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. Although many pests constrain rice production, weeds are considered to be the major barrier to
achieving optimal yields. A predictive model based on naturally occurring mixed-species infestations
in the field would enable growers to target the specific weed group that is the greatest contributor
to yield loss, but as of now no such models are available. In 2013 and 2014, two empirical hyper-
bolic models were tested using the relative cover at canopy closure of groups of weed species as
independent variables: grasses, sedges, broadleaves, grasses and sedges combined, grasses and broad-
leaves combined, and all weed species combined. Models were calibrated using data from experi-
ments conducted at the California Rice Experiment Station, in Biggs, CA, and validated across
four sites over 2 years, for a total of 7 site-year combinations. Of the three major weed groups,
grasses, sedges, and broadleaves, the only groups positively related to yield loss in the multispecies
infestation were grasses. At the model calibration site, grasses and sedges combined best predicted
yield loss (corrected Akaike information criterion [AICc] = −21.5) in 2013, and grasses alone best
predicted yield loss (AICc = −19.0) in 2014. Across the validation sites, the model using grasses
and sedges combined was the best predictor in 5 out of 7 site-years. Accuracy of the predicted
values at the model validation sites ranged from 6% mean average error to 17% mean average
error. No single model and set of parameters accurately predicted losses across all years and
locations, but relative cover of grasses and sedges combined at canopy closure was the best estimate
over the most sites and years.
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Key words: Ammannia spp., Cyperus difformis, ducksalad, Echinochloa spp., Heteranthera spp.,
hyperbolic models, late watergrass, Leptochloa fusca, modeling, redstem, ricefield bulrush,
Schoenoplectus mucronatus, smallflower umbrella sedge, sprangletop, yield loss.

Rice in California is grown on approximately
200,000 ha around the Sacramento Valley in the
center of the state. In 2009 rice production
contributed approximately $997 million to the gross
domestic product in the state (Richardson and
Outlaw 2010). Although many pests constrain rice
production, weeds are considered the major barrier
to achieving optimal yields worldwide (Zhang
1996). Weeds of rice in the southern United States
may cause yield losses of up to 82% if uncontrolled,
and recent research in California shows losses may
reach 100% in dry-seeded systems (Brim-DeForest
et al. 2017; Smith 1988). Amount of yield loss is
weed species dependent, with certain weed species
causing far less yield loss than others, even at high
densities with season-long interference (Smith
1988). Studies in Arkansas showed rice yield losses

of up to 79% with season-long competition from
barnyardgrass [Echinochloa crus-galli (L.) Beauv.]
(Smith 1968). Losses in California rice due to season-
long competition with late watergrass [Echinochloa
phyllopogon (Stapff). Koss] were as high as 59%
(Gibson et al. 2002). Losses were much lower with a
broadleaf weed, ducksalad [Heteranthera limosa (Sw.)
Willd.], which only caused losses of 21% when
uncontrolled (Smith 1968).

One of the most pressing problems in the
California rice agroecosystem is the development
of herbicide resistance. The first herbicide-resistant
weeds were identified in California rice in 1993 and
were California arrowhead (Sagittaria montevidensis
Cham. & Schltdl.) and smallflower umbrella sedge
(Cyperus difformis L.) (Pappas-Fader et al. 1993).
Both were resistant to bensulfuron, an acetolactate
synthase inhibitor (Pappas-Fader et al. 1993). Since
then, eight other species have been identified, some
with resistance to more than one mode of action
(Heap 2016). Late watergrass biotypes have been
identified that have non–target site based resistance
mechanisms to five modes of action and are capable
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of detoxifying a wide array of unrelated herbicides
(Fischer et al. 2000a, 2000b; Yasuor et al. 2008;
Yun et al. 2005). Thus, for farmers, planning an
effective herbicide program has become increasingly
difficult, and in some cases, it may be necessary to
decide which weed species or group to prioritize
targeting to minimize yield loss. Currently, no
information or model exists to assist growers with
the decision.

Empirical models have been developed that can
be used to predict yield losses in some crops, but
many involve complex biological and ecological
factors that make it difficult for farmers and crop
advisers to use (Kwon et al. 1995; Wilkerson et al.
1991). The simplest of the models, the hyperbolic
models, use only one measurement, such as plant
density, relative leaf area, or relative cover, to predict
losses (Cousens 1985; Kropff and Lotz 1993; Kropff
and Spitters 1991; Kropff et al. 1995). Relative leaf
area has been shown to be one of the best predictors
of yield loss when evaluated under field conditions
due to the fact that unlike plant density, it accounts
for the relative competitive ability of the weeds
(Ali et al. 2013). However, relative leaf area is dif-
ficult to measure in the field. Ngouajio et al. (1999a)
found that relative leaf area correlated well with
relative cover and that both predicted yield losses in
corn equally well. Relative cover can be easily eval-
uated in the field by visual estimation. Since visual
estimation may be subjective to the evaluator, pho-
tographic imaging is also an option (Lutman et al.
1996), and this may become even easier in the
future with advancing digital capabilities. In a study
of multispecies weed models used to predict yield
losses in irrigated rice in Colombia (Florez et al.
1999), relative cover was the best predictor when
compared with density, relative density, leaf area,
relative leaf area, biomass, and relative biomass.

