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Abstract

For a Z-cover M̃ →M of a translation surface, which is a lattice surface, and which
admits infinite strips, we prove that almost every direction for the straightline flow is
ergodic.

1. Introduction

A translation surface is a topological surface equipped with a geometric structure which makes
it possible to define a straightline flow on the surface in any direction θ. The study of the ergodic
properties of straightline flows on compact translation surfaces is a classical subject which has
been studied for nearly a century (see for instance [KS13]). The dynamics of the straightline
flows is best understood on so-called lattice surfaces, following celebrated work of Masur [Mas92]
and Veech [Vee89]. See [MT02, Via, Zor06] for detailed introductions to translation surfaces,
including surveys of these and more recent developments.

For non-compact translation surfaces, while several examples of lattice surfaces have been
given (see [Hoo08, HHW08, HS10]), there are not many results on the dynamics of the straightline
flows. The only example which is well understood is the infinite staircase surface, for which all
ergodic invariant Radon measures were classified [HHW08]. The infinite staircase is an example of
a lattice surface which arises as a Z-cover of a compact translation surface, and a general theory
for such surfaces was developed in [HW12]. Note that for Z-covers, the ergodicity question can
be reduced to a question on the ergodicity of a Z-valued skew product over a base dynamics. In
the infinite staircase example the base dynamics is an irrational rotation of the circle; the skew
products over rotations are well understood, and in fact the results of [HHW08] are essentially
just a reformulation of prior work on skew products [ANSS02]. However for general Z-covers, one
is led to the study of skew products over interval exchange transformations. These are poorly
understood and the reduction does not essentially simplify the analysis. Fortunately, the original
arguments of Masur [Mas92] can be adapted to this situation; using this approach we solve the
ergodicity question in many cases and obtain new results about Z-valued skew products over
interval exchanges.

We now introduce the terminology needed for stating our results. We identify S1 = R/2πZ
with the set of directions. For θ ∈ S1, throughout this paper we let eθ ∈ R2 denote the vector
(cos θ, sin θ).
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Ergodicity for infinite periodic translation surfaces

Let M be a compact translation surface, and p : M̃ →M a Z-cover of translation surfaces;
i.e. M̃ is a (non-compact) connected translation surface, there is a finite set P ⊂M such that
p : M̃ r p−1(P )→M r P is a covering map which is a translation in each chart, and there is a
translation automorphism S : M̃ → M̃ commuting with p, such that M is isomorphic to M̃/〈S〉.

An infinite strip in M̃ is a subset isometric to an infinite strip in R2, i.e. isometric to
R× (−a, a) for some a > 0. As explained in Proposition 10 below, an infinite strip Σ⊂ M̃ projects
to a cylinder C ⊂M , and the lift to Σ of a core curve δ of C is not closed, so that its endpoints
are x, Skx for some k = k(Σ) 6= 0. The holonomy vector of δ depends only on Σ and we denote
it by v(Σ). Also we denote by A(Σ) the area of C. We say that a direction θ is well-approximated
by strips if there are ε > 0, k 6= 0 and infinitely many strips Σ⊂ M̃ for which k ≡ k(Σ), the A(Σ)
are bounded below by a uniform positive bound, and

|eθ ∧ v(Σ)|6 (1− ε) A(Σ)
2‖v(Σ)‖

. (1.1)

We say that θ is an ergodic direction on M̃ if the straightline flow in direction θ on M̃ is
ergodic with respect to Lebesgue measure. We say that θ is ergodic on intermediate finite covers,
if for any M̃ →M ′→M , where M ′ is a finite cover of M , θ is an ergodic direction on M ′.

Theorem 1. Let M̃ →M be a Z-cover of translation surfaces. Suppose θ is a direction which
is well-approximated by strips in M̃ , and ergodic on intermediate finite covers. Then θ is an
ergodic direction on M̃ .

Using Theorem 1 we provide examples of ergodic directions on infinite translation surfaces.

Theorem 2. Suppose M̃ →M is a Z-cover, such that M̃ is a lattice surface and has an infinite
strip. Then almost every direction on M̃ is ergodic; in fact there is a closed set Θ of directions,
of Hausdorff dimension less than 1, such that any θ /∈Θ is ergodic.

Remark 3. (1) As we show at the end of the paper, there are recurrent Z-covers which do not
admit infinite strips, and for these our methods fail. However as we show in Proposition 19, these
are quite rare.

(2) The set Θ admits an explicit description in terms of the behavior of geodesic trajectories
in G/Γ0, where G= SL2(R) and Γ0 is the Veech group of M̃ . Namely it is the set of geodesic
trajectories which do not venture sufficiently far into the cusp corresponding to a cylinder in M
which lifts to an infinite strip in M̃ .

(3) The deduction of Theorem 2 from Theorem 1 is inspired by ideas of Masur [Mas92]. In
his proof of unique ergodicity for translation surfaces, to prove the existence on M of long and
thin rectangles in direction θ, Masur uses that a certain geodesic trajectory is not divergent in
the moduli space of compact translation surfaces. Our approach to verifying that almost every θ
is well-approximable by cylinders is similar. To find a long and thin rectangle on M̃ in direction
θ, we study the limiting points of the corresponding trajectory within the G-orbit of M̃ . This
hints that a moduli space of recurrent covers might be very helpful for generalizing our results.

(4) In the special case in which M̃ is the infinite staircase surface, the ergodicity of the
straightline flow in every irrational direction follows from results of Conze [Con76] on cylinder
flows over irrational rotations. One can show that in this case the set Θ consists only of rational
directions, thus Theorem 2 yields another proof of Conze’s theorem.

