=∈N are V1-strongly mono-
tone, the operators (*= +, + �)−1

=∈N are V1-cocoercive, hence 1/V1-Lipschitzian.
Consequently, since the operators (*=)=∈N are V2-Lipschitzian, the operators(
�
*=
, +�

)
=∈N are V2/V1-Lipschitzian. Now let I ∈ / . Then we derive from (4.34)

and Lemma 2.42(ii) that

(∀= ∈ N) ‖F= − I‖ =


�*=
, +�G= − �

*=
, +� I



 ≤ V2
V1
‖G= − I‖. (4.38)

Appealing to Theorem 4.8(i), we infer that (F=)=∈N is bounded. Thus, since
@= − G= → 0 and � is 1/U-Lipschitzian, the sequences

(‖F= − G=‖)=∈N, (‖F= − @=‖)=∈N and (‖�F= − �@=‖)=∈N are bounded. (4.39)

However, (4.36) entails that

(∀= ∈ N) ‖C∗=‖ ≤ V2‖F= − G=‖ +
‖F= − @=‖

U
, (4.40)

which verifies that (‖C∗=‖)=∈N is bounded. In turn, (4.34) and (4.35) imply that

lim X= ≤ lim ‖C∗=‖ ‖3=‖ = 0. (4.41)

Moreover, for every = ∈ N, (4.34) yields

X= = 〈F= − G= | *=F= −*=G=〉 + 〈F= − G= | �F= − �@=〉 −
‖F= − @=‖2

4U
≥ V1‖F= − G=‖2 + 〈F= − @= | �F= − �@=〉 + 〈@= − G= | �F= − �@=〉

− ‖F= − @=‖
2

4U
≥ V1(‖F= − @=‖2 + 2〈F= − @= | @= − G=〉 + ‖@= − G=‖2)

+ U‖�F= − �@=‖2 + 〈@= − G= | �F= − �@=〉 −
‖F= − @=‖2

4U

≥
(
V1 −

1
4U

)
‖F= − @=‖2 + V1(2〈F= − @= | @= − G=〉 + ‖@= − G=‖2)

+ 〈@= − G= | �F= − �@=〉

≥
(
V1 −

1
4U

)
‖F= − @=‖2

+ ‖@= − G=‖(V1‖@= − G=‖ − 2V1‖F= − @=‖ + ‖�F= − �@=‖). (4.42)

Therefore, since ‖@=−G=‖ → 0, it follows from (4.39) and (4.41) that F=−@= → 0
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and hence that F= − G= → 0. Since

‖*=F= −*=G=‖ ≤ V2‖F= − G=‖ ≤ V2(‖F= − @=‖ + ‖@= − G=‖)→ 0, (4.43)

the proof is complete.

Remark 4.13. In the special case when � = 0, (@=)=∈N = (F=)=∈N, and con-
ditions (iib) and (iic) are satisfied, Theorem 4.12(ii) is closely related to The-
orem 4.2(ii) of Bùi and Combettes (2020b).

We conclude this section with the strongly convergent best approximation com-
panion algorithm resulting from Theorem 4.9.

Theorem 4.14. Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H→ H be U-cocoercive and such that / = zer(, +�) ≠ ∅, let G0 ∈ H, and let
(_=)=∈N be a sequence in ]0, 1]. Further, for every = ∈ N, let *= : H → H be an
operator such that ran*= ⊂ ran(*= +, + �) and*= +, + � is injective. Iterate

for = = 0, 1, . . .

F= = �
*=
, +�G=

F∗= = *=G= −*=F= − �F=
@= ∈ H
C∗= = F

∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @=‖2/(4U)

3= =


X=

‖C∗=‖2
C∗=, if X= > 0,

0, otherwise
A= = G= − _=3=
G=+1 = Q(G0, G=, A=),

(4.44)

where Q is defined in Lemma 4.6. Then the following hold:

(i)
∑
=∈N _

2
=‖3=‖2 < +∞.

(ii) Suppose that one of the following is satisfied:

(a)
∑
=∈N _

2
= = +∞ and (‖3=‖)=∈N converges,

(b) inf=∈N _= > 0,

together with one of the following:

(c) F= − G= ⇀ 0,*=F= −*=G= → 0 and F= − @= → 0,
(d) @= − G= → 0 and there exist V1 ∈ ]1/(4U), +∞[ and V2 ∈ ]0, +∞[ such

that the kernels (*=)=∈N are V1-strongly monotone and V2-Lipschitzian.

Then (G=)=∈N converges strongly to proj/ G0.

Proof. In view of Lemma 2.42(i), (4.44) is an instance of (4.31) and we shall
therefore employ Theorem 4.9.
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(i) See Theorem 4.9(iii).

(ii) It follows from (i) and (4.44) that 3= → 0. Indeed, this is evident under (iib),
whereas under (iia) we have lim ‖3=‖ = 0 and therefore lim ‖3=‖ = 0. Let us
now assume that (iic) holds. Then (4.37) is satisfied and we obtain the assertion
by invoking Theorem 4.9(iv). Finally, to show that (iid)⇒(iic), we remark that
Theorem 4.9(i) asserts that (G=)=∈N is bounded. Hence, we follow the same pattern
as in the proof of Theorem 4.12(iid) to conclude.

5. The proximal point algorithm
5.1. Preview

The proximal point algorithm is an implicit method to construct a zero of a maxi-
mally monotone operator which goes back to a quadratic programming method
proposed in Bellman, Kalaba and Lockett (1966, Section 5.8). In the nonlinear
case, it first appeared in the work of Lieutaud (1969a) (this fact seems to have been
overlooked in the literature: see Remark 6.1), then in Martinet (1970, 1972) for
subdifferentials and Rockafellar (1976b) for the general case. Iteration = of the un-
relaxed form of the algorithm can be interpreted as a backward Euler discretization
of the Cauchy problem (Aubin and Cellina 1984, Section 3.2) (see Example 2.18){

G(0) = G0,

−G ′(C) ∈ "G(C), for a.e. C ∈ ]0, +∞[,
(5.1)

with time step W= ∈ ]0, +∞[, that is,
G= − G=+1

W=
∈ "G=+1 (5.2)

or, equivalently, G=+1 = �W="G=.

5.2. Fejérian algorithm

The following theorem, which brings together results fromBrézis and Lions (1978),
Eckstein and Bertsekas (1992), Gabay (1983), Gol’shtein and Tret’yakov (1979),
Lemaire (1989), Martinet (1970, 1972) and Rockafellar (1976b), will be derived
from Theorem 4.12.

Theorem 5.1. Let " : H → 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let G0 ∈ H, let (_=)=∈N be a sequence in ]0, 2[, and let (W=)=∈N be
a sequence in ]0, +∞[. Iterate

(∀= ∈ N) G=+1 = G= + _=(�W="G= − G=), (5.3)

and suppose that one of the following holds:

(i)
∑
=∈N _=(2 − _=) = +∞ and (∀= ∈ N) W= = 1.
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(ii)
∑
=∈N W

2
= = +∞ and (∀= ∈ N) _= = 1.

(iii) inf=∈N _= > 0, sup=∈N _= < 2 and inf=∈N W= > 0.

Then ‖�W="G= − G=‖/W= → 0 and (G=)=∈N converges weakly to a point in / .

Proof. Let us apply Theorem 4.12 with

� = 0 and (∀= ∈ N) *= = W
−1
= Id and @= = F=. (5.4)

We derive from (2.19) that the variables of the iterations (4.34) satisfy

(∀= ∈ N) C∗= =
G= − F=
W=

, X= = W=‖C∗=‖2 and 3= = G= − F=. (5.5)

Thus, the sequence (G=)=∈N produced by (5.3) coincides with that of (4.34). In
turn, Theorem 4.12(i) yields∑

=∈N
_=(2 − _=)‖3=‖2 < +∞. (5.6)

We now show that one of conditions (iia)–(iib) and one of conditions (iic)–(iid) of
Theorem 4.12(ii) are fulfilled in each scenario. We also recall from (4.35) that (iia)
and (iib) in Theorem 4.12 each imply that

3= → 0. (5.7)

(i) Let us check that conditions (iia) and (iid) are fulfilled. For (iia), it is enough
to show that (‖3=‖)=∈N decreases. To this end, set ) = 2�" − Id. Then
Lemma 2.34(iii) and (2.33) assert that ) is nonexpansive. Therefore, (5.5) yields

(∀= ∈ N) 2‖3=+1‖ = ‖)G=+1 − G=+1‖
= ‖)G=+1 − )G= + (1 − _=/2)()G= − G=)‖
≤ ‖G=+1 − G=‖ + (1 − _=/2)‖)G= − G=‖
= (_=/2)‖)G= − G=‖ + (1 − _=/2)‖)G= − G=‖
= 2‖3=‖, (5.8)

as desired. For (iid), note that (5.7) and (5.5) imply that @= − G= = F= − G= =
−3= → 0. In addition, it is clear from (5.4) that (*=)=∈N satisfies the required
conditions with V1 = V2 = 1.

(ii) Condition (iib) holds. To show that (iic) holds as well, we first infer from
(5.5) and (5.6) that

∑
=∈N W

2
=‖C∗=‖2 < +∞ and hence that F= − G= = −W=C∗= → 0.

Furthermore, since
∑
=∈N W

2
= = +∞, lim ‖C∗=‖ = 0. On the other hand, (∀= ∈ N)

C∗= = W
−1
= (G= − F=) = W−1

= (G= − G=+1). Hence, using (2.18), the monotonicity of "
and the Cauchy–Schwarz inequality, we obtain

(∀= ∈ N) 0 ≤ 〈F= − F=+1 | C∗= − C∗=+1〉/W=+1
= 〈G=+1 − G=+2 | C∗= − C∗=+1〉/W=+1
= 〈C∗=+1 | C

∗
= − C∗=+1〉
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= 〈C∗=+1 | C
∗
=〉 − ‖C∗=+1‖

2

≤ ‖C∗=+1‖(‖C
∗
=‖ − ‖C∗=+1‖), (5.9)

which shows that (‖C∗=‖)=∈N decreases. Altogether,*=G= −*=F= = C∗= → 0.

(iii) Condition (iib) is assumed. Let us check (iic). Since (5.5) and (5.6) yield∑
=∈N W

2
=‖C∗=‖2 < +∞, we have G= − F= = W=C∗= → 0. Finally, since inf=∈N W= > 0,

*=G= −*=F= = C∗= → 0.

We conclude the proof by noting that in all three cases above ‖�W="G= − G=‖/W= =
‖C∗=‖ → 0.

Remark 5.2. Let 5 ∈ Γ0(H) and suppose that " = m 5 in Theorem 5.1. Then, as
seen in Example 2.12, " is maximally monotone and / = Argmin 5 . In this case,
the condition on (W=)=∈N in Theorem 5.1(ii) can be improved to

∑
=∈N W= = +∞

(Brézis and Lions 1978, Théorème 9).

5.3. Haugazeau-like algorithm

We employ Theorem 4.14 to obtain a strongly convergent variant of the proximal
point algorithm; see Bauschke and Combettes (2001) and Solodov and Svaiter
(2000) for related results. Examples of proximal point iterations that fail to converge
strongly are constructed in Bauschke, Matoušková and Reich (2004), Combettes
(2018) and Güler (1991).

Theorem 5.3. Let" : H→ 2H be amaximally monotone operator such that / =
zer" ≠ ∅, let G0 ∈ H, let (_=)=∈N be a sequence in ]0, 1] such that inf=∈N _= > 0,
and let (W=)=∈N be a sequence in ]0, +∞[ such that inf=∈N W= > 0. Iterate

(∀= ∈ N) G=+1 = Q(G0, G=, G= + _=(�W="G= − G=)), (5.10)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to proj/ G0.

Proof. In Theorem 4.14, set � = 0 and (∀= ∈ N) *= = W−1
= Id and @= = F=.

Then (5.5) holds and the sequence (G=)=∈N produced by (5.10) coincides with
that of (4.44). In turn, Theorem 4.14(i) yields

∑
=∈N _

2
=‖3=‖2 < +∞. Therefore,

G= − F= = 3= → 0 and *=G= −*=F= = W−1
= 3= → 0. This confirms that condition

(iic) in Theorem 4.14(ii) is fulfilled. Since condition (iib) holds by assumption, the
proof is complete.

5.4. Special cases and variants

As mentioned in Section 1, direct implementations of the proximal point algorithm
are limited due to the potential difficulty of evaluating the resolvents in (5.3) and
(5.10). As we shall see in this section, the proximal point framework can none-
theless be an effective device to establish indirectly the convergence of algorithms
that can be identified, possibly in a different space, as an instance of (5.3). Early
examples in the context of inequality-constrained minimization problems are found
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in Rockafellar (1976a), where a dual application of an approximate proximal point
algorithm was shown to yield a method of multipliers (also called the augmen-
ted Lagrangian method) that extends some classical ones from Hestenes (1969)
and Powell (1969); see also Rockafellar (1973). A primal–dual quadratically per-
turbed variant of this algorithm, known as the proximal method of multipliers, was
also introduced in Rockafellar (1976a) as an application of an approximate prox-
imal point algorithm to find saddle points of the Lagrangian; see also Rockafellar
(2024), Shefi and Teboulle (2014) and their bibliographies for recent work along
these lines. The applications described below reduce to implementations of the
proximal point algorithm that feature full operator splitting when several linear and
nonlinear operators are present in the original problem.

5.4.1. The Euler method
We derive from the proximal point algorithm a (forward) Euler method to find a
zero of a cocoercive operator.

Proposition 5.4. Let U ∈ ]0, +∞[ and let � : H → H be U-cocoercive, with
zer � ≠ ∅. Let (W=)=∈N be a sequence in ]0, 2U[ such that

∑
=∈N W=(2U−W=) = +∞

and let G0 ∈ H. Iterate

(∀= ∈ N) G=+1 = G= − W=�G=. (5.11)

Then (G=)=∈N converges weakly to a point in zer �.

Proof. Set " = (Id − U�)−1 − Id. Since U� is firmly nonexpansive with domain
H, Id−U� is likewise and Lemma 2.34(iii) asserts that " is maximally monotone.
On the other hand, zer" = zer �, �" = Id − U�, and hence (5.11) becomes

(∀= ∈ N) G=+1 = G= + _=(�"G= − G=), where _= = W=/U ∈ ]0, 2[. (5.12)

Thus, since
∑
=∈N _=(2 − _=) = +∞, the claim follows from Theorem 5.1(i).

Remark 5.5. As just shown, theEulermethod (5.11) is an instance of the proximal
point algorithm (5.3). Conversely, we can interpret the proximal point iterations in
the format

(∀= ∈ N) G=+1 = G= + _=(�"G= − G=), where _= ∈ ]0, 2[, (5.13)

as an instance of (5.11). Indeed, let " : H→ 2H be maximally monotone and set
� = 1" and (∀= ∈ N) W= = _=. Then, as seen in Example 2.7, zer" = zer � and
� is 1-cocoercive, while (2.21) implies that (5.13) reduces to (5.11).

The following example is about the gradient method; see Cauchy (1847) and
Curry (1944) for the premises of this algorithm.

Example 5.6. Let U ∈ ]0, +∞[ and let 6 : H→ R be convex, differentiable, and
such that ∇6 is 1/U-Lipschitzian, with Argmin 6 ≠ ∅. Let (W=)=∈N be a sequence
in ]0, 2U[ such that ∑=∈N W=(2U − W=) = +∞ and let G0 ∈ H. Iterate

(∀= ∈ N) G=+1 = G= − W=∇6(G=). (5.14)
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Then (G=)=∈N converges weakly to a point in Argmin 6.

Proof. Combine Lemma 2.2 and Proposition 5.4.

As noted in Bauschke, Combettes andReich (2005, Remark 4.8(ii)) in the context
of Example 5.6, the convergence in Proposition 5.4 can fail to be strong. The next
result, which guarantees strong convergence, is obtained by defining" and (_=)=∈N
as in the proof of Proposition 5.4 and using Theorem 5.3.

Proposition 5.7. Let U ∈ ]0, +∞[ and let � : H → H be U-cocoercive, with
zer � ≠ ∅. Let (W=)=∈N be a sequence in ]0, U] such that inf=∈N W= > 0 and let
G0 ∈ H. Iterate

(∀= ∈ N) G=+1 = Q(G0, G=, G= − W=�G=), (5.15)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to projzer � G0.

5.4.2. Fixed point problem
We address the basic problem of constructing a fixed point of a nonexpansive
operator ) : H→ H. The following result is derived as an instance of the proximal
point algorithm of Theorem 5.1 via the embedding of Example 3.16.

Proposition 5.8. Let U ∈ ]0, 1] and let ) : H→ H be U-averaged. Suppose that
Fix) ≠ ∅, let (_=)=∈N be a sequence in ]0, 1/U[ such that

∑
=∈N _=(1−U_=) = +∞,

and let G0 ∈ H. Iterate

(∀= ∈ N) G=+1 = G= + _=()G= − G=). (5.16)

Then (G=)=∈N converges weakly to a point in Fix) .

Proof. We use the embedding of Example 3.16. DefineM as in (3.26) and note
that �M = Id + (2U)−1() − Id). We therefore rewrite (5.16) as

(∀= ∈ N) G=+1 = G= + `=(�MG= − G=), where `= = 2U_= ∈ ]0, 2[. (5.17)

Then
∑
=∈N `=(2 − `=) = +∞ and, appealing to Theorem 5.1(i), we conclude that

(G=)=∈N converges weakly to a point in zerM = Fix) .

In the case when U = 1, Proposition 5.8 is due to Groetsch (1972) and (5.16) is
known as the Krasnosel’skiı̆–Mann iteration, owing to its connection with iterative
schemes proposed in Krasnosel’skiı̆ (1955) and Mann (1953), and it is a pillar of
nonlinear numerical functional analysis (Bauschke and Combettes 2017, Cegielski
2012, Dong et al. 2022). Here is a strongly convergent variant derived from
Theorem 5.3; see Genel and Lindenstrauss (1975) for an example of the failure of
strong convergence in Proposition 5.8.

Proposition 5.9. Let U ∈ ]0, 1] and let ) : H→ H be U-averaged. Suppose that
Fix) ≠ ∅, let (_=)=∈N be a sequence in ]0, 1/(2U)] such that inf=∈N _= > 0, and
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let G0 ∈ H. Iterate

(∀= ∈ N) G=+1 = Q(G0, G=, G= + _=()G= − G=)), (5.18)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to projFix) G0.

Proof. DefineM as in (3.26), argue as in the proof of Proposition 5.8 to observe
that (5.18) is an instance of (5.10), and conclude by invoking Theorem 5.3.

5.4.3. Resolvent compositions
We focus on the inclusion problem of Combettes (2023, Section 6), which is mod-
elled by resolvent compositions (see Example 2.40) and solvable via the proximal
point algorithm.

Proposition 5.10. Suppose that ! ∈ B(H,G) satisfies 0 < ‖!‖ ≤ 1, let � : G →
2G be maximally monotone, let + ≠ {0} be a closed vector subspace of H, and let
W ∈ ]0, +∞[. Let ( be the set of solutions to the problem

find G ∈ + such that 0 ∈ �(!G) (5.19)

and let / be the set of solutions to the problem

find G ∈ H such that 0 ∈ (proj+ �(! �(W�)))G. (5.20)

Then (5.20) is an exact relaxation of (5.19) in the sense that ( ≠ ∅⇒ / = (. Now
assume that / ≠ ∅, let (_=)=∈N be a sequence in ]0, 2[ such that

∑
=∈N _=(2−_=) =

+∞, and let G0 ∈ + . Iterate

for = = 0, 1, . . .
H= = !G=
@= = �W�H= − H=
I= = !

∗@=
G=+1 = G= + _= proj+ I=.

(5.21)

Then (G=)=∈N converges weakly to a point in / .

Proof. The exact relaxation claim is established in Theorem 6.3(v) of Combettes
(2023). Now set " = proj+ �(! �(W�)) and note that ‖ proj+ ‖ = 1 and proj∗

+
=

proj+ . Hence, it follows from Example 2.31 that " is maximally monotone, and
from Example 2.40 that �" = proj+ ◦(IdH − !∗ ◦ ! + !∗ ◦ �W� ◦ !) ◦ proj+ .
Altogether, the convergence result follows from Theorem 5.1(i)

Here is a strongly convergent algorithm based on the Haugazeau variant.

Proposition 5.11. Suppose that ! ∈ B(H,G) satisfies 0 < ‖!‖ ≤ 1, let � : G →
2G be maximally monotone, let + ≠ {0} be a closed vector subspace of H, and let
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W ∈ ]0, +∞[. Suppose that the set / of solutions to the problem

find G ∈ H such that 0 ∈ (proj+ �(! �(W�)))G (5.22)

is not empty. Let (_=)=∈N be a sequence in ]0, 1] such that inf=∈N _= > 0, and let
G0 ∈ + . Iterate

for = = 0, 1, . . .
H= = !G=
@= = �W�H= − H=
I= = !

∗@=
G=+1 = Q(G0, G=, G= + _= proj+ I=),

(5.23)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to proj/ G0.

Proof. Arguing as in the proof of Proposition 5.10, this is an application of
Theorem 5.3 with " = proj+ �(! �(W�)) and (∀= ∈ N) W= = 1.

Belowwe recover the relaxation framework of Combettes andWoodstock (2022)
for signal reconstruction in the presence of possibly inconsistent nonlinear obser-
vations.

Example 5.12. Let 0 < ? ∈ N, let W ∈ ]0, +∞[, and let + ≠ {0} be a closed
vector subspace of H. For every : ∈ {1, . . . , ?}, let G: be a real Hilbert space,
let !: ∈ B(H,G:), let l: ∈ ]0, +∞[, let �: : G: → G: be firmly nonexpansive,
and let A: ∈ G: . Consider the nonlinear reconstruction problem (Combettes and
Woodstock 2022, Problem 1.1)

find G ∈ + such that (∀: ∈ {1, . . . , ?}) �:(!:G) = A: (5.24)

and the relaxed variational inequality problem (Combettes and Woodstock 2022,
Problem 1.3)

find G ∈ + such that
?∑
:=1

l:!
∗
:(�:(!:G) − A:) ∈ +

⊥. (5.25)

Suppose that 0 <
∑?

:=1 l: ‖!: ‖
2 ≤ 1 and that (5.25) admits solutions. Let G0 ∈ + ,

let (_=)=∈N be a sequence in ]0, 2[ such that ∑=∈N _=(2 − _=) = +∞, and iterate

for = = 0, 1, . . .
for : = 1, . . . , ?⌊
H:,= = !:G=
@:,= = A: − �: H:,=

I= =
∑?

:=1 l:!
∗
:
@:,=

G=+1 = G= + _= proj+ I=.

(5.26)

Then (G=)=∈N converges weakly to a solution to (5.25).
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Proof. Let G be the standard product vector space G1 × · · · × G?, with gen-
eric element y = (H:)1≤:≤?, and equipped with the scalar product (y, y′) ↦→∑?

:=1 l: 〈H: | H
′
:
〉. Further, set ! : H→ G : G ↦→ (!1G, . . . , !?G) and

� : G → 2G : y ↦→ ((Id−�1+A1)−1H1−H1)×· · ·×((Id−�?+A?)−1H?−H?). (5.27)

In this setting, (5.24) is a realization of (5.19), (5.25) of (5.20), and (5.26) of (5.21);
for details, see Combettes (2023, Example 6.10). The claim therefore results from
Proposition 5.10.

5.4.4. The method of partial inverses
We go back to a formulation already touched upon in Problem 3.10. Given a
maximally monotone operator � : H → 2H and a closed vector subspace + of H,
Spingarn (1983) considered the problem

find G ∈ + and G∗ ∈ +⊥ such that G∗ ∈ �G, (5.28)

and solved it by applying the proximal point algorithm to the partial inverse �+ (see
Example 2.33). The resulting algorithm is called the method of partial inverses.
The following is a relaxed version of the convergence result of Spingarn (1983,
Theorem 4.1(i)) (see Alghamdi et al. 2014, Theorem 2.4).

Theorem 5.13. Let � : H → 2H be a maximally monotone operator, let + be
a closed vector subspace of H, and let (_=)=∈N be a sequence in ]0, 2[ such that∑
=∈N _=(2 − _=) = +∞. Suppose that (5.28) has solutions, let G0 ∈ + , let G∗0 ∈ +

⊥,
and iterate

for = = 0, 1, . . .
?= = ��(G= + G∗=)
?∗= = G= + G∗= − ?=
G=+1 = G= − _= proj+ ?∗=
G∗
=+1 = G

∗
= − _= proj+ ⊥ ?=.

(5.29)

Then the following hold:

(i) proj+ ?= − G= → 0 and proj+ ⊥ ?∗= − G∗= → 0.
(ii) There exists a solution (G, G∗) to (5.28) such that G= ⇀ G and G∗= ⇀ G∗.

Proof. Set
(∀= ∈ N) I= = G= + G∗= (5.30)

and note that, since (G=)=∈N lies in+ and (G∗=)=∈N lies in+⊥, (5.29) can be rewritten
as

for = = 0, 1, . . .
?= = ��(G= + G∗=)
?∗= = G= + G∗= − ?=
G=+1 = G= + _=(proj+ ?= − G=)
G∗
=+1 = G

∗
= + _=(proj+ ⊥ ?∗= − G∗=).

(5.31)
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Thus,

(∀= ∈ N) proj+

(
I=+1 − I=
_=

+ I=
)
+ proj+ ⊥

(
I= −

(
I=+1 − I=
_=

+ I=
))

= proj+

(
I=+1 − I=
_=

+ I=
)
+ proj+ ⊥

(
I= − I=+1
_=

)
= proj+

(
G=+1 − G=

_=
+ G=

)
+ proj+ ⊥

(
G∗= − G∗=+1

_=

)
= proj+ ?= + proj+ ⊥(G

∗
= − ?∗=)

= proj+ ?= + proj+ ⊥(?= − G=)
= ?=

= ��I=. (5.32)

Hence, it follows from (5.30), (5.31) and Example 2.38 that

(∀= ∈ N) I=+1 = I= + _=(��+ I= − I=). (5.33)

Altogether, we derive from Theorem 5.1(i) that

��+ I= − I= → 0 (5.34)

and that there exists I ∈ zer �+ such that

I= ⇀ I. (5.35)

(i) In view of (5.31), (5.30), Example 2.38 and (5.34), we have

proj+ ?= − G= = proj+ (��+ I=) − G= = proj+ (��+ I= − I=)→ 0 (5.36)

and

G∗= − proj+ ⊥ ?
∗
= = proj+ ⊥(?= − G=) = proj+ ⊥ ��I= = proj+ ⊥(I= − ��+ I=)→ 0.