Most yield-loss models have been tested on
a limited number of weed species at controlled
densities of both crop and weed and have been
parameterized for one weed species at a time. Some
have incorporated multispecies weed competition,
but only a few have been tested in rice (Florez et al.
1999; Swinton et al. 1994; Van Acker et al. 1997).
In order to be useful in agricultural systems, models
must be able to predict losses in natural situations
and include multiple weed species (Ali et al. 2013).

Rice in California is primarily farmed in a con-
tinuously flooded irrigation system. Growers typically
do not rotate crops, and thus the agroecosystem is
characterized by just a few weed species: (1) grasses,
which are watergrass species (Echinochloa spp.

P. Beauv.) and sprangletop [Leptochloa fusca (L.)
Kunth]; (2) broadleaves, which are redstem
(Ammannia L. spp.) and ducksalad (Heteranthera
spp.); and (3) sedges, which are ricefield bulrush
[Schoenoplectus mucronatus (L.) Palla] and smallflower
umbrella sedge. Many growers and advisers in Cali-
fornia have difficulty distinguishing between weed
species in the field, particularly between different
sedges or grasses, especially before weeds have reached
maturity. Thus, the main goal of this research was to
develop a simplified approach to estimating losses due
to weed pressure, using groups of similar weed species
instead of individual weed species as the independent
variables. Specifically, the objectives were to:
(1) compare two yield-loss models in rice based on
relative cover assessments of natural weed commu-
nities at rice canopy closure; (2) assess which groups of
weed species (grasses, sedges, broadleaves, or total
combined) best predict yield loss in a mixed-species
infestation; and (3) assess the predictive capability of
the models over multiple sites and years.

Materials and Methods

Site Characterization and Experimental Setup
Model Calibration. Experiments for model calibra-
tion were conducted from 2013 to 2014 at the
California Rice Experiment Station (CRES) in
Biggs, CA (39.46°N, 121.74°W). Soils are classified
as Esquon-Neerdobe (fine, smectitic, thermic Xeric
Epiaquerts and Duraquerts). Soil characteristics in
the 0 to 15 cm profile are: pH of 5.1, electrical
conductivity (EC) of 0.35 dS m−1, and cation
exchange capacity (CEC) of 32.6 cmol kg−1.
Organic matter (OM) is 2.8%. The composition of
sand, silt, and clay is 28, 27, and 46%, respectively.
Average winter rainfall (October to May) in Butte
County (Durham Station) in 2012 to 2014 was
388± 38mm (± SE) (California Irrigation Man-
agement Information System [CIMIS] 2016). The
average minimum and maximum daily temperatures
in Butte County during the growing season (May to
October) in 2013 were 12.1 C and 29.4 C,
respectively. In 2014 they were slightly higher, with
a minimum of 13.0 C and a maximum of 31.7 C.

The experimental area was 1.8 ha, divided into
nine main treatments plots of 0.2 ha each. Weedy
and weed-free (herbicide-treated) areas were assigned
to each plot, and the weed-free area was maintained
by application of foliar herbicides. The weedy
areas were 0.04 ha each. Three irrigation treatments
were randomly assigned to the main plots in
a randomized complete block design (RCBD).
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The irrigation systems were: (1) water-seeded
control: conventional continuous flood irrigation,
with the field flooded with approximately 10 cm of
water at seeding and then drained 1 mo before
harvest; (2) drill-seeded alternate wet and dry: dry
seeded with irrigation flushes; (3) water-seeded
alternate wet and dry: same as water-seeded control,
with an early drain at canopy closure followed
by two subsequent irrigation flushes (LaHue et al.
2016). Data from all irrigation systems were
combined for this study for a total of nine pairs of
weedy and weed-free plots per year.

All fields were seeded with “M-206” medium grain
variety, and fertilizer was applied at recommended
rates (Williams 2010). The water-seeded systems were
planted at a seeding rate of 168 kg ha−1. The
drill-seeded system was seeded by drill at a rate of
112 kg ha−1 into dry soil to a depth of 2 cm.

At canopy closure of the rice, relative cover of
weeds and rice (percentage of soil covered by each)
was assessed in the weedy area of each plot by visual
inspection of nine randomly placed quadrats of 25
by 25 cm (Hamill et al. 1977). Canopy closure of
the rice was determined to be at 49 d after seeding
(DAS) in 2013 and at 54 DAS in 2014. The percent
relative cover at canopy closure of the following
major weed species of rice was assessed per quadrat
by four observers: watergrass species, smallflower
umbrella sedge, sprangletop, ricefield bulrush,
ducksalad, and redstem (Table 1). Due to the
difficulty in distinguishing watergrass species before
flowering, early watergrass [Echinochloa oryzoides
(Ard.) Fritsch.], late watergrass, and barnyardgrass
were all classified as watergrass (Echinochloa spp.).
Species with less than 1% cover were eliminated
from the assessment. The ratings for the nine
quadrats and four observers were averaged per plot.
Quadrats were rerandomized each year.

Rice was harvested at physiological maturity from
two 3 by 6 m sections from both the weedy and
herbicide-treated section in each plot using a small-
plot combine, and rough rice yields were adjusted to
14% moisture. Yield losses for the weedy sections
were calculated by dividing the weedy yield by the
weed-free yield for each irrigation system.