(5) For compact translation surfaces, almost every direction is uniquely ergodic. For
infinite translation surfaces, one does not usually expect unique ergodicity. In the infinite

1365

https://doi.org/10.1112/S0010437X12000887 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000887


P. Hubert and B. Weiss

staircase [HHW08] there are uncountably many invariant measures, indexed by a positive real
‘deformation’ parameter. Hooper [Hoo10] exhibits some uniquely ergodic cases but these are not
typical.

(6) Fraczek and Ulcigrai [FU11] provide examples of recurrent Z-covers M̃ →M which do
admit a strip, where M̃ is not a lattice surface, and for which the straightline flow is not ergodic
in almost every direction. In their examples M is a square-tiled surface of genus two, and the
Veech group of M̃ is infinitely generated of the first kind. It follows from Theorem 1 that in
these examples, the set of ergodic directions is a dense Gδ, see Corollary 16.

1.1 Applications
It is of interest to construct dense trajectories for vector fields on non-compact surfaces. For
example Panov [Pan09] constructed a dense trajectory for a vector field on the plane, which is
a pullback under a covering map, of a constant slope field on a torus endowed with a quadratic
differential. Since ergodic flows with respect to a measure of full support have dense trajectories,
our theorem gives many new examples of infinite translation surfaces for which the straightline
flow has dense trajectories.

The question of ergodicity of a Z-valued skew product over f :X →X is only well understood
for a limited class of X. For example the case in which X = S1 is the circle and f is an irrational
rotation is well understood (see [ANSS02] and the references therein). This is equivalent to the
case in which X is an interval and f is an interval exchange on two intervals. On the other
hand the question for interval exchange transformations on an arbitrary number of intervals is
challenging and poorly understood. There are not many examples of Z-valued skew products
over interval exchanges which are known to be ergodic. Our Theorem 2 is a source of many new
examples. Suppose M̃ →M is a recurrent Z-cover which is a lattice surface containing an infinite
strip, and θ is an ergodic direction on M . Let I be a segment in M transverse to direction θ
and Ĩ a segment which is a preimage of I in M̃ . If f : I → I (respectively f̃ : Ĩ → Ĩ) is the return
map to I (respectively Ĩ) along lines in direction θ in M (respectively M̃) then f̃ is well defined
in light of Proposition 8(ii), and is a Z-valued skew product over f . If M̃ →M satisfies the
conditions of Theorem 1 then f̃ is ergodic. An alternative approach to the ergodicity question
for Z-valued skew products over periodic interval exchanges (i.e. those for which the geodesic
flow is periodic), under an assumption on the gap in the Lyapunov spectrum, is developed in
the recent work [CF10].

A well known result of Kesten [Kes66] implies that on the infinite staircase surface, there
are no bounded trajectories (i.e. trajectories for the straightline flow which in all positive times
are confined between two levels of the staircase). By an argument of [Pet73] which we recall
in Proposition 18, Theorem 1 provides more examples of recurrent Z-covers without bounded
trajectories. Note that Ralston [Ral11] has constructed trajectories on the infinite staircase which
are bounded above.

2. Background

In this section, we briefly introduce our notation and state the results we will need.

2.1 Translation surfaces
A surface is called a translation surface if it can be obtained by edge-to-edge gluing of polygons in
the plane, only using translations (the polygons need not be compact or finitely many but should
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Ergodicity for infinite periodic translation surfaces

be at most countably many, and the lengths of sides and diagonals should be bounded away from
zero). Two translation surfaces are considered equivalent if the corresponding decompositions
into polygons have a common locally finite refinement. The translation structure induces a flat
metric with conical singularities; in the non-compact case, ‘infinite angle singularities’ may arise.
The translation structure also induces horizontal and vertical transverse measures dx, dy, and a
Lebesgue measure dx dy.

Let M be a compact translation surface. Sometimes we add finitely many marked points to
the set of singularities, i.e. distinguished points at which the cone angle is 2π which we consider as
singularities. To avoid uninteresting complications we always assume that the set of singularities
is non-empty. A saddle connection is a geodesic segment for the flat metric starting and ending
at a singularity, and containing no singularity in its interior. A cylinder on a translation surface
is a maximal connected union of homotopic simple closed geodesics. We call the length of such
a closed geodesic the circumference of the cylinder, and the length of a perpendicular segment
going across the cylinder, its height. Let M be a compact translation surface, let P ⊂M be a
finite set of points containing the singularities, and let δ be a curve on M which is either closed
or connects points of P . We denote by hol(δ) the holonomy of the translation structure on M
along δ; i.e. the vector in R2 obtained by integrating dx and dy elements along δ. The holonomy
map is well defined on H1(M, P ; Z).

Given any translation surface M , an affine diffeomorphism is an orientation preserving
homeomorphism of M that permutes the singularities of the flat metric and acts affinely on
the polygons defining M . The group of affine diffeomorphisms is denoted by Aff(M). The image
of the derivation map

d :
{

Aff(M) →GL(2, R)
f 7→ df

is called the Veech group, and denoted by Γ(M). If M is a compact translation surface, then
Γ(M) is a discrete subgroup of G= SL(2, R).

A translation surface is a lattice surface if its Veech group is a lattice in G. Note that lattice
surfaces are sometimes referred to as Veech surfaces. We say that two subgroups Γ1, Γ2 of a
group G are commensurable if they share a common finite-index subgroup. Let φθt denote the
straightline flow in direction θ on M̃ and denote the flow on M by φθt . A straightline flow on
a translation surface is uniquely ergodic if the only invariant probability measure is Lebesgue
measure. If the linear flow φθt is uniquely ergodic, we say that the direction θ is uniquely ergodic.