(5.37)
(ii) As seen above, I ∈ zer �+ . Now set (G, G∗) = (proj+ I, proj+ ⊥ I). Then
Example 2.33(ii) guarantees that (G, G∗) solves (5.28). In addition, since proj+ and
proj+ ⊥ are linear and continuous, they are weakly continuous. We conclude that
G= = proj+ I= ⇀ proj+ I = G and G∗= = proj+ ⊥ I= ⇀ proj+ ⊥ I = G∗.

Example 5.14. In Theorem 5.13, let 5 ∈ Γ0(H) be such that 0 ∈ sri(dom 5 −+),
set � = m 5 , and suppose that 5 admits minimizers over + . Then (5.28) amounts to
finding a solution to the Fenchel dual pair

minimize
G∈+

5 (G) and minimize
G∗∈+ ⊥

5 ∗(G∗). (5.38)
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In this case, given G0 ∈ + and G∗0 ∈ +
⊥, the method of partial inverses (5.29) iterates

for = = 0, 1, . . .
?= = prox 5 (G= + G∗=)
?∗= = G= + G∗= − ?=
G=+1 = G= − _= proj+ ?∗=
G∗
=+1 = G

∗
= − _= proj+ ⊥ ?=,

(5.39)

and Theorem 5.13(ii) guarantees that there exists a primal–dual solution (G, G∗) of
(5.38) such that G= ⇀ G and G∗= ⇀ G∗.

Algorithm (5.29) has many applications in convex optimization, for example
Idrissi, Lefebvre and Michelot (1989), Lemaire (1989), Lenoir and Mahey (2017),
Pennanen (2002) and Spingarn (1983, 1985, 1987). As shown in Rockafellar and
Sun (2019), it also constitutes the basic building block of the progressive hedging
algorithm in stochastic programming (Rockafellar and Wets 1991).
Although the method of partial inverses (5.29) is presented in the context of

the simple problem (5.28), it has far-reaching ramifications. Below we present
an application proposed in Alghamdi et al. (2014), where it is applied to Prob-
lem 3.11. In terms of Framework 1.2, this approach can be seen as a rephrasing of
Problem 3.11 as an instance of (5.28) in X = H ⊕ G1 ⊕ · · · ⊕ G?.

Proposition 5.15. Let 0 < ? ∈ N, let � : H → 2H be maximally monotone,
and, for every : ∈ {1 . . . , ?}, let G: be a real Hilbert space, let �: : G: → 2G: be
maximally monotone, and let !: ∈ B(H,G:). Suppose that the set / of solutions
to the inclusion

find G ∈ H such that 0 ∈ �G +
?∑
:=1

!∗:(�:(!:G)) (5.40)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that(

∃ G ∈ �−1
(
−

?∑
:=1

!∗: H
∗
:

))
(∀: ∈ {1, . . . , ?}) !:G ∈ �−1

: H
∗
: . (5.41)

Let G0 ∈ H and let (_=)=∈N be a sequence in ]0, 2[ such that
∑
=∈N _=(2−_=) = +∞.

Set

* =

(
Id +

?∑
:=1

!∗: ◦ !:
)−1

(5.42)

and, for every : ∈ {1, . . . , ?}, let H∗
:,0 ∈ G: and set H:,0 = !:G0. Additionally, set

G∗0 = −
?∑
:=1

!∗: H
∗
:,0, (5.43)
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and iterate

for = = 0, 1, . . .

?= = ��(G= + G∗=)
?∗= = G= + G∗= − ?=
for : = 1, . . . , ?⌊
@:,= = ��: (H:,= + H∗:,=)
@∗
:,=

= H:,= + H∗:,= − @:,=
C= = *

(
?∗= +

∑?

:=1 !
∗
:
@∗
:,=

)
F= = *

(
?= +

∑?

:=1 !
∗
:
@:,=

)
G=+1 = G= − _=C=
G∗
=+1 = G

∗
= + _=(F= − ?=)

for : = 1, . . . , ?⌊
H:,=+1 = H:,= − _=!: C=
H∗
:,=+1 = H

∗
:,=
+ _=(!:F= − @:,=).

(5.44)

Then there exist G ∈ / and (H∗
:
)1≤:≤? ∈ /∗ such that G= ⇀ G and, for every

: ∈ {1, . . . , ?}, H∗
:,=

⇀ H∗
:
.

Proof. Define


G = G1 ⊕ · · · ⊕ G?,
� : G → 2G : (H1, . . . , H?) ↦→ �1H1 × · · · × �?H?,
! : H→ G : G ↦→ (!1G, . . . , !?G),

(5.45)

and note that !∗ : G → H : (H∗1, . . . , H
∗
?) ↦→ !∗1H

∗
1 + · · · + !

∗
?H
∗
?. Moreover set,

for every = ∈ N, @= = (@:,=)1≤:≤?, @∗= = (@∗
:,=

)1≤:≤?, H= = (H:,=)1≤:≤? and
H∗= = (H∗

:,=
)1≤:≤?. In this setting, � is maximally monotone and �� : (H:)1≤:≤? ↦→

(��: H:)1≤:≤? (Example 2.37), so that (5.44) can be rewritten as

for = = 0, 1, . . .

?= = ��(G= + G∗=)
@= = ��(H= + H∗=)
?∗= = G= + G∗= − ?=
@∗= = H= + H∗= − @=
C= = *(?∗= + !∗@∗=)
F= = *(?= + !∗@=)
G=+1 = G= − _=C=
H=+1 = H= − _=!C=
G∗
=+1 = G

∗
= + _=(F= − ?=)

H∗
=+1 = H

∗
= + _=(!F= − @=).

(5.46)
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Let us introduce

X = H ⊕ G,
\ = {(G, H) ∈ X | !G = H},
` = {(G, H∗) ∈ X | −!∗H∗ ∈ �G and H∗ ∈ �(!G)},
G : X→ 2X : (G, H) ↦→ �G × �H,
Y = {(x, x∗) ∈ \ × \⊥ | x∗ ∈ Gx},

(5.47)

and observe that{
\⊥ = {(G∗, H∗) ∈ X | G∗ = −!∗H∗},
Y = {((G, !G), (−!∗H∗, H∗)) ∈ X × X | (G, H∗) ∈ `}.

(5.48)

Then Lemma 3.12(iii) implies that

(5.40) admits solutions ⇔ ` ≠ ∅ ⇔ Y ≠ ∅. (5.49)

Now define (∀= ∈ N) p= = (?=, @=), p∗= = (?∗=, @∗=), x= = (G=, H=) and x∗= =
(G∗=, H∗=). Then x0 ∈ \ and x∗0 ∈ \

⊥. Moreover, by Lemma 2.24 and Example 2.37,
G is maximally monotone and

(∀= ∈ N) �G(x= + x∗=) = (��(G= + G∗=), ��(H= + H∗=)). (5.50)

Furthermore, since * = (Id + !∗ ◦ !)−1, it follows from (5.47) and Bauschke and
Combettes (2017, Example 29.19) that

(∀= ∈ N) proj\⊥ p= = (?= −*(?= + !∗@=), @= − !(*(?= + !∗@=))) (5.51)

and
(∀= ∈ N) proj\ p∗= = (*(?∗= + !∗@∗=), !(*(?∗= + !∗@∗=))). (5.52)

Combining (5.50), (5.51) and (5.52), we rewrite (5.46) as

for = = 0, 1, . . .
p= = �G(x= + x∗=)
p∗= = x= + x∗= − p=
x=+1 = x= − _= proj\ p∗=
x∗
=+1 = x∗= − _= proj\⊥ p=.

(5.53)

In turn, Theorem 5.13(ii) implies that there exists (x, x∗) ∈ Y such that x= ⇀ x
and x∗= ⇀ x∗. We then derive from (5.48) that there exists (G, H∗) ∈ ` such that
(G=, H∗=) ⇀ (G, H∗). We complete the proof by invoking Lemma 3.12(ii).

5.4.5. Renorming
The potency of the proximal point algorithm can be further extended by setting it
up in a renormed space. In terms of Framework 1.2, the guiding principle lies in
the embedding of Example 3.15. Here is a weak convergence result.
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Proposition 5.16. Let " : H→ 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let * ∈ B(H) be a self-adjoint strongly monotone operator, and
let X be the real Hilbert space obtained by endowing H with the scalar product
(G, H) ↦→ 〈*G | H〉. Let G0 ∈ H, let (_=)=∈N be a sequence in ]0, 2[, and let (W=)=∈N
be a sequence in ]0, +∞[. Iterate

for = = 0, 1, . . .
D= = W

−1
= *G=

?= =
(
W−1
= * + "

)−1
D=

G=+1 = G= + _=(?= − G=),

(5.54)

and suppose that one of the following holds:

(i)
∑
=∈N _=(2 − _=) = +∞ and (∀= ∈ N) W= = 1.

(ii)
∑
=∈N W

2
= = +∞ and (∀= ∈ N) _= = 1.

(iii) inf=∈N _= > 0, sup=∈N _= < 2 and inf=∈N W= > 0.

Then (G=)=∈N converges weakly to a point in / .

Proof. In view of Lemma 2.25(ii) and Example 2.39, (5.54) is just the prox-
imal point algorithm (5.3) applied to the maximally monotone operator *−1 ◦ "
in X . Since weak convergences in H and X coincide, the claims follow from
Lemma 2.25(i) and Theorem 5.1.

Remark 5.17. In terms of the warped resolvent of Section 2.4.3, the update in
(5.54) can be written as G=+1 = G= + _=

(
�*
W="

G= − G=
)
.

Likewise, Theorem 5.3 leads to a strongly convergent algorithm.

Proposition 5.18. Let " : H→ 2H be a maximally monotone operator such that
/ = zer" ≠ ∅, let * ∈ B(H) be a self-adjoint strongly monotone operator, and
let X be the real Hilbert space obtained by endowing H with the scalar product
(G, H) ↦→ 〈*G | H〉. Let G0 ∈ H, let (_=)=∈N be a sequence in ]0, 1] such that
inf=∈N _= > 0, and let (W=)=∈N be a sequence in ]0, +∞[ such that inf=∈N W= > 0.
Iterate

for = = 0, 1, . . .
D= = W

−1
= *G=

?= = (W−1
= * + ")−1D=

G=+1 = Q(G0, G=, G= + _=(?= − G=)),

(5.55)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to proj/ G0.

Proof. It follows from Lemma 2.25(ii) and Example 2.39 that applying the algo-
rithm (5.10) to the maximally monotone operator*−1◦" inX yields (5.55). Since
strong convergences inH andX coincide, the assertion follows fromLemma2.25(i)
and Theorem 5.3.
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Although the inversion of the operators (W−1
= * +")=∈N in (5.54) and (5.55) may

be intimidating, we show below that the renormed proximal point algorithm leads
to important instances of fully executable splitting algorithms. First, we revisit a
classical minimization problem and recover an algorithm known as the proximal
Landweber method.

Example 5.19. Let i ∈ Γ0(H), let ` ∈ ]0, +∞[, and let H ∈ G. Suppose that
0 ≠ ! ∈ B(H,G) and that the set / of solutions to the optimization problem

minimize
G∈H

i(G) + `
2
‖!G − H‖2 (5.56)

is not empty. Without loss of generality (rescale), assume that `‖!‖2 < 1. Let
G0 ∈ H, let (_=)=∈N be a sequence in ]0, 2[ such that

∑
=∈N _=(2 − _=) = +∞, and

iterate
for = = 0, 1, . . .
D= = G= − `!∗(!G=)
?= = proxi(D= + `!∗H)
G=+1 = G= + _=(?= − G=).

(5.57)

Then (G=)=∈N converges weakly to a point in / .

Proof. Set 5 = i − `〈· | !∗H〉, " = m(i + `‖! · −H‖2/2) = m 5 + `!∗ ◦ ! and
* = Id − `!∗ ◦ !. Then 5 ∈ Γ0(H), " is maximally monotone with zer" = /

by virtue of Example 2.12, * ∈ B(H) is self-adjoint and strongly monotone, and
(* +")−1 = prox 5 = proxi(· + `!∗H). Consequently, (5.57) is the implementation
of (5.54) with, for every = ∈ N, W= = 1, and Proposition 5.16(i) brings the
conclusion.

Next, we return to the primal–dual composite inclusion framework of Prob-
lem 3.7 and approach it via Framework 1.2 where, as discussed in Example 3.20,
the embedding is based on X = H ⊕ G and the Kuhn–Tucker operator K of
Lemma 3.8.

Example 5.20. Let � : H → 2H and � : G → 2G be maximally monotone, and
let ! ∈ B(H,G). Suppose that the set / of solutions to the primal inclusion

find G ∈ H such that 0 ∈ �G + !∗(�(!G)) (5.58)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗ ∈ G such that 0 ∈ −!(�−1(−!∗H∗)) + �−1H∗. (5.59)

Let (_=)=∈N be a sequence in ]0, 2[ such that
∑
=∈N _=(2 − _=) = +∞, let G0 ∈ H,
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let H∗0 ∈ G, and let f ∈ ]0, +∞[ and g ∈ ]0, +∞[ be such that gf‖!‖
2 < 1. Iterate

for = = 0, 1, . . .

G∗= = g!
∗H∗=

?= = �g�(G= − G∗=)
H= = f!(2?= − G=)
@∗= = �f�−1(H∗= + H=)
G=+1 = G= + _=(?= − G=)
H∗
=+1 = H

∗
= + _=(@∗= − H∗=).

(5.60)

Then there exist G ∈ / and H∗ ∈ /∗ such that G= ⇀ G and H∗= ⇀ H∗.

Proof. Set X = H ⊕ G and{
K : X→ 2X : (G, H∗) ↦→ (�G + !∗H∗) × (−!G + �−1H∗),
[ : X→ X : (G, H∗) ↦→ (g−1G − !∗H∗,−!G + f−1H∗).

(5.61)

As seen in Lemma 3.8(iii)–(iv),K is the maximally monotone Kuhn–Tucker oper-
ator associated with (5.58)–(5.59), and to prove the claim it is enough to show that
(G=, H∗=)=∈N converges weakly to a point in zerK, which we shall derive from Pro-
position 5.16(i). It is clear that[ ∈ B(X) is self-adjoint. Now set V = 1−

√
fg‖!‖.

Then, since gf‖!‖2 < 1, V ∈ ]0, 1[ and, for every (G, H∗) ∈ X, theCauchy–Schwarz
inequality yields

〈[(G, H∗) | (G, H∗)〉X = g−1‖G‖2 − 2〈!G | H∗〉 + f−1‖H∗‖2

≥ g−1‖G‖2 − 2
√
gf‖!‖





 G√g




 



 H∗√f





 + f−1‖H∗‖2

= g−1‖G‖2 − 2(1 − V)




 G√g





 



 H∗√f




 + f−1‖H∗‖2

=

(



 G√g




 − 



 H∗√f





)2
+ 2V





 G√g




 



 H∗√f






= (1 − V)

(



 G√g




 − 



 H∗√f





)2
+ V

(



 G√g




2
+





 H∗√f




2)

≥ V(g−1‖G‖2 + f−1‖H∗‖2)
≥ Vmin{g−1, f−1}‖(G, H∗)‖2X, (5.62)

which confirms that [ is strongly monotone. It remains to show that (5.60) is
a realization of (5.54) with the above operators K and [. Define (∀= ∈ N)
x= = (G=, H∗=), p= = (?=, @∗=) and u= = [x=. Then we derive from (5.60) and
(2.18) that

(∀= ∈ N)

{
G= − ?= − g!∗H∗= ∈ g�?=,
H∗= − @∗= + f!(2?= − G=) ∈ f�−1@∗=.

(5.63)
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This yields (∀= ∈ N) u= −[ p= ∈ K p=, i.e. p= = ([ +K)−1u=. Altogether, (5.60)
corresponds to the iteration

for = = 0, 1, . . .
u= = [x=
p= = ([ +K)−1u=
x=+1 = x= + _=( p= − x=),

(5.64)

which is precisely (5.54) with (∀= ∈ N) W= = 1.

Remark 5.21. Here are a few observations regarding Example 5.20.

(i) We have derived weak convergence from Proposition 5.16(i). Using items
(ii) or (iii) in Proposition 5.16 leads to alternative forms of (5.60) involving
proximal parameters (W=)=∈N.

(ii) It is straightforward to derive a strongly convergent best approximation variant
of (5.60) from Proposition 5.18 by following the same pattern as in the proof
of Example 5.20, i.e. applying (5.55) to the operatorsK and[ of (5.61).

(iii) Algorithm (5.60) can be adapted to Problem 3.11 by applying it to the setting
of (5.45) and using Example 2.37.

(iv) Let 5 ∈ Γ0(H) and 6 ∈ Γ0(G), and set � = m 5 and � = m6 in Example 5.20,
which corresponds to the primal–dual minimization setting of Problem 3.9.
The specialization of Example 5.20 to this minimization problem appears
in Condat (2013, Theorem 3.2), where (5.60) is called the Chambolle–Pock
algorithm because it collapses to the algorithm proposed in Chambolle and
Pock (2011, Algorithm I) in Euclidean spaces when (∀= ∈ N) _= = 1;
see Condat et al. (2023) for variations on this algorithm. The fact that the
Chambolle–Pock algorithm is a renormed proximal point algorithm was first
observed in He and Yuan (2012).

6. Douglas–Rachford splitting
6.1. Preview

The Douglas–Rachford splitting algorithm is an implicit alternating direction
method designed in Douglas and Rachford (1956) to solve the matrix equation
�G +�G = 5 , where � and � are positive-definite matrices arising from the discret-
ization of partial differentiation operators. It is described by the iteration process

for = = 0, 1, . . .⌊
G=+1/2 − G= + �G=+1/2 + �G= = 5

G=+1 − G= + �G=+1/2 + �G=+1 = 5 .

(6.1)

Lieutaud (1969a) (see also Lieutaud 1969b) proposed an infinite-dimensional non-
linear generalization of the method by showing that (6.1) can be extended to
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single-valued hemicontinuous monotone operators with dom � = dom � = H. In
particular, he established in Lieutaud (1969a) that, with the additional assumption
that � or � is strongly monotone, (G=)=∈N converges strongly to some G ∈ H
which satisfies �G+�G = 5 . The investigation of the method for general set-valued
maximallymonotone operators was initiated in Lions andMercier (1979), with sub-
sequent improvements in Bauschke and Combettes (2017), Bauschke and Moursi
(2017), Combettes (2009), Eckstein and Bertsekas (1992) and Svaiter (2011). See
also Xue (2023a) for further analysis.

To chart the path from the original Douglas–Rachford algorithm to its modern
version for monotone set-valued operators, let us go back to the matrix setting.
Upon eliminating the intermediate variables (G=+1/2)=∈N in (6.1) and noting that
��� = Id − ��, we obtain

(∀= ∈ N) G=+1 = ��(G= − ���(G= − �G= + 5 ) + 5 )
= ��(�G= + ��(G= − �G= + 5 )). (6.2)

Now set (∀= ∈ N) G= = ��H=. Then we derive from (6.2) that

(∀= ∈ N) H=+1 = ���H= + ��(��H= − ���H= + 5 )
= H= − ��H= + ��(2��H= − H= + 5 ), (6.3)

which leads to the recursion
for = = 0, 1, . . .
G= = ��H=
I= = ��(2G= − H= + 5 )
H=+1 = H= + I= − G=.

(6.4)

As noted in Lions and Mercier (1979), unlike (6.1), this algorithm is well defined
for arbitrary maximally monotone set-valued operators and is now referred to as
the Douglas–Rachford splitting algorithm in this context.

Remark 6.1. In particular, upon setting � = 0 and 5 = 0 in (6.4) and assum-
ing that � : H → H is hemicontinuous and strongly monotone, it follows from
Lieutaud’s result (Lieutaud 1969a) that the sequence (G=)=∈N generated by the
recursion

(∀= ∈ N) G=+1 = ��G= (6.5)

converges strongly to a zero of �. This is actually the first instance of convergence
of the proximal point algorithm, which has been attributed to later work in the
literature. The case when � and � are gradients of convex functions was also
considered in Lieutaud (1969a) in connection with the minimization of the sum of
two differentiable convex functions.

6.2. Weak convergence

We present results for a form of the Douglas–Rachford algorithm (6.4) which
includes relaxation parameters and a dual inclusion problem.
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Theorem 6.2. Let � : H → 2H and � : H → 2H be maximally monotone,
let (_=)=∈N be a sequence in ]0, 2[ such that

∑
=∈N _=(2 − _=) = +∞, and let

W ∈ ]0, +∞[. Suppose that the set / of solutions to the inclusion

find G ∈ H such that 0 ∈ �G + �G (6.6)

is not empty and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −�−1(−G∗) + �−1G∗. (6.7)

Let H0 ∈ H and iterate

for = = 0, 1, . . .
G= = �W�H=
G∗= = W

−1(H= − G=)
I= = �W�(2G= − H=)
H=+1 = H= + _=(I= − G=).

(6.8)

Then there exists H ∈ H such that H= ⇀ H. Now set G = �W�H and G∗ = W�H. Then
the following hold:

(i) G= ⇀ G ∈ / .
(ii) G∗= ⇀ G∗ ∈ /∗.

Proof. We rely on the embedding of Example 3.17. Set

'W� = 2�W� − Id, 'W� = 2�W� − Id and M =

(
'W� ◦ 'W� + Id

2

)−1
− Id.

(6.9)
Then it follows from (2.33) and Lemma 2.34(iii) that ('W� ◦ 'W� + Id)/2 is
firmly nonexpansive and that M is maximally monotone. In addition, Propos-
ition 26.1(iii)(b) of Bauschke and Combettes (2017) asserts that

∅ ≠ / = �W�(zerM), (6.10)

while Proposition 26.1(iii)(c) of Bauschke and Combettes (2017) asserts that

∅ ≠ /∗ = W�(zerM). (6.11)

Furthermore, we derive from (6.8) and (6.9) that

(∀= ∈ N) H=+1 = H= +
_=

2
('W�('W�H=) − H=) = H= + _=(�MH= − H=), (6.12)

that is, (H=)=∈N is constructed by the proximal point algorithm (5.3) forM. Since
(6.10) implies that zerM ≠ ∅, Theorem 5.1(i) asserts that

�MH= − H= → 0 and (∃ H ∈ zerM) H= ⇀ H. (6.13)

In turn, (6.10) yields G = �W�H ∈ / , while (6.8) yields

I= − G= = �W�(2G= − H=) − G= = �MH= − H= → 0. (6.14)
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(i) Let us set
(∀= ∈ N) I∗= = W

−1(2G= − H= − I=). (6.15)

Then (6.8) and (2.18) yield

(∀= ∈ N)


(I=, I∗=) ∈ gra �,
(G=, G∗=) ∈ gra �,
G= − I= = W(G∗= + I∗=).

(6.16)

Since Lemma 2.34(iii) asserts that �W� is nonexpansive,

(∀= ∈ N) ‖G= − G0‖ = ‖�W�H= − �W�H0‖ ≤ ‖H= − H0‖. (6.17)

Hence, since (H=)=∈N is bounded, so is (G=)=∈N. Now take I ∈ W(G=)=∈N, say
G:= ⇀ I. Then it follows from (6.14), (6.13), (6.15) and (6.16) that

I:= ⇀ I, I∗:= ⇀ W−1(I − H), I= − G= → 0 and I∗= + G∗= = W−1(G= − I=)→ 0.
(6.18)

In turn, Lemma 2.50 yields I ∈ zer(� + �) = / ,

(I, W−1(I − H)) ∈ gra � and (I, W−1(H − I)) ∈ gra �. (6.19)

Hence, (2.18) implies that
I = �W�H. (6.20)

Thus, G = �W�H is the unique weak sequential cluster point of the bounded sequence
(G=)=∈N and therefore, by Lemma 4.1(ii), G= ⇀ G.

(ii) We have H= ⇀ H ∈ zerM and, by (i), G= ⇀ G. Hence, G∗= = W−1(H= − G=) ⇀
W−1(H − G) = W�H = G∗. In view of (6.11), the proof is complete.

Remark 6.3. The convergence result of Lions and Mercier (1979) is that, for
the unrelaxed scheme (6.4), (H=)=∈N converges weakly to a point H ∈ H such that
�W�H ∈ /; see Combettes (2004) and Eckstein and Bertsekas (1992) for the relaxed
case. In the special case when �W� is weakly sequentially continuous, as is the case
whenH is finite-dimensional, G= = �W�H= ⇀ �W�H ∈ / . The key fact that (G=)=∈N
converges weakly to a point in zer(� + �) without any further assumption was first
proved in Svaiter (2011) in the unrelaxed case. Theorem 6.2 was established in
Bauschke and Combettes (2017, Theorem 26.11). The component of the proof
given above up to (6.13) exploits an idea from Eckstein and Bertsekas (1992),
that identifies the core iteration of (6.8) as an instantiation of the proximal point
algorithm.

Remark 6.4. Connections between the Douglas–Rachford algorithms and the
method of partial inverses of Section 5.4.4 are discussed in Lawrence and Spingarn
(1987, Section 1); see also Eckstein and Bertsekas (1992, Section 5) and
Mahey, Oualibouch and Dinh Tao (1995). Let us show that we can actually
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derive Theorem 5.13(ii) from Theorem 6.2. Let (G=)=∈N, (G∗=)=∈N, (?=)=∈N and
(?∗=)=∈N be the sequence generated by (5.29) and set (∀= ∈ N) H= = G= + G∗= and
I= = proj+ (2?= − H=). Then (5.29) yields

(∀= ∈ N) proj+ ?
∗
=+proj+ ⊥ ?= = proj+ (H=−?=)+?=−proj+ ?= = ?=−I=. (6.21)

Altogether,

(∀= ∈ N) ?= = ��H=, I= = proj+ (2?= − H=) and H=+1 = H= + _=(I= − ?=).
(6.22)

In view of Example 2.36, this recursion is precisely that of (6.8) for the operators
(#+ , �) with W = 1. We therefore derive the following from Theorem 6.2: (H=)=∈N
converges weakly to a point H ∈ H and, if we set G = ��H and G∗ = H − ��H,
then ?= ⇀ G ∈ zer(#+ + �) and, by Example 2.15, ?∗= ⇀ G∗ ∈ zer(#+ ⊥ + �−1).
Furthermore, (6.19)–(6.20) implies that (G,−G∗) = (G, G− H) ∈ gra #+ and (G, G∗) =
(G, H − G) ∈ gra �. Thus, Example 2.15 yields (G, G∗) ∈ gra #+ ∩ gra � and (G, G∗)
therefore solves (5.28). Finally, since equation (11) of Combettes (2009) asserts that
��H = proj+ H and since proj+ is weakly continuous, we have G= = proj+ (G=+G∗=) =
proj+ H= ⇀ proj+ H = G and G∗= = proj+ ⊥ H= ⇀ proj+ ⊥ H = H − proj+ H = G∗. Let
us add that, in this setting, the operatorM of (6.9) is just the partial inverse �+ .