Model Validation. The four sites for model valida-
tion (2013 and 2014) were in Glenn County, CA
(GC), Yuba County, CA (YC), and two fields in
Butte County, CA (BC1 and BC2) (Table 2). The
distances from the model calibration site were
approximately 36, 45, 3, and 1 km, respectively. The
soils in Glenn County (39.57°N, 122.07°W) are

classified as Castro (fine, thermic Typic Calcia-
quolls). Soil characteristics in the 0 to 15 cm profile
are: pH 7.9–8.2, EC of 2.0 to 12.0 dS m−1, and
CEC of 40.0 cmol kg−1. OM is 3.0%. The com-
position of sand, silt, and clay is 22, 28, and 50%,
respectively. The soils in Yuba County, CA (39.11°N,
121.52°W) are characterized as San Joaquin (fine,
mixed, active, thermic abruptic Durixeralfs). Soil
characteristics in the 0 to 15 cm profile are:
pH of 6.1, EC of 0.0 dS m−1, and CEC of 15.0 cmol
kg−1. OM is 0.75%. The composition of sand, silt,
and clay is 42, 38, and 20%, respectively. The two
additional fields at the CRES had soil classified as
Esquon-Neerdobe. Soil characteristics in the 0 to
15 cm profile of the two sites are the same: pH of
4.7, EC of 0.2 dS m−1, and CEC of 29.2 cmol kg−1.
OM is 2.11%. The composition of sand, silt,
and clay is 20, 33, and 47%, respectively (Natural
Resources Conservation Service, U.S. Department
of Agriculture 2016).

Average winter rainfall (October to May) in Butte
County for the BC1 and BC2 sites during the 2012
to 2014 period were the same those at the CRES.
Average winter rainfall at the YC site in Yuba
County in 2012 to 2014 was 465± 57mm (± SE)
(Browns Valley Station) (CIMIS 2016). The average
minimum and maximum daily temperatures in
Butte County (BC1 and BC2 sites) were the same
as the temperatures at the CRES experimental site.
In Yuba County (YC site) the 2014 growing season
temperatures had a minimum of 14.3 C of and a
maximum of 29.6 C. Temperature and rainfall data
were not available for Glenn County.

Sites selected for model validation were main-
tained by the University of California, Davis, for
herbicide testing. Untreated controls (no herbicide
applied) at these sites were used for model
validation. The highest-yielding herbicide-treated
plots were used as the weed-free yield comparison
in each experiment. Plot areas for weed cover
assessment and rice harvest were 3 by 6 m.
Experiments at each site were laid out as a RCBD
with four replications. The total number of weedy
plots varied at each site (Table 2). All sites were
seeded with California medium-grain varieties, but
the exact variety varied by location. Fields were
irrigated using typical methods in California:
(1) flood: field was flooded with approximately
10 cm of water, which was maintained until 1 mo
before harvest, when it was drained; (2) pinpoint:
the same as the flood irrigation system, but with 4 to
7 d of drainage at approximately the 3- to 4-leaf
stage of rice; (3) leathers: the same as the flood
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irrigation system, with 4 to 7 d of drainage right
after seeding to allow the rice radicle to penetrate the
soil; (4) drill: field is flush irrigated when dry and up
to the 3- to 4-leaf stage of rice, when the field is
flooded to 10 cm and then drained at 1 mo before
harvest. In order to validate the model to predict yield
loss over all rice systems in California, the data from
all irrigation systems were combined for each site.

All fields were seeded at a rate of 134 kg ha−1,
except for the site in Yuba County, which was
seeded at a rate of 202 kg ha−1 due to soil type.
Seeding rates were lower than recommended seeding
rates to allow for weed growth. The flood, pinpoint,
and leathers treatments were broadcast seeded, and
the drill treatments were seeded by drill to a depth of
approximately 2 cm.

At each site, visual assessments were conducted of
relative cover for each weed species and rice for each
3 by 6m plot (Hamill et al. 1977) at 40 DAS.
Evaluation timing was selected based on the critical
period of competition for watergrass in rice, which is
30 DAS (Gibson et al. 2002). The difference in
assessment timing from the calibration site was due
to efforts to standardize the assessment timing
for ease of use by growers. Four individual visual
assessments were taken of each plot, and averages
were used to calculate relative cover. Weed species
assessed were as described in “Model Calibration.”

Rice was harvested at physiological maturity from
both the weedy and herbicide-treated plots in each
field, and rough rice yields were adjusted to 14%
moisture. The highest-yielding plot per irrigation
system was used as the weed-free yield for the
corresponding weedy yields from the same irrigation
system.

Statistical Analysis
Model Calibration. Two nonlinear models were
fitted to the data, using relative cover (RC) as the
independent variable and rice yield loss as the
dependent variable. Yield loss (YL) was calculated
as follows (Equation 1):

YL=
Ywf�Yw
Ywf

[1]

where Ywf is the weed-free yield and Yw is the weedy
yield. Yield loss was calculated for nine pairs of plots
each year at the CRES site. The number of pairs
of plots at each validation site is listed in Table 2.