Let G= SL(2, R), and let

gt =
(
et 0
0 e−t

)
, rθ =

(
cos θ −sinθ
sin θ cos θ

)
. (2.1)

There is a moduli space or stratum of translation surfaces of a fixed genus and singularity pattern,
and this space is equipped with a G-action. The flow induced by the action of {gt} is called the
geodesic flow. For any flow on a topological space, we say that a trajectory {gtx} is divergent
if for any compact subset K of the space there is t0 such that gtx /∈K for all t > t0. Masur’s
well-known criterion provides a link between the dynamics of the straightline flow on a surface
and the dynamics of the geodesic flow on its stratum of translation surfaces. Throughout this
paper we set θ′ = π/2− θ.

Proposition 4 (Masur condition [Mas92]). If M is a compact translation surface and
{gtrθ′M} is not divergent in the moduli space of translation surfaces, then θ is a uniquely ergodic
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direction on M . In particular, denoting by Γ the Veech group of M and by x 7→ [x] the natural
map G→G/Γ, if {gt[rθ′ ]} is not divergent in G/Γ, then θ is a uniquely ergodic direction on M .

2.2 Fuchsian groups, geodesic flow, and approximation by cusps
Let Γ be a Fuchsian group, i.e. a discrete subgroup of G. In this subsection we recall some facts
we will need; see [Kat92] for an introduction to Fuchsian groups.

We denote the upper half-plane by H, so that G acts on H by Möbius transformations. For
us it will be convenient to use the right-action

z · g =
dz − b
−cz + a

where g =
(
a b
c d

)
∈G. (2.2)

A horoball in H is the isometric image of

H+
c = {z ∈H : =z > c}

for some c > 0, where =z denotes the imaginary part of z. A parabolic element of G is any
matrix of trace 2 other than the identity. If non-trivial, the stabilizer of a horoball in Γ is
a maximal unipotent subgroup, i.e. an infinite cyclic group generated by a parabolic element
which is maximal with respect to inclusion. A cusp in H/Γ is the image of the map

B/P →H/Γ, (2.3)

where B is a horoball, P is the stabilizer of B in Γ and is non-trivial, and B is maximal with
respect to the property that the map (2.3) is injective. Any maximal parabolic subgroup P ⊂ Γ
stabilizes a cusp, which is a proper subset of G/Γ when Γ is non-elementary. We call Γ a non-
uniform lattice if G/Γ is not compact but has finite measure. In this case H/Γ has a finite
non-zero number of cusps, and their complement is a compact subset of H/Γ. The map sending
a cusp in H/Γ to the conjugacy class of the group P as in (2.3) is well defined and induces a
bijection between cusps and conjugacy classes of maximal parabolic subgroups.

We have a map G/Γ→H/Γ which maps [g] to the image in H/Γ of i · g, where i =
√
−1.

In the case where Γ is torsion-free, the quotient H/Γ is a non-compact finite-volume hyperbolic
manifold, G/Γ can be identified with its unit tangent bundle, and the above projection is the
projection mapping a unit tangent vector to its basepoint. The group G acts on G/Γ via left
translations g1[g2] = [g1g2], and the action of the group {gt} gives rise to the geodesic flow on
the unit tangent bundle (more precisely, the geodesic flow to time t is gt/2). Let C be a cusp in
H/Γ, which is the image of a horoball under a map (2.3), where B is the isometric image of H+

c0
for some c0 > 0. For any c > c0 let Cc be the image of H+

c under the same maps. That is, the sets
{C r Cc : c > c0}, give an exhaustion of C by bounded sets. We say that a geodesic orbit {gtx}
penetrates infinitely often into Cc if there is tn→∞ such that gtnx ∈ Cc for all n.

Another action of G is its linear action on the punctured plane R2 r {0}. Under this action, a
point x has a discrete orbit under a non-uniform lattice Γ if and only if its stabilizer contains
a parabolic element. For any x, the set of directions of vectors in the orbit Γx is dense in S1.
To quantify such a density statement, for a discrete orbit Γx, θ ∈ S1 and d > 0, we say that θ is
d-well-approximable by Γx if there are infinitely many γ ∈ Γ for which

‖γx‖ |eθ ∧ γx|< d. (2.4)

Here ‖ · ‖ denotes the Euclidean norm on R2 and |u ∧ v|= ‖u‖‖v‖|sinα| where α is the angle
between the directions of u and v.
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Proposition 5. Let Γ be a non-uniform lattice, let x ∈ R2 r {0} such that Γx is discrete, and
let C denote the cusp in G/Γ corresponding to the stabilizer of x. For any c there is d such
that if θ ∈ S1 is d-well-approximable by Γx then {gt[rθ′ ]} penetrates infinitely often into Cc.
Conversely, for any d there is c such that if {gt[rθ′ ]} penetrates infinitely often into Cc then θ is
d-well-approximable by Γx.

Proof. This is a standard computation (see e.g. [Pat76]). To keep the paper self-contained, we
prove the implication =⇒, leaving the converse to the reader.

Let g0 ∈G such that g0x= e, where e = (1, 0) is the first standard basis vector. Replacing Γ
with g0Γg−1

0 , we may assume that x= e, so that the cusp corresponding to x is the projection
to H/Γ of H+

c0 for some c0. Given c > 0, we may assume without loss of generality that c > c0,
and we let d= 1/2c. Suppose that for some sequence γn ∈ Γ, (2.4) holds for all γ = γn. Let Tn, θn
denote respectively the length and angle of γnx, i.e. γnx= Tneθn

, and write γn =
(
an bn

cn dn

)
, so that

γnx= γne =
(
an
cn

)
= Tneθn

.