Remark 6.5. The many application areas of the Douglas–Rachford algorithm
(in its original two-operator form or transposed in product spaces) include road
design (Bauschke, Koch and Phan 2016), equilibrium problems (Briceño-Arias
2012), biostatistics (Combettes and Müller 2021), signal recovery (Combettes and
Pesquet 2007), traffic theory (Fukushima 1996), noise removal (Steidl and Teuber
2010) and compressive sensing (Yu, Peng, Han and Cui 2017); see also Lindstrom
and Sims (2021) for additional references.

6.3. Strong convergence

As shown in Bùi and Combettes (2020a, Counterexample 2), the convergence of
(G=)=∈N in Theorem 6.2(i) is only weak. The following version based on The-
orem 5.3 furnishes strong convergence.

Theorem 6.6. Let � : H → 2H and � : H → 2H be maximally monotone,
suppose that zer(� + �) ≠ ∅, let H0 ∈ H, let (_=)=∈N be a sequence in ]0, 1] such
that inf=∈N _= > 0, and let W ∈ ]0, +∞[. Iterate

for = = 0, 1, . . .
G= = �W�H=
G∗= = W

−1(H= − G=)
I= = �W�(2G= − H=)
H=+1 = Q(H0, H=, H= + _=(I= − G=)),

(6.23)

where Q is defined in Lemma 4.6. Let / and /∗ be the sets of solutions to (6.6)
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and (6.7), respectively. Then the following hold:

(i) (G=)=∈N converges strongly to a point in / .
(ii) (G∗=)=∈N converges strongly to a point in /∗.

Proof. Define M as in (6.9) and set H = projzerM H0, G = �W�H and G∗ =
W−1(H − G). Then it follows from (6.10) that G ∈ / and from (6.11) that G∗ ∈ /∗.
Additionally, we derive from (6.23) that

(∀= ∈ N) H=+1 = Q(H0, H=, H= + _=(�MH= − H=)). (6.24)

Hence, Theorem 5.3 yields H= → H and, by continuity of �W�, G= = �W�H= →
�W�H = G. Finally, G∗= = W−1(H= − G=)→ W−1(H − G) = G∗.

Remark 6.7. The method of partial inverses of Theorem 5.13 may converge only
weakly (Bùi and Combettes 2020a, Counterexample 4). A strongly convergent
version can be designed using Remark 6.4 and Theorem 6.6.

6.4. Special cases and variants

6.4.1. Minimization setting
We illustrate an application of the Douglas–Rachford algorithm to primal–dual
minimization.

Example 6.8. Let 5 ∈ Γ0(H) and 6 ∈ Γ0(H) be such that / = Argmin ( 5 +6) ≠ ∅
and 0 ∈ sri(dom 5 − dom 6). Set /∗ = Argmin ( 5 ∗ ◦ (−Id) + 6∗), let (_=)=∈N be a
sequence in ]0, 2[ such that

∑
=∈N _=(2 − _=) = +∞, let W ∈ ]0, +∞[, let H0 ∈ H,

and iterate
for = = 0, 1, . . .
G= = proxW6 H=
G∗= = W

−1(H= − G=)
I= = proxW 5 (2G= − H=)
H=+1 = H= + _=(I= − G=).

(6.25)

Then it follows from Problem 3.9, Example 2.35 and Theorem 6.2 that there exists
(G, G∗) ∈ / × /∗ such that G= ⇀ G and G∗= ⇀ G∗.

Remark 6.9. Relations between the Douglas–Rachford algorithm (6.25) and
other methods have been noted in the literature.

(i) It is observed in Condat (2013, Section 3.1.1) that the Douglas–Rachford
algorithm (6.25) can be viewed as a limiting case of the Chambolle–Pock
algorithm (see Remark 5.21(iv)) by implementing it in the case when G =

H, ! = Id and f = 1/g = W. Note, however, that this setting violates
the condition gf‖!‖2 < 1 used to prove weak convergence of (5.60) in
Example 5.20.
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(ii) Consider the setting of Problem 3.9 and note that the primal minimization
problem (3.12) is equivalent to

minimize
(G,H)∈gra !

5 (G) + 6(H). (6.26)

The (unscaled) augmented Lagrangian associated with (6.26) is the saddle
function (see Example 2.21) on (H ⊕ G) ⊕ G defined as

� : H ⊕ G ⊕ G → ]−∞, +∞]

(G, H, E∗) ↦→ 5 (G) + 6(H) + 〈!G − H | E∗〉 + 1
2
‖!G − H‖2. (6.27)

Iteration = of the alternating-direction method of multipliers (ADMM) con-
sists in minimizing � over G for H= and E∗= fixed to get G=, then over H for G=
and E∗= fixed to get H=+1, and then applying a proximal maximization step with
respect to the Lagrange multiplier E∗ for G= and H=+1 fixed to get E∗=+1. It was
originally proposed in Glowinski and Marrocco (1974), refined in Gabay and
Mercier (1976), and further developed in Boyd et al. (2010), Eckstein and
Bertsekas (1992), Gabay (1983) and Glowinski and Le Tallec (1989). Given
H0 ∈ G and E∗0 ∈ G, ADMM iterates

for = = 0, 1, . . .

G= ∈ Argmin
G∈H

(
5 (G) + 〈!G | E∗=〉 +

1
2
‖!G − H=‖2

)
3= = !G=

H=+1 = argmin
H∈G

(
6(H) − 〈H | E∗=〉 +

1
2
‖3= − H‖2

)
E∗
=+1 = E

∗
= + 3= − H=+1.

(6.28)

It should be emphasized that ADMM is not a splitting algorithm in our sense
since the computation of G= involves a minimization step which does not
separate 5 and !, and can therefore be hard to execute. This step is also set-
valued in general. Nonetheless, (6.28) can be interpreted as an application of
theDouglas–Rachford algorithm (6.25) to the functions 5 ∗◦(−!∗) (here again,
note that 5 and ! are not separated and that the typically non-explicit operator
prox 5 ∗◦(−!∗) intervenes) and 6∗ present in the dual problem (3.13) (Gabay
1983); see also Eckstein and Bertsekas (1992). This is merely an algorithmic
identification and not a claim that ADMM converges. Convergence requires
more restrictions on the problem, for instance finite-dimensionality ofH and
G and invertibility of !∗ ◦ ! in Eckstein and Bertsekas (1992, Section 5). For
further analysis, see Banert, Boţ and Csetnek (2021), Boţ and Csetnek (2019)
and Ryu, Liu and Yin (2019).

6.4.2. Peaceman–Rachford splitting
The first implicit alternating direction method (Birkhoff and Varga 1959) to solve
the positive-definite matrix equation �G + �G = 5 is the Peaceman–Rachford
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algorithm (Peaceman and Rachford 1955; see also Douglas 1955). It is described
by the iterative process

for = = 0, 1, . . .⌊
G=+1/2 − G= + �G=+1/2 + �G= = 5

G=+1 − G=+1/2 + �G=+1/2 + �G=+1 = 5 .

(6.29)

Using the same arguments used to transition from (6.1) to (6.4), we rewrite (6.29)
as

for = = 0, 1, . . .
G= = ��H=
I= = ��(2G= − H= + 5 )
H=+1 = H= + 2(I= − G=).

(6.30)

The strong convergence of (G=)=∈N to a solution to the equation �G + �G = 5 ,
where � and � are single-valued hemicontinuous monotone operators such that
dom � = dom � = H and � is strongly monotone, was established in Lieutaud
(1969a) and, with the additional assumption that H is finite-dimensional and the
operators are continuous, in Kellogg (1969).
Algorithm (6.30) was first considered for general maximally monotone set-

valued operators � and � in Lions and Mercier (1979). In the presence of a
scaling parameter W ∈ ]0, +∞[ and taking 5 = 0 without loss of generality, the
Peaceman–Rachford algorithm becomes

for = = 0, 1, . . .
G= = �W�H=
I= = �W�(2G= − H=)
H=+1 = H= + 2(I= − G=).

(6.31)

Upon definingM as in (6.9), we derive from (6.31) that

(∀= ∈ N) H=+1 = (2�M − Id)H=. (6.32)

We can view (6.31) as a limiting case of the Douglas–Rachford algorithm (6.8) in
which the relaxation parameters (_=)=∈N are allowed to be 2. This, of course, means
that (6.31) operates outside of the setting of Theorem 5.1 and hence of the geometric
framework of Theorem 4.2. As a result, the weak convergence of (H=)=∈N cannot
be guaranteed without additional assumptions since (6.32) amounts to iterating
a merely nonexpansive operator; see Lions and Mercier (1979, Remark 6) for a
counterexample. Strong convergence of (G=)=∈N to a point in zer(� + �) takes
place when � is strongly monotone (Lions and Mercier 1979, Remark 2). More
generally, strong convergence occurs when � is uniformly monotone on bounded
sets or when int Fix(2�W�− Id)(2�W� − Id) ≠ ∅ (Combettes 2009, Remark 2.2(iv)).

6.4.3. A three-operator splitting algorithm
An extension of the Douglas–Rachford algorithm (6.8) was proposed in Davis and
Yin (2017) by adding a cocoercive operator to the inclusion (6.6).
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Proposition 6.10. Let g ∈ ]0, +∞[, let � : H → 2H and � : H → 2H be maxi-
mally monotone, and let � : H → H be g-cocoercive. Suppose that the set / of
solutions to the inclusion

find G ∈ H such that 0 ∈ �G + �G + �G (6.33)

is not empty and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −(� + �)−1(−G∗) + �−1G∗. (6.34)

Let W ∈ ]0, 2g[, set X = 2 − W/(2g), let (_=)=∈N be a sequence in ]0, X[ such that∑
=∈N _=(X − _=) = +∞, and let H0 ∈ H. Iterate

for = = 0, 1, . . .
G= = �W� H=
G∗= = W

−1(H= − G=)
A= = H= + W�G=
I= = �W�(2G= − A=)
H=+1 = H= + _=(I= − G=).

(6.35)

Then there exists H ∈ H such that H= ⇀ H. Now set G = �W�H and G∗ = W�H. Then
the following hold:

(i) G= ⇀ G ∈ / .
(ii) G∗= ⇀ G∗ ∈ /∗.

Proof. Remarkably, we can closely follow the proof of Theorem 6.2. The key
additional facts established inDavis andYin (2017, Proposition 2.1 andLemma2.2)
are that, for U = 1/X,

) = �W� ◦ (2�W� − Id − W� ◦ �W�) + Id − �W� is U-averaged and / = �W�(Fix)).
(6.36)

We write the maximally monotone operatorM of (3.26) as

M =

(
Id + 1

2U
(�W� ◦ (2�W� − Id − W� ◦ �W�) − �W�)

)−1
− Id (6.37)

and, in view of Example 3.16 and (6.36), work with the embedding (H,M, �W�) of
(6.33). Then ∅ ≠ / = �W�(zerM) and (H=)=∈N is produced by the proximal point
algorithm (∀= ∈ N) H=+1 = H= + `=(�MH=− H=), where `= = 2U_= ∈ ]0, 2[. Using
Theorem 5.1(i), we infer that (H=)=∈N converges weakly to a point H ∈ zerM and
that �MH= − H= → 0. Hence, we derive from (6.36), (6.35) and (6.37) that

G = �W�H ∈ / and I= − G= = 2U(�MH= − H=)→ 0, (6.38)

and hence that
‖�I= − �G=‖ ≤ U−1‖I= − G=‖ → 0. (6.39)
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(i) Set (∀= ∈ N) I∗= = W−1(2G= − I= − A=) + �I=. In view of (6.35) and (2.18),

(∀= ∈ N)


(I=, I∗=) ∈ gra(� + �),
(G=, G∗=) ∈ gra �,
I∗= + G∗= = W−1(G= − I=) + �I= − �G=.

(6.40)

Next, fix I ∈ W(G=)=∈N, say G:= ⇀ I. Since H:= ⇀ H, it follows from (6.38),
(6.39), (6.40) and (6.35) that

I:= ⇀ I, I∗:= ⇀ W−1(I − H), I= − G= → 0 and I∗= + G∗= → 0. (6.41)

By applying Lemma 2.50 to the maximally monotone operators � + � (see Ex-
ample 2.5 and Lemma 2.27(ii)) and �, we deduce from (6.40) and (6.41) that
I ∈ zer(� + � + �) = / ,

(I, W−1(I − H)) ∈ gra(� + �) and (I, W−1(H − I)) ∈ gra �. (6.42)

In turn, (2.18) asserts that I = �W�H, making G = �W�H the unique weak sequential
cluster point of (G=)=∈N which is bounded since (H=)=∈N is. By Lemma 4.1(ii),
G= ⇀ G.

(ii) Since H= ⇀ H and G= ⇀ G, we have G∗= = W−1(H= − G=) ⇀ W−1(H − G) = W�H =

G∗ ∈ /∗ by (6.11).

Remark 6.11. Here are a few comments on Proposition 6.10.

(i) The conclusion of Proposition 6.10(i) was first established in Davis and Yin
(2017, Theorem 2.1.1(b)) with a different proof. See also Raguet (2019) for
a discussion and connections with Raguet et al. (2013).

(ii) The duality result of Proposition 6.10(ii) is new.
(iii) A strongly convergent version of Proposition 6.10 can be obtained by adapting

the proof of Theorem 6.6 to the presence of �, as was done above.
(iv) When � = 0, Proposition 6.10 produces the Douglas–Rachford setting of

Theorem 6.2. When � = 0, (6.35) yields a special case of the forward–
backward method of Combettes and Yamada (2015, Proposition 4.4(iii)) in
which the proximal parameters are all equal to W.

7. Tseng’s forward–backward–forward splitting
7.1. Preview

In Section 5.4.1, we have discussed a Euler method for finding a zero of a single-
valued operator � : H → H under a cocoercivity condition. Under the more
general assumption that � is monotone and V-Lipschitzian, the Euler method is
no longer appropriate, and we can use a scheme proposed by Antipin (1976) and
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Korpelevič (1976) that involves a double activation of the operator �. Specifically,
in this method, W ∈ ]0, 1/V[ and G0 ∈ H are fixed and we iterate

for = = 0, 1, . . .
1∗= = W�G=
<= = G= − 1∗=
<∗= = �<=
G=+1 = G= − W<∗=.

(7.1)

Clearly, the sequence (<=, <∗=)=∈N lies gra � and it is straightforward to see that, by
choosing (_=)=∈N suitably in (4.32), we obtain (7.1). The convergence properties
of the Antipin–Korpelevič method can therefore be deduced from the results of
Section 4.4 applied to �.
Tseng’s algorithm can be viewed as a generalization of (7.1) for the problem of

finding a zero of � + �, where � : H → 2H is maximally monotone and � is as
above. It is called the forward–backward–forward algorithm because it performs a
forward step on �, then a backward step on �, and finally another forward step on
�. We are going to derive the convergence of Tseng’s forward–backward–forward
splitting algorithm from the principles of Section 4.4 and, more precisely, from the
warped resolvent algorithm of Section 4.5.

7.2. Fejérian algorithm

We cast the forward–backward–forward algorithm as an instance of (4.34) and then
prove itsweak convergence via Theorem4.12. This resultwas originally established
in Tseng (2000, Theorem 3.4(b)), where different arguments were used.

Theorem 7.1. Let V ∈ ]0, +∞[, let � : H → 2H be maximally monotone, let
� : H→ H bemonotone and V-Lipschitzian, and suppose that / = zer(�+�) ≠ ∅.
Let G0 ∈ H, let Y ∈ ]0, 1/(V + 1)[, and let (W=)=∈N be a sequence in [Y, (1 − Y)/V].
Iterate

for = = 0, 1, . . .
1∗= = W=�G=
<= = �W=�(G= − 1∗=)
G=+1 = <= − W=�<= + 1∗=.

(7.2)

Then (G=)=∈N converges weakly to a point in / .

Proof. Our objective is to apply Theorem 4.12 with

, = �+ �, � = 0, and (∀= ∈ N) *= = W
−1
= Id− � and @= = F=. (7.3)

Since � = 0, let us rename (F=)=∈N as (<=)=∈N. Example 2.3 and Lemma 2.27(ii)
entail that, is maximally monotone. Moreover, a consequence of Lemma 2.48(i)–
(ii) is that

(∀= ∈ N) W=*= is Y-strongly monotone and 1/(2 − Y)-cocoercive. (7.4)
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Additionally, we derive from Bùi and Combettes (2020b, Proposition 3.9) that

(∀= ∈ N) ran*= ⊂ ran(*= +, + �) and *= +, + � is injective. (7.5)

We also observe that

(∀= ∈ N) �
*=
, +� = �

*=
�+� =

(
W−1
= Id+ �

)
◦
(
W−1
= Id−�

)
= �W=� ◦ (Id− W=�). (7.6)

Hence, the variables of (4.34) in this setting become

(∀= ∈ N)


<= = �W=�(G= − W=�G=),
C∗= = *=G= −*=<=,
X= = 〈<= − G= | *=<= −*=G=〉.

(7.7)

Now set

(∀= ∈ N) _= =


W=‖C∗=‖2
X=

, if X= > 0,

Y, otherwise.
(7.8)

We derive from (7.4) that

(∀= ∈ N) X= = 〈<= − G= | *=<= −*=G=〉 ≥ VY‖<= − G=‖2, (7.9)

which implies that

(∀= ∈ N) X= ≤ 0 ⇔ <= = G= ⇔ C∗= = 0. (7.10)

A consequence of (7.4) is that, if X= > 0,

Y

W=
≤ ‖*=<= −*=G=‖‖<= − G=‖

≤ ‖*=<= −*=G=‖2
〈<= − G= | *=<= −*=G=〉

≤ 2 − Y
W=

, (7.11)

and we therefore obtain from (7.8) that

_= =
W=‖*=<= −*=G=‖2

〈<= − G= | *=<= −*=G=〉
∈ [Y, 2 − Y] . (7.12)

Hence, (4.34) and (7.10) yield

(∀= ∈ N) 3= =
W=

_=
C∗=. (7.13)

Consequently, the sequence (G=)=∈N produced by (7.2) coincides with that of (4.34).
We therefore appeal to Theorem 4.12(ii) to conclude since its condition (iib) holds
thanks to (7.12), whereas its condition (iid) holds thanks to (7.4) and the fact that
(W=)=∈N lies in [Y, (1 − Y)/V].

7.3. Haugazeau-like algorithm

We present a strongly convergent best approximation version of the forward–
backward–forward method based on Theorem 4.14.
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Theorem 7.2. Let V ∈ ]0, +∞[, let � : H → 2H be maximally monotone, let
� : H→ H bemonotone and V-Lipschitzian, and suppose that / = zer(�+�) ≠ ∅.
Let G0 ∈ H, let Y ∈ ]0, 1/(V + 1)[, and let (W=)=∈N be a sequence in [Y, (1 − Y)/V].
Iterate

for = = 0, 1, . . .
1∗= = W=�G=
<= = �W=�(G= − 1∗=)
A= =

1
2

(G= + <= − W=�<= + 1∗=)
G=+1 = Q(G0, G=, A=),

(7.14)

where Q is defined in Lemma 4.6. Then (G=)=∈N converges strongly to proj/ G0.

Proof. We prove the claim as an application of Theorem 4.14 in the setting of
(7.3). Let us use the same variables as in (7.7) and

(∀= ∈ N) _= =


W=‖C∗=‖2

2X=
, if X= > 0,

Y/2, otherwise.
(7.15)

Then, using the same arguments as in the proof of Theorem4.12, we see that (_=)=∈N
lies in [Y/2, 1] and that the sequence (G=)=∈N produced by (7.14) coincides with
that of (4.44). Since conditions (iib) and (iid) in Theorem 4.14(ii) are fulfilled, we
obtain the claim.

7.4. Special cases and variants

7.4.1. The monotone+skew algorithm
The approach presented here was proposed in Briceño-Arias and Combettes (2011)
to solve the monotone inclusion (3.7) and it was the first algorithm to fully split
the operators �, � and !. Its methodology conforms to the programme of Frame-
work 1.2: we use the embedding of Example 3.20 to transfer the initial 3-operator
problem (3.7) in the primal space H to one involving the Kuhn–Tucker operator
K = S + Y of (3.10) in the larger primal–dual space X = H ⊕ G. The algorithmic
strategy per se is then straightforward: since S is maximally monotone and Y
is monotone and Lipschitzian, we can apply Tseng’s forward–backward–forward
algorithm (Theorem 7.1) in X to find a Kuhn–Tucker point and hence a primal–dual
solution.
We derive from Theorem 7.1 the weak convergence of the monotone+skew

algorithm of Briceño-Arias and Combettes (2011, Theorem 3.1(ii)) (we can derive
a strongly convergent version from Theorem 7.2 using the same arguments).

Proposition 7.3. Let � : H→ 2H and � : G → 2G be maximally monotone, and
assume that 0 ≠ ! ∈ B(H,G). Suppose that the set / of solutions to the primal
inclusion

find G ∈ H such that 0 ∈ �G + !∗(�(!G)) (7.16)
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is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗ ∈ G such that 0 ∈ −!(�−1(−!∗H∗)) + �−1H∗. (7.17)

Let G0 ∈ H, let H∗0 ∈ G, let Y ∈ ]0, 1/(‖!‖ + 1)[, let (W=)=∈N be a sequence in
[Y, (1 − Y)/‖!‖ ], and set

for = = 0, 1, . . .

H1,= = G= − W=!∗H∗=
H∗2,= = H

∗
= + W=!G=

<1,= = �W=�H1,=
<∗2,= = �W=�−1H∗2,=
@1,= = <1,= − W=!∗<∗2,=
@∗2,= = <

∗
2,= + W=!<1,=

G=+1 = G= − H1,= + @1,=
H∗
=+1 = H

∗
= − H∗2,= + @

∗
2,=.

(7.18)

Then there exist G ∈ / and H∗ ∈ /∗ such that −!∗H∗ ∈ �G, H∗ ∈ �(!G), G= ⇀ G

and H∗= ⇀ H∗.

Proof. Set X = H⊕G, define S and Y as in (3.9), and set (∀= ∈ N) x= = (G=, H∗=),
y= = (H1,=, H

∗
2,=), m= = (<1,=, <

∗
2,=) and q= = (@1,=, @

∗
2,=). Then, in view of

Example 2.37, (7.18) becomes

for = = 0, 1, . . .
y= = x= − W=Yx=
m= = �W=S y=
q= = m= − W=Ym=

x=+1 = x= − y= + q=,

(7.19)

which we rewrite as an instance of (7.2), namely,

for = = 0, 1, . . .
b∗= = W=Yx=
m= = �W=S (x= − b∗=)
x=+1 = m= − W=Ym= + b∗=.

(7.20)

It then follows from Theorem 7.1 and Lemma 3.8 that (x=)=∈N converges weakly
to a point in zer(S + Y) ⊂ / × /∗, as claimed.

Remark 7.4. The methodology of Theorem 7.1 is to find a Kuhn–Tucker point,
i.e. a zero of S +Y. As noted in Briceño-Arias and Combettes (2011, Remark 2.9),
this can also be achieved by using the Douglas–Rachford algorithm (6.8) which,
upon setting * = (Id + W2!∗ ◦ !)−1 and + = (Id + W2! ◦ !∗)−1, and taking
W ∈ ]0, +∞[ and a sequence (_=)=∈N in ]0, 2[ such that

∑
=∈N _=(2 − _=) = +∞,
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assumes the form

for = = 0, 1, . . .
G= = *

(
H1,= − W!∗H∗2,=

)
H∗= = +

(
H∗2,= + W!H1,=

)
H1,=+1 = H1,= + _=(�W�(2G= − H1,=) − G=)
H∗2,=+1 = H

∗
2,= + _=

(
�W�−1

(
2H∗= − H∗2,=

)
− H∗=

)
.

(7.21)

Weak convergence of (G=, H∗=)=∈N to a point in / × /∗ follows from Theorem 6.2(i).
The numerical effectiveness of (7.21) depends on the ease of implementation of the
operators* and+ . This approachwas rediscovered inO’Connor andVandenberghe
(2014) in an image restoration application.

7.4.2. A Lagrangian approach to composite minimization
We revisit the setting of Problem 3.9, which was identified as an instance of
Problem 3.7 and can therefore be solved using (7.18) with � = m 5 and � = m6.
Following Combettes (2018, Section 4.5), we explore a different route which
amounts to employing the embedding (X,SL ,T ), where X = H ⊕ G ⊕ G,

SL : X → 2X

(G, H, E∗) ↦→ (m 5 (G) + !∗E∗) × (m6(H) − E∗) × {−!G + H} (7.22)

is the saddle operator of (3.24), and T : X → H : (G, H, E∗) ↦→ G. Let us write
SL = S + Y, where{

S : (G, H, E∗) ↦→ m 5 (G) × m6(H) × {0},
Y : (G, H, E∗) ↦→ (!∗E∗,−E∗,−!G + H).

(7.23)

Then ‖Y‖ =
√

1 + ‖!‖2 and (∀= ∈ N) �W=S = proxW= 5 × proxW=6 × Id. Hence, ap-
plying Theorem 7.1 to this decomposition in X, we obtain the following realization
of Framework 1.2.

Proposition 7.5. Let 5 ∈ Γ0(H), 6 ∈ Γ0(G) and ! ∈ B(H,G) be such that
0 ∈ sri(!(dom 5 ) − dom 6). Suppose that the primal problem

minimize
G∈H

5 (G) + 6(!G) (7.24)

admits solutions and consider the dual problem

minimize
E∗∈G

5 ∗(−!∗E∗) + 6∗(E∗). (7.25)

Let (G0, H0, E
∗
0) ∈ H ⊕ G ⊕ G, let Y ∈ ]0, 1/(1 +

√
1 + ‖!‖2)[, and let (W=)=∈N be a
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sequence in [Y, (1 − Y)/
√

1 + ‖!‖2]. Iterate

for = = 0, 1, . . .

A= = W=(!G= − H=)
<1,= = proxW= 5 (G= − W=!∗E∗=)
<2,= = proxW=6(H= + W=E

∗
=)

G=+1 = <1,= − W=!∗A=
H=+1 = <2,= + W=A=
E∗
=+1 = E

∗
= + W=(!<1,= − <2,=).

(7.26)

Then (G=)=∈N and (E∗=)=∈N converge weakly to solutions to (7.24) and (7.25),
respectively.

Remark 7.6. Let (`=)=∈N be a sequence in [Y, (1 − Y) min{1, 1/‖!‖}/2]. Algo-
rithm (7.26) bears a certain resemblance with the iterative scheme

for = = 0, 1, . . .
?= = E

∗
= + `=(!G= − H=)

G=+1 = prox`= 5 (G= − `=!∗?=)
H=+1 = prox`=6(H= + `=?=)
E∗
=+1 = E

∗
= + `=(!G=+1 − H=+1)

(7.27)

proposed in Chen and Teboulle (1994) to solve (7.24)–(7.25) in a finite-dimensional
setting.