For each species, RC was calculated by dividing
the visual assessment of leaf area for the weed species
by the weed plus rice leaf area. The assessment and
calculations were done per quadrat for the CRES

model calibration site and per plot at the model
validation sites (Equation 2) (Ngouajio et al. 1999a,
1999b, 1999c):

RC=
WRC

WRC +CRC
[2]

where WRC is the weedy leaf area and CRC is the
crop leaf area. Mixed-species groups (grasses, sedges,
broadleaves, and weeds combined) were summed
per quadrat. The sum of the RC of sprangletop and
watergrass species was RC grasses; the sum of the
RC of ricefield bulrush and smallflower umbrella
sedge was RC sedges; and the sum of the RC of
ducksalad and redstem was RC broadleaves. The RC
of weeds combined was the sum of RC grasses,
sedges, and broadleaves.

Two empirical models were used to test the
relationship between RC and YL. The first (Model 1)
was proposed by Kropff and Spitters (1991)
(Equation 3):

YL=
qRC

1 + ðq�1ÞRC [3]

The coefficient q is the relative damage coeffi-
cient, an estimate of the competitiveness between
the crop and the weed. If q< 1, the crop is more
competitive; if q> 1, the weed is more competitive.
The second model (Model 2) is a modification of
the first model, by Kropff and Lotz (1993)
(Equation 4):

YL=
qRC

1 + ½ðq =mÞ�1�RC [4]

The estimated coefficient m is maximum YL and
adds an upper asymptote to Equation 3. The
q coefficient remains the same.

The data from CRES were fit to Model 1
(Equation 3) and Model 2 (Equation 4) using
nonlinear regression in the curve-fitting module of
SigmaPlot software (Jandel Scientific, San Rafael,
CA). Each weed group (grasses, sedges, and broad-
leaves) was fit separately. Models were run again
with the following groups: grasses + sedges, grasses +
broadleaves, sedges + broadleaves, and all weeds
combined. Only those groups of species that showed
a positive relationship with YL were modeled. To
generate an additional set of parameters (q and m),
the combined data from all sites (GC, BC1, BC2,
and YC) were fit to Model 1 (Equation 3) and
Model 2 (Equation 4), using nonlinear regression.

To evaluate whether the models from 2013
and 2014 could be combined into one data set or
should be evaluated separately, the F-test was used
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(Chow 1960). The F-statistic was calculated using
the following (Equation 5):

F =
S5 = k

S4ðn1 + n2�2kÞ [5]

where k is the number of parameters in the model,
n1 is the number of data points in the first model,
and n2 is the number of data points in the second
model. A residual sum of squares was obtained by
running a regression using the combined 2013 and
2014 data sets (S1). S2 and S3 were residual sums of
squares calculated for the nonlinear regression
for 2013 and 2014 separately: S4 = S2 + S3 and
S5 = S4 − S1. When the computed F-value exceeded
the critical F-value, the data from the two seasons
could not be described using a single regression
line, so regressions were calculated separately for the
2 yr (Table 3).

Model Validation. To evaluate the efficacy of one
model over all sites, Models 1 and 2 with parameters
generated from CRES were evaluated separately per
site (GC, BC1, BC2, and YC), using RC grasses,
RC grasses and sedges, RC grasses and broadleaves,
and RC weeds combined as independent variables.
Evaluations of model fit were determined by calcu-
lating the root mean square error (RMSE) and mean
average error (MAE) for each independent variable
(Chai and Draxler 2014). The relative fits of the
different models were compared using the Akaike
information criterion corrected for small sample size
(AICc) (Kniss et al. 2011; Spiess and Neumeyer
2010). AICc has been determined to be the most
consistent means of comparing fit between models
(Kniss et al. 2011; Spiess and Neumeyer 2010). An
RMSE of 0 and MAE of 0 would indicate that
the model fit perfectly. AICc is an absolute measure
of model fit: the lower the number, the better the
model performance.

Results and Discussion

Weed Population Composition. There was var-
iation between sites in terms of which species’ group
(grasses, sedges, or broadleaves) comprised the
majority of relative cover at canopy closure. The
differences can best be attributed to the differences
in the weed seedbank at each site. Differences in
temperature as well as management decisions over
the season may also contribute to differences
both between sites and at each site over the 2 yr.
At the CRES, the proportions of grasses, sedge and
broadleaves varied over the 2 yr (Table 1). In 2013

broadleaves (primarily ducksalad) were the largest
group, and in 2014 grasses (primarily watergrass
species) were the largest. Broadleaf RC decreased
from 2013 to 2014, whereas grass and sedge RC
both increased. The total RC of all weeds combined
decreased from 2013 to 2014, but YL increased.
The population composition across validation sites
varied, depending on location. Glenn County (GC)
had a high RC of sedges, both in 2013 and 2014
(Table 2). Grass RC increased over the 2 yr, as did
sedge and broadleaf RC. The total RC of all com-
bined weeds increased from 2013 to 2014, and YL
decreased. The site in GC was least like the other
sites in terms of weed composition, due to its high
sedge population (more than 50%). For Butte
County 1 (BC1), grasses were the largest proportion
of RC in 2013 and 2014. RC of all weeds combined
increased from 2013 to 2014, but YL declined. This
corresponded to an increase in RC of sedges and
broadleaves but a decrease in RC of grasses. At Butte
County 2 (BC2), grasses had the greatest RC in
2013, whereas broadleaves had the greatest RC in
2014. Yuba County (YC) had the highest RC grass
percentage of all sites surveyed, over both years, with
more than half of the RC occupied by grass species.
Combined weed cover was similar to the weed cover
at other sites.