Then (2.4) is equivalent to
T 2
n |sin(θ − θn)|< d. (2.5)

It follows easily from (2.2) that for any g ∈G, =(i · g) = 1/(a2 + c2). Let tn = log Tn − log
√
d. If

we write (
ān b̄n
c̄n d̄n

)
= gtnrθ′γn with θ′ = π/2− θ

then (
ān
c̄n

)
= gtnrθ′Tneθn

=
(
T 2
n sin(θ − θn)/

√
d√

d cos(θ − θn)

)
.

This implies via (2.5) that

=(i.(gtnrθ′γn)) =
1

ā2
n + c̄2n

>
1
2d

= c.

This shows that for all n, gtnrθ′γn ∈H+
c , as required. 2

Proposition 6. For any non-uniform lattice Γ, any d > 0, and any x ∈ R2 r {0} for which Γx
is discrete, the set

Θd = {θ ∈ S1 : θ is not d-well-approximable by Γx}

has zero Lebesgue measure, and moreover its Hausdorff dimension is less than 1.

Proof. We first prove that Θd has zero Lebesgue measure. The geodesic flow on G/Γ is ergodic,
and for any c > 0, the cusp Cc has positive measure, with respect to the G-invariant probability
measure µ on G/Γ induced by Haar measure on G. This implies that for any c > 0,

Ωc = {x ∈G/Γ : {gtx} does not penetrate into Cc infinitely often}

has measure zero. On the other hand, by Proposition 5, for some c > 0, and some cusp C in G/Γ,
Ωc contains {[rθ′ ] : θ ∈Θd}. Let h−s =

(
1 0
s 1

)
. Then gth

−
s g−t→t→∞ Id in G and this implies that

if x ∈ Ωc then h−s x ∈ Ωc′ for any s and any c′ > c. Haar measure is smooth on G and the map
(s, t, θ) 7→ gth

−
s rθ is a local homeomorphism. This implies that for any c′ > c, the set Ωc′ contains

{π(gth−s rθ′ ) : θ ∈Θd},

which has µ-positive measure whenever Θd has positive Lebesgue measure. This proves the claim.
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The stronger result about Hausdorff dimension would follow by a similar argument, provided
we knew that for any c > 0, the Hausdorff dimension of Ωc is less than 3, which is the dimension
of G/Γ. In the case where G/Γ has one cusp, this follows from [KW11, Proposition 8.5]. As
explained to the authors by Einsiedler (personal communication), the general case of the latter
statement can be deduced from his recent work with Kadyrov and Pohl [EKP11]. 2

For a geodesic trajectory {gtx}, either its projection in H/Γ belongs to a cusp for all t > t0, or
it returns infinitely often to the complement of the cusps. This implies the following proposition.

Proposition 7. If Γ is a non-uniform lattice, for all but countably many directions θ, the
trajectory {gt[rθ′ ]} does not diverge in G/Γ.

2.3 Z-covers
We recall some terminology from [HW12]. Let M be a compact translation surface. We fix a
finite set P of points containing the singularities. Denote the relative homology by H1(M, P ; Z),
and by H1(M r P, Z) the absolute homology of M punctured at P . The intersection form is a
non-degenerate bilinear form

i :H1(M, P ; Z)×H1(M r P, Z)→ Z.

The Z-cover M̃w of M r P associated to a non-zero w in H1(M, P, Z) is the cover associated to
the kernel of the homomorphism

φw : π1(M r P )→ Z, δ 7→ i(w, [[δ]]),

where [[δ]] denotes the homology class of δ.
For a translation surface M and w ∈H1(M, P ; Z), let hol(w) ∈ R2 denote the holonomy along

w; that is the vector whose coordinates are respectively the integrals of the elements dx, dy along
any union of paths representing w. We have the following proposition.

Proposition 8. (i) There is a bijective correspondence between Z-covers M̃ →M and
projective classes of cycles w ∈H1(M, P ; Z).

(ii) The holonomy hol(w) vanishes if and only if for any θ for which φθt is ergodic, φ
θ
t is

recurrent.

(iii) The Veech group of M̃w is Fuchsian. If it is non-elementary then hol(w) = 0.

(iv) The group Γ
M̃

contains a finite-index subgroup which descends to ΓM .

(v) If {gt[rθ′ ]} is not divergent in G/Γ
M̃

, and M̃ →M ′→M is an intermediate finite cover
of M , then {gt[rθ′ ]} is not divergent in G/ΓM ′ .

In (ii), by recurrence we mean that for any measurable A⊂ M̃ , for almost every x ∈A there
is tn→∞ such that φtnx ∈A. If (ii) holds we say that M̃ is a recurrent Z-cover.

Proof. Items (i)–(iv) are proved in [HW12], and (v) follows from (iv) and the fact that a subgroup
of Γ(M̃) which descends to Γ(M) also descends to Γ(M ′) for any intermediate finite cover M ′. 2

Propositions 4, 7 and 8(v) imply one of the hypotheses of Theorem 1.

Corollary 9. Suppose M̃ →M is a Z-cover and θ is a direction such that {gt[rθ′ ]} is not

divergent in G/Γ, where Γ is the Veech group of M̃ . Then θ is ergodic on intermediate covers. In

particular, if M̃ is a lattice surface, then θ is ergodic on intermediate covers for all but countably
many θ. 2
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We give a more concrete description of the construction of the cover M̃w. One can represent
w as

∑
ajδj , where aj ∈ Z, and the δj are finitely many disjoint oriented arcs on M which are

either closed or have endpoints in P . Dividing through by a common denominator, we normalize
w so that gcd(aj) = 1. Now form countably many copies {Mk : k ∈ Z} (each with its copies of the
arcs δj), and glue each Mk to M` along the left (respectively right) of δj if `= k + aj (respectively
`= k − aj). We now give a necessary and sufficient condition for the existence of infinite strips
on M̃ .

