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Finiteness theorems for algebraic groups over

function fields

Brian Conrad

Abstract

We prove the finiteness of class numbers and Tate–Shafarevich sets for all affine group
schemes of finite type over global function fields, as well as the finiteness of Tamagawa
numbers and Godement’s compactness criterion (and a local analogue) for all such
groups that are smooth and connected. This builds on the known cases of solvable and
semi-simple groups via systematic use of the recently developed structure theory
and classification of pseudo-reductive groups.
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1. Introduction

1.1 Motivation
The most important classes of smooth connected linear algebraic groups G over a field k are
semi-simple groups, tori, and unipotent groups. The first two classes are unified by the theory
of reductive groups, and if k is perfect then an arbitrary G is canonically built up from all three
classes in the sense that there is a (unique) short exact sequence of k-groups

1→ U →G→G/U → 1 (1.1.1)

with smooth connected unipotent U and reductive G/U . (Here, U is necessarily a descent of
the ‘geometric’ unipotent radical Ru(Gk) through the Galois extension k/k, and it is k-split.)
Consequently, if k is a number field or p-adic field then for many useful finiteness theorems
(involving cohomology, volumes, orbit questions, etc.) there is no significant difference between
treating the general case and the reductive case.

Over imperfect fields (such as local and global function fields) the unipotent radical Ru(Gk) in
Gk may not be defined over k (i.e., not descend to a k-subgroup ofG). When that happens,G does
not admit an extension structure as in (1.1.1). Working with the full radical R(Gk) is no better;
one can make such G that are perfect (i.e., G= D(G)), so R(Gk) = Ru(Gk). Hence, proving a
theorem in the solvable and semi-simple cases is insufficient to easily deduce an analogous result
in general over imperfect fields.

Example 1.1.1. Consider the natural faithful action of G= PGLnm on X = Matnm×nm with
n, m> 1. For a degree-m extension field k′/k admitting a primitive element a′ ∈ k′×, upon
choosing an ordered k-basis of k′ the resulting element a′ · idn ∈GLn(k′)⊆GLnm(k) corresponds
to a point x ∈X(k). The stabilizer Gx of x is isomorphic to the Weil restriction Rk′/k(PGLn),
so it is smooth and connected. However, this k-group can be bad in two respects.
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Assume k′/k is not separable. The k-group Gx is not reductive [CGP10, Ex. 1.1.12, Ex. 1.6.1,
Theorem 1.6.2(2), (3)], and no non-trivial smooth connected subgroup of Ru((Gx)k) = R((Gx)k)
descends to a k-subgroup of Gx [CGP10, Proposition 1.1.10, Lemma 1.2.1]. If also char(k)|n
then Gx is not perfect and D(Gx) = Rk′/k(SLn)/Rk′/k(µn) with dim Rk′/k(µn)> 0 [CGP10,
Proposition 1.3.4, Ex. 1.3.2]. In such cases, by [CGP10, Ex. 1.3.5], the k-group D(Gx) is not
isomorphic to RK/k(H)/N for any finite extension K/k, connected reductive K-group H, and
finite normal k-subgroup scheme N ⊂ RK/k(H).

The arithmetic of connected semi-simple groups over local and global fields rests on the
structure theory of semi-simple groups over general fields, and this leads to useful finiteness
theorems. Examples of such theorems are reviewed in §§ 1.2 and 1.3. By separate (typically easier)
arguments, these finiteness results often have analogues in the solvable case. Bootstrapping to
general G is straightforward when (1.1.1) is available, but over local and global function fields k
there are natural questions (e.g., see [CGP10, Introduction], which ties in with Example 1.1.1)
leading to perfect G not admitting an extension structure over k as in (1.1.1) yet for which one
wants analogues of the finiteness theorems that are known in the solvable and semi-simple cases.

Despite the general non-existence of (1.1.1) over imperfect fields, the structure theory of
pseudo-reductive groups in [CGP10] (which was developed due to the needs of this paper)
provides support for the following surprising principle (requiring modification in characteristics
2 and 3).

Principle. To prove a theorem for all smooth connected affine groups over an imperfect field k,
it suffices to prove it in the solvable case over k and the semi-simple case over finite extensions
of k.

The starting point is a naive-looking generalization of (1.1.1) that makes sense for any smooth
connected affine group G over any field k but whose utility is not initially apparent: the short
exact sequence

1→Ru,k(G)→G→G/Ru,k(G)→ 1, (1.1.2)

where the k-unipotent radical Ru,k(G) is the maximal smooth connected unipotent normal
k-subgroup of G.

Definition 1.1.2. A k-group G is pseudo-reductive if it is smooth, connected, and affine with
Ru,k(G) = 1.