Model Calibration
Model 1 and Model 2 Comparison. Data for 2013
and 2014 could not be combined into one data set,
due to significant differences in the nonlinear
regressions for both Model 1 and Model 2 (Table 3),
so both models were evaluated separately each year
for the two data sets (CRES; GC, BC1, BC2, and
YC combined). Model 1 and Model 2 are similar in
that both use a simple measurement, weed RC, to
predict YL. The value of parameter q indicates the
relative competitive ability of the weed vs. the crop
at a given point in time (Kropff and Spitters 1991).
A q-value greater than 1 indicates that the weed is
outcompeting the crop, whereas a value less than 1
indicates that the crop is more competitive. Model 1
assumes maximum YL to be 100%, whereas Model 2
contains the addition of an upper asymptote (m) for
maximum YL. The addition of the upper asymptote
increases model fit in cropping systems in which YL
is less than 100%.

For data generated at the CRES, Model 1 was the
better fit, both in 2013 and 2014, when comparing
AICc values (Table 4). This can be attributed to the
fact that the observed maximum YL in both years
was 100%, so adding an upper asymptote (m) did
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Table 1. Relative cover at canopy closure of major weed species of rice and yield loss at harvest in model calibration plots at the CRES
in Biggs, CA, in 2013 and 2014.

Relative covera

Weed species 2013 2014

%
Watergrass species [Echinochloa P. Beauv.] 30.7± 12.9 41.1± 12.9
Sprangletop [Leptochloa fusca (L.) Kunth] 5.5± 3.5 2.0± 0.4
Ricefield bulrush [Schoenoplectus mucronatus (L.) Palla] 1.0± 0.4 2.6± 0.9
Smallflower umbrella sedge (Cyperus difformis L.) 1.0± 0.5 2.3± 0.8
Ducksalad [Heteranthera rotundifolia (Kunth) Griseb.] 47.3± 12.2 27.0± 6.9
Redstem (Ammannia L. spp.) 2.0± 0.8 0.1± 0.1
Grasses 36.2± 15.1 43.1± 12.6
Sedges 2.0± 0.8 5.2± 1.6
Broadleaves 49.4± 12.6 27.1± 7.0
Weeds combined 87.7± 3.2 75.4± 4.9

%
Yield lossb 66.1± 9.9 71.5± 8.9

a Values are percent relative cover at rice canopy closure of nine plots (mean± SE).
b Values are percent yield loss in comparison to the weed-free yield (mean± SE).

Table 2. Planting date, variety, irrigation system, weed composition, and yield reduction in rice planted at four sites in 2013 and 2014:
Glenn County (GC), Butte County 1 and 2 (BC1, BC2), and Yuba County (YC).

Relative coverb

Site Year Start date Plots (n) Variety Irrigation systemsa Grasses Sedges Broadleaves Combined Yield lossc

% %
GC 2013 12-May 8 M-104 F 2.3± 0.4 51.8± 1.4 7.0± 1.0 61.1± 2.1 80.0± 2.7

2014 15-May 4 M-104 F 9.6± 1.8 53.6± 6.0 7.4± 1.2 70.6± 5.3 77.1± 6.2
BC1 2013 25-May 43 M-206 D, P, L, F 44.3± 2.3 2.5± 0.4 12.3± 1.2 59.1± 1.7 85.4± 1.5

2014 1-Jun 36 M-205 D, P, L, F 31.2± 2.5 11.3± 1.3 19.6± 1.6 62.9± 1.6 56.4± 4.2
BC2 2013 16-May 16 M-205 P, F 34.1± 1.4 12.4± 1.1 7.7± 1.2 54.2± 2.1 82.4± 1.7

2014 22-May 23 M-206 F 17.8± 1.2 19.5± 2.9 25.3± 1.3 62.5± 2.5 48.3± 3.1
YC 2014 22-Apr 16 M-206 F 56.3± 1.8 5.4± 0.8 8.0± 0.8 69.8± 2.8 81.9± 3.7

a D, drill; F, flood; L, leathers; P, pinpoint.
b Values are percent relative cover at rice canopy closure (mean± SE).
c Values are percent yield loss in comparison to the weed-free yield (mean± SE).

Table 3. Comparison of nonlinear regressions of data generated at the CRES in Biggs, CA, using Model 1
and Model 2 fit for 2013 and 2014.

Model Species groupa Season RSSb dfden Fc

1 Grasses 2013 vs. 2014 0.4156 16 17.7***
Grasses + sedges 2013 vs. 2014 0.3882 16 18.1***
Grasses + broadleaves 2013 vs. 2014 0.7462 16 11.7**
Weeds combined 2013 vs. 2014 0.7388 16 9.1**

2 Grasses 2013 vs. 2014 0.4040 14 8.0**
Grasses + sedges 2013 vs. 2014 0.3821 14 7.9**
Grasses + broadleaves 2013 vs. 2014 0.7402 14 6.2*
Weeds combined 2013 vs. 2014 0.7386 14 5.6*

a Grasses: watergrass and sprangletop; grasses + sedges: watergrass, sprangletop, ricefield bulrush, and small-
flower umbrella sedge; grasses + broadleaves: watergrass, sprangletop, ducksalad, and redstem; weeds combined:
watergrass, sprangletop, ricefield bulrush, smallflower umbrella sedge, ducksalad, and redstem.