Proposition 10. Let M̃w→M be a recurrent Z-cover of translation surfaces associated to the
homology class w. Then M̃ has an infinite strip if and only if there is a cylinder C on M , such
that the homology class [[δ]] represented by the core curve δ of C satisfies i(w, [[δ]]) = k 6= 0. In
this case Sk maps the strip to itself, and is a translation along the direction of the strip.

Proof. Given a cylinder C on M , a connected component of its lift to M̃ is a cylinder or a strip.
Let δ be the core curve of C. The cylinder C lifts to a cylinder on M̃ if and only if preimages
of δ are compact loops. By definition of the covering, this holds if and only if i(w, [[δ]]) = 0.
Conversely, if Σ⊂ M̃ is an infinite strip, let ` be an infinite straight line in its interior. Note that
the projection of Σ to M does not contain singularities, so that the image of ` in M is a straight
line whose distance to singularities remains bounded below. A basic fact on compact translation
surfaces (see e.g. [MT02, § 1.6]) asserts that the projection δ of ` must be periodic, i.e. is the
core curve of a cylinder C. That is the image of Σ covers C, and by the above, i(w, [[δ]]) 6= 0.

Assume now that i(w, [[δ]]) = k 6= 0. This means exactly that a lift δ̃ of δ starting at level 0
on M̃ ends at level k. Thus each connected component of

⋃
n∈Z S

n(δ̃) is an infinite line in M̃
passing through an infinite strip, and the action of Sk is by translation along the line. 2

2.4 Cocycles and essential values
Suppose Ft :X →X is a probability measure preserving flow on a non-atomic measure space
(X, µ), and suppose α :X × R→ Z is a measurable cocycle, i.e., a function satisfying

α(x, t+ s) = α(x, t) + α(Ftx, s). (2.6)

Form the space Xα =X × Z with the obvious measure, and the flow F t :Xα→Xα defined by

F t(x, n) = (Ftx, n+ α(x, t)).

This flow is called a Z-valued skew product (over X, corresponding to α). If two cocycles α and β
are cohomologous, i.e. if there is a measurable g :X → Z such that α(x, t) = β(x, t) + g(Ftx)−
g(x), then the skew products are measurably equivalent flows. A number k ∈ Z is called an
essential value for this skew product if for any measurable A⊂X with positive measure, there
is a set of t of positive measure for which

µ{x ∈A : Ftx ∈A, α(x, t) = k}> 0.

There is a Z-action on Xα obtained from the action of Z on itself by addition in the second
factor; clearly it commutes with the F t-action, so for every subgroup kZ⊂ Z we can form the
space Xα/kZ, and we have

Xα→Xα/kZ→Xα/Z'X.

Proposition 11 (Schmidt [Sch77, ch. 3]). Suppose k is an essential value. Then F t is ergodic
on Xα if and only if it is ergodic on Xα/kZ.

1371

https://doi.org/10.1112/S0010437X12000887 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000887


P. Hubert and B. Weiss

3. From strips to essential values

In this section we prove Theorem 1. The main point will be to approximate the flow in direction
θ with the flow in a strip, where it does not encounter discontinuity points. The condition that
the direction θ is well-approximated by strips ensures that the flow in a strip remains close to the
flow in direction θ for a sufficiently long time, enabling us to produce essential values.

We will need some additional notation. Let M be a compact translation surface and M̃ →M
a recurrent Z-cover. For a direction θ, φt and φt denote the straightline flows in direction θ on
M and M̃ respectively (note our notation does not reflect the dependence on θ). It is easy to see
that φt : M̃ → M̃ is a skew product over φt :M →M . Namely, fix some x0 in M and for each
x ∈M , a continuous path βx0,x from x0 to x, and let βx,x0 denote the path with the same trace
in the opposite direction. Let w ∈H1(M, P ; Z) such that M̃ = M̃w as in Proposition 8, and let
i be the intersection form on M . Now define a cocycle

α(x, t) = i(w, δ), (3.1)

where δ is the path from x0 to x along βx0,x, followed by moving from x to φtx along the line
in direction θ, followed by βφtx,x0 . It is not hard to show that α is a cocycle and that making a
different choice for x0 and the βx0,x would result in a cohomologous cocycle. Moreover it follows
from the description of M̃w that the straightline flow φt : M̃ → M̃ is measurably equivalent to
the lift of φt to this skew product (see [HW12, Proof of Proposition 15]).

Since θ is well-approximable by cylinders, there are k 6= 0, ε > 0, and for n= 1, 2, . . . there
are strips Σn in M̃ , such that the corresponding vn = v(Σn) and An =A(Σn) satisfy k ≡ k(Σn)
and

|eθ ∧ vn|6 (1− ε) An
2‖vn‖

and An > ε. (3.2)

In light of Proposition 11, Theorem 1 follows immediately from the following claim.

Claim 12. The number k is an essential value for the flow {φ̄t}.

The rest of this section is devoted to proving Claim 12. Let R be a rectangle, and for c > 0,
let cR be a concentric rectangle which is obtained from R by dilating it by a factor of c. By
saying that M̃ contains a rectangle R we mean that there is an isometry which is a translation
in charts, mapping R to M̃ ; in particular the image of R under this isometry does not contain
a singularity. When we refer to the corners of R, we mean the images of the corners under the
above isometry.

Let p : M̃ →M be the covering map, and let Cn = p(Σn). Note that p−1(Cn) is the union of
images of Σn under the deck group. Let θ∗ = θ + π/2 be the direction perpendicular to θ.

Definition 13. We will say that x ∈ M̃ admits a rectangle at stage n if p−1(Cn) contains cR,
where R is the closed rectangle with sides in directions θ, θ∗ and opposite corners at x, Skx, and
c= (1− ε/2)(1− ε)−1 > 1.