For any smooth connected affine k-group G, it is clear that the quotient G/Ru,k(G) is pseudo-
reductive. Thus, (1.1.2) expressesG (uniquely) as an extension of a pseudo-reductive k-group by a
smooth connected unipotent k-group. If k′/k is a separable extension (such as ks/k, or kv/k for
a place v of a global field k) then Ru,k(G)k′ = Ru,k′ (Gk′ ) insideGk′ [CGP10, Proposition 1.1.9(1)].
Hence, if k′/k is separable then G is pseudo-reductive if and only if Gk′ is pseudo-reductive.
If k is perfect then (1.1.2) coincides with (1.1.1) and pseudo-reductivity is the same as reductivity
(for connected groups), so the concept offers nothing new for perfect k. For imperfect k it is not
evident that pseudo-reductive groups should admit a structure theory akin to that of reductive
groups, especially in a form that is useful over arithmetically interesting fields. Over imperfect
fields there are many non-reductive pseudo-reductive groups.

Example 1.1.3. The most basic example of a pseudo-reductive group over a field k is the Weil
restriction Rk′/k(G′) for a finite extension of fields k′/k and a connected reductive k′-group G′

[CGP10, Proposition 1.1.0]. If k′/k is not separable and G′ 6= 1 then this k-group is not reductive
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(see [CGP10, Ex. 1.1.3, Ex. 1.6.1]). By [CGP10, Proposition 1.2.3], solvable pseudo-reductive
groups are always commutative (as in the connected reductive case). Such groups can fail to be
tori and can even have nontrivial étale p-torsion in characteristic p > 0 [CGP10, Ex. 1.6.3]. It
seems very difficult to describe the structure of commutative pseudo-reductive groups.

The derived group of a pseudo-reductive k-group is pseudo-reductive (as is any smooth
connected normal k-subgroup; check over ks), so Example 1.1.1 shows that for imperfect k
there are perfect pseudo-reductive k-groups that are not k-isomorphic to an isogenous quotient
of Rk′/k(G′) for any pair (G′, k′/k) as above.

Pseudo-reductivity may seem uninteresting because it is poorly behaved with respect to
standard operations that preserve reductivity: inseparable extension of the ground field, quotients
by central finite subgroup schemes of multiplicative type (e.g., Rk′/k(SLp)/µp is not pseudo-
reductive when k′/k is purely inseparable of degree p= char(k); see [CGP10, Ex. 1.3.5]),
and quotients by smooth connected normal k-subgroups N , even with N = D(N) [CGP10,
Ex. 1.4.9, Ex. 1.6.4]. Although it is not a robust concept, we will show that pseudo-reductivity
is theoretically useful. For example, it is very effective in support of the above principle.

The crux is that [CGP10] provides a structure theory for pseudo-reductive k-groups ‘modulo
the commutative case’ (assuming [k : k2]6 2 when char(k) = 2). More precisely, there is a non-
obvious procedure that constructs all pseudo-reductive k-groups from two ingredients: Weil
restrictions Rk′/k(G′) for connected semi-simple G′ over finite (possibly inseparable) extensions
k′/k, and commutative pseudo-reductive k-groups. Such commutative groups turn out to be
Cartan k-subgroups (i.e., centralizers of maximal k-tori).

1.2 Class numbers and Tate–Shafarevich sets
Now we turn to arithmetic topics. Let G be an affine group scheme of finite type over a global
field k. Let S be a finite set of places of k containing the set S∞ of archimedean places, and let
Ak be the locally compact adele ring of k. For kS :=

∏
v∈S kv, consider the double coset space

ΣG,S,K :=G(k)\G(Ak)/G(kS)K =G(k)\G(AS
k )/K (1.2.1)

with AS
k the factor ring of adeles (av) such that av = 0 for all v ∈ S (so Ak = kS ×AS

k as
topological rings) and K a compact open subgroup of G(AS

k ). These double coset spaces arise
in many contexts, such as labeling the connected components of Shimura varieties when k is
a number field, classifying the dichotomy between global and everywhere-local conjugacy of
rational points on k-schemes equipped with an action by an affine algebraic k-group, and studying
the fibers of the localization map

θS,G′ : H1(k, G′)→
∏
v 6∈S

H1(kv, G′)

for affine algebraic k-groups G′. (This map also makes sense when the requirement S ⊇ S∞ is
dropped.)