b RSS, residual sums of squares.
c Significant F-values indicate differences between years. Model 1: dfnum = 1; Model 2: dfnum = 2.
*p< 0.05.
**p< 0.01.
***p< 0.001.
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not significantly improve the model fit either year.
Generally, RMSE and MAE did not vary signifi-
cantly between Model 1 and Model 2 for the same
independent variable. For the data generated at the
GC, BC1, BC2, and YC sites combined, Model 2
was the better fit in 2013, and Model 1 the better fit
in 2014. The differences between years can be
explained by the large increase in relative damage
coefficients (q) with Model 2 in 2013. The fit of the
model was also increased by shifting the predicted
maximum YL (m) down from the observed YL of
96%. Although Model 2 fit better overall, the
increase in q values may lead to overestimation of
YL at low weed relative cover.

Kropff et al. (1995) observed a better fit with
Model 2 when evaluating the fit for barnyardgrass
and heartshape false pickerelweed [Monochoria
vaginalis (Burm.f.) C. Presl ex Kunth] in trans-
planted rice. However, they observed much lower
yield losses than those observed in the current study,
which explains why the addition of the upper
asymptote increased model fit. In Colombia, where
yield losses are high, there was no consistent
improvement in model fit with the addition of an
upper asymptote (Florez et al. 1999). The differ-
ences in model fits between Models 1 and 2 can be
explained by the fact that in the California rice
system, YL can reach 100% when weeds are not
controlled (Table 5). High yield losses often occur in

systems where the crop and the weed are equally
good competitors for the same resources (Kropff and
Spitters 1991).

The data from 2013 and 2014 could not be
described with a single set of parameters over years
(Table 3). Since this was true of both the models
developed from the CRES data and the models
developed from the combined sites (GC, BC1, BC2,
and YC) (unpublished data), the differences are
likely due to environmental factors, including
temperature. Average maximum temperature
increased at all sites in 2014. Rice undergoes
physiological changes at high temperatures including
reductions in photosynthetic efficiency and in
nutrient and water use efficiency (Krishnan et al.
2011), so increased temperatures may decrease the
competitive ability of rice in comparison to some
weed species. In Australia barnyardgrass showed
increased competitive ability in comparison to rice at
day/night temperatures above 27/21 C (Alberto
et al. 1996). Research in the southern United States
indicates that rice yields there are reduced at daytime
maximum temperatures of more than 28 C (Baker
2004; Baker and Allen 1993). Since all models
showed smaller competition coefficients (q) for all
weed species in 2014 as compared with 2013
(Table 5), there may be an effect of increased
daytime temperatures on weed physiology or growth
as well. Watergrass and smallflower umbrella sedge,

Table 4. Root mean square error (RMSE), mean average error (MAE), and Akaike information criteria adjusted for small sample size
(AICc) for Model 1 and 2 generated with relative cover data from rice grown at the CRES in Biggs, CA, in 2013 and 2014, and Model 1
and 2 generated with data across four sites: Glenn County (GC), Butte County 1 (BC1), Butte County 2 (BC2) and Yuba County (YC)
in 2013 and 2014.

Model 1b Model 2

Sites Year Species groupa RMSE MAE AICc RMSE MAE AICc

CRES 2013 Grasses 0.13 0.10 −8.7 0.13 0.10 −5.7
Grasses + sedges 0.06 0.05 −21.5 0.06 0.05 −18.2
Grasses + broadleaves 0.19 0.16 −1.3 0.19 0.13 1.3
Weeds combined 0.19 0.15 −1.9 0.18 0.13 0.7

2014 Grasses 0.07 0.05 −19.0 0.07 0.05 −16.0
Grasses + sedges 0.13 0.08 −9.0 0.13 0.08 −5.7
Grasses + broadleaves 0.11 0.08 −12.8 0.09 0.07 −11.0
Weeds combined 0.13 0.10 −8.7 0.11 0.08 −7.6

GC, BC1, BC2, YC 2013 Grasses 0.16 0.14 −54.0 0.09 0.06 −128.6
Grasses + sedges 0.14 0.11 −73.1 0.09 0.06 −134.0
Grasses + broadleaves 0.13 0.09 −81.3 0.09 0.06 −131.2
Weeds combined 0.10 0.07 −113.0 0.10 0.07 −121.0

2014 Grasses 0.20 0.15 −24.4 0.20 0.15 −23.8
Grasses + sedges 0.13 0.11 −83.1 0.21 0.17 −16.9
Grasses + broadleaves 0.22 0.17 −11.0 0.23 0.17 −1.7
Weeds combined 0.18 0.15 −43.1 0.17 0.15 −42.2

a See Table 3 for categories (grasses, grasses + sedges, grasses + broadleaves, and weeds combined).
b Model 1: Equation 3. Model 2: Equation 4.
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both C4 species, may have a competitive advantage
under higher temperatures (Ehleringer et al. 1997).
However, the decrease in the q coefficient in
comparison to 2013 indicates that another factor
may have affected the relative competitive ability of
the rice and weeds in 2014.

As timing of weed emergence relative to crop
emergence is known to affect relative competitive-
ness, it is possible that emergence of some weeds was
delayed in 2014 compared with 2013, although this
still does not fully explain the decrease in the
q-values in the second year, as higher temperatures
should have increased soil temperature, thus decreas-
ing the time to germination and emergence.