We denote by Ã the set of x which admit a rectangle at stage n, for infinitely many n and
by A, its projection to M .

Lemma 14. The set A is conull (i.e. its complement has measure zero).

Proof. On the compact surface M , the number of cylinders with a given bound on the length of
their core curve is bounded. Therefore ‖vn‖→∞, so by (3.2), the direction of vn tends to θ.
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Let `n be a core curve of Cn at equal distances from its two boundaries, let ¯̀
n = p−1(`n), and

let Σ′n be the points of p−1(Cn) which are within distance ηn = ε2/8‖vn‖ of ¯̀
n. Then

hn =
An

2‖vn‖
>

ε

2‖vn‖
(3.3)

is the distance from `n to the boundary edges of Cn, hence from ¯̀
n to the boundary edges of

p−1(Cn). Therefore c|eθ ∧ vn| is the length of the side of a rectangle cR as in Definition 13, in
direction θ∗. Inequality (3.2) says that this side has length at most (1− ε/2)hn, so that any
point which is within distance

2ηn =
ε2

4‖vn‖
6
εhn
2

from ¯̀
n admits a rectangle at stage n (the upper bound above is due to equation (3.3)).

In particular any point of Σ′n admits a rectangle at stage n. Let C ′n = p(Σ′n). By construction,
each Σ′n is deck group invariant, i.e. Σ′n = p−1(C ′n). Now we let Σ′ = lim sup Σ′n denote the set
of points in M̃ which belong to infinitely many of the Σ′n, and C ′ = lim sup C ′n. Clearly Σ′ ⊂ Ã,
and by construction, Σ′ = p−1(C ′). For each n, the measure of each C ′n in M is at least ε2/4,
so C ′ has positive measure and is contained in A. To prove the lemma, by ergodicity of {φt}
on M , it suffices to show that

⋃
t φt(C

′), which is a {φt}-invariant set, is contained in A. So we
fix x ∈ C ′ and t ∈ R, and consider x′ = φtx. We have shown that there are infinitely many n for
which x is within ηn of `n, which is a curve parallel to vn. Since the direction of vn tends to θ,
for all large enough n, x′ is within 2ηn of `n, so admits a rectangle at stage n. That is, x′ ∈ A. 2

Continuing with the proof of Claim 12, let A⊂M be a measurable set of positive measure,
and let x0 be a Lebesgue density point of A ∩ A. Let x be any of the preimages of x0 in M̃ .
There is a sequence of rectangles Rn in M̃ which have x, Skx at opposite corners, have sides
in directions θ, θ∗, and such that cRn is embedded in M̃ . Note that the side of Rn in direction
θ is getting longer with n and the side in direction θ∗ is getting shorter; we will refer to these
as the long and short side of Rn respectively, and denote their lengths by an, bn. We choose
a fundamental domain measurably isomorphic to M such that x belongs to level 0 and Sk(x)
belongs to level k (here we may use the concrete description of the covering given in § 2.3), and
we identify A with a subset of this fundamental domain.

Let Q0 be the square centered at x with sides in directions θ and θ∗, such that the sidelength
of Q0 is equal to 2bn. Denote

Q1 = Sk(Q0) and Q2(t) = φ̄t(Q0),

where t is a parameter (note that Q0, Q1, Q2 all depend on n but we omit this to simplify
notation).

Following the notation in Figure 1, for n large enough, the right half of Q0 denoted by P0

is contained in cRn and thus embedded in M̃ . Moreover, by construction cRn does not contain
any singular point in its closure. This implies that if t < tn = (1 + c/2)an − (c− 1)bn, then the
restriction of φ̄t to P0 is continuous, i.e. the right half of Q2(t) denoted by P2(t) is also a rectangle
embedded in M̃ . By the same reasoning the left-hand side of Q1 is a rectangle embedded in M̃ .

Let λ denote Lebesgue measure on M̃ . We have λ(P0) = λ(P1) = λ(P2). Moreover when t= an
we have P1 and P2 = P2(t), and obtain λ(P1 ∩ P2) = λ(P0). See Figure 1.

As x0 is a density point of A, for every square Q centered at x0 of sufficiently small diameter,
λ(Q ∩A)/λ(Q) > 15/16. This inequality is fulfilled for Q0 for large enough n, since bn→ 0.
A straightforward computation shows that the same is true for P0.

1373

https://doi.org/10.1112/S0010437X12000887 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000887


P. Hubert and B. Weiss

x

Q2

Q0

Rn

Sk(x)  Q1

Figure 1. Rectangles. The direction θ is vertical. The rectangle with dashed boundary is Rn,
its bottom left corner is x, its upper right corner is Sk(x). The lower rectangle is Q0, the upper
left rectangle is Q2, and the upper right rectangle is Q1. The intersection between Q1 and Q2 is
filled with black dots.

Note that tn > an for all large n. Therefore, there is an interval I centered at an such that if
t ∈ I,

1
2
< b

def=
λ(P1 ∩ P2(t))

λ(P0)
6 1.

In order to show that k is an essential value, it will suffice to show that Ak ∩A(t) has positive
measure for all t ∈ I, where

Ak =A× {k} and A(t) = φ̄t(A0).

Denote Bc = M̃ rB for every set B. We have the obvious relation

λ(P1 ∩ P2(t) ∩A(t)) + λ(P c1 ∩ P2(t) ∩A(t)) = λ(P2(t) ∩A(t)) = λ(P0 ∩A0) > 15
16λ(P0). (3.4)

We have

λ(P c1 ∩ P2(t) ∩A(t)) 6 λ(P c1 ∩ P2(t)) = (1− b)λ(P0),
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so from (3.4) and the definition of b,

λ(P1 ∩ P2(t) ∩A(t)) >

(
15
16
− 1 + b

)
λ(P0)

=
1
b

(
15
16
− 1 + b

)
λ(P1 ∩ P2(t)).