Remark 1.2.1. For any field k and k-group scheme G locally of finite type, the cohomology
set H1(k, G) is defined to be the pointed set of isomorphism classes of right G-torsors over
k for the fppf topology. All such torsors in the fppf sheaf sense arise from schemes. (The
proof is obtained as follows. By [EGA, II, 6.6.5], translation arguments, and effective descent
for quasi-projective schemes relative to finite extensions k′/k [SGA1, VIII, 7.7], it suffices
to prove that G0 is quasi-projective. The quasi-projectivity follows from [SGA3, VIA, 2.4.1]
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and [CGP10, Proposition A.3.5].) We work with right G-torsors rather than left G-torsors for con-
sistency with the use of right actions in the definition of principal homogeneous spaces in [Ser97, I,
§§ 5.2–5.3]. It is equivalent to use torsors for the étale topology when G is smooth. Also, for
smooth commutative G and any m> 1, the higher derived functors Hm

ét(k, G) and Hm
fppf(k, G)

naturally coincide [Gro68, 11.7(1)]; this is useful when G is commutative and we wish to compute
p-torsion in cohomology with p= char(k)> 0.

Borel proved the finiteness of (1.2.1) when k is a number field [Bor63, Theorem 5.1]. His
proof used archimedean places via the theory of Siegel domains developed earlier with Harish-
Chandra. Another method due to Borel and G. Prasad works for all global fields when G is
reductive (assuming S 6= ∅ in the function field case). However, it is natural to consider non-
reductive G. One reason is that if a connected semi-simple k-group H acts on a k-scheme X
then the study of local-to-global finiteness properties for the H-orbits on X leads to finiteness
questions for double cosets as in (1.2.1) using the stabilizer group schemes G=Hx at points
x ∈X(k). Such stabilizers can be very bad even when smooth, as we saw in Example 1.1.1. Here
is another kind of badness.

Example 1.2.2. For H = Rk′/k(SLN ) acting on itself by conjugation and ‘generic’ unipotent
x ∈H(k) = SLN (k′), Hx = Rk′/k(µN × U) for a k-split smooth connected unipotent U . If N =
p= char(k) then Hx is not k-smooth; if also k′/k is purely inseparable of degree p then Hx is
nonetheless reduced [CGP10, Ex. A.8.3].

We conclude that it is reasonable to want (1.2.1) to be finite for any affine group scheme G
of finite type over a global function field, using any finite S 6= ∅.

Some local-to-global orbit problems for actions by semi-simple groups on schemes over a
global field k reduce to the finiteness of Tate–Shafarevich sets X1

S(k, G′) = ker θS,G′ for affine
algebraic k-groups G′ that may not be reductive (or not smooth when char(k)> 0). Finiteness
of X1

S(k, G′) was proved for any G′ by Borel and Serre when char(k) = 0 [BS64, Theorem 7.1].
The case char(k)> 0 was settled for reductive G′ and solvable (smooth) G′ by Borel and Prasad
[BP90, § 4] and Oesterlé [Oes84, IV, 2.6(a)] respectively; this is insufficient to easily deduce the
general case (even for smooth G′) since global function fields are imperfect.

1.3 Main results
Our first main result, upon which the others rest, is a generalization to non-zero characteristic
of Borel’s finiteness theorem for (1.2.1) over number fields. For G= GL1 over a number field and
suitable K, the sets ΣG,S∞,K are the generalized ideal class groups of k. Thus, for any global
field k we say G has finite class numbers if ΣG,S,K is finite for every non-empty finite S that
contains S∞ and every (equivalently, one) compact open subgroup K ⊆G(AS

k ).

Theorem 1.3.1 (Finiteness of class numbers). Let k be a global function field. Every affine
k-group scheme G of finite type has finite class numbers.

The absence of smoothness in Theorem 1.3.1 is easy to overcome with a trick (even though
Gred may not be a k-subgroup of G, and when it is a k-subgroup it may not be smooth [CGP10,
Ex. A.8.3]), so the real work is in the smooth case. Likewise, it is elementary to reduce to the
smooth connected case (see § 3.2).

Example 1.3.2. Here is a proof that for global fields k, all smooth connected commutative affine
k-groups G have finite class numbers. Let T ⊆G be the maximal k-split torus and G=G/T .
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For any finite non-empty set S of places of k containing S∞, the map G(AS
k )→G(AS

k ) is open
since G�G is smooth with connected kernel. Thus,

1→ T (k)\T (AS
k )→G(k)\G(AS

k )→G(k)\G(AS
k )→ 1

is exact (by Hilbert’s Theorem 90) with an open map on the right. The left term T (k)\T (AS
k ) is

compact since T is a k-split torus and GL1 has finite class numbers.
It suffices to prove the finiteness of class numbers for G, so we can assume that G does

not contain GL1 as a k-subgroup. Hence, G has no non-trivial k-rational characters G→GL1

because such a character would map a maximal k-torus of G onto GL1 [Bor91, 11.14] (forcing
k-isotropicity, a contradiction). Since G is solvable and has no non-trivial k-rational characters,
by a compactness result of Godement and Oesterlé [Oes84, IV, 1.3], the coset space G(k)\G(Ak)
is compact and so G has finite class numbers.