Remark 7.7. In the finite-dimensional context of Eckstein (1994), the saddle
operator (7.22) was split as SL = S1 + S2, where{

S1 : (G, H, E∗) ↦→ (m 5 (G) + !∗E∗) × {0} × {−!G},
S2 : (G, H, E∗) ↦→ {0} × (m6(H) − E∗) × {H}.

(7.28)

Given W ∈ ]0, +∞[, `1 ∈ R, `2 ∈ R and (G0, H0, E
∗
0) ∈ H ⊕ G ⊕ G, applying the

Douglas–Rachford algorithm (6.8) to find a zero of S1+S2 leads to the algorithm
(Eckstein 1994)

for = = 0, 1, . . .
G=+1 ∈ Argmin

G∈H

(
5 (G) + 〈!G | E∗=〉 +

1
2W
‖!G − H=‖2 +

W`2
1

2
‖G − G=‖2

)
H=+1 = argmin

H∈G

(
6(H) − 〈H | E∗=〉 +

1
2W
‖!G=+1 − H‖2 +

W`2
2

2
‖H − H=‖2

)
E∗
=+1 = E

∗
= + W−1(!G=+1 − H=+1).

(7.29)
When `1 = `2 = 0, we recover the alternating direction method of multipliers
(ADMM) discussed in Remark 6.9(ii). Just like ADMM, (7.29) necessitates a
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potentially complex minimization involving 5 and ! jointly to construct G=+1. By
contrast, (7.26) achieves full splitting of 5 , 6 and !.

Remark 7.8. In view of Example 3.23, the above saddle operator formalism can
be extended to the more general primal–dual inclusion pair of Problem 3.7. As
in Proposition 7.5, a zero (G, H, E∗) of the saddle operator S of (3.25) can be
constructed by executing (7.26), where proxW= 5 is replaced with �W=� and proxW=6
with �W=�. In this setting, the weak limits G and E∗ solve, respectively, the primal
inclusion (3.7) and the dual inclusion (3.8).

7.4.3. Mixtures of composite, Lipschitzian and parallel-sum operators
The Kuhn–Tucker operator of Lemma 3.8 employed in Section 7.4.1 can be ex-
pressed in block format as

K = S + Y =
[
� 0
0 �−1

]
︸      ︷︷      ︸
monotone

+
[

0 !∗

−! 0

]
︸      ︷︷      ︸

skew

. (7.30)

A Kuhn–Tucker point was obtained in Proposition 7.3 by applying the forward–
backward–forward algorithm (7.2) to S and Y. In doing so, we did not exploit the
linearity and skewness of Y, but just the fact that it is monotone and Lipschitzian.
Let us observe that, if we fill the diagonal of YwithmonotoneLipschitzian operators
& : H→ H and�−1 : G → G, we obtain a newmonotone andLipschitzian operator
W : X→ X. In lieu of (7.30), we then consider the decomposition

K = S + W =

[
� 0
0 �−1

]
︸      ︷︷      ︸
monotone

+
[
& !∗

−! �−1

]
︸        ︷︷        ︸

monotone and Lipschitzian

. (7.31)

Using (2.62), we write

K =

[
� +& !∗

−! (���)−1

]
(7.32)

and interpret it as a variant of the Kuhn–Tucker operator (3.10) associated with
Problem 3.7 in which � is replaced with � +& and � with ���. In other words,
the primal inclusion is to

find G ∈ H such that 0 ∈ �G + !∗((���)(!G)) +&G (7.33)

and the dual inclusion is to

find H∗ ∈ G such that 0 ∈ −!((� +&)−1(−!∗H∗)) + �−1H∗ + �−1H∗ (7.34)

or, equivalently,

find H∗ ∈ G such that (∃ G ∈ H)

{
−!∗H∗ ∈ �G +&G,
!G ∈ �−1H∗ + �−1H∗.

(7.35)
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As in Lemma 3.8, for every (G, H∗) ∈ X,

(G, H∗) ∈ zerK ⇒
{
G solves (7.33),
H∗ solves (7.35),

(7.36)

and we therefore recover the embedding principle of Framework 1.2.

Example 7.9. In the above setting, set X = H ⊕ G, let K be the Kuhn–Tucker
operator of (7.32), and let T : X → H : (G, H∗) ↦→ G. Then (X,K,T ) is an
embedding of (7.33).

The primal–dual inclusion problem (7.33)–(7.34) was first studied in Combettes
and Pesquet (2012), where it was solved via Tseng’s forward–backward–forward
algorithm. Here is Theorem 3.1(ii)(c)–(d) of Combettes and Pesquet (2012), which
describes this approach when the operators !, � and � above are deployed in a
product space G = G1 ⊕ · · · ⊕ G? in the spirit of Problem 3.11; further analysis of
the asymptotic behaviour of the method in special cases can be found in Boţ and
Hendrich (2014).

Proposition 7.10. Let 0 < ? ∈ N, let ` ∈ ]0, +∞[, let � : H→ 2H be maximally
monotone, let & : H → H be monotone and `-Lipschitzian. For every : ∈
{1, . . . , ?}, let a: ∈ ]0, +∞[, let G: be a real Hilbert space, let �: : G: → 2G: be
maximally monotone, let �: : G: → 2G: be maximally monotone and such that
�−1
:

: G: → G: is a:-Lipschitzian, and assume that 0 ≠ !: ∈ B(H,G:). Suppose
that the set / of solutions to the primal inclusion

find G ∈ H such that 0 ∈ �G +
?∑
:=1

!∗:((�: ��:)(!:G)) +&G (7.37)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that

(∃ G ∈ H)

{
−∑?

:=1 !
∗
:
H∗
:
∈ �G +&G,

(∀: ∈ {1, . . . , ?}) !:G ∈ �−1
:
H∗
:
+ �−1

:
H∗
:
.

(7.38)

Set

V = max{`, a1, . . . , a?} +

√√
?∑
:=1
‖!: ‖2, (7.39)

let G0 ∈ H, let (H∗1,0, . . . , H
∗
?,0) ∈ G1 ⊕ · · · ⊕ G?, let Y ∈ ]0, 1/(V + 1)[, and let
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(W=)=∈N be a sequence in [Y, (1 − Y)/V]. Iterate

for = = 0, 1, . . .

H1,= = G= − W=
(
&G= +

∑?

:=1 !
∗
:
H∗
:,=

)
<1,= = �W=� H1,=
for : = 1, . . . , ?
H∗2,:,= = H

∗
:,=
+ W=

(
!:G= − �−1

:
H∗
:,=

)
<∗2,:,= = �W=�−1

:
H∗2,:,=

@∗2,:,= = <
∗
2,:,= + W=

(
!:<1,= − �−1

:
<∗2,:,=

)
H∗
:,=+1 = H

∗
:,=
− H∗2,:,= + @

∗
2,:,=

@1,= = <1,= − W=
(
&<1,= +

∑?

:=1 !
∗
:
<∗2,:,=

)
G=+1 = G= − H1,= + @1,=.

(7.40)

Then there exist G ∈ / and (H∗1, . . . , H
∗
?) ∈ /∗ such that G= ⇀ G, and, for every

: ∈ {1, . . . , ?}, H∗
:,=

⇀ H∗
:
.

Proof. The duality between (7.37) and (7.38) follows as in Problem 3.11, by
replacing � with � +& and (�−1

:
)1≤:≤? with (�−1

:
+ �−1

:
)1≤:≤?. Now set

G = G1 ⊕ · · · ⊕ G?,
� : G → 2G : (H1, . . . , H?) ↦→ �1H1 × · · · × �?H?,
� : G → 2G : (H1, . . . , H?) ↦→ �1H1 × · · · × � ?H?,

! : H→ G : G ↦→ (!1G, . . . , !?G),

(7.41)

define S and W as in (7.31), and set

(∀= ∈ N)

{
x= =

(
G=, H

∗
1,=, . . . , H

∗
?,=

)
,

m= =
(
<1,=, <

∗
2,1,=, . . . , <

∗
2, ?,=

)
.

(7.42)

ThenS is maximallymonotone andW is monotone and V-Lipschitzian (Combettes
and Pesquet 2012, equation (3.11)) and, following the same steps as in the proof of
Proposition 7.3, we rewrite (7.40) as

for = = 0, 1, . . .
b∗= = W=Wx=
m= = �W=S (x= − b∗=)
x=+1 = m= − W=Wm= + b∗=,

(7.43)

and conclude by invoking Theorem 7.1 and (7.36).

Remark 7.11. In (7.37), suppose that ? = 1, G1 = H, !1 = Id, �1 = �, �1 =
{0}−1 and zer(� + � + &) ≠ ∅. Let G0 ∈ H, let H∗0 ∈ H, let Y ∈ ]0, 1/(` + 2)[,
and let (W=)=∈N be a sequence in [Y, (1 − Y)/(` + 1)]. Then we deduce from
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Proposition 7.10 that the sequence (G=)=∈N generated by the iterations

for = = 0, 1, . . .
H= = G= − W=(&G= + H∗=)
?= = �W=� H=
@∗= = �W=�−1(H∗= + W=G=)
G=+1 = G= − H= + ?= − W=(&?= + @∗=)
H∗
=+1 = @

∗
= + W=(?= − G=).

(7.44)

converges weakly to a zero of � + � + &. An alternative method to solve this
inclusion is proposed in Ryu and Vũ (2020), with constant proximal parameters
(W=)=∈N and the feature that it coincides with the unrelaxed version of the Douglas–
Rachford algorithm when& = 0 (in the spirit of the method of Section 6.4.3 where
& is cocoercive).

Example 7.12. In Proposition 7.10, make the additional assumptions that & = 0
and, for every : ∈ {1, . . . , ?}, G: = H, !: = Id, and �−1

:
is strictly monotone.

Then (7.37) collapses to

find G ∈ H such that 0 ∈ �G +
?∑
:=1

(�: ��:)(G). (7.45)

It is shown in Combettes (2013b, Proposition 4.2) that (7.45) is an exact relaxation
of the (possibly inconsistent) instance of the problem

find G ∈ H such that 0 ∈ �G and (∀: ∈ {1, . . . , ?}) 0 ∈ �:G (7.46)

in the sense that the solutions to (7.45) are the same as the solutions to (7.46) when
the latter happen to exist.

The specialization of Proposition 7.10 to minimization is as follows. It features
the ability to split infimal convolutions (see (2.7)) together with linearly composed
functions.

Example 7.13 (Combettes and Pesquet 2012). Let 0 < ? ∈ N, let ` ∈ ]0, +∞[,
let 5 ∈ Γ0(H), and let ℎ : H → R be convex, differentiable, and such that ∇ℎ is
`-Lipschitzian. For every : ∈ {1, . . . , ?}, let a: ∈ ]0, +∞[, let G: be a real Hilbert
space, let 6: ∈ Γ0(G:), let ℓ: ∈ Γ0(G:) be 1/a:-strongly convex, and suppose that
0 ≠ !: ∈ B(H,G:). Let / be the set of solutions to the primal problem

minimize
G∈H

5 (G) +
?∑
:=1

(6: � ℓ:)(!:G) + ℎ(G), (7.47)

let /∗ be the set of solutions to the dual problem

minimize
H∗1 ∈G1,...,H

∗
? ∈G?

( 5 ∗ � ℎ∗)
(
−

?∑
:=1

!∗: H
∗
:

)
+

?∑
:=1

(6∗:(H
∗
:) + ℓ

∗
:(H
∗
:)), (7.48)
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and suppose that

zer
(
m 5 +

?∑
:=1

!∗: ◦ (m6: � mℓ:) ◦ !: + ∇ℎ
)
≠ ∅. (7.49)

Set

V = max{`, a1, . . . , a?} +

√√
?∑
:=1
‖!: ‖2, (7.50)

let G0 ∈ H, let (H∗1,0, . . . , H
∗
?,0) ∈ G1 ⊕ · · · ⊕ G?, let Y ∈ ]0, 1/(V + 1)[, and let

(W=)=∈N be a sequence in [Y, (1 − Y)/V]. Iterate
for = = 0, 1, . . .

H1,= = G= − W=
(
∇ℎ(G=) +

∑?

:=1 !
∗
:
H∗
:,=

)
<1,= = proxW= 5 H1,=
for : = 1, . . . , ?
H∗2,:,= = H

∗
:,=
+ W=

(
!:G= − ∇ℓ∗:

(
H∗
:,=

))
<∗2,:,= = proxW=6∗: H

∗
2,:,=

@∗2,:,= = <
∗
2,:,= + W=

(
!:<1,= − ∇ℓ∗:

(
<∗2,:,=

))
H∗
:,=+1 = H

∗
:,=
− H∗2,:,= + @

∗
2,:,=

@1,= = <1,= − W=
(
∇ℎ(<1,=) +

∑?

:=1 !
∗
:
<∗2,:,=

)
G=+1 = G= − H1,= + @1,=.

(7.51)

Then there exist G ∈ / and (H∗1, . . . , H
∗
?) ∈ /∗ such that G= ⇀ G, and, for every

: ∈ {1, . . . , ?}, H∗
:,=

⇀ H∗
:
.

Remark 7.14. Conditions under which (7.49) holds are provided in Combettes
and Pesquet (2012, Proposition 4.3).

8. Forward–backward splitting
8.1. Preview

The forward–backward splittingmethod is a basic algorithm for solving Problem3.1
when � is cocoercive. At iteration =, given a step size W= ∈ ]0, +∞[, a discrete
dynamics associated with the Cauchy problem (5.1) with " = � + � is

G= − G=+1
W=

∈ �G=+1 + �G=. (8.1)

It amounts to performing a forward Euler step relative to the operator � and a
backward Euler step relative to the operator �. In view of (2.18), this means
that G=+1 = �W=�(G= − W=�G=). This iteration scheme goes back to the gradient-
projection method (Goldstein 1964, Levitin and Polyak 1966) for the constrained
minimization of a smooth function (see Example 8.7 below) and its extension to
variational inequalities (Bakušinskiı̆ and Polyak 1974, Mercier 1979).
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8.2. Fejérian algorithm

We establish a new, geometric proof of the convergence of a relaxed primal–dual
version of the forward–backward algorithm found in Combettes andYamada (2015,
Proposition 4.4(iii)) for the primal result and in Bauschke and Combettes (2017,
Theorem 26.14(ii)) for the dual result, where the proximal parameters (W=)=∈N
are constant. Related primal results and special cases can be found in Gabay
(1983), Lemaire (1996, 1997), Mercier (1980) and Tseng (1991). The importance
of cocoercivity in establishing weak convergence was first identified by Mercier
(1979) in the context of variational inequalities and, more generally, in Mercier
(1980).

Theorem 8.1. Let U ∈ ]0, +∞[, let � : H → 2H be maximally monotone, and
let � : H→ H be U-cocoercive. Let Y ∈ ]0, U/(U + 1)[, let (W=)=∈N be a sequence
in [Y, (2 − Y)U], and let

(∀= ∈ N) Y ≤ `= ≤ (1 − Y)4U − W=
2U

. (8.2)

Suppose that the set / of solutions to the problem

find G ∈ H such that 0 ∈ �G + �G (8.3)

is not empty and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −�−1(−G∗) + �−1G∗. (8.4)

Let G0 ∈ H and iterate

for = = 0, 1, . . .
1∗= = W=�G=
F= = �W=�(G= − 1∗=)
G=+1 = G= + `=(F= − G=).

(8.5)

Then the following hold:

(i) (G=)=∈N converges weakly to a point in / .

(ii) /∗ contains a single point G∗ and (∀I ∈ /) �I = G∗.

(iii) (�G=)=∈N converges strongly to G∗.

Proof. The proof hinges on an application of Theorem 4.12 with

, = �, � = � and (∀= ∈ N) *= = W
−1
= Id − � and @= = G=. (8.6)

In this setting

(∀= ∈ N) �
*=
, +� = �

*=
�+� = (W−1

= Id + �) ◦ (W−1
= Id − �) = �W=� ◦ (Id − W=�) (8.7)
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and the variables of (4.34) become

(∀= ∈ N)



F= = �W=�(G= − W=�G=),

C∗= =
G= − F=
W=

,

X= =

(
1
W=
− 1

4U

)
‖F= − G=‖2.

(8.8)

Furthermore, we derive fromBùi and Combettes (2020b, Proposition 3.9) that (7.5)
holds. Now set

(∀= ∈ N) _= =
4U`=

4U − W=
. (8.9)

Then (8.2) yields

(∀= ∈ N) Y ≤ 4UY
4U − Y ≤ _= ≤

4U(1 − Y)(4U − W=)
(4U − W=)2U

≤ 2 − Y. (8.10)

We also deduce from (8.8) that

(∀= ∈ N) X= ≤ 0 ⇔ F= = G= ⇔ C∗= = 0. (8.11)

Hence, (4.34) yields

(∀= ∈ N) 3= =
`=

_=
(G= − F=). (8.12)

Altogether, we arrive at the conclusion that the sequence (G=)=∈N produced by (8.5)
coincides with that of (4.34). Hence, by Theorem 4.12(i) and (8.10),∑

=∈N
‖3=‖2 < +∞. (8.13)

In turn, upon invoking (8.12), we obtain

F= − G= → 0. (8.14)

(i) In view of (8.10), condition (iib) in Theorem 4.12(ii) is fulfilled. On the other
hand, since Lemma 2.48(iii) asserts that the operators (W=*=)=∈N are nonexpansive,
(8.14) implies that ‖*=F= −*=G=‖ ≤ ‖F= − G=‖/Y → 0, so that condition (iic) is
also fulfilled. Thus, the assertion follows from Theorem 4.12(ii).

(ii) The strong monotonicity of �−1 implies that of −�−1 ◦ (−Id) + �−1. Hence,
Corollary 23.37(ii) of Bauschke and Combettes (2017) asserts that (8.4) admits a
unique solution G∗. Now let I ∈ / . Then−�I ∈ �I and therefore−I ∈ −�−1(−�I).
Thus, 0 = −I + I ∈ −�−1(−�I) + �−1(�I), i.e. �I ∈ /∗ = {G∗}.

(iii) It follows from (i) and (8.14) that (G=)=∈N and (F=)=∈N are bounded. Now let
I ∈ / . We retrieve from (4.27) that

(∀= ∈ N) 〈I − F= | C∗=〉 ≤ 〈G= − F= | �G= − �I〉 − U‖�G= − �I‖2. (8.15)
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Hence, the Cauchy–Schwarz inequality, (2.32), (8.8) and (8.14) imply that

U‖�G= − �I‖2 ≤ ‖F= − G=‖ ‖�G= − �I‖ + ‖F= − I‖ ‖C∗=‖

≤ 1
U
‖F= − G=‖ ‖G= − I‖ +

1
W=
‖F= − I‖ ‖F= − G=‖

→ 0. (8.16)

In view of (ii), �G= → �I = G∗.

The following examples address Example 3.2 and Example 3.3, respectively.

Example 8.2. Let U ∈ ]0, +∞[, let 5 ∈ Γ0(H), let � : H → H be U-cocoercive,
suppose that the set / of solutions to the variational inequality

find G ∈ H such that (∀H ∈ H) 〈G − H | �G〉 + 5 (G) ≤ 5 (H) (8.17)

is not empty, and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −m 5 ∗(−G∗) + �−1G∗. (8.18)

Let G0 ∈ H, let Y ∈ ]0, U/(U + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)U], and
suppose that (`=)=∈N satisfies (8.2). Iterate

for = = 0, 1, . . .
1∗= = W=�G=
F= = proxW= 5 (G= − 1∗=)
G=+1 = G= + `=(F= − G=).

(8.19)

Then (G=)=∈N converges weakly to a point in / and (�G=)=∈N converges strongly to
the unique point in /∗.

Proof. Use Example 2.12 and Example 2.35 and set � = m 5 in Theorem 8.1.

Example 8.3. Let U ∈ ]0, +∞[, let � be a nonempty closed convex subset of
H, let � : H → H be U-cocoercive, suppose that the set / of solutions to the
variational inequality

find G ∈ � such that (∀H ∈ �) 〈G − H | �G〉 ≤ 0 (8.20)

is not empty, and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −mf�(−G∗) + �−1G∗. (8.21)

Let G0 ∈ H, let Y ∈ ]0, U/(U + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)U], and
suppose that (`=)=∈N satisfies (8.2). Iterate

for = = 0, 1, . . .
1∗= = W=�G=
F= = proj�(G= − 1∗=)
G=+1 = G= + `=(F= − G=).

(8.22)

Then (G=)=∈N converges weakly to a point in / and (�G=)=∈N converges strongly to
the unique point in /∗.
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Proof. Use Example 2.36 and (2.2), and set 5 = ]� in Example 8.2.

The following example focuses on the minimization in the setting of Prob-
lem 3.5(ii). This framework has found a multitude of applications, especially in the
areas of signal processing and machine learning (Argyriou et al. 2012, Beck and
Teboulle 2010, Chan, Setzer and Steidl 2008, Combettes andWajs 2005, Combettes
et al. 2018, Dexter, Tran andWebster 2022, Jenatton et al. 2011, Vaiter et al. 2018).

Example 8.4. Let V ∈ ]0, +∞[, let 5 ∈ Γ0(H) and let 6 : H → R be convex and
differentiable. Suppose that ∇6 is V-Lipschitzian and that the set / of solutions to
the problem

minimize
G∈H

5 (G) + 6(G) (8.23)

is not empty, and let /∗ be the set of solutions to the dual problem

minimize
G∗∈H

5 ∗(−G∗) + 6∗(G∗). (8.24)

Let G0 ∈ H, let Y ∈ ]0, 1/(V + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)/V], and
suppose that

(∀= ∈ N) Y ≤ `= ≤ (1 − Y)4 − VW=
2

. (8.25)

Iterate
for = = 0, 1, . . .
1∗= = W=∇6(G=)
F= = proxW= 5 (G= − 1∗=)
G=+1 = G= + `=(F= − G=).

(8.26)

Then (G=)=∈N converges weakly to a point in / and (∇6(G=))=∈N converges strongly
to the unique point in /∗.

Proof. The claim is established by applying Theorem 8.1(i) with � = m 5 (see
Example 2.12) and � = ∇6 (see Lemma 2.2).

Remark 8.5. In some applications, it may be of interest to quantify the asymptotic
behaviour of the function values ( 5 (G=)+ 6(G=))=∈N produced by (8.26). This topic
has been the focus of a lot of interest since the publication of the influential papers
by Beck and Teboulle (2009b,a) and Chambolle and Dossal (2015); see Garrigos,
Rosasco and Villa (2023) and its bibliography for recent results on the unrelaxed
implementation of (8.26) with constant proximal parameters.

The following example, taken from Combettes and Wajs (2005), models linear
inverse problems in which the prior knowledge is modelled by penalizing the
coefficients of the decomposition of the ideal solution in an orthonormal basis; see
Combettes, Salzo and Villa (2018), Daubechies, Defrise and De Mol (2004) and
Figueiredo and Nowak (2003) for special cases.

https://doi.org/10.1017/S0962492923000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000065


The geometry of monotone operator splitting methods 569

Example 8.6. Suppose that H is separable, let (4:):∈K⊂N be an orthonormal
basis of H, let H ∈ G, suppose that 0 ≠ ! ∈ B(H,G), and let (q:):∈K be functions
in Γ0(R) such that (∀: ∈ K) q: ≥ 0 = q:(0). Suppose that the set / of solutions
to the problem

minimize
G∈H

∑
:∈K

q:(〈G | 4:〉) +
1
2
‖!G − H‖2 (8.27)

is not empty. Let G0 ∈ H, let Y ∈
]
0, 1/(‖!‖2 + 1)

[
, let (W=)=∈N be a sequence in

[Y, (2 − Y)/‖!‖2], and suppose that

(∀= ∈ N) Y ≤ `= ≤ (1 − Y)4 − ‖!‖2W=
2

. (8.28)

Iterate
for = = 0, 1, . . .
1∗= = W=!

∗(!G= − H)
F= =

∑
:∈K(proxW=q: 〈G= − 1

∗
= | 4:〉)4:

G=+1 = G= + `=(F= − G=).

(8.29)

Then (G=)=∈N converges weakly to a point in / .

Proof. Set 5 : G ↦→ ∑
:∈K q:(〈G | 4:〉) and 6 : G ↦→ ‖!G − H‖2/2. Then, as shown

in Combettes and Wajs (2005, Example 2.19), 5 ∈ Γ0(H) and proxW 5 : G ↦→∑
:∈K(proxW=q: 〈G | 4:〉)4: . On the other hand, 6 is convex and differentiable and
∇6 : G ↦→ !∗(!G − H) is ‖!‖2-Lipschitzian. Altogether, the conclusion follows
from Example 8.4.

Next, we specialize Example 8.4 to the gradient-projection method, which min-
imizes a smooth function over a convex set (see Example 3.6) and goes back to
Goldstein (1964) and Levitin and Polyak (1966).

Example 8.7. Let V ∈ ]0, +∞[, let � be a nonempty closed convex subset of H,
and let 6 : H→ R be convex and differentiable. Suppose that ∇6 is V-Lipschitzian
and that the set / of solutions to the problem

minimize
G∈�

6(G) (8.30)

is not empty, and let /∗ be the set of solutions to the dual problem

minimize
G∗∈H

f(−G∗) + 6∗(G∗). (8.31)

Let G0 ∈ H, let Y ∈ ]0, 1/(V + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)/V], and
suppose that (`=)=∈N satisfies (8.25). Iterate

for = = 0, 1, . . .
1∗= = W=∇6(G=)
F= = proj�(G= − 1∗=)
G=+1 = G= + `=(F= − G=).

(8.32)
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Then (G=)=∈N converges weakly to a point in / and (∇6(G=))=∈N converges strongly
to the unique point in /∗.

Proof. Set 5 = ]� in Example 8.4. Alternatively, set � = ∇6 in Example 8.3.

Remark 8.8. Attouch, Peypouquet and Redont (2018) studied the backward–
forward iterations

for = = 0, 1, . . .
?= = �W�G=
@= = ?= − W�?=
G=+1 = G= + `=(@= − G=),

(8.33)

and showed them to be related to the forward–backward iterations applied to Yosida
envelopes of � and �.

8.3. Haugazeau-like algorithm

As seen in Combettes and Wajs (2005, Remark 5.12), the strong convergence of
(G=)=∈N in Theorem 8.1(i) may fail. Item (i) below on the strong convergence
of a best approximation forward–backward algorithm extends Theorem 5.6(i) and
Remark 5.5 of Combettes and Hirstoaga (2005), where (∀= ∈ N) W= = W ∈ ]0, 2U[
and `= ≤ 1.