By the same reasoning,

λ(P1 ∩ P2(t) ∩Ak) >
1
b

(
15
16
− 1 + b

)
λ(P1 ∩ P2(t)).

If, by contradiction, Ak ∩A(t) were of measure zero, from the two preceding formulae we would
have

2
b

(
15
16
− 1 + b

)
λ(P1 ∩ P2(t))

6 λ(P1 ∩ P2(t) ∩A(t)) + λ(P1 ∩ P2(t) ∩Ak)
= λ((P1 ∩ P2(t) ∩A(t)) ∪ (P1 ∩ P2(t) ∩Ak)) 6 λ(P1 ∩ P2(t)).

As 1/2< b6 1, the proportion (2/b)(15/16− 1 + b)> 1 which leads to a contradiction. Therefore
λ(A(t) ∩Ak)> 0, as required. 2

4. Geodesic excursions and approximation by strips

Proof of Theorem 2. We will deduce the result from Theorem 1. Note that if a direction is ergodic
on a finite cover of M̃ = M̃w then it is also ergodic on M̃ . Using Proposition 8(iv) and passing to
finite-index subgroups, we can assume that the Veech groups of M and M̃ are the same lattice
Γ in G, and that the affine automorphism group of M̃ fixes the line spanned by w. As observed
by Veech [Vee89], Γ is non-uniform, and the cusps of G/Γ correspond to cylinder decompositions
of M . More precisely, cylinder decompositions in directions θ1, θ2 on M correspond to the same
cusp in G/Γ if and only if they are stabilized by conjugate parabolic elements p1, p2 ∈ Γ, where
pi stabilizes direction θi. Now suppose M̃ has an infinite strip Σ in direction θ0. It follows from
Proposition 10, that to any infinite strip Σ on M̃ , there is a corresponding cylinder C on M with
core curve δ, such that k(Σ) = i(w, [[δ]]), A(Σ) = area(C) and v(Σ) = hol(δ).

We say that strips Σ1, Σ2 are Γ-equivalent if there is an affine automorphism of M̃ mapping
Σ1 to Σ2. It follows from the fact that affine automorphisms preserve the intersection pairing,
that if Σ1 and Σ2 are equivalent then

k(Σ1) = k(Σ2), A(Σ1) =A(Σ2).

Also v(Σ) is fixed by a parabolic element of Γ so has a discrete orbit under Γ.
Let {x1, . . . , xr} ⊂ R2 r {0} be the vectors v(Σi), where Σi range over representatives of the

Γ-equivalence classes of strips in M̃ . By assumption r > 1 and by the above discussion, r is at
most the number of cusps in H/Γ. We obtain that there is d > 0 such that θ is well-approximated
by strips if and only if there is i such that θ is d-well-approximated by Γxi. Theorem 2 is now a
direct consequence of Theorem 1 and Corollary 9 and Proposition 6. 2

Let ∂ H = R ∪ {0} be the boundary of H in the one-point compactification of the complex
plane. Recall that there is a Γ-equivariant bijection Vis : S1→ ∂ H known as the ‘visibility map’.
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Figure 2. Double octagon.

The limit set of a Fuchsian group Γ is the set of accumulation points of any of its orbits in
H ∪ ∂ H.

Proposition 15. If M̃ →M is a Z-cover with an infinite strip, and such that the Veech group
Γ of M̃ is of the first kind, then the set of well-approximated directions is a dense Gδ subset
of S1.

Proof. Let θ0 ∈ S1 be the direction of a strip Σ⊂ M̃ . Let A=A(Σ)> 0, k = k(Σ) ∈ Z r {0},
x= v(Σ) ∈ R2 be the corresponding elements as in the preceding proof. Let d < A/2, and
enumerate the elements of Γ as {γ1, γ2, . . .}. For each n let Gn be the set of θ satisfying (2.4)
for some γ ∈ Γ r {γ1, . . . , γn}. Then Gn is clearly open. Let θ1 ∈Gn since Gn contains all but a
finite subset of the orbit Γθ1, it is dense in S1.

Therefore the set Ω =
⋂
Gn is a dense Gδ subset of Λ. If θ belongs to Ω it is well-approximable

by an infinite number of strips. 2

Corollary 16. If M is a lattice surface, if M̃ →M is a Z-cover with an infinite strip, and
the Veech group of M̃ is Fuchsian of the first kind, then the set of ergodic directions on M̃ is a
dense Gδ.

Proof. By construction, the points in Ω are well-approximated by strips, namely the strips in
the orbit of Σ, as in the preceding proof. So in order to apply Theorem 1, it suffices to show that
the directions in Ω are ergodic on finite covers of M . This is certainly true since M is a Veech
surface. 2

Remark 17. As mentioned above, Corollary 16 applies to examples studied by Fraczek and
Ulcigrai [FU11]. They consider a genus 2 square-tiled surface M and assume that the cocycle
defining the Z-cover belongs to the intersection of the absolute homology and the kernel of the
holonomy. By [HW12, Corollary 18], the Veech group of the cover M̃ is of the first kind. By
the result of Fraczek and Ulcigrai, the set of ergodic directions for the linear flow on M̃ has zero
measure, but by Corollary 16, it is a dense Gδ.

5. Examples

There are several known constructions of examples satisfying the assumptions of Theorem 2.
The easiest is the infinite staircase, and there are other Z-covers of the torus which satisfy the
hypotheses of Theorem 2. In these examples the proof of ergodicity can be reduced to known
results about skew products over an irrational rotation.
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Figure 3. Veech’s double octagon.