Model Fit by Species Group. Parameters (q and m)
varied considerably between the different weed
species groups and between sites (CRES vs. other sites
combined) (Table 5). The variation in values between
sites might be due to a number of factors, including
differences in water management, variety, and soil
type between sites. In general, the q coefficient for
grasses was the highest of any of the weed groups
evaluated. Since q-values greater than 1 indicate the
weed is more competitive than the crop, this clearly
suggests that grasses are outcompeting rice in the
mixed-weed species infestation. These results confirm
earlier competition studies showing that barnyard-
grass alone reduces yields in rice in the southern

United States by up to 79% when allowed to
compete over the entire growing season (Smith
1968). Gibson et al. (2002) found that late watergrass
can reduce yields up to 59% in California when left
uncontrolled. Bearded sprangletop (Leptochloa fusca
(L.) Kunth subsp. fascicularis (Lam.) N. Snow),
another grass, reduced yields by up to 36% in
season-long competition in Arkansas rice (Smith
1983). In comparison, the yield reduction from a
broadleaf weed, ducksalad, was much less: up to 21%
when left uncontrolled (Smith 1968). The q coeffi-
cients for the grasses + sedges are all greater than 1,
although the coefficient is reduced in comparison to
the coefficient from grasses alone. Adding broadleaves
to the grasses further reduced the q coefficients. When
all weed species were combined, the q coefficients
were smallest (<1) indicating that rice is more com-
petitive than all of the weeds as a group when multiple
weed species are present. This suggests that in a
mixed-species infestation, grasses are the best compe-
titor for resources such as light and soil nutrients, in
comparison to both rice and other weed species.
The ability of grasses to outcompete both broadleaves
and sedges is supported by the fact that across
all sites (GC, BC1, BC2, and YC), there is a
negative relationship between grasses and broadleaves
as well as grasses and sedges (sedges vs. grasses: 2013,
y = −0.68x + 35.7, R2 = 0.59; 2014, y = −0.51x +
30.5, R2 = 0.33; broadleaves vs. grasses: 2013,

Table 5. Model parameters for Models 1 and 2, which were generated from relative cover data collected at the CRES, CA, in Biggs in
2013 and 2014, and from data collected over multiple sites: Glenn County (GC), Butte County 1 (BC1), Butte County 2 (BC2), and
Yuba County (YC) in 2013 and 2014.

Model 1b Model 2 Maximum yield loss

Site Year Species groupa q q Predicted (mc) Observed

CRES 2013 Grasses 25.38 27.29 0.95 1.00
Grasses + sedges 12.43 12.56 0.99 1.00
Grasses + broadleaves 0.21 0.20 1.15 1.00
Weeds combined 0.21 0.16 1.20 1.00

2014 Grasses 6.60 6.39 1.02 1.00
Grasses + sedges 3.86 3.69 1.03 1.00
Grasses + broadleaves 0.98 0.82 1.11 1.00
Weeds combined 0.71 0.56 1.16 1.00

GC, BC1, BC2, YC 2013 Grasses 79.88 252.20 0.85 0.96
Grasses + sedges 27.55 89.91 0.86 0.96
Grasses + broadleaves 12.45 44.69 0.86 0.96
Weeds combined 3.95 10.89 0.88 0.96

2014 Grasses 4.02 5.25 0.87 0.94
Grasses + sedges 1.81 6.84 0.82 0.94
Grasses + broadleaves 1.49 1.39 1.24 0.94
Weeds combined 0.78 0.63 1.19 0.94

a See Table 3 for categories (grasses, grasses + sedges, grasses + broadleaves, and weeds combined).
b Model 1: Equation 3. Model 2: Equation 4.
c Predicted value (m) generated from Model 2.
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y = −0.08x + 13.4, R2 = 0.04; 2014: y = −1.02x +
48.6, R2 = 0.35). In general, yield losses are higher
when weeds and crop have similar morphological and
physiological characteristics (Radosevich et al. 1997),
which in this system, would pertain to the grasses
and rice.

Similar studies in rice have demonstrated the
same competitive relationships between weed species
and rice, with grasses as the most competitive and
broadleaves as the least competitive. In Brazil a study
using the relative cover of watergrass species as the
predictive factor for yield loss had q coefficients
similar to those found in this study, ranging from
3.94 to 31.15 for Model 1 (Galon and Agostinetto
2009). Using relative leaf area as the predictive
factor, Kropff et al. (1995) found that the
q coefficient for heartshape false pickerelweed,
a broadleaf weed, using Model 1 was 0.73. The
q coefficient for barnyardgrass was 1.05 for the same
model. The Kropff et al. (1995) study was
conducted in transplanted rice, which may explain
the lower q coefficients, since the rice was already
large when weed emergence began, giving the rice
a competitive advantage over the weeds.