Theorem 8.9. Let U ∈ ]0, +∞[, let � : H→ 2H be maximally monotone, and let
� : H→ H be U-cocoercive. Let Y ∈ ]0,min{1/2, 2U}[, let (W=)=∈N be a sequence
in [Y, 2U], and let

(∀= ∈ N) Y ≤ `= ≤
4U − W=

4U
. (8.34)

Suppose that the set / of solutions to the problem

find G ∈ H such that 0 ∈ �G + �G (8.35)

is not empty and let /∗ be the set of solutions to the dual

find G∗ ∈ H such that 0 ∈ −�−1(−G∗) + �−1G∗. (8.36)

Let G0 ∈ H and iterate

for = = 0, 1, . . .
1∗= = W=�G=
F= = �W=�(G= − 1∗=)
G=+1 = Q(G0, G=, G= + `=(F= − G=)),

(8.37)

where Q is defined in Lemma 4.6. Then the following hold:

(i) (G=)=∈N converges strongly to proj/ G0.
(ii) /∗ contains a single point G∗ and (�G=)=∈N converges strongly to G∗.
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Proof. We apply Theorem 4.14 in the setting of (8.6), using the same variables
as in (8.8) and (_=)=∈N defined as in (8.9). Then (8.11) holds and

(∀= ∈ N) Y ≤ 4UY
4U − Y ≤ _= ≤ 1. (8.38)

Therefore the sequence (G=)=∈N produced by (8.37) coincides with that of (4.44).
Hence, by Theorem 4.14(i),

F= − G= → 0. (8.39)

(i) This follows from Theorem 4.14(ii) since, as in the proof of Theorem 8.1(i), its
conditions (iib) and (iid) are fulfilled.

(ii) Since � is continuous, (i) and Theorem 8.1(ii) imply that �G= → �(proj/ G0) ∈
/∗, where /∗ is a singleton.

8.4. Special cases and variants

8.4.1. Projected Landweber method
In inverse problems, constrained least-squares estimation has a long history (Ben-
ning and Burger 2018, Bertero et al. 1997, Eicke 1992, Neubauer 1988, Phillips
1962). We address the numerical solution of this problem from the viewpoint
of the forward–backward algorithm to obtain a relaxed version of the projected
Landweber method with iteration-dependent parameters.

Proposition 8.10. Let G be a real Hilbert space, suppose that 0 ≠ ! ∈ B(H,G),
let H ∈ G, and let � be a closed convex subset ofH such that the set / of solutions
to the problem

minimize
G∈�

1
2
‖!G − H‖2 (8.40)

is not empty. Let G0 ∈ H, let Y ∈ ]0, 1/(‖!‖2 + 1)[, let (W=)=∈N be a sequence in
[Y, (2 − Y)/‖!‖2], and suppose that (`=)=∈N satisfies (8.28). Iterate

for = = 0, 1, . . .
1∗= = W=!

∗(!G= − H)
F= = proj�(G= − 1∗=)
G=+1 = G= + `=(F= − G=).

(8.41)

Then (G=)=∈N converges weakly to a point in / .

Proof. Apply Example 8.7 with 6 : G ↦→ ‖!G − H‖2/2.

Proposition 8.10 was established in Eicke (1992, Section 3.1) with (∀= ∈ N) _= =
1 and W= = W ∈ ]0, 2/‖!‖2 [. There, it was also conjectured that the convergence
was strong, which was disproved in Combettes and Wajs (2005, Remark 5.12).
This motivates the following result.
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Proposition 8.11. LetG be a realHilbert space, suppose that 0 ≠ ! ∈ B(H,G), let
H ∈ G, let� be a closed convex subset ofH, and suppose that the set / of solutions
to (8.40) is not empty. Let G0 ∈ H, let Y ∈ ]0,min{1/2, 2/‖!‖2})[, let (W=)=∈N be
a sequence in [Y, 2/‖!‖2], and suppose that (∀= ∈ N) Y ≤ `= ≤ 1 − ‖!‖2W=/4.
Iterate

for = = 0, 1, . . .
1∗= = W=!

∗(!G= − H)
F= = proj�(G= − 1∗=)
G=+1 = Q(G0, G=, G= + `=(F= − G=)),

(8.42)

where Q is defined in Lemma 4.6(ii). Then (G=)=∈N converges strongly to proj/ G0.

Proof. Follow the pattern of the proof of Proposition 8.10 and use Example 2.36
to apply Theorem 8.9(i) with � = #� and � : G ↦→ !∗(!G − H).

Here is an application of Proposition 8.10 to the problem of finding the best
approximation to a point from a linearly transformed convex set.

Example 8.12. Consider the setting of Proposition 8.10 with the assumption that
!(�) is closed, which guarantees that (8.40) admits solutions. Then G= ⇀ G, where
G solves (8.40). Furthermore, if we set ? = !G, then ? = proj!(�) H. Hence, upon
rewriting (8.41) as

for = = 0, 1, . . .
@= = !G=
1∗= = W=!

∗(@= − H)
F= = proj�(G= − 1∗=)
G=+1 = G= + `=(F= − G=),

(8.43)

and invoking the weak continuity of !, we conclude that @= ⇀ proj!(�) H.

Example 8.13. Let G be a real Hilbert space, and suppose that 0 ≠ ! ∈ B(H,G)
and that ran ! is closed. Additionally, let G0 ∈ H, let Y ∈ ]0, 1/(‖!‖2 + 1)[, and let
(a=)=∈N be a sequence in [Y, (2 − Y)/‖!‖2]. Iterate

for = = 0, 1, . . .⌊
@= = !G=
G=+1 = G= − a=!∗@=,

(8.44)

and let @ be the minimal-norm element of ran !. Then @= ⇀ @.

Proof. Apply Example 8.12 with � = H and H = 0.

The next example is about a composite best approximation problem.

Example 8.14. Let G be a real Hilbert space, let H ∈ G, and let 0 < ? ∈ N.
For every : ∈ {1, . . . , ?}, let H: be a real Hilbert space, let �: be a nonempty
closed convex subset of H: , let 0 ≠ !: ∈ B(H: ,G), and let G:,0 ∈ H: . Sup-
pose that

∑?

:=1 !:(�:) is closed and set V =
∑?

:=1 ‖!: ‖
2. Furthermore, let
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Y ∈ ]0, 1/(V + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)/V], and suppose that
(`=)=∈N satisfies (8.25). Iterate

for = = 0, 1, . . .
@= =

∑?

:=1 !:G:,=
for : = 1, . . . , ?
1∗
:,=
= W=!

∗
:
(@= − H)

F:,= = proj�: (G:,= − 1
∗
:,=

)
G:,=+1 = G:,= + `=(F:,= − G:,=).

(8.45)

Then @= ⇀ proj∑?
:=1 !: (�: ) H.

Proof. SetH = H1 ⊕ · · · ⊕H?, I = �1 × · · · × �? and

R : H→ G : (G:)1≤:≤? ↦→
?∑
:=1

!:G: . (8.46)

Then projI : (G:)1≤:≤? ↦→ (proj�: G:)1≤:≤? (see Examples 2.36 and 2.37), ‖!‖2 =
V and R∗ : G → H : H∗ ↦→ (!∗1H

∗, . . . , !∗?H
∗). Altogether, the result is an applica-

tion of Example 8.12 to I and R inH.

As an application of Example 8.14, we address the problem of computing the
best approximation from the Minkowski sum of closed convex sets; see Bauschke,
Bùi and Wang (2019), Eaves (1984), Martínez-Legaz and Seeger (1994), Qin and
An (2019), Seeger (1998), Wang, Zhang and Zhang (2020) andWon, Xu and Lange
(2019) for instances of decompositions with respect to such sums.

Example 8.15. Let I ∈ H and 0 < ? ∈ N. For every : ∈ {1, . . . , ?}, let �: be
a nonempty closed convex subset of H and let G:,0 ∈ H. Suppose that

∑?

:=1�:
is closed, let Y ∈ ]0, 1/(? + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)/?], and
suppose that (∀= ∈ N) Y ≤ `= ≤ (1 − Y)(2 − ?W=/2). Iterate

for = = 0, 1, . . .
@= =

∑?

:=1 G:,=
1∗= = W=(@= − I)
for : = 1, . . . , ?⌊
F:,= = proj�: (G:,= − 1

∗
=)

G:,=+1 = G:,= + `=(F:,= − G:,=).

(8.47)

Then @= ⇀ proj∑?
:=1�:

I.

Proof. Apply Example 8.14 with G = H, H = I and (∀: ∈ {1, . . . , ?}) H: = H
and !: = Id.

8.4.2. Partial Yosida approximation to inconsistent common zero problems
We extend a framework proposed in Combettes (2004, Section 6.3), where no linear
transformations were present. We start with the following composite common zero
problem; see Byrne, Censor, Gibali and Reich (2012) for a special case.
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Problem 8.16. Let � : H → 2H be maximally monotone and let 0 < ? ∈ N.
For every : ∈ {1, . . . , ?}, let G: be a real Hilbert space, let �: : G: → 2G: be
maximally monotone, and suppose that 0 ≠ !: ∈ B(H,G:). The objective is to

find G ∈ zer � such that (∀: ∈ {1, . . . , ?}) !:G ∈ zer �: . (8.48)

Example 8.17. Suppose that, in Problem 8.16, � = #� , where � is a nonempty
closed convex subset ofH, and, for every : ∈ {1, . . . , ?}, �: = #�: , where �: is
a nonempty closed convex subset of G: . Then (8.48) is the split feasibility problem
(Reich, Truong and Mai 2020)

find G ∈ � such that (∀: ∈ {1, . . . , ?}) !:G ∈ �: . (8.49)

Example 8.18. Suppose that, in Problem 8.16, � = m 5 , where 5 ∈ Γ0(H), and,
for every : ∈ {1, . . . , ?}, G: = H, !: = Id and �: = m 5: , where 5: ∈ Γ0(H).
Then (8.48) becomes

find G ∈ (Argmin 5 ) ∩
?⋂
:=1

Argmin 5: . (8.50)

Example 8.19. Suppose that, in Problem 8.16, � = #� , where � is a nonempty
closed convex subset ofH, and, for every : ∈ {1, . . . , ?}, �: = (Id−�: +A:)−1−Id,
where �: : G: → G: is firmly nonexpansive and A: ∈ G: . Then (8.48) becomes

find G ∈ � such that (∀: ∈ {1, . . . , ?}) �:(!:G) = A: . (8.51)

Note that the operators (Id− �: + A:)1≤:≤? are firmly nonexpansive as well, which
makes the operators (�:)1≤:≤? maximally monotone by Lemma 2.34(iii). This
formulation was investigated in Combettes and Woodstock (2022) in the context
of recovering a signal in � from ? nonlinear observations modelled as outputs of
Wiener systems (see also Example 5.12).

Our focus here is on situations inwhich (8.48) is not guaranteed to have solutions;
see Censor and Zaknoon (2018), Combettes and Bondon (1999), Combettes and
Glaudin (2019) and Goldburg and Marks II (1985) for concrete illustrations. In
such environments, it is natural to approximate it by a more general problem, which
exhibits better regularity properties and admits solutions. We propose the following
relaxation of Problem 8.16, in which dom � serves as a hard constraint.

Problem 8.20. Consider the setting of Problem 8.16 and let (d:)1≤:≤? and
(l:)1≤:≤? be in ]0, +∞[. The objective is to solve the partial Yosida approx-
imation

find G ∈ H such that 0 ∈ �G +
?∑
:=1

l:!
∗
:(
d:�:(!:G)) (8.52)

to Problem 8.16.

The fact that Problem 8.20 is an appropriate relaxation of Problem 8.16 is
supported by the following argument.
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Proposition 8.21. Suppose that the set of solutions to Problem 8.16 is not empty.
Then it coincides with the set of solutions to Problem 8.20.

Proof. Let G be a solution to Problem 8.16. Then (2.22) yields

0 = −
?∑
:=1

l:!
∗
:(
d:�:(!:G)) ∈ �G, (8.53)

which shows that G solves Problem 8.20. Now let G be a solution to Problem 8.20.
Then

−
?∑
:=1

l:!
∗
:(
d:�:(!:G)) ∈ �G. (8.54)

It follows from (8.53), (8.54), the monotonicity of � and the cocoercivity of the
operators (d:�:)1≤:≤? (see Example 2.7) that

0 ≥
〈
G − G

���� ?∑
:=1

l:!
∗
:(
d:�:(!:G)) −

?∑
:=1

l:!
∗
:(
d:�:(!:G))

〉
=

?∑
:=1

l:

〈
!:G − !:G

���� d:�:(!:G) − d:�:(!:G)〉
≥

?∑
:=1

l:d: ‖d:�:(!:G) − d:�:(!:G)‖2

=

?∑
:=1

l:d: ‖d:�:(!:G)‖2. (8.55)

Hence, we deduce from (2.22) that (∀: ∈ {1, . . . , ?}) !:G ∈ zer d:�: = zer �: . In
view of (8.54), we conclude that G solves Problem 8.16.

Remark 8.22. It should be emphasized that Problem 8.20 is a relaxation of Prob-
lem 8.16, and not of the inclusion

find G ∈ H such that 0 ∈ �G +
?∑
:=1

l:!
∗
:(�:(!:G)). (8.56)

In particular, zer(�+d�) ≠ zer(�+�)when zer(�+�) ≠ ∅. However, the problem
of finding a zero of � + d� can be regarded as a regularization of that of finding
a zero of � + � in the sense that solutions to the former approaches a particular
solution of the latter as d → 0 (Mahey and Pham 1993, Mercier 1980, Moudafi
2000).
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Example 8.23. Consider the setting of Example 8.17 and let (∀: ∈ {1, . . . , ?})
d: = 1. Then (8.52) relaxes the possibly inconsistent problem (8.49) to the problem

minimize
G∈�

?∑
:=1

l:3
2
�:

(!:G). (8.57)

(i) Assume that, for every : ∈ {1, . . . , ?}, G: = H and !: = Id. Then (8.57) is
the relaxed formulation of Combettes and Bondon (1999).

(ii) Assume that H = R# , � = R# , and, for every : ∈ {1, . . . , ?}, G: = R,
!: : G ↦→ D>

:
G with D: ∈ R# , and �: = {[: } with [: ∈ R. Let * ∈ R?×#

be the matrix with rows D>1 , . . . , D
>
? and set H = ([:)1≤:≤?. Then (8.49)

amounts to solving the linear system *G = H and (8.57) to minimizing
G ↦→ ‖*G − H‖2. This least-squares relaxation was proposed by Legendre
(1805) and rediscovered by Gauss (1809).

Example 8.24. Consider the setting of Example 8.18 and recall that (∀: ∈
{1, . . . , ?}) d: (m 5:) = {∇(d: 5:)} (Bauschke and Combettes 2017, Example 23.3).
Thus, (8.52) relaxes the possibly inconsistent problem (8.50) to the problem

minimize
G∈H

5 (G) +
?∑
:=1

l:(d: 5:)(G). (8.58)

This formulation arises in particular in federated learning (Pathak and Wainwright
2020).

Example 8.25. Consider the setting of Example 8.19 and let (∀: ∈ {1, . . . , ?})
d: = 1. Then it follows from Example 2.14 and (2.21) that (8.52) relaxes the
possibly inconsistent problem (8.51) to the variational inequality problem (see
Problem 3.3)

find G ∈ � such that (∀H ∈ �)
?∑
:=1

l: 〈!:(H − G) | �:(!:G) − A:〉 ≥ 0, (8.59)

which is precisely the relaxation of (8.51) studied in Combettes and Woodstock
(2022).

Let us now solve Problem 8.20 with the forward–backward algorithm.

Proposition 8.26. Consider the setting of Problem 8.20, suppose that its set / of
solutions is not empty, and set

U =
1

?∑
:=1

l: ‖!: ‖2
d:

. (8.60)

Let G0 ∈ H, let Y ∈ ]0, U/(U + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)U], and
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suppose that (`=)=∈N satisfies (8.2). Iterate

for = = 0, 1, . . .

for : = 1, . . . , ?⌊
H:,= = !:G=
?:,= = d

−1
:

(H:,= − �d:�: H:,=)

1∗= = W=

?∑
:=1

l:!
∗
: ?:,=

F= = �W=�(G= − 1∗=)
G=+1 = G= + `=(F= − G=).

(8.61)

Then (G=)=∈N converges weakly to a point in / .

Proof. Define

� =

?∑
:=1

l:!
∗
: ◦ (d:�:) ◦ !: . (8.62)

Then it follows from Bauschke and Combettes (2017, Proposition 4.12) and Ex-
ample 2.7 that � is U-cocoercive. Since (8.61) is a specialization of (8.5), The-
orem 8.1(i) furnishes the desired conclusion.

8.4.3. Backward–backward splitting
We focus on the following special case of Problem 8.20.

Problem 8.27. Let � : H → 2H and � : H → 2H be maximally monotone, and
let d ∈ ]0, +∞[. The objective is to

find G ∈ H such that 0 ∈ �G + d�G. (8.63)

Proposition 8.28. Consider the setting of Problem 8.27 under the assumption
that / = zer(� + d�) ≠ ∅. Let G0 ∈ H, let Y ∈ ]0, d/(d + 1)[, let (W=)=∈N be
a sequence in [Y, (2 − Y)d], and suppose that (`=)=∈N satisfies (8.2) with U = d.
Iterate

for = = 0, 1, . . .
?= = d

−1(G= − �d�G=)
F= = �W=�(G= − W=?=)
G=+1 = G= + `=(F= − G=).

(8.64)

Then (G=)=∈N converges weakly to a point in / .

Proof. Apply Proposition 8.26 with ? = 1, G1 = H, !1 = Id, �1 = �, l1 = 1 and
d1 = d.

Example 8.29. In particular, if we execute (8.64) with, for every = ∈ N, W= = d
and `= = 1, then

(∀= ∈ N) G=+1 = �d�(�d�G=). (8.65)
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This recursion is known as the backward–backward algorithm, as it alternates
two backward Euler steps. As derived above, it is a special case of (8.61) and
therefore of the forward–backward algorithm (8.5). Its asymptotic behaviour has
been studied by Bauschke et al. (2005) and Mercier (1980); see also Lions (1978)
and Passty (1979) for ergodic convergence.

Example 8.30. Let 5 and 6 be functions in Γ0(H). In Problem 8.27, suppose that
� = m 5 and � = m6. Then, as in Example 8.24, (8.65) becomes

minimize
G∈H

5 (G) + d6(G) (8.66)

and (8.65) reduces to the alternating proximal point algorithm

(∀= ∈ N) G=+1 = proxd 5 (proxd6 G=). (8.67)

This method was first investigated in Acker and Prestel (1980), with further devel-
opments in Bauschke et al. (2005).

Example 8.31. Let � and � be nonempty closed convex subsets of H. In Ex-
ample 8.30, suppose that 5 = ]� and 6 = ]� . Then (8.67) is the problem of finding
a point in� at minimal distance from � and (8.67) yields the alternating projection
method

(∀= ∈ N) G=+1 = proj�(proj� G=), (8.68)

whichwas first investigated inCheney andGoldstein (1959b). Its weak convergence
was established in Gubin et al. (1967, Theorem 2)

Example 8.32. Let 5 ∈ Γ0(H), ℎ ∈ Γ0(H), I ∈ H and d ∈ ]0, +∞[. The problem
is to

minimize
G∈H,F ∈H

5 (G) + ℎ(F) + 1
2d
‖G + F − I‖2. (8.69)

Following Combettes and Wajs (2005, Section 4.4), set 6 : H ↦→ ℎ(I − H). Then,
with the change of variable H = I − F, the objective of (8.69) is to

minimize
G∈H,H∈H

5 (G) + 6(H) + 1
2d
‖G − H‖2, (8.70)

which is precisely (8.66) in terms of the variable G. Now let G0 ∈ H, let Y ∈
]0, d/(d + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)d], and let (`=)=∈N be a
sequence in [Y, 1]. Applying algorithm (8.64) to � = m 5 and � = m6, and noting
that �d� = proxd6 : G ↦→ I − proxdℎ(I − G) yields

for = = 0, 1, . . .
?= = d

−1(G= − I + proxdℎ(I − G=))
F= = proxW= 5 (G= − W=?=)
G=+1 = G= + `=(F= − G=).

(8.71)

It follows from Proposition 8.28 that (G=)=∈N converges weakly to a point G such
that (G, proxdℎ(I − G)) solves (8.69).
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Next, we revisit the problem of projecting onto theMinkowski sum of two convex
sets (see Example 8.15).

Example 8.33. Let � and � be nonempty closed convex subsets of H such that
� + � is closed, and let I ∈ H. Upon setting 5 = ]� , ℎ = ]� and d = 1 in
Example 8.32, (8.69) specializes to the problem of finding the projection of I onto
� + �. Now let G0 ∈ �, let Y ∈ ]0, 1/2[, let (W=)=∈N be a sequence in [Y, 2 − Y],
and let (`=)=∈N be a sequence in [Y, 1]. Then (8.71) assumes the form

for = = 0, 1, . . .
?= = G= − I + proj�(I − G=)
F= = proj�(G= − W=?=)
G=+1 = G= + `=(F= − G=),

(8.72)

and it follows from Proposition 8.28 that (G=)=∈N converges weakly to a point G
such that proj�+� I = G +proj�(I−G). This best approximation algorithm was first
obtained in Seeger (1998, Theorem 2.1) in the case when (∀= ∈ N) W= = `= = 1,
that is,

(∀= ∈ N) G=+1 = proj�(I − proj�(I − G=)). (8.73)

8.4.4. Dual implementation
We present a framework for solving strongly monotone composite inclusion prob-
lems by applying the forward–backward algorithm to the dual problem. The
embedding underlying this approach is that of Example 3.22.

Problem 8.34. Let d ∈ ]0, +∞[, let 0 < ? ∈ N, let I ∈ H, and let � : H→ 2H be
maximally monotone. For every : ∈ {1, . . . , ?}, let �: : G: → 2G: be maximally
monotone, let a: ∈ ]0, +∞[, let �: : G: → 2G: be maximally monotone and
a:-strongly monotone, and suppose that 0 ≠ !: ∈ B(H,G:). Further, suppose that

I ∈ ran
(
� +

?∑
:=1

!∗: ◦ (�: ��:) ◦ !: + dId
)
. (8.74)

The problem is to solve the primal inclusion

find G ∈ H such that I ∈ �G +
?∑
:=1

!∗:((�: ��:)(!:G)) + dG, (8.75)

together with the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that (∀: ∈ {1, . . . , ?})

0 ∈ −!:
(
��/d

(
1
d

(
I −

?∑
9=1

!∗9 H
∗
9

)))
+ �−1

: H
∗
: + �

−1
: H
∗
: . (8.76)
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Werefer toCombettes andVũ (2014, Proposition 5.2(iv)) for sufficient conditions
that guarantee (8.74). Themechanism to solve (8.75) dually hinges on the following
properties.

Proposition 8.35 (Combettes andVũ 2014). Consider the setting of Problem 8.34,
and set

" = � +
?∑
:=1

!∗: ◦ (�: ��:) ◦ !: and G = �"/d(I/d). (8.77)

Then the following hold:

(i) G is the unique solution to the primal problem (8.75).
(ii) The dual problem (8.76) admits solutions and, if (H∗:)1≤:≤? solves (8.76),

then

G = ��/d

(
d−1

(
I −

?∑
:=1

!∗: H
∗
:

))
. (8.78)

We now apply the forward–backward algorithm of Theorem 8.1 to the dual inclu-
sion (8.76) to construct a sequence (G=)=∈N which converges strongly to the solution
to primal inclusion (8.75). The following result is an adaptation of Corollary 5.4
of Combettes and Vũ (2014).

Proposition 8.36. Consider the setting of Problem 8.34, and set

a = min
1≤:≤?

a: and U =
1

1/a + (1/d)
∑

1≤:≤? ‖!: ‖2
. (8.79)

Let Y ∈ ]0, U/(U + 1)[, let (W=)=∈N be a sequence in [Y, (2 − Y)U], suppose that
(`=)=∈N satisfies (8.2), and, for every : ∈ {1, . . . , ?}, let H∗

:,0 ∈ G: . Iterate

for = = 0, 1, . . .

@= = I −
∑?

:=1 !
∗
:
H∗
:,=

G= = ��/d(@=/d)
for : = 1, . . . , ?⌊
F:,= = H

∗
:,=
+ W=

(
!:G= − �−1

:
H∗
:,=

)
H∗
:,=+1 = H

∗
:,=
+ `=

(
�W=�−1

:
F:,= − H∗:,=

)
.

(8.80)

Then the following hold for the solution G to (8.75) and for some solution y∗ =
(H∗1, . . . , H

∗
?) to (8.76):

(i) (∀: ∈ {1, . . . , ?}) H∗
:,=

⇀ H∗: .
(ii) G= → G.

Proof. We deduce from Bauschke and Combettes (2017, Proposition 22.11(ii))
that, for every : ∈ {1, . . . , ?}, �−1

:
is a:-cocoercive with dom�−1

:
= G: . Let us
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set G = G1 ⊕ · · · ⊕ G? and

) : H→ H : G ↦→ �d−1�(d−1(I − G)),

G : G → 2G : y∗ ↦→
?

1≤:≤?
�−1
:
H∗
:
,

J : G → G : y∗ ↦→
(
�−1
:
H∗
:

)
1≤:≤?,

R : H→ G : G ↦→ (!:G)1≤:≤?,

H = J − R ◦ ) ◦ R∗.

(8.81)

It follows from Lemmas 2.23 and 2.24 that G is maximally monotone, from (8.79)
that J is a-cocoercive, from Lemma 2.34(iii) that −) is d-cocoercive, and hence
from Bauschke and Combettes (2017, Proposition 4.12) that

H = J + R ◦ (−)) ◦ R∗ is 1/(1/a + ‖R‖2/d)-cocoercive. (8.82)

Since ‖R‖2 ≤ ∑?

:=1 ‖!: ‖
2, (8.79) implies that H is U-cocoercive. Next, let us

define (∀= ∈ N) y∗= = (H∗
:,=

)1≤:≤? and w= = (F:,=)1≤:≤?. Then, upon combining
(8.81) and Example 2.37, (8.80) can be rewritten as

for = = 0, 1, . . .⌊
w= = y∗= − W=Hy∗=
y∗
=+1 = y∗= + `=

(
�W=G w= − y∗=

)
,

(8.83)

and the dual problem (8.76) as

find y∗ ∈ G such that 0 ∈ Gy∗ + Hy∗. (8.84)

(i) In view of the above, the claim follows from Theorem 8.1(i).
(ii) We derive from Proposition 8.35, (8.80) and (8.81) that

G = )(R∗y∗) and (∀= ∈ N) G= = )(R∗y∗=). (8.85)

In turn, we deduce from the d-cocoercivity of −) , (i), the monotonicity of J, and
the Cauchy–Schwarz inequality that

(∀= ∈ N) d‖G= − G‖2 = d‖)(R∗y∗=) − )(R∗y∗)‖2

≤ 〈R∗(y∗= − y∗) | )(R∗y∗) − )(R∗y∗=)〉
= 〈y∗= − y∗ | (R ◦ ) ◦ R∗)y∗ − (R ◦ ) ◦ R∗)y∗=〉
≤ 〈y∗= − y∗ | Jy∗= − Jy∗〉
− 〈y∗= − y∗ | (R ◦ ) ◦ R∗)y∗= − (R ◦ ) ◦ R∗)y∗〉

= 〈y∗= − y∗ | Hy∗= − Hy∗〉
≤ X‖Hy∗= − Hy∗‖, (8.86)

where, by (i),
X = sup

=∈N
‖y∗= − y∗‖ < +∞. (8.87)
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Therefore, using (8.83) and Theorem 8.1(ii)–(iii), we conclude that ‖G= − G‖ → 0.