5.1 Surfaces satisfying our conditions
We now present some examples which cannot be reduced to skew products over rotations, and
to which our methods apply. An example of a Z-cover which is a lattice surface is given at the
end of [HW12]. The compact lattice surface M is obtained from two octagons with pairs of sides
glued together (the gluings are different from the example of Veech in [Vee89]). Hooper and
Weiss proved that one homology class w0 ((b)–(c) in Figure 2) induces a Z-cover M̃w0 which is a
lattice surface. The direction of slope 1 has an infinite strip on M̃w0 since the cylinder of slope 1
which intersects (c) does not intersect (b) in M . Thus almost every direction on M̃w0 is ergodic.

Many other examples can be constructed. We recall that Veech’s original examples [Vee89] of
lattice surfaces are obtained from two regular n-gons, where a side of one n-gon is glued to the
opposite side of the other n-gon. We will denote this translation surface by Regn; see Figure 3 for
the case n= 8. Assume that n= 4m, and denote by 1, 2, . . . 4m the sides of one of the 4m-gons
with counter clockwise orientation. Denote by w the homology class of 1 + 3 + · · ·+ 4m− 1 and
by R̃egn,w the associated Z-cover. We have hol(w) = 0 since each segment appears twice with
opposite orientation. We recall that the Veech group of Regn is generated by the horizontal
Dehn twist and by the rotation r of angle π/2m. The horizontal Dehn twist lifts to R̃egn,w
since w either intersects a horizontal cylinder once with a positive orientation and once with a
negative one or it does not intersect it, see [HW12, Proposition 24]. The image of w by r is the
homology class w∗ which is the sum of the segments 2, 4, . . . , 4m. Their union partitions Regn
into two connected components (the two n-gons), and w =−w∗, so by [HW12, Proposition 8],
the rotation r lifts to an affine automorphism of R̃egn,w. In particular R̃egn,w is a lattice surface.
Moreover the direction of slope tan(π/n) has a strip since one cylinder intersects the boundary
of the n-gon along the sides 2, 2m+ 1 (see Figure 3).

A similar argument works for the surface Regn=4m+2. We use the same class w (sum of the
odd-labelled segments), and in the argument, exchange the roles of the horizontal direction and
the direction of slope tan(π/n) (see Figure 4). We leave the details to the reader.

5.2 An extension of Kesten’s theorem
Kesten [Kes66] showed that if θ is an irrational direction on the infinite staircase, then there is
no x for which {φtx : t ∈ R} is bounded. Adapting an argument of Petersen [Pet73], we show the
following proposition.

Proposition 18. Let M̃ →M be a recurrent Z-cover and let θ be a direction which is ergodic
on M̃ . Then there is no bounded trajectory on M̃ .
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Figure 4. Veech’s double decagon.

Proof. Suppose by contradiction that x̃1 ∈ M̃ is a point with a bounded trajectory. Since θ is
an ergodic direction on M̃ , there are points in M̃ whose trajectory visits every subset of M̃ of
positive measure; suppose x̃2 is such a point. Let x1, x2 denote the projections of x̃1, x̃2 in M .
Then the choice of x̃2 implies that for the cocycle α defined by (3.1) we have

{α(x2, t) : t > 0}= Z. (5.1)

Since the orbit of x̃1 is bounded there is some N such that |α(x1, t)|6N for all t > 0. Let {βx0,x}
be the family of curves described in § 3, let w̃ be a smooth representative of the homology class
w, and fix T ∈ R. There is a neighborhood U of x2 in M such that φT |U is an isometry, and such
that the number of essential intersections of the curve s 7→ φsx with w̃, for s between 0 and T ,
is the same for all x ∈ U . This implies via (3.1) that for all x3 ∈ U , |α(x2, T )− α(x3, T )|6K,
where K is a constant depending only on the choice of paths {βx0,x}. Since θ is ergodic on M̃ , it
is also ergodic on M , and since M is compact, this implies that the straightline flow in direction
θ on M is minimal. Thus there is t0 > 0 such that T + t0 > 0 and x3 = φt0(x1) ∈ U, and (2.6)
implies

|α(x3, T )|= |α(φt0(x1), T )|= |α(x1, T + t0)− α(x1, t0)|6 2N.

Therefore |α(x2, T )|6 2N +K, contradicting (5.1). 2

5.3 An interesting non-example
The existence of a strip is not automatic. On the Wollmilchsau W , depicted in Figure 5, there
is a relative homology class w1 of zero holonomy such that every cylinder in W lifts to W̃w1

as a union of cylinders. Indeed one can check that the class w1, which is the difference of the
segments marked 2 and 4 in Figure 5, has this property. Thus, there is no infinite strip on W̃w1

and our method does not apply to this case. On the other hand, by [HW12, Proposition 30],
W̃w1 is a lattice surface. In forthcoming work by Avila, Hubert and Mattheus, it is shown, using
a different method, that every irrational direction in W̃w1 is ergodic.

In a certain sense, it is not easy to construct recurrent Z-covers without infinite strips. We
use the following observation.

Proposition 19. If the cylinder core curves of M generate a finite-index subgroup of H1(M ; Z)
then for any holonomy-free w ∈H1(M ; Z), the recurrent Z-cover M̃w has infinite strips.

Proof. This is immediate from the non-degeneracy of the intersection pairing. 2
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Figure 5. Wollmilchsau.

The condition that the cylinder core curves generate H1(M ; Z) was studied in [Mon06], where
it is shown that it holds for almost every surface M , in every stratum, with respect to the smooth
measure class.
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