In both 2013 and 2014, grasses were the better
predictor of yield loss in comparison to sedges and
broadleaves alone at the CRES (Figures 1 and 2).
Sedges showed no trend either year, and broadleaves
had a negative linear relationship with yield loss in this
multispecies system (Figure 2). The same trend can be
seen across the other sites; when the data were pooled,
grasses were a good predictor of yield loss, sedges
showed no relationship with yield loss, and broadleaves
were negatively related to yield loss in the multispecies
system (unpublished data). For the CRES data, when
AICc values were compared, grasses and sedges
combined were the best predictor in 2013 using
Model 1, but grasses alone were the best predictor in
2014 using Model 1 (Table 4). In the other sites
combined (GC, BC1, BC2, and GC), grasses and
sedges combined were the best predictor in 2013 when
using Model 2, but all species combined were the best
fit for Model 1. Model 2 was the best fit overall for
that season and data set (lowest AICc). In 2014 grasses
and sedges combined were the best overall predictor,
using Model 1. Overall, either grasses and sedges
combined (3 site-years), or grasses alone (1 site-year)
provided the best fit (lowest AICc). Model 1 was the
better fit for 3 site-years, and Model 2 was the best fit
for 1 site-year. This finding suggests that either grasses
alone or grasses and sedges combined are
the best predictor of yield loss in a multispecies
infestation.

Model Validation. Models calibrated at the CRES
site were fit to each validation site across the
rice-growing region (Figure 3). There was variation
among both sites and years in terms of goodness of
model fit when comparing AICc (Table 6). In
general, lowest MAE and RMSE corresponded with
lowest AICc. Of the tested weed groups for the GC
site, Model 1 best described the data (lowest AICc)
in both 2013 and 2014. Grasses and sedges com-
bined were the best predictor of yield loss in both
2013 and 2014. Overall, fit of the models at the GC

Figure 1. Predicted and observed rice yield loss values for Model
1, YL = qRC/[1 + (q − 1)RC], generated at the CRES in Biggs,
CA, in 2013 and 2014. Independent variables are relative cover
of grasses (watergrass and sprangletop), grasses and sedges
(watergrass, sprangletop, ricefield bulrush, and smallflower
umbrella sedge), grasses and broadleaves (watergrass, sprangletop,
ducksalad, and redstem), and all weeds combined.

Figure 2. Relative cover of broadleaves and sedge vs. rice yield loss
at the CRES in Biggs, CA, in 2013 and 2014. Data for broadleaf
relative cover were fit using linear regression for 2013 and 2014
separately.
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site was low. At the BC1 site, grasses and sedges
combined were the best predictive factor, with
Model 2 as the better fit. In 2014 Model 1 was the
better fit, with combined weeds as the predictive
factor. At the BC2 site in 2013, Model 1 using
grasses and sedges combined was the best fit. In
2014 Model 1 was the better fit, with all weeds
combined as the predictive factor. At the YC site,
grasses alone provided the best fit, and Model 1 was
a better fit than Model 2. To summarize, grasses and
sedges combined were the best fit across all sites in
2013 using Model 1 (2 sites) and Model 2 (1 site).
MAE in 2013 ranged from 6% at the BC1 site to
13% at the GC site. In 2014 the best predictive
factor was grasses and sedges combined at two sites,
and all weeds combined at two sites. Model 1 was
the best fit across all sites. MAE ranged from 6% at
the YC site to 17% at the BC1 site.

In spite of the fact that at some sites broadleaves
and sedges were the dominant species in the mixed-
species infestations, RC of the dominant species
alone was not useful in predicting YL in this natural
community of mixed weed species (Figures 2 and 3).
The best predictor at most of the validation sites (5
out of 7 site-years) was the combination of grasses

and sedges. The same was true at the calibration sites
(Table 2), where the combination of grasses and
sedges was the best predictor in 3 out of 4 site-years.
Since YL can reach 100% when weeds are
uncontrolled in rice, there was no apparent benefit
in general to the predictive value of using Model 2
over Model 1 (Kropff and Lotz 1993). Model 2
tends to overestimate YL, especially at low weed RC.
While no single model could predict YL across all
sites, grasses alone are the best independent variable
in comparison to broadleaves or sedges alone
(Figures 1 and 2). The addition of sedges or sedges
plus broadleaves might increase the accuracy of the
prediction, but the degree to which the model fit
was improved depends on year and site. For the
model validation, grass and sedge combined RC was
the best predictor in 5 out of 7 site-years, and Model
1 was the best predictor in 6 out of 7 site-years.

This study illustrates that predictive models can
be used as a tool to aid growers and advisers in the
decision-making process to determine which weed
species group to prioritize targeting in a mixed-
species weed community. In California rice, this is
especially important, due to the large number of
herbicide-resistant weed species, with growers having

Figure 3. Predicted and observed rice yield loss values for Model 1, YL = qRC/[1 + (q − 1)RC], across multiple sites in California in
2013 and 2014. Predicted values were generated using q-values from the model calibrated at the CRES in Biggs, CA. Independent
variables are relative cover of grasses (watergrass and sprangletop), grasses and sedges (watergrass, sprangletop, ricefield bulrush, and
smallflower umbrella sedge), grasses and broadleaves (watergrass, sprangletop, ducksalad and redstem), and all weeds combined across
sites in California. Observed values: Glenn County (+), Butte County 1 (Δ), Butte County 2 (-) and Yuba County (●). Predicted
values: 2013 (- - -) and 2014 (…).
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to choose which species to control over others. In order
for this model to be more useful, it needs to be tested
across a wide array of weed populations with varying
degrees of relative cover in the field. Effects of rice
cultivar and temperature may need to be incorporated
into the model to improve accuracy.
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