Here is an application to strongly convex minimization problems that arise in
particular in mechanics (Ekeland and Temam 1974, Mercier 1980) and in signal
processing (Combettes, D- inh Dũng and Vũ 2010, 2011, Potter and Arun 1993).

Example 8.37. Let 0 < ? ∈ N, let I ∈ H, let 5 ∈ Γ0(H), and let 1( 5 ∗) be the
Moreau envelope of 5 ∗ (see (2.11)). For every : ∈ {1, . . . , ?}, let 6: ∈ Γ0(G:), let
a: ∈ ]0, +∞[, let ℎ: ∈ Γ0(G:) be a:-strongly convex, and suppose that 0 ≠ !: ∈
B(H,G:). Define U as in (8.79) and suppose that

I ∈ ran
(
m 5 +

?∑
:=1

!∗: ◦ (m6: � mℎ:) ◦ !: + Id
)
. (8.88)

Then the primal problem

minimize
G∈H

5 (G) +
?∑
:=1

(6: � ℎ:)(!:G) +
1
2
‖G − I‖2 (8.89)

admits a unique solution G, namely

G = prox 5 +∑?
:=1 (6: � ℎ: )◦!: I, (8.90)

and the dual problem is

minimize
H∗1 ∈G1, ..., H

∗
? ∈G?

1( 5 ∗)
(
I −

?∑
:=1

!∗: H
∗
:

)
+

?∑
:=1

(6∗:(H
∗
:) + ℎ

∗
:(H
∗
:)). (8.91)

Now let Y ∈ ]0, U/(U + 1)[, let (W=)=∈N be a sequence in [Y, (2− Y)U], suppose that
(`=)=∈N satisfies (8.2), and, for every : ∈ {1, . . . , ?}, let H∗

:,0 ∈ G: . Iterate

for = = 0, 1, . . .

@= = I −
∑?

:=1 !
∗
:
H∗
:,=

G= = prox 5 @=
for : = 1, . . . , ?⌊
F:,= = H

∗
:,=
+ W=

(
!:G= − ∇ℎ∗:

(
H∗
:,=

))
H∗
:,=+1 = H

∗
:,=
+ `=

(
proxW=6∗: F:,= − H

∗
:,=

)
.

(8.92)

Then the following hold:

(i) There exists a solution (H∗1, . . . , H
∗
?) to (8.91) such that (∀: ∈ {1, . . . , ?})

H∗
:,=

⇀ H∗: .
(ii) G= → G.

Proof. Apply Proposition 8.36 with d = 1, � = m 5 , and (∀: ∈ {1, . . . , ?})
�: = m6: and�: = mℎ: ; seeCombettes andVũ (2014, Example 5.6) for details.
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Remark 8.38. In Example 8.37, suppose thatH = �1
0(Ω), where Ω is a bounded

open domain in R2, ? = 1, G1 = !2(Ω) ⊕ !2(Ω), !1 = ∇, 61 = `‖ · ‖2,1 with
` ∈ ]0, +∞[, and ℎ1 = ]{0}. Then (8.89) reduces to

minimize
G∈� 1

0 (Ω)
5 (G) + `

∫
Ω

|∇G(l)|2 dl + 1
2
‖G − I‖2. (8.93)

In mechanics, (8.93) has been studied for certain potentials 5 (Ekeland and Temam
1974). For instance, 5 = 0 yields Mossolov’s problem and its dual analysis is
carried out in Ekeland and Temam (1974, Section IV.3.1). In image processing,
Mossolov’s problem corresponds to the total variation denoising problem. Mercier
(1980) proposed a dual projection algorithm to solveMossolov’s problem. In image
processing, this approachwas rediscovered in a discrete setting inChambolle (2004,
2005).

8.4.5. Barycentric Dykstra-like algorithm
Using Proposition 8.36 and, thereby, the forward–backward algorithm, we obtain
a method for computing the resolvent of a sum of maximally monotone operat-
ors. This result, which generalizes the barycentric Dykstra algorithm of Gaffke
and Mathar (1989) for projecting onto an intersection of closed convex sets, was
originally derived in Combettes (2009, Theorem 3.3) with different techniques.

Proposition 8.39. Let 0 < ? ∈ N, let I ∈ H, and, for every : ∈ {1, . . . , ?}, let
�: : H→ 2H be maximally monotone. Suppose that

I ∈ ran
( ?∑
:=1

�: + Id
)

(8.94)

and consider the inclusion problem

find G ∈ H such that I ∈
?∑
:=1

�:G + G. (8.95)

Set G0 = I and (∀: ∈ {1, . . . , ?}) I:,0 = I. Iterate

for = = 0, 1, . . .

for : = 1, . . . , ?⌊
A:,= = �?�: I:,=

G=+1 = (1/?)
∑?

:=1 A:,=
for : = 1, . . . , ?⌊
I:,=+1 = I:,= − A:,= + G=+1.

(8.96)

Then G= → �∑?
:=1 �:

I.
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Proof. First, we observe that (8.94)–(8.95) is the special case of (8.74)–(8.75)
in which � = 0 and, for every : ∈ {1, . . . , ?}, G: = H, �: = �: , !: = Id and
�: = {0}−1. Moreover, the cocoercivity constant in (8.79) is U = 1/?. With this
scenario, implementing (8.80) with, for every = ∈ N, `= = 1 and W= = 1/?, and,
for every : ∈ {1, . . . , ?}, H∗

:,0 = 0 leads to the recursion

for = = 0, 1, . . .
G= = I −

∑?

:=1 H
∗
:,=

for : = 1, . . . , ?⌊
H∗
:,=+1 = ��−1

:
/?
(
H∗
:,=
+ G=/?

)
,

(8.97)

and Proposition 8.36(ii) guarantees that G= → �∑?
:=1 �:

I. Alternatively, with the
initialization G0 = I, we rewrite (8.97) as

for = = 0, 1, . . .
for : = 1, . . . , ?⌊
H∗
:,=+1 = ��−1

:
/?
(
H∗
:,=
+ G=/?

)
G=+1 = I −

∑?

:=1 H
∗
:,=+1.

(8.98)

Let us introduce the variables (∀= ∈ N)(∀: ∈ {1, . . . , ?}) I:,= = ?H∗:,= + G=, where
I:,0 = G0 = I. Then (8.98) corresponds to the iterations

for = = 0, 1, . . .
G=+1 = I −

∑?

:=1 ��−1
:
/?(I:,=/?)

for : = 1, . . . , ?⌊
I:,=+1 = ? ��−1

:
/?(I:,=/?) + G=+1.

(8.99)

By construction,

(∀= ∈ N)
?∑
:=1

I:,= = ?I. (8.100)

Hence, appealing to (2.21), (8.99) becomes

for = = 0, 1, . . .
G=+1 = (1/?)

∑?

:=1 �?�: I:,=
for : = 1, . . . , ?⌊
I:,=+1 = I:,= − �?�: I:,= + G=+1,

(8.101)

which is precisely (8.96).
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Example 8.40. Consider the instantiation of Proposition 8.39 in which, for every
: ∈ {1, . . . , ?}, �: = m 5: , with 5: ∈ Γ0(H), and execute (8.96), which becomes

for = = 0, 1, . . .

for : = 1, . . . , ?⌊
A:,= = prox? 5: I:,=

G=+1 = (1/?)
∑?

:=1 A:,=
for : = 1, . . . , ?⌊
I:,=+1 = I:,= − A:,= + G=+1.

(8.102)

Then G= → prox∑?
:=1 5:

I.

Our last example addresses the barycentric Dykstra algorithm per se. The
original Dykstra algorithm was devised in Dykstra (1983) to project onto the
intersection of closed convex cones (see also Han 1988 for general closed convex
sets whose intersection has a nonempty interior) in Euclidean spaces using periodic
applications of the projectors onto the individual sets. Convergence of this periodic
scheme in the general case of arbitrary closed and convex sets in Hilbert spaces
was established in Boyle and Dykstra (1986); see Bauschke and Combettes (2008)
for an extension to monotone operators. The barycentric version described below,
in which all the projectors are used at each iteration, was devised in Gaffke and
Mathar (1989, Section 6). Its connection with the forward–backward algorithm
is discussed in Combettes et al. (2010, Remark 3.8) and Combettes et al. (2011,
Remark 2.3), and its asymptotic behaviour in the inconsistent case in Bauschke and
Borwein (1994, Theorem 6.1).

Example 8.41. In Example 8.40, suppose that, for every : ∈ {1, . . . , ?}, 5: =
]�: , where �: is a nonempty closed convex subset of H. Then algorithm (8.102)
becomes

for = = 0, 1, . . .

for : = 1, . . . , ?⌊
A:,= = proj�: I:,=

G=+1 = (1/?)
∑?

:=1 A:,=
for : = 1, . . . , ?⌊
I:,=+1 = I:,= − A:,= + G=+1,

(8.103)

and G= → proj⋂?

:=1�:
I.

8.4.6. Renorming
We preface our discussion with a renormed version of Theorem 8.1.

Proposition 8.42. Let U ∈ ]0, +∞[, let V ∈ ]0, +∞[, let � : H → 2H be maxi-
mally monotone, let � : H→ H be U-cocoercive, let* ∈ B(H) be self-adjoint and
V-strongly monotone, and let X be the real Hilbert space obtained by endowingH
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with the scalar product (G, H) ↦→ 〈*G | H〉. Let Y ∈ ]0, UV/(UV + 1)[, let (W=)=∈N
be a sequence in [Y, (2 − Y)UV], and let (_=)=∈N be a sequence in [Y, 1]. Suppose
that the set / of solutions to the problem

find G ∈ H such that 0 ∈ �G + �G (8.104)

is not empty and let /∗ be the set of solutions to the dual problem

find G∗ ∈ H such that 0 ∈ −�−1(−G∗) + �−1G∗. (8.105)

Let G0 ∈ H and iterate
for = = 0, 1, . . .
D∗= = W

−1
= *G= − �G=

F= =
(
W−1
= * + �

)−1
D∗=

G=+1 = G= + _=(F= − G=).

(8.106)

Then the following hold:

(i) (G=)=∈N converges weakly to a point in / .
(ii) /∗ contains a single point G∗ and (∀I ∈ /) �I = G∗.
(iii) (�G=)=∈N converges strongly to G∗.

Proof. We derive from Lemma 2.25 and Example 2.39 that

(∀= ∈ N) G=+1 = G= + _=
(
�W=*−1◦�

(
G= − W=*−1(�G=)

)
− G=

)
, (8.107)

where *−1 ◦ � : X → 2X is maximally monotone, *−1 ◦ � : X → X is UV-
cocoercive, and zer(� + �) = zer(*−1 ◦ (� + �)). Hence the assertions follow from
Theorem 8.1 applied to*−1 ◦ � and*−1 ◦ � in X .

Remark 8.43. In terms of the warped resolvents of Section 2.4.3, (8.106) can be
condensed into

(∀= ∈ N) G=+1 = G= + _=
(
�
*=
W=(�+�)G= − G=

)
, where *= = * − W=�. (8.108)

We present an approach proposed in Vũ (2013), which revisited the primal–
dual setting of Combettes and Pesquet (2012) discussed in Proposition 7.10 by
replacing the monotone Lipschitz property of the operators � and (�−1

:
)1≤:≤?

with the stronger cocoercivity property.

Proposition 8.44 (Vũ 2013). Let 0 < ? ∈ N, let U ∈ ]0, +∞[, let � : H → 2H
be maximally monotone, and let � : H → H be U-cocoercive. For every : ∈
{1, . . . , ?}, let V: ∈ ]0, +∞[, let G: be a real Hilbert space, let �: : G: → 2G: be
maximally monotone, let �: : G: → 2G: be maximally monotone and V:-strongly
monotone, and suppose that 0 ≠ !: ∈ B(H,G:). Additionally, suppose that the set
/ of solutions to the primal inclusion

find G ∈ H such that 0 ∈ �G +
?∑
:=1

!∗:((�: ��:)(!:G)) + �G (8.109)
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is not empty, and let /∗ be the set of solutions to the dual inclusion

find H∗1 ∈ G1, . . . , H
∗
? ∈ G? such that

(∃ G ∈ H)


G ∈ (� + �)−1

(
−

?∑
:=1

!∗: H
∗
:

)
,

(∀: ∈ {1, . . . , ?}) !:G ∈ �−1
:
H∗
:
+ �−1

:
H∗
:
.

(8.110)

Let Y ∈ ]0, 1[, let (_=)=∈N be a sequence in [Y, 1], let G0 ∈ H, let (H∗1,0, . . . , H
∗
?,0) ∈

G1 ⊕ · · · ⊕ G?, let g ∈ ]0, +∞[, and let (f1, . . . , f?) ∈ ]0, +∞[?. Set

ℵ = min{U, V1, . . . , V?} and V =
1 −

√
g
∑?

:=1 f: ‖!: ‖2

max{g, f1, . . . , f?}
(8.111)

and assume that

ℵV > 1
2
. (8.112)

Iterate
for = = 0, 1, . . .

G∗= = g
(∑?

:=1 !
∗
:
H∗
:,=
+ �G=

)
?= = �g�(G= − G∗=)
G=+1 = G= + _=(?= − G=)
for : = 1, . . . , ?
H:,= = f:

(
!:(2?= − G=) − �−1

:
H∗
:,=

)
@∗
:,=

= �f:�−1
:

(
H∗
:,=
+ H:,=

)
H∗
:,=+1 = H

∗
:,=
+ _=

(
@∗
:,=
− H∗

:,=

)
.

(8.113)

Then there exist G ∈ / and (H∗1, . . . , H
∗
?) ∈ /∗ such that G= ⇀ G, and, for every

: ∈ {1, . . . , ?}, H∗
:,=

⇀ H∗
:
.

Proof. Set X = H ⊕ G1 ⊕ · · · ⊕ G? and

S : X→ 2X : (G, H∗1, . . . , H
∗
?) ↦→(

�G +∑?

:=1 !
∗
:
H∗
:

)
×
(
−!1G + �−1

1 H∗1
)
× · · · ×

(
−!?G + �−1

? H
∗
?

)
,

I : X→ X : (G, H∗1, . . . , H
∗
?) ↦→

(
�G, �−1

1 H∗1, . . . , �
−1
? H
∗
?

)
,

[ : X→ X : (G, H∗1, . . . , H
∗
?) ↦→(

g−1G −∑?

:=1 !
∗
:
H∗
:
,−!1G + f−1

1 H∗1, . . . ,−!?G + f
−1
? H
∗
?

)
.

(8.114)
As in (5.61), S is maximally monotone, while I is ℵ-cocoercive. Furthermore,
[ ∈ B(H) is self-adjoint and, as shown in Vũ (2013, equation (3.20)), (8.112)
implies that it is V-strongly monotone. Now set (∀= ∈ N) x= = (G=, H∗1,=, . . . , H

∗
?,=)

and w= = (?=, @∗1,=, . . . , @
∗
?,=). Then, adopting the same pattern as in the proof of
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Example 5.20, we rewrite (8.113) as

for = = 0, 1, . . .
u∗= = [x= − Ix=
w= = ([ + S)−1u∗=
x=+1 = x= + _=(w= − x=),

(8.115)

and thus recover (8.106) with (∀= ∈ N) W= = 1 < 2ℵV. We therefore ap-
peal to Proposition 8.42(i) to obtain the weak convergence of (x=)=∈N to a point
(G, H∗1, . . . , H

∗
?) ∈ zer(S + I). However, replacing � with � + � and (�−1

:
)1≤:≤?

with (�−1
:
+ �−1

:
)1≤:≤? in Lemma 3.12(ii) yields zer(S + I) ⊂ / × /∗.

Remark 8.45. In terms of Framework 1.2, the embedding underlying Propos-
ition 8.44 employs X = H ⊕ G1 ⊕ · · · ⊕ G?, M = S + I and T : X →
H : (G, H∗1, . . . , H

∗
?) ↦→ G.

The following application to minimization revisits the setting of Example 7.13
and Remark 7.14.

Example 8.46. Let 0 < ? ∈ N, let U ∈ ]0, +∞[, let 5 ∈ Γ0(H), and let ℎ : H →
R be convex, differentiable, and such that ∇ℎ is 1/U-Lipschitzian. For every
: ∈ {1, . . . , ?}, let V: ∈ ]0, +∞[, let G: be a real Hilbert space, let 6: ∈ Γ0(G:),
let ℓ: ∈ Γ0(G:) be V:-strongly convex, and suppose that 0 ≠ !: ∈ B(H,G:). Let
/ be the set of solutions to the primal problem

minimize
G∈H

5 (G) +
?∑
:=1

(6: � ℓ:)(!:G) + ℎ(G), (8.116)

let /∗ be the set of solutions to the dual problem

minimize
H∗1 ∈G1,...,H

∗
? ∈G?

( 5 ∗ � ℎ∗)
(
−

?∑
:=1

!∗: H
∗
:

)
+

?∑
:=1

(6∗:(H
∗
:) + ℓ

∗
:(H
∗
:)), (8.117)

and suppose that

zer
(
m 5 +

?∑
:=1

!∗: ◦ (m6: � mℓ:) ◦ !: + ∇ℎ
)
≠ ∅. (8.118)

Let Y ∈ ]0, 1[, let (_=)=∈N be a sequence in [Y, 1], let G0 ∈ H, let (H∗1,0, . . . , H
∗
?,0) ∈

G1 ⊕ · · · ⊕ G?, let g ∈ ]0, +∞[, and let (f1, . . . , f?) ∈ ]0, +∞[? be such that

https://doi.org/10.1017/S0962492923000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000065


The geometry of monotone operator splitting methods 589

(8.111)–(8.112) hold. Iterate

for = = 0, 1, . . .

G∗= = g
(∑?

:=1 !
∗
:
H∗
:,=
+ ∇ℎ(G=)

)
?= = proxg 5 (G= − G∗=)
G=+1 = G= + _=(?= − G=)
for : = 1, . . . , ?
H:,= = f:

(
!:(2?= − G=) − ∇ℓ∗:

(
H∗
:,=

))
@∗
:,=

= proxf:6∗:
(
H∗
:,=
+ H:,=

)
H∗
:,=+1 = H

∗
:,=
+ _=

(
@∗
:,=
− H∗

:,=

)
.

(8.119)

Then there exist G ∈ / and (H∗1, . . . , H
∗
?) ∈ /∗ such that G= ⇀ G, and, for every

: ∈ {1, . . . , ?}, H∗
:,=

⇀ H∗
:
.

Proof. It follows from the arguments presented in Combettes and Pesquet (2012,
Section 4) that this is an application of Proposition 8.44 with � = m 5 , � = ∇ℎ, and
(∀: ∈ {1, . . . , ?}) �: = m6: and �: = mℓ: .

Remark 8.47. Ifwemake the additional assumptions that, for every : ∈ {1, . . . , ?},
ℓ: = ]{0} and f: = f1, Example 8.46 was independently obtained in Condat (2013,
Section 5). For this reason, (8.119) in this particular setting is called theCondat–Vũ
algorithm.

8.5. Forward–backward–half-forward splitting

Let � : H → 2H be maximally monotone, let � : H → H be cocoercive, and let
& : H→ H be monotone and Lipschitzian. Then a zero of " = � +� +& can be
constructed through the forward–backward–forward algorithms of Theorem 7.1 or
Theorem 7.2, applied to � and the monotone and Lipschitzian operator � = � +&.
These algorithms require two applications of �, i.e. two applications of� and&, at
each iteration. However, the algorithms discussed so far require two applications
of a monotone Lipschitzian operator per iteration, as in the Antipin–Korpelevič
method of Section 7.1 and the forward–backward–forward methods of Sections 7.2
and 7.3, but only one application of a cocoercive operator, as in the Euler method
of Section 5.4.1 and the forward–backward methods of Sections 8.2 and 8.3. It
is therefore natural to ask whether one can find a zero of � + � + & using only
one application of � per iteration. A positive answer to this question was given
in Briceño-Arias and Davis (2018) with the following forward–backward–half-
forward splitting algorithm. We provide a simple proof of its convergence using
our geometric framework.

Proposition 8.48 (Briceño-Arias and Davis 2018). Let U ∈ ]0, +∞[, let V ∈
]0, +∞[, let � : H→ 2H bemaximally monotone, let� : H→ H be U-cocoercive,
let & : H → H be monotone and V-Lipschitzian, and suppose that the set of
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solutions / to the inclusion

find G ∈ H such that 0 ∈ �G + �G +&G (8.120)

is not empty. Let G0 ∈ H, set j = 4U/(1 +
√

1 + 16U2V2), let Y ∈ ]0, j/(j + 1)[,
and let (W=)=∈N be a sequence in [Y, (1 − Y)j]. Iterate

for = = 0, 1, . . .
2∗= = W=�G=
@∗= = W=&G=
F= = �W=�(G= − 2∗= − @∗=)
G=+1 = F= − W=&F= + @∗=.

(8.121)

Then (G=)=∈N converges weakly to a point in / .

Proof. The claims will be established as an application of Theorem 4.12 with

, = � +&, and (∀= ∈ N) *= = W
−1
= Id − � −& and @= = G=. (8.122)

In this setting, Proposition 3.9 of Bùi and Combettes (2020b) implies that (7.5) is
satisfied, we have

(∀= ∈ N) �
*=
, +� =

(
W−1
= Id + �

)
◦
(
W−1
= Id − � −&

)
= �W=� ◦ (Id − W=(� +&)), (8.123)

and the variables of (4.34) become

(∀= ∈ N)


F= = �W=�(G= − W=(�G= +&G=)),

C∗= =
(
W−1
= Id −&

)
G= −

(
W−1
= Id −&

)
F=,

X= =

(
1
W=
− 1

4U

)
‖F= − G=‖2 − 〈F= − G= | &F= −&G=〉.

(8.124)

Now set

(∀= ∈ N) _= =


W=‖C∗=‖2
X=

, if X= > 0,

Y, otherwise,
(8.125)

and note that the assumptions yield

inf
=∈N

_= > 0 and sup
=∈N

_= < 2. (8.126)

As a consequence of (8.124) and the properties of &, we have

(∀= ∈ N) X= ≤ 0⇒
(

1
W=
− 1

4U
− V

)
‖F= − G=‖2 ≤ 0

⇔ F= = G=

⇔ C∗= = 0. (8.127)
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Hence, (4.34) yields

(∀= ∈ N) 3= =
W=

_=
C∗= =

1
_=

(G= − F= + W=(&F= −&G=)). (8.128)

As a result, the sequence (G=)=∈N produced by (8.121) coincides with that of
(4.34). Hence, by Theorem 4.12(i) and (8.126),

∑
=∈N ‖3=‖2 < +∞ which, in view

of (8.128), yields
(Id − W=&)F= − (Id − W=&)G= → 0. (8.129)

However, since j ≤ 1/V, (W=)=∈N lies in [Y, (1− Y)/V] and Lemma 2.48(i) implies
that the operators (Id − W=&)=∈N are Y-strongly monotone. Hence,

(∀= ∈ N) Y‖F= − G=‖2 ≤ 〈F= − G= | (Id − W=&)F= − (Id − W=&)G=〉 (8.130)

and, by the Cauchy–Schwarz inequality and (8.129),

‖F= − G=‖ ≤ Y−1‖(Id − W=&)F= − (Id − W=&)G=‖ → 0. (8.131)

In turn, since � is 1/U-Lipschitzian, these facts confirm that

‖*=F= −*=G=‖ ≤ W−1
= ‖(Id − W=&)F= − (Id − W=&)G=‖ + ‖�F= − �G=‖

≤ Y−1‖(Id − W=&)F= − (Id − W=&)G=‖ + U−1‖F= − G=‖
→ 0. (8.132)

Thus, the assertion follows from Theorem 4.12(ii) since its conditions (iib) and
(iic) are fulfilled.

Remark 8.49. We complement Proposition 8.48 with a few commentaries.

(i) Suppose that � = 0. Then, since U can be arbitrarily large, j = 1/V and
(8.121) reverts to the forward–backward–forward algorithm (7.2).

(ii) Suppose that & = 0. Then, since V = 0, j = 2U and (8.121) becomes an
unrelaxed version of forward–backward algorithm (8.5).

(iii) Using the geometric pattern of the proof given above, a strongly convergent
version of the forward–backward–half-forward algorithm can be derived from
Theorem 4.14.

As an illustration, we extend the Lagrangian approach of Proposition 7.5.

Example 8.50. Let 5 ∈ Γ0(H), 6 ∈ Γ0(G) and ! ∈ B(H,G) be such that 0 ∈
sri(!(dom 5 ) − dom 6). Let U ∈ ]0, +∞[ and let ℎ : H → R be convex and
differentiable and such that ∇ℎ is 1/U-Lipschitzian. Suppose that the primal
problem

minimize
G∈H

5 (G) + 6(!G) + ℎ(G) (8.133)

admits solutions and consider the dual problem

minimize
E∗∈G

( 5 ∗ � ℎ∗)(−!∗E∗) + 6∗(E∗). (8.134)
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Let (G0, H0, E
∗
0) ∈ H ⊕ G ⊕ G, set j = 4U/(1 +

√
1 + 16U2(1 + ‖!‖2) ), let Y ∈

]0, j/(j + 1)[, and let (W=)=∈N be a sequence in [Y, (1 − Y)j]. Iterate
for = = 0, 1, . . .

2∗= = W=∇ℎ(G=)
@∗1,= = W=!

∗E∗=
@∗2,= = −W=a

∗
=

@∗3,= = W=(H= − !G=)
01,= = proxW= 5

(
G= − 2∗= − @∗1,=

)
02,= = proxW=6

(
H= − @∗2,=

)
G=+1 = 01,= + W=!∗@∗3,=
H=+1 = 02,= − W=@∗3,=
E∗
=+1 = E

∗
= + W=(!01,= − 02,=).

(8.135)

Then (G=)=∈N and (E∗=)=∈N converge weakly to solutions to (8.133) and (8.134),
respectively.

Proof. We adapt the approach of Section 7.4.2. The saddle operator of (7.22)–
(7.23) becomes S = G + I + W, where

G : (G, H, E∗) ↦→ m 5 (G) × m6(H) × {0},
I : (G, H, E∗) ↦→ (∇ℎ(G), 0, 0),
W : (G, H, E∗) ↦→ (!∗E∗,−E∗,−!G + H).

(8.136)

As in Section 7.4.2, G is maximally monotone and W is monotone and
√

1 + ‖!‖2-
Lipschitzian. Further, by virtue of Lemma 2.2, I is U-cocoercive. Now set
(∀= ∈ N) x= = (G=, H=, E∗=), c∗= = (2∗=, 0, 0), q∗= = (@∗1,=, @

∗
2,=, @

∗
3,=) and w= =

(01,=, 02,=, a
∗
= − @∗3,=). Then (8.135) assumes the form

for = = 0, 1, . . .
c∗= = W=Ix=
q∗= = W=Wx=
w= = �W=G(x= − c∗= − q∗=)
x=+1 = w= − W=Ww= + q∗=,

(8.137)

which is (8.121). Hence, by Proposition 8.48, (G=, H=, E∗=)=∈N converges weakly to
a point (G, H, E∗) ∈ zerS.

Remark 8.51. Let U ∈ ]0, +∞[, let � : H → 2H and � : G → 2G be maximally
monotone, let � : H → H be U-cocoercive, and let 0 ≠ ! ∈ B(H,G). As in
Remark 7.8, the saddle approach of Example 8.50 has a natural extension to the
problem of finding a zero of � + !∗ ◦ � ◦ ! + � and the dual problem of finding a
zero of −! ◦ (� + �)−1 ◦ (−!∗) + �−1. In this setting, the saddle operator is

S : H ⊕ G ⊕ G → 2H⊕G⊕G
(G, H, E∗) ↦→ (�G + �G + !∗E∗) × (�H − E∗) × {−!G + H}. (8.138)
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Accordingly, it suffices to replace ∇ℎ with �, proxW= 5 with �W=� and proxW=6 with
�W=� in (8.135) to find primal–dual solutions.

9. Block-iterative Kuhn–Tucker projective splitting
9.1. Preview

Unlike the methods described so far, those described in this section were explicitly
designed by employing the geometric principle of Theorem 4.2. The terminology
projective splitting was coined in Eckstein and Svaiter (2008) in the context of
an algorithm to solve Problem 3.1 by choosing points in the graph of � and �
to construct half-spaces containing an ‘extended solution set’. In the language of
Lemma 3.8, this set is actually the set of zeros of the Kuhn–Tucker operator (3.10),
which collapses to

zerK = {(G, G∗) ∈ H ⊕H | −G∗ ∈ �G and G ∈ �−1G∗}. (9.1)

Eckstein and Svaiter (2008) initiated a fruitful line of work towards more complex
monotone inclusions (Alotaibi, Combettes and Shahzad 2014, 2015, Bednarczuk
et al. 2018, Bùi 2022b, Combettes and Eckstein 2018, Eckstein 2017, Eckstein
and Svaiter 2009, Johnstone and Eckstein 2019, 2020, 2021, 2022, Machado 2018,
Machado and Sicre 2023, Sicre 2020). We use the term Kuhn–Tucker project-
ive splitting to describe a method that operates through the principles of Frame-
work 1.2, whereM is a Kuhn–Tucker operator. Aswe shall see, projective splitting
algorithms have features quite different from those of the traditional methods of
Sections 5–8 and they display an unprecedented level of flexibility in terms of
implementation.

9.2. Primal–dual composite inclusions

Let us go back to the composite Problem 3.7. The sets of primal and dual solutions
are, respectively,

/ = zer(� + !∗ ◦ � ◦ !) and /∗ = zer(−! ◦ �−1 ◦ (−!∗) + �−1). (9.2)

Moreover, as pointed out in Example 3.20, an embedding of (3.7) is (X,K,T ),
where X = H ⊕ G, K is the Kuhn–Tucker operator of (3.10), that is,

K : X→ 2X : (G, H∗) ↦→ (�G + !∗H∗) × (�−1H∗ − !G), (9.3)

and T : X → H : (G, H∗) ↦→ G. The task is therefore to find a zero of K. This is
the path followed in the monotone+skew approach of Section 7.4.1. However, this
method requires knowledge of ‖!‖ (or of a tight upper bound for it), which may be
difficult to obtain in certain problems. The renormed algorithms of Example 5.20
and Boţ and Hendrich (2013), the saddle algorithm of Remark 8.51 and the min-
imal lifting algorithm of Aragón-Artacho et al. (2023) share the same potential
limitation. On the other hand, the method of Proposition 5.15, which was derived
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from the method of partial inverses, requires the inversion of linear operators, a
task that may also face implementation issues.
A strategy which circumvents the above shortcomings was proposed in Alotaibi

et al. (2014), where the approach of Eckstein and Svaiter (2008) for solving Prob-
lem 3.1 was extended to Problem 3.7. More precisely, it employs the geometric
principle of Proposition 4.10 as follows. Let us assume that, at iteration =, points
(0=, 0∗=) ∈ gra � and (1=, 1∗=) ∈ gra � are available and set

m= = (0=, 1∗=) and m∗= = (0∗= + !∗1∗=, 1= − !0=). (9.4)

Then it is clear from (9.3) that (m=,m
∗
=) ∈ graK. Hence, given _= ∈ ]0, 2[,

iteration = of algorithm (4.32) updates (G=, H∗=) ∈ X via the routine

(C=, C∗=) = (1= − !0=, 0∗= + !∗1∗=)
g= = ‖C=‖2 + ‖C∗=‖2
if g= > 0⌊
\= =

_=

g=
max{0, 〈G= | C∗=〉 + 〈C= | H∗=〉 − 〈0= | 0∗=〉 − 〈1= | 1∗=〉}

else \= = 0
(G=+1, H∗=+1) = (G= − \=C∗=, H∗= − \=C=).

(9.5)

In view of Proposition 4.10(ii), the task is now to specify (0=, 0∗=) ∈ gra � and
(1=, 1∗=) ∈ gra � so as to guarantee that m= − (G=, H∗=) ⇀ 0 and m∗= → 0, that is,

0= − G= ⇀ 0, 1∗= − H∗= ⇀ 0, 1= − !0= → 0 and 0∗= + !∗1∗= → 0. (9.6)

Given W= and f= in ]0, +∞[, choosing

(0=, 0∗=) = (�W=�(G= − W=!∗H∗=), W−1
= (G= − �W=�(G= − W=!∗H∗=)) − !∗H∗=) (9.7)

and

(1=, 1∗=) = (�f=�(!G= + f=H∗=), f−1
= (!G= − �f=�(!G= + f=H∗=)) + H∗=) (9.8)

satisfies this requirement, which leads to the following result.

Proposition 9.1 (Alotaibi et al. 2014). Let � : H → 2H and � : G → 2G be
maximally monotone, and let ! ∈ B(H,G). Suppose that the set / of solutions to
the primal inclusion

find G ∈ H such that 0 ∈ �G + !∗(�(!G)) (9.9)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗ ∈ G such that 0 ∈ −!(�−1(−!∗H∗)) + �−1H∗. (9.10)

Let Y ∈ ]0, 1[, let (W=)=∈N and (f=)=∈N be sequences in [Y, 1/Y], let (_=)=∈N be a
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sequence in [Y, 2 − Y], let G0 ∈ H, and let H∗0 ∈ G. Iterate

for = = 0, 1, . . .

0= = �W=�(G= − W=!∗H∗=)
;= = !G=
1= = �f=�(;= + f=H∗=)
C= = 1= − !0=
C∗= = W

−1
= (G= − 0=) + f−1

= !∗(;= − 1=)
g= = ‖C=‖2 + ‖C∗=‖2
if g= > 0⌊
\= = _=(W−1

= ‖G= − 0=‖2 + f−1
= ‖;= − 1=‖2)/g=

else \= = 0
G=+1 = G= − \=C∗=
H∗
=+1 = H

∗
= − \=C=.

(9.11)

Then (G=)=∈N converges weakly to a point G ∈ / and (H∗=)=∈N converges weakly to
a point H∗ ∈ /∗.

Remark 9.2. Here are notable instantiations of Proposition 9.1.

(i) The first instance of (9.11) in the literature seems to be that of Dong (2005),
where H and G are Euclidean spaces, � = 0, and (∀= ∈ N) W= = f= = 1 and
_= = _ ∈ ]0, 2[. Convergence of the primal sequence (G=)=∈N was established
by different means.

(ii) In the setting of Problem 3.1 (i.e. G = H and ! = Id), (9.11) was studied in
Eckstein and Svaiter (2008). Under the additional assumptions that � + �
is maximally monotone or that H is finite-dimensional, weak convergence
was established in Eckstein and Svaiter (2008, Proposition 3) for a version of
(9.11) which allows for an additional relaxation parameter in the definition
of 0=.

Remark 9.3. So far, we have presented several methods to solve Problem 3.7; see
Proposition 5.15, Example 5.20, Proposition 7.3 and Remark 8.51. Some features
that distinguish the splitting algorithm (9.11) from them are as follows.

(i) At each iteration of (9.11), different proximal parameters W= and f= can be
used for the operators � and � and, since Y is chosen by the user, their values
can be arbitrarily large.

(ii) The execution of (9.11) does not require that ‖!‖ or an approximation thereof
be known, or the inversion of linear operators.

(iii) A variant of (9.11) exploiting the cocoercivity of some of the operators and
activating them via Euler steps is discussed in Johnstone and Eckstein (2021).

(iv) The complexity of certain special cases and variants of (9.11) is investigated
in Johnstone and Eckstein (2019) and Machado and Sicre (2023).
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The following strongly convergent projective splitting algorithm results from
Proposition 4.11.

Proposition 9.4 (Alotaibi et al. 2015). Let � : H → 2H and � : G → 2G be
maximally monotone, and let ! ∈ B(H,G). Suppose that the set / of solutions to
the primal inclusion

find G ∈ H such that 0 ∈ �G + !∗(�(!G)) (9.12)

is not empty and let /∗ be the set of solutions to the dual inclusion

find H∗ ∈ G such that 0 ∈ −!(�−1(−!∗H∗)) + �−1H∗. (9.13)

Let Y ∈ ]0, 1[, let (W=)=∈N and (f=)=∈N be sequences in [Y, 1/Y], let (_=)=∈N be a
sequence in [Y, 1], let G0 ∈ H, and let H∗0 ∈ G. Iterate

for = = 0, 1, . . .

0= = �W=�(G= − W=!∗H∗=)
;= = !G=
1= = �f=�(;= + f=H∗=)
C= = 1= − !0=
C∗= = W

−1
= (G= − 0=) + f−1

= !∗(;= − 1=)
g= = ‖C=‖2 + ‖C∗=‖2
if g= > 0⌊
\= = _=

(
W−1
= ‖G= − 0=‖2 + f−1

= ‖;= − 1=‖2
)
/g=

else \= = 0
A= = G= − \=C∗=
A∗= = H

∗
= − \=C=

j= = \=(〈G0 − G= | C∗=〉 + 〈C= | H∗0 − H
∗
=〉)

`= = ‖G0 − G=‖2 + ‖H∗0 − H
∗
=‖2

a= = \
2
=g=

d= = `=a= − j2
=

if d= = 0 and j= ≥ 0⌊
G=+1 = A=
H∗
=+1 = A

∗
=

if d= > 0 and j=a= ≥ d=⌊
G=+1 = G0 − \=(1 + j=/a=)C∗=
H∗
=+1 = H

∗
0 − \=(1 + j=/a=)C=

if d= > 0 and j=a= < d=⌊
G=+1 = G= + (a=/d=)(j=(G0 − G=) − `=\=C∗=)
H∗
=+1 = H

∗
= + (a=/d=)(j=(H∗0 − H

∗
=) − `=\=C=).

(9.14)

Then (G=)=∈N converges strongly to a point G ∈ / and (H∗=)=∈N converges strongly
to a point H∗ ∈ /∗.
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9.3. Block-iterative asynchronous method

We consider a refinement of Problem 3.11 in which the primal variable is specified
in terms of finitely many coordinates, say x = (G1, . . . , G<), where each G8 lies
in a Hilbert space H8 . Such coupled systems of inclusions arise in particular in
multivariate optimization (Acker and Prestel 1980, Attouch, Bolte, Redont and
Soubeyran 2008, Attouch et al. 2010, Combettes 2013b), domain decomposition
methods (Alduncin 2023, Attouch et al. 2016, 2011), image processing (Aujol and
Chambolle 2005, Briceño-Arias, Combettes, Pesquet and Pustelnik 2011, Chaux
et al. 2013, Vese and Osher 2004), game theory (Belgioioso et al. 2021, Börgens
and Kanzow 2021, Briceño-Arias and Combettes 2013, Bùi and Combettes 2022a),
network flow problems (Bertsekas 1998, Bùi 2022a, Rockafellar 1984, 1995), ma-
chine learning (Briceño-Arias, Chierchia, Chouzenoux and Pesquet 2019, Jenatton
et al. 2011, Micchelli, Morales and Pontil 2013, Villa, Rosasco, Mosci and Verri
2014), signal processing (Briceño-Arias and Combettes 2009), mean field games
(Briceño-Arias et al. 2018), statistics (Combettes and Müller 2020, Yan and Bien
2021), tensor completion (Gandy, Recht andYamada 2011,Mizoguchi andYamada
2019) and semi-definite programming (Hu, Sotirov andWolkowicz 2023, Oliveira,
Wolkowicz and Xu 2018).

Problem 9.5. Let � = {1, . . . , <} and  = {1, . . . , ?} be nonempty finite sets.
For every 8 ∈ � and every : ∈  , letH8 and G: be real Hilbert spaces, let �8 : H8 →
2H8 and �: : G: → 2G: be maximally monotone, and let !:8 ∈ B(H8 ,G:). Set

H =
⊕
8∈�

H8 and G =
⊕
:∈ 

G: . (9.15)

The objective is to solve the primal inclusion

find x ∈ H such that (∀8 ∈ �) 0 ∈ �8G8 +
∑
:∈ 

!∗:8

(
�:

(∑
9∈�

!: 9G 9

))
(9.16)

together with the dual inclusion

find y∗ ∈ G such that (∃ x ∈ H)


(∀8 ∈ �) G8 ∈ �−1

8

(
−

∑
:∈ 

!∗:8H
∗
:

)
,

(∀: ∈  )
∑
8∈�

!:8G8 ∈ �−1
: H
∗
: .

(9.17)

Remark 9.6. There is an oversight in the dual problem given in Combettes and
Eckstein (2018, Problem 1): the correct formulation of the dual inclusion is (9.17).

The counterpart of Lemma 3.12 for Problem 9.5 is as follows.
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Lemma 9.7. In the setting of Problem 9.5, set X = H ⊕ G, and let ` and `∗ be
the sets of solutions to (9.16) and (9.17), respectively. Define the Kuhn–Tucker
operator of Problem 9.5 as

K : X→ 2X : (x, y∗) ↦→(
�1G1 +

∑
:∈ 

!∗:1H
∗
:

)
× · · · ×

(
�<G< +

∑
:∈ 

!∗:<H
∗
:

)
×
(
−

∑
8∈�

!18G8 + �−1
1 H∗1

)
× · · · ×

(
−

∑
8∈�

!?8G8 + �−1
? H
∗
?

)
(9.18)

and the set of Kuhn–Tucker points as zerK. Then the following hold:

(i) K is maximally monotone.

(ii) zerK is a closed convex subset of ` × `∗.

(iii) `∗ ≠ ∅⇔ zerK ≠ ∅⇒ ` ≠ ∅.

Example 9.8. In the setting of Problem 9.5, set X =H ⊕ G, let K be the Kuhn–
Tucker operator of (9.18), and let T : X→H : (x, y∗) ↦→ x. Then it follows from
Lemma 9.7(ii) that (X,K,T ) is an embedding of (9.16).

When the monotone operators (�8)1≤8≤< and (�:)1≤:≤? are taken to be subdif-
ferentials, Problem 9.5 specializes to a multivariate minimization problem under a
suitable qualification condition.

Example 9.9. Define H and G as in Problem 9.5. For every 8 ∈ � and every
: ∈  , let 58 ∈ Γ0(H8), let 6: ∈ Γ0(G:), and let !:8 ∈ B(H8 ,G:). Suppose that
(existence of a Kuhn–Tucker point)

(∃ x ∈ H)(∃ y∗ ∈ G)


(∀8 ∈ �) −

∑
:∈ 

!∗:8H
∗
: ∈ m 58(G8),

(∀: ∈  )
∑
8∈�

!:8G8 ∈ m6∗:(H
∗
:).

(9.19)

The objective is to solve the primal minimization problem

minimize
x∈H

∑
8∈�

58(G8) +
∑
:∈ 

6:

(∑
8∈�

!:8G8

)
(9.20)

together with its dual problem

minimize
y∗∈G

∑
8∈�

5 ∗8

(
−

∑
:∈ 

!∗:8H
∗
:

)
+

∑
:∈ 

6∗:(H
∗
:). (9.21)
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In an attempt to recast Problem 9.5 as a realization of Problem 3.7, let us define
� : H→ 2H : x ↦→ �1G1 × · · · × �<G<,
� : G → 2G : y ↦→ �1H1 × · · · × �?H?,
! : H→ G : x ↦→

(∑
8∈� !18G8 , . . . ,

∑
8∈� !?8G8

)
.

(9.22)

Upon injecting these operators into (9.11) and invoking Example 2.37, we obtain an
algorithm that requires that<+ ? resolvents be evaluated at each iteration. In large-
scale problems, < and ? can be huge and this requirement poses implementation
issues as the only information flow within an iteration is from the < operators
(�8)8∈� calculations to the ? operators (�:):∈ calculations. This results in an
algorithm in which large blocks of calculations must be performed before any
information is exchanged between subsystems. Thus, if some small subset of the
subsystems represented by the operators (�8)8∈� or (�:):∈ are more computation-
intensive than others, load balancing can become problematic: most processorsmay
have to sit idle while the remaining few complete their tasks. More generally, none
of the methods discussed so far can handle block-processing or asynchronicity.
The algorithm we present now was conceived in Combettes and Eckstein (2018)

around combined objectives which were beyond the reach of the existing splitting
algorithms.

• Block iterations. At iteration =, it necessitates calculation of new points in the
graphs of only some of the operators, say (�8)8∈�= and (�:):∈ = with �= ⊂ �
and  = ⊂  . The deterministic control sequences (�=)=∈N and ( =)=∈N
dictate how frequently the various operators are used.

• Asynchronicity. A new point (08,=, 0∗8,=) ∈ gra �8 being incorporated into
the calculations at iteration = may be based on data G8, c8(=) and (H∗

:, c8(=)):∈ 
available at some possibly earlier iteration c8(=) ≤ =. Therefore, the cal-
culation of (08,=, 0∗8,=) could have been initiated at iteration c8(=), with its
results becoming available only at iteration =. Likewise, for every : ∈  =,
the computation of (1:,=, 1∗:,=) ∈ gra �: can be initiated at some iteration
l:(=) ≤ =, based on (G8,l: (=))8∈� and H∗:,l: (=).

• Convergence. It guarantees (weak or strong) convergence of the iterates to
primal and dual solutions.

Remark 9.10. Regarding block iterations for Problem 9.5, a product space ver-
sion of the Douglas–Rachford algorithm was introduced in Combettes and Pesquet
(2015), which features random activation of the blocks. A random block-iterative
version of the forward–backward algorithm was also proposed in Combettes and
Pesquet (2015), which in Pesquet and Repetti (2015) led to algorithms for Prob-
lem 9.5 via the renorming techniques presented in Section 8.4.6; for specialized
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block-iterative forward–backward algorithms tailored for instances of Example 9.9,
see Briceño-Arias et al. (2019), Liu and Wright (2015), Salzo and Villa (2022) and
Traoré, Salzo and Villa (2023). These methods differ from the deterministic ones
presented below in that they operate under stochastic assumptions on the underlying
processes, have a less predictable computational load over the iterations, have less
freedom in the choice of the proximal parameters, and offer only almost sure con-
vergence guarantees; see also Bùi, Combettes andWoodstock (2022) for numerical
comparisons.

Going back to (9.5) in the setting of (9.22) and Lemma 9.7, what is actually
needed at iteration = to create the half-space containing zerK are points{

(08,=, 0∗8,=) ∈ gra �8 , for 8 ∈ �,
(1:,=, 1∗:,=) ∈ gra �: , for : ∈  .

(9.23)

The key observation is that not all of these points have to be new in order to obtain
a new half-space. In other words, we can update only some of them while keeping
old ones and still create a new half-space onto which the current primal–dual iterate
(x=, y∗=) = (G1,=, . . . , G<,=, H

∗
1,=, . . . , H

∗
?,=) will be projected. How often the points

in the individual graphs should be updated, and in which fashion, will be regulated
by the following rules.

Assumption 9.11. Given 0 < ' ∈ N, (�=)=∈N is a sequence of nonempty subsets
of �, and ( =)=∈N is a sequence of nonempty subsets of  such that

�0 = �,  0 =  and (∀= ∈ N)



=+'−1⋃
9==

� 9 = �,

=+'−1⋃
9==

 9 =  .

(9.24)

Assumption 9.12. ) ∈ N and, for every 8 ∈ � and every : ∈  , (c8(=))=∈N
and (l:(=))=∈N are sequences in N such that (∀= ∈ N) = − ) ≤ c8(=) ≤ = and
= − ) ≤ l:(=) ≤ =.

With these considerations and by making selections for the updated points
(08,=, 0∗8,=)8∈�= and (1∗

:,=
, 1∗
:,=

):∈ = akin to those of (9.7) and (9.8), we arrive
at the following realization of (9.5).

Algorithm 9.13. Consider the setting of Problem 9.5, suppose that Assump-
tions 9.11 and 9.12 are in force, let Y ∈ ]0, 1[, and let (_=)=∈N be a sequence in
[Y, 2− Y]. For every 8 ∈ �, let (W8,=)=∈N be a sequence in [Y, 1/Y] and let G8,0 ∈ H8 .
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For every : ∈  , let (f:,=)=∈N be a sequence in [Y, 1/Y] and let H∗
:,0 ∈ G: . Iterate

for = = 0, 1, . . .

for every 8 ∈ �=
;∗
8,=
=

∑
:∈ !

∗
:8
H∗
:, c8(=)

08,= = �W8, c8 (=)�8

(
G8, c8(=) − W8, c8(=);

∗
8,=

)
0∗
8,=
= W−1

8, c8(=)(G8, c8(=) − 08,=) − ;∗8,=
for every 8 ∈ � r �=⌊ (

08,=, 0
∗
8,=

)
=
(
08,=−1, 0

∗
8,=−1

)
for every : ∈  =
;:,= =

∑
8∈� !:8G8,l: (=)

1:,= = �f:,l: (=)�:

(
;:,= + f:,l: (=)H

∗
:,l: (=)

)
1∗
:,=

= H∗
:,l: (=) + f

−1
:,l: (=)(;:,= − 1:,=)

for every : ∈  r  =⌊ (
1:,=, 1

∗
:,=

)
=
(
1:,=−1, 1

∗
:,=−1

)
for every 8 ∈ �⌊
C∗
8,=
= 0∗

8,=
+∑

:∈ !
∗
:8
1∗
:,=

for every : ∈  ⌊
C:,= = 1:,= −

∑
8∈� !:808,=

g= =
∑
8∈� ‖C∗8,=‖2 +

∑
:∈ ‖C:,=‖2

if g= > 0
\= =

_=

g=
max

{
0,

∑
8∈�

(
〈G8,= | C∗8,=〉 − 〈08,= | 0∗8,=〉

)
+∑:∈ 

(
〈C:,= | H∗:,=〉 − 〈1:,= | 1

∗
:,=
〉
)}

else \= = 0
for every 8 ∈ �⌊
G8,=+1 = G8,= − \=C∗8,=

for every : ∈  ⌊
H∗
:,=+1 = H

∗
:,=
− \=C:,=.

(9.25)

Weak convergence is obtained by applying the principles of Proposition 4.10(ii).

Theorem 9.14 (Combettes and Eckstein 2018). Consider the setting of Prob-
lem 9.5 and Algorithm 9.13, and suppose that the Kuhn–Tucker operator K of
(9.18) has zeros. Then, for every 8 ∈ �, (G8,=)=∈N converges weakly to a point
G8 ∈ H8 and, for every : ∈  , (H∗

:,=
)=∈N converges weakly to a point H∗

:
∈ G: .

In addition, (G8)8∈� solves the primal problem (9.16) and (H∗
:
):∈ solves the dual

problem (9.17).

Remark 9.15. Here are a few comments on algorithm (9.13).

(i) The synchronous implementation is obtained by taking, for every = ∈ N,
every 8 ∈ �= and every : ∈  =, c8(=) = l:(=) = =.
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(ii) We recover Theorem 4.3 of Alotaibi et al. (2014) (and in particular Propos-
ition 9.4 when < = ? = 1) in the special case when the implementation is
synchronous, and at every iteration =, every operator is used (i.e. �= = � and
 = =  ), with W8,= = W= for every 8 ∈ � and f:,= = f= for every : ∈  .

(iii) The specialization of Theorem 9.14 to the minimization setting of Ex-
ample 9.9 is obtained by replacing each �W8, c8 (=)�8 with proxW8, c8 (=) 58

and each
�f:,l: (=)�: with proxf:,l: (=)6:

. Numerical experiments are presented in Bùi
et al. (2022) in the context of signal recovery and machine learning, and in
Eckstein, Watson and Woodruff (2023) in the context of stochastic program-
ming.

(iv) For the strongly convergent variant of Theorem 9.14 based on Proposi-
tion 4.11, see Combettes and Eckstein (2018, Theorem 15).

(v) When < = 1 and � = 0, a variant that takes into account the fact that some of
the operators (�:):∈ may be monotone and Lipschitzian, and which activate
them via Euler steps is presented in Johnstone and Eckstein (2022); see also
Johnstone and Eckstein (2020).

10. Block-iterative saddle projective splitting
10.1. Preview

In all the algorithms discussed so far, each monotone operator has one of three
properties: it is set-valued, single-valued and cocoercive, or single-valued and
Lipschitzian. In addition, at each iteration, a set-valued operator is used once via
its resolvents, a cocoercive operator once via aEuler step and aLipschitzian operator
twice via Euler steps. This is particularly the case in the forward–backward–half-
forward algorithm of Section 8.5, the objective of which is to find a zero of

" = � +� +&, where


� : H→ 2H is maximally monotone,
� : H→ H is cocoercive,
& : H→ H is monotone and Lipschitzian.

(10.1)

On the other hand, the Kuhn–Tucker projective splitting techniques of Section 9 ac-
tivate all the operators via their resolvents (exceptionswere noted inRemarks 9.3(iii)
and 9.15(v), but they concern special cases of Problem 9.5). Furthermore, they
are not designed to handle problems such as (7.37) or (8.109), which incorporate
parallel sums.
In this section, following Bùi and Combettes (2022b), we unify all the problem

formulations encountered in Sections 5–9 by including parallel sums in the system
of monotone inclusions of Problem 9.5, and decomposing each operator in the
resulting problem as in (10.1). In addition, nonlinear coupling operators ('8)8∈�
are incorporated.
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Problem 10.1. Let (H8)8∈� and (G:):∈ be finite families of real Hilbert spaces,
and set

H =
⊕
8∈�

H8 and G =
⊕
:∈ 

G: . (10.2)

For every 8 ∈ � and every : ∈  , suppose that the following are satisfied:

[a] �8 : H8 → 2H8 is maximally monotone, �8 : H8 → H8 is cocoercive with
constant Uc

8
∈ ]0, +∞[, &8 : H8 → H8 is monotone and Lipschitzian with

constant Ul
8
∈ [0, +∞[, and '8 : H→ H8 .

[b] �m
:

: G: → 2G: is maximally monotone, �c
:

: G: → G: is cocoercive with
constant Vc

:
∈ ]0, +∞[, and �l

:
: G: → G: is monotone and Lipschitzian with

constant Vl
:
∈ [0, +∞[.

[c] �m
:

: G: → 2G: is maximally monotone, �c
:

: G: → G: is cocoercive with
constant Xc

:
∈ ]0, +∞[, and �l

:
: G: → G: is monotone and Lipschitzian with

constant Xl
:
∈ [0, +∞[.

[d] !:8 ∈ B(H8 ,G:).

In addition,

[e] X : H → H : x ↦→ ('8x)8∈� is monotone and Lipschitzian with constant
j ∈ [0, +∞[.

The objective is to solve the primal problem

find x = (G8)8∈� ∈ H such that (∀8 ∈ �) 0 ∈ �8G8 + �8G8 +&8G8 + '8x

+
∑
:∈ 

!∗:8

(((
�m
: + �

c
: + �

l
:

)
�
(
�m
: + �

c
: + �

l
:

))(∑
9∈�

!: 9G 9

))
(10.3)

and the associated dual problem

find y∗ = (H∗:):∈ ∈ G such that (∃ x ∈ H)
(∀8 ∈ �) −

∑
:∈ 

!∗:8H
∗
: ∈ �8G8 + �8G8 +&8G8 + '8x,

(∀: ∈  ) H∗
:
∈
((
�m
:
+ �c

:
+ �l

:

)
�
(
�m
:
+ �c

:
+ �l

:

))(∑
8∈�

!:8G8

)
.

(10.4)

Here is an instance of Problem 10.1 which is not captured by previous monotone
inclusion models.

Example 10.2. We consider a game-theoretic minimax problem. Let � be a finite
set and suppose that ∅ ≠ � ⊂ �. For every 8 ∈ �, the strategy G8 of player 8 belongs
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to a real Hilbert spaceH8 . A strategy profile is a point

x = (G8)8∈� ∈
⊕
8∈�

H8 , (10.5)

and the associated profile of the players other than 8 ∈ � is xr8 = (G 9) 9∈�r{8 }. For
every 8 ∈ � and every

(G8 , y) ∈ H8 ⊕
⊕
9∈�

H 9 , (10.6)

we set (G8; yr8) = (H1, . . . , H8−1, G8 , H8+1, . . . , H?). Now set

U =
⊕
8∈�r�

H8 , V =
⊕
9∈�

H 9 and H = U ⊕ V , (10.7)

and, for every 8 ∈ �, let 58 ∈ Γ0(H8). Further, let L : H → R be differentiable
with a Lipschitzian gradient and such that, for every u ∈ U and every v ∈ V , the
functions −L(u, ·) and L(·, v) are convex. We consider the multivariate minimax
problem

minimize
u∈U

maximize
v∈V

∑
8∈�r�

58(D8) + L(u, v) −
∑
9∈�

5 9(E 9). (10.8)

Now define

(∀8 ∈ �) h8 : H→ R : (u, v) ↦→
{
L(u, v), if 8 ∈ � r �,
−L(u, v), if 8 ∈ �.

(10.9)

Then (10.8) can be put in the form

find x ∈ H such that (∀8 ∈ �) G8 ∈ Argmin 58 + h8(·; xr8). (10.10)

Since

(∀8 ∈ �)(∀x ∈ H) ∇8h8(x) =

{
∇8L(x), if 8 ∈ � r �,
−∇8L(x), if 8 ∈ �,

(10.11)

the operator

X : H→H : x ↦→ (∇8h8(x))8∈� = ((∇8L(x))8∈�r� , (−∇9L(x)) 9∈� ) (10.12)

is monotone (Rockafellar 1970b, 1971) and Lipschitzian. Now, for every 8 ∈ �, set
�8 = m 58 . Then, by Fermat’s rule, (10.10) is equivalent to

find x ∈ H such that (∀8 ∈ �) 0 ∈ �8G8 + '8x, (10.13)
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which shows that (10.8) is an instantiation of (10.3). Special cases of (10.8) under
the above assumptions arise inAttouch et al. (2010), Combettes and Pesquet (2021),
He andMonteiro (2015), Nemirovski (2004), Rockafellar (1995), Thekumparampil,
Jain, Netrapalli and Oh (2019) and Yoon and Ryu (2021).

Our objective is to solve Problem 10.1 with the same level of flexibility and the
same primal–dual convergence guarantees as in Theorem 9.14, that is, to achieve
full splitting of all the operators using an asynchronous block-iterative algorithm
without knowledge of the norms of the linear operators or inversion of linear
operators. In addition, all the single-valued operators should be activated via
Euler steps.

10.2. Saddle operator formulation

The approach adopted in Section 9 to break Problem 9.5 into manageable pieces
hinged on the Kuhn–Tucker operator of Lemma 9.7 to obtain the embedding
of Framework 1.2. This strategy does not appear to lead to a full splitting of
Problem 10.1, as it contains a larger number of operators. We therefore re-
quire an embedding in a space X which is bigger than the primal–dual space
H1 ⊕ · · ·H< ⊕ G1 ⊕ · · · ⊕ G? of Theorem 9.14. As discussed in Remark 8.51,
saddle operators are defined on a bigger space than Kuhn–Tucker operators (e.g.
H ⊕ G ⊕ G versus H ⊕ G in (8.138)) and their zeros still provide primal–dual
solutions. Following Framework 1.2, as we did in Example 3.23, the methodology
of saddle projective splitting is to introduce a saddle operator for Problem 10.1.
We shall then devise asynchronous block-iterative splitting algorithms based on
the geometric principles of Theorems 4.8 and 4.9 to find a zero of it, from which
solutions to Problem 10.1 will be extracted. This is outlined in the following
lemma.

Lemma 10.3 (Bùi and Combettes 2022b). Define H and G as in (10.2), set
X =H ⊕ G ⊕ G ⊕ G and define the saddle operator of Problem 10.1 as

S : X→ 2X : (x, y, z, v∗) ↦→(?
8∈�

(
�8G8 + �8G8 +&8G8 + '8x +

∑
:∈ 

!∗:8E
∗
:

)
,?

:∈ 

(
�m
: H: + �

c
: H: + �

l
: H: − E

∗
:

)
,?

:∈ 

(
�m
: I: + �

c
: I: + �

l
: I: − E

∗
:

)
,

?
:∈ 

{
H: + I: −

∑
8∈�

!:8G8

})
, (10.14)
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let ` be the set of solutions to (10.3) and let `∗ be the set of solutions to (10.4).
Then the following hold:

(i) S is maximally monotone.

(ii) zerS is closed and convex.

(iii) Suppose that (x, y, z, v∗) ∈ zerS. Then (x, v∗) ∈ ` × `∗.

(iv) `∗ ≠ ∅⇔ zerS ≠ ∅⇒ ` ≠ ∅.

We thus obtain the following generalization of Example 3.23.

Example 10.4. In the setting of Problem 10.1, set

X =H ⊕ G ⊕ G ⊕ G, (10.15)

let S be the saddle operator of (10.14), and let

T : X→H : (x, y, z, v∗) ↦→ x. (10.16)

Then it follows from Lemma 10.3(iii) that (X,S,T ) is an embedding of (10.3).

Thus, to solve Problem 10.1 via Theorem 4.8, we need a decomposition of the
saddle operator (10.14) as S = W + C, where W : X→ 2X is maximally monotone
and C : X→ X is U-cocoercive. This will be achieved with

C : X→ X : (x, y, z, v∗) ↦→
(
(�8G8)8∈� ,

(
�c
: H:

)
:∈ ,

(
�c
: I:

)
:∈ , 0

)
(10.17)

and U = min{Uc
8
, Vc
:
, Xc
:
}8∈� ,:∈ . These considerations lead to the following

implementation of (4.23).

Algorithm 10.5. In the setting of Problem 10.1, set

U = min
{
Uc
8 , V

c
: , X

c
:

}
8∈�
:∈ 

, (10.18)

let f ∈ ]1/(4U), +∞[ and Y ∈ ]0, 1[ be such that

1
Y
> f +max

{
Ul
8 + j, Vl: , X

l
:

}
8∈�
:∈ 

, (10.19)

and let (_=)=∈N be a sequence in [Y, 2 − Y]. For every 8 ∈ �, let (W8,=)=∈N be a
sequence in

[
Y, 1/

(
Ul
8
+ j + f

)]
and let G8,0 ∈ H8 . For every : ∈  , let (`:,=)=∈N

be a sequence in
[
Y, 1/

(
Vl
:
+ f

)]
, let (d:,=)=∈N be a sequence in

[
Y, 1/

(
Xl
:
+ f

)]
,

let (f:,=)=∈N be a sequence in [Y, 1/Y], and let {H:,0, I:,0, E∗:,0} ⊂ G: . Suppose
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that Assumptions 9.11 and 9.12 are in force and iterate
for = = 0, 1, . . .

for every 8 ∈ �=
;∗
8,=
= &8G8, c8(=) + '8x c8(=) +

∑
:∈ !

∗
:8
E∗
:, c8(=);

08,= = �W8, c8 (=)�8

(
G8, c8(=) − W8, c8(=)

(
;∗
8,=
+ �8G8, c8(=)

))
;

0∗
8,=
= W−1

8, c8(=)(G8, c8(=) − 08,=) − ;∗8,= +&808,=;
b8,= = ‖08,= − G8, c8(=)‖2;

for every 8 ∈ � r �=⌊
08,= = 08,=−1; 0∗

8,=
= 0∗

8,=−1; b8,= = b8,=−1;
for every : ∈  =

D∗
:,=

= E∗
:,l: (=) − �

l
:
H:,l: (=);F∗:,= = E

∗
:,l: (=) − �

l
:
I:,l: (=);

1:,= = �`:,l: (=)�
m
:

(
H:,l: (=) + `:,l: (=)

(
D∗
:,=
− �c

:
H:,l: (=)

))
;

3:,= = �d:,l: (=)�
m
:

(
I:,l: (=) + d:,l: (=)

(
F∗
:,=
− �c

:
I:,l: (=)

))
;

4∗
:,=

= f:,l: (=)
(∑

8∈� !:8G8,l: (=) − H:,l: (=) − I:,l: (=)
)

+ E∗
:,l: (=);

@∗
:,=

= `−1
:,l: (=)(H:,l: (=) − 1:,=) + D∗:,= + �

l
:
1:,= − 4∗:,=;

C∗
:,=

= d−1
:,l: (=)(I:,l: (=) − 3:,=) + F∗:,= + �

l
:
3:,= − 4∗:,=;

[:,= = ‖1:,= − H:,l: (=)‖2 + ‖3:,= − I:,l: (=)‖2;
4:,= = 1:,= + 3:,= −

∑
8∈� !:808,=;

for every : ∈  r  =
1:,= = 1:,=−1; 3:,= = 3:,=−1; 4∗

:,=
= 4∗

:,=−1;
@∗
:,=

= @∗
:,=−1; C∗

:,=
= C∗

:,=−1; [:,= = [:,=−1;
4:,= = 1:,= + 3:,= −

∑
8∈� !:808,=;

for every 8 ∈ �⌊
?∗
8,=
= 0∗

8,=
+ '8a= +

∑
:∈ !

∗
:8
4∗
:,=

;
Δ= = −(4U)−1(∑

8∈� b8,= +
∑
:∈ [:,=

)
+∑

8∈� 〈G8,= − 08,= | ?∗8,=〉
+∑

:∈ 
(
〈H:,= − 1:,= | @∗:,=〉 + 〈I:,= − 3:,= | C

∗
:,=
〉

+ 〈4:,= | E∗:,= − 4
∗
:,=〉

)
;

if Δ= > 0

\= = _=Δ=/
(∑

8∈� ‖?∗8,=‖2+
∑
:∈ 

(
‖@∗
:,=
‖2+‖C∗

:,=
‖2+‖4:,=‖2

))
;

for every 8 ∈ �⌊
G8,=+1 = G8,= − \=?∗8,=;

for every : ∈  ⌊
H:,=+1 = H:,= − \=@∗:,=; I:,=+1 = I:,= − \=C

∗
:,=

;
E∗
:,=+1 = E

∗
:,=
− \=4:,=;

else
for every 8 ∈ �⌊
G8,=+1 = G8,=;

for every : ∈  ⌊
H:,=+1 = H:,=; I:,=+1 = I:,=; E∗:,=+1 = E

∗
:,=
.

(10.20)
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10.3. Convergence

The convergence properties of Algorithm 10.5 are laid out in the following theorem.

Theorem 10.6 (Bùi and Combettes 2022b). Consider the setting of Problem10.1
and Algorithm 10.5, and suppose that the saddle operator S of (10.14) has zeros.
Then, for every 8 ∈ �, (G8,=)=∈N converges weakly to a point G8 ∈ H8 and, for every
: ∈  , (E∗

:,=
)=∈N converges weakly to a point E∗

:
∈ G: . In addition, (G8)8∈� solves

the primal problem (10.3) and (E∗
:
):∈ solves the dual problem (10.4).

Remark 10.7. The strongly convergent variant of Theorem 10.6 based on The-
orem 4.9 is proposed in Bùi and Combettes (2022b, Theorem 2(iv)).

Remark 10.8. A fact that has not be appreciated previously is that Theorem 10.6
contains as special cases various weak convergence results of Sections 7–8. Thus,
suppose that

� =  = {1}, '1 = 0 and !11 = 0. (10.21)

Then Problem10.1 reduces to finding a zero of �1+�1+&1 (see (8.120)), (10.20) re-
duces to the forward–backward–half-forward algorithm (8.121), and Theorem 10.6
reduces to Proposition 8.48. This covers both the forward–backward–forward
algorithm (7.2) for �1 = 0 (Theorem 7.1) and the unrelaxed forward–backward
algorithm (8.5) for &1 = 0 (Theorem 8.1). In a similar fashion, we can recover
the multivariate forward–backward–forward algorithm of Combettes (2013b) by
choosing

(∀8 ∈ �)(∀: ∈  ) �8 = '8 = 0 and �c
: = �

l
: = �

c
: = �

l
: = 0. (10.22)

Going back to the simple inclusion problem (8.120), Theorem 10.6 offers several
other possibilities, for instance by implementing it with

� =  = {1}, �1 = �, '1 = �1 = &1 = 0, !11 = Id,
�m

1 = 0, �c
1 = �, �

l
1 = &, and �

m
1 = �c

1 = �
l
1 = {0}

−1. (10.23)

As mentioned earlier, Problem 10.1 encompasses all the problems discussed
earlier. Theorem 10.6 can therefore be used to provide alternative algorithms
to solve them in an asynchronous and block-iterative manner, and with operator-
dependent proximal parameters (these features are absent from the algorithms of
Sections 5–8). Here is an example.

Example 10.9. In Problem 10.1, suppose that

� = {1},  = {1, . . . , ?}, �1 = �, �1 = '1 = 0, &1 = & and (∀: ∈  )
!:1 = !: , �

m
: = �: , �

c
: = �

l
: = 0, �m

: = �: and �c
: = �

l
: = 0. (10.24)
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Then we obtain the primal–dual inclusions (7.37)–(7.38) of Proposition 7.10, and
Theorem 10.6 furnishes a flexible alternative to Proposition 7.10which, in addition,
places no restriction on the operators (�:):∈ , with the algorithm

for = = 0, 1, . . .

;∗= = &Gc(=) +
∑
:∈ !

∗
:
E∗
:, c(=);

0= = �Wc(=)�(Gc(=) − Wc(=);
∗
=);

0∗= = W
−1
c(=)(Gc(=) − 0=) − ;∗= +&0=;

for every : ∈  =

1:,= = �`:,l: (=)�:

(
H:,l: (=) + `:,l: (=)E

∗
:,l: (=)

)
;

3:,= = �d:,l: (=)�:

(
I:,l: (=) + d:,l: (=)E

∗
:,l: (=)

)
;

4∗
:,=

= f:,l: (=)(!:Gl: (=) − H:,l: (=) − I:,l: (=)) + E∗:,l: (=);
@∗
:,=

= `−1
:,l: (=)(H:,l: (=) − 1:,=) + E∗:,l: (=) − 4

∗
:,=

;
C∗
:,=

= d−1
:,l: (=)(I:,l: (=) − 3:,=) + E∗:,l: (=) − 4

∗
:,=

;
[:,= = ‖1:,= − H:,l: (=)‖2 + ‖3:,= − I:,l: (=)‖2;
4:,= = 1:,= + 3:,= − !:0=;

for every : ∈  r  =
1:,= = 1:,=−1; 3:,= = 3:,=−1; 4∗

:,=
= 4∗

:,=−1;
@∗
:,=

= @∗
:,=−1; C∗

:,=
= C∗

:,=−1; [:,= = [:,=−1;
4:,= = 1:,= + 3:,= − !:0=;

?∗= = 0
∗
= +

∑
:∈ !

∗
:
4∗
:,=

;
Δ= = −(4U)−1(‖0= − Gc(=)‖2 +

∑
:∈ [:,=

)
+ 〈G= − 0= | ?∗=〉

+∑
:∈ 

(
〈H:,= − 1:,= | @∗:,=〉 + 〈I:,= − 3:,= | C

∗
:,=
〉

+ 〈4:,= | E∗:,= − 4
∗
:,=〉

)
;

if Δ= > 0
\= = _=Δ=/

(
‖?∗=‖2 +

∑
:∈ 

(
‖@∗
:,=
‖2 + ‖C∗

:,=
‖2 + ‖4:,=‖2

))
;

G=+1 = G= − \=?∗=;
for every : ∈  ⌊
H:,=+1 = H:,= − \=@∗:,=; I:,=+1 = I:,= − \=C

∗
:,=

;
E∗
:,=+1 = E

∗
:,=
− \=4:,=;

else
G=+1 = G=;
for every : ∈  ⌊
H:,=+1 = H:,=; I:,=+1 = I:,=; E∗:,=+1 = E

∗
:,=
.

(10.25)

Remark 10.10. In the same vein as Example 10.9, we can solve the primal–dual
inclusions (8.109)–(8.110) of Proposition 8.44 via Theorem 10.6 by making the
modifications �1 = � and &1 = 0 in (10.24).
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11. Extensions and variants
The flowchart in Figure 11.1 summarizes the articulation of the main splitting
methods presented in the previous sections (a similar flowchart can be drawn for
the chain of strong convergence results starting with the Haugazeau principle of
Theorem 4.7, then Theorem 4.9, etc.). This flowchart suggests that any extension
or variant of the main theorems of Section 4 (Theorems 4.2, 4.8 and 4.12) will lead
to further splitting methods or, at least, different implementations of them. We
discuss some of the possible variations on the basic geometric principles we have
employed.
The basic operating principle of Theorem 4.2 is Fejér-monotonicity, i.e. its

property (i). There are extensions of this notion which preserve the main weak
convergence conclusions. For instance, the notion of quasi-Fejér monotonicity,
introduced in Ermol’ev and Tuniev (1968) and studied in detail in Combettes
(2001b), requires that there exist a summable sequence (Y=)=∈N in [0, +∞[ such
that

(∀I ∈ /)(∀= ∈ N) ‖G=+1 − I‖2 ≤ ‖G= − I‖2 + Y=. (11.1)

It follows from Combettes (2001b, Section 3) that Theorem 4.2 remains valid if, for
some sequence (4=)=∈N inH such that

∑
=∈N _=‖4=‖ < +∞, we use an approximate

projection ?= = proj�= G= + 4= in (4.1); see also Combettes and Pesquet (2015) for
a stochastic version of this result that allows for random iteration modelling. This
summable error framework can be propagated in Figure 11.1 to recover approximate
implementation results from Boţ and Hendrich (2013), Combettes (2004, 2013b),
Combettes and Pesquet (2012), Condat (2013), Rockafellar (1976b) and Vũ (2013).

• Cutting plane Fejér principle (Theorem 4.2)
⇓
• Graph-based cuts (Theorem 4.8)
• Section 9 (Block-iterative Kuhn–Tucker projective splitting)
• Section 10 (Block-iterative saddle projective splitting)
• Warped resolvent splitting (Theorem 4.12)

⇓
• Section 5 (Proximal point algorithm)
• Section 6 (Douglas–Rachford splitting)
• Section 7 (Forward–backward–forward splitting)
• Section 8 (Forward–backward splitting).

Figure 11.1. Articulation of the splitting methods.
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Variable metric quasi-Fejér-monotonicity is an extension of (11.1) described by

(∀I ∈ /)(∀= ∈ N) ‖G=+1 − I‖2*=+1 ≤ ‖G= − I‖
2
*=
+ Y=, (11.2)

where (*=)=∈N is a sequence of strongly monotone operators in B(H) satisfying
certain properties (Combettes and Vũ 2013). It follows from Combettes and Vũ
(2013, Theorem 3.3) that the conclusions of Theorem 4.2 remain valid in this
setting, which amounts to changing the metric of H at each iteration. See Chen
and Rockafellar (1997) and Combettes and Vũ (2014) for applications to forward–
backward splitting, Rockafellar (2024) for applications to multiplier methods and
Raguet and Landrieu (2015) for considerations on the choice of the variablemetrics.
All the results derived from Theorem 4.2 can be revisited in this variable-metric
context. Another extension of (11.1) of interest is the multi-step quasi-Fejér-
monotonicity notion

(∀I ∈ /)(∀= ∈ N) ‖G=+1 − G‖2 ≤
=∑
9=0

`=, 9 ‖G 9 − G‖2 + Y= (11.3)

of Combettes and Glaudin (2021, Lemma 2.2), where (`=, 9)=∈N,0≤ 9≤= is an ar-
ray in [0, +∞[ satisfying certain properties. This setting led to deterministic
block-iterative implementations of the forward–backward algorithm (Combettes
and Glaudin 2021, Proposition 4.9) in the spirit of methods found in Mishchenko,
Iutzeler and Malick (2020) and Mokhtari, Gürbüzbalaban and Ribeiro (2018) in
the minimization case.
The hybrid proximal-extragradient/projection methods of Solodov (2004) and

Solodov and Svaiter (1999a,b, 2001) revolve around a variant of Proposition 4.10
in which, at iteration =, (<=, <∗=) is merely required to be in the graph of a perturbed
version of " , which permits us to recover certain iterative methods beyond the
proximal point algorithm. See also Svaiter (2014) for more recent work along
these lines, where approximate resolvents are used to recover an instance of the
forward–backward algorithm.
As is apparent from Figure 11.1, many convergence results we have discussed

follow from Theorem 4.12. We now present a perturbed extension of it in which,
at iteration =, the warped resolvent is applied at a point G̃= and not necessarily
at the current iterate G=. The special case when � = 0, (@=)=∈N = (F=)=∈N, and
conditions (iib) and (iic) of Theorem 4.12 are fulfilled appears in Bùi andCombettes
(2020b, Theorem 4.2).

Theorem 11.1. Let U ∈ ]0, +∞[, let , : H → 2H be maximally monotone, let
� : H → H be U-cocoercive and such that / = zer(, + �) ≠ ∅, let G0 ∈ H, and
let (_=)=∈N be a sequence in ]0, 2[. Further, for every = ∈ N, let G̃= ∈ H and let
*= : H→ H be an operator such that ran*= ⊂ ran(*= +, + �) and *= +, + �
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is injective. Iterate

for = = 0, 1, . . .

F= = �
*=
, +� G̃=

F∗= = *=G̃= −*=F= − �F=
@= ∈ H
C∗= = F

∗
= + �@=

X= = 〈G= − F= | C∗=〉 − ‖F= − @=‖2/(4U)

3= =


X=

‖C∗=‖2
C∗=, if X= > 0,

0, otherwise
G=+1 = G= − _=3=.

(11.4)

Suppose that G̃= − G= → 0. Then the conclusions of Theorem 4.12 remain valid if
the condition*=F= −*=G= → 0 in (iic) is replaced by*=F= −*=G̃= → 0.

Proof. Adapt the pattern of the proof of Theorem 4.12.

Remark 11.2. The auxiliary sequence (G̃=)=∈N in Theorem 11.1 adds consider-
able breadth to the scope of the algorithm, compared to that of Theorem 4.12.
Here are some illustrations of the condition G̃= − G= → 0, where we assume that
inf=∈N _= > 0 and sup=∈N _= < 2.

(i) At iteration =, G̃= can model an additive perturbation of G=, say G̃= = G= + 4=.
Here, the error sequence (4=)=∈N need only satisfy ‖4=‖ → 0 and not the
usual summability condition

∑
=∈N ‖4=‖ < +∞ required in the quasi-Fejérian

splitting methods of Boţ and Hendrich (2013), Combettes (2001b, 2004,
2013b), Combettes and Pesquet (2012) and Vũ (2013).

(ii) In the spirit of inertial methods (Attouch and Cabot 2020, Beck and Teboulle
2009b, Chambolle and Dossal 2015, Combettes and Glaudin 2017, Polyak
1964), let (U=)=∈N be a sequence in R and set (∀= ∈ N r {0}) G̃= = G= +
U=(G= − G=−1). In these methods, U=(G= − G=−1)→ 0, which guarantees that
‖G̃= − G=‖ → 0, as required.

(iii) More generally, weak convergence results can be derived from Theorem 11.1
for iterations with memory, that is,

(∀= ∈ N) G̃= =

=∑
9=0

`=, 9G 9 ,

where (`=, 9)0≤ 9≤= ∈ R=+1 and
=∑
9=0

`=, 9 = 1. (11.5)

Here we have G̃= − G= → 0 if (1 − `=,=)G= −
∑=−1
9=0 `=, 9G 9 → 0. In the

case of standard inertial methods, weak convergence requires more stringent
conditions on the weights (`=, 9)=∈N,0≤ 9≤= (Combettes and Glaudin 2017).
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(iv) As indicated in Figure 11.1, Theorem 9.14 on the Kuhn–Tucker projective
splitting algorithm was derived from Proposition 4.10, hence from The-
orem 4.8, and it does not appear possible to derive it from Theorem 4.12.
However, as shown in Bùi (2022b, Corollary 4), Theorem 9.14 follows from
Theorem 11.1 (implemented with � = 0 and @= = F=) through a suitable
choice of the auxiliary sequence (G̃=)=∈N. This last example provides further
confirmation of the effectiveness of warped resolvents.
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