As an application of Theorem 1.3.1 and the main results in [CGP10], we establish the following
analogue of a result of Borel and Serre [BS64, Theorem 7.1, Corollary 7.12] over number fields.

Theorem 1.3.3 (Finiteness of X and local-to-global obstruction spaces). Let k be a global
function field and S a finite (possibly empty) set of places of k. Let G be an affine k-group
scheme of finite type.

(i) The natural localization map θS,G : H1(k, G)→
∏
v 6∈S H1(kv, G) has finite fibers. In

particular, X1
S(k, G) := ker θS,G is finite.

(ii) Let X be a k-scheme equipped with a right action by G. For x ∈X(k), the set of points
x′ ∈X(k) in the same G(kv)-orbit as x in X(kv) for all v 6∈ S consists of finitely many G(k)-orbits.

As with Theorem 1.3.1, the proof of Theorem 1.3.3 is easily reduced to the case of smooth G.
The finiteness of X1

S(k, G) for smooth connected commutative affine k-groups G was proved by
Oesterlé over all global fields, by a uniform method [Oes84, IV, 2.6(a)].

Remark 1.3.4. In Theorem 1.3.3 we cannot assume G is smooth in part (i) because the proof of
part (ii) uses part (i) for the scheme-theoretic stabilizer Gx at points x ∈X(k). By Examples 1.1.1
and 1.2.2, if char(k)> 0 then Gx can be non-smooth even when G is semi-simple or Gx is reduced,
and even in cases with semi-simple G and smooth Gx it can happen that the (unipotent) radical
of (Gx)k is not defined over k (inside Gx).

The main arithmetic ingredient in the proof of Theorem 1.3.3 (in addition to Theorem 1.3.1)
is Harder’s vanishing theorem [Har75, Satz A] for H1(k, G) for any global function field k and
any (connected and) simply connected semi-simple k-group G. (This vanishing fails in general
for number fields k with a real place.)

Remark 1.3.5. In the literature (e.g., [Mil86, I], [Maz93, § 16]), the notations X1
S and XS

are used for other definitions resting on Galois cohomology or flat cohomology over the S-
integers. For abelian varieties and their Néron models these definitions are related to X1

S as in
Theorem 1.3.3(i), but we do not use them.

Finally, we turn to the topic of volumes. In [Oes84, I, 4.7], the Tamagawa measure µG on
G(Ak) is defined for any smooth affine group G over a global field k. Letting ‖ · ‖k : A×k →R×>0

be the idelic norm, define G(Ak)1 to be the closed subgroup of points g ∈G(Ak) such that
‖χ(g)‖k = 1 for all k-rational characters χ of G (so G(k)⊆G(Ak)1, and G(Ak)1 =G(Ak) if
G has no non-trivial k-rational characters). This is a unimodular group [Oes84, I, 5.8]. Now
assume G is connected. The Tamagawa measure is used in [Oes84, I, 5.9] to define a canonical
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measure µ1
G on G(Ak)1, so, by unimodularity, there is an induced measure on the quotient

space G(k)\G(Ak)1 (or equivalently, on the quotient space G(Ak)1/G(k)). The volume τG of
this quotient space is the Tamagawa number for G; it is not evident from the definition if this is
finite.

The finiteness of τG for general (smooth connected affine) G was proved over number fields by
Borel; it was proved over function fields in the reductive case by Harder and in the solvable case
by Oesterlé (see [Oes84, I, 5.12] for references). The results of Harder and Oesterlé are insufficient
to easily deduce the finiteness of τG in all cases over global function fields (e.g., (1.1.1) is generally
missing).

For smooth connected affine groups over global fields, Oesterlé [Oes84, II, III] worked out
the behavior of Tamagawa numbers with respect to short exact sequences and Weil restriction
through finite (possibly inseparable) extension fields, including the behavior of finiteness
properties for Tamagawa numbers relative to these situations. His formulas for the behavior
under short exact sequences [Oes84, III, 5.2, 5.3] were conditional on the finiteness of certain
auxiliary Tate–Shafarevich sets and analogues of class numbers (which he did not know to always
be finite). Our results (Theorem 1.3.3(i) and a variant on Theorem 1.3.1 with S = ∅ given in
Corollary 7.3.5) establish these finiteness hypotheses in general, so, by combining Oesterlé’s work
with the structure theory of pseudo-reductive groups from [CGP10], we can prove the function
field version of Borel’s general finiteness theorem for τG.

Theorem 1.3.6 (Finiteness of Tamagawa numbers). For any smooth connected affine group G
over a global function field, the Tamagawa number τG is finite.

Remark 1.3.7. Let 1→G′→G→G′′→ 1 be an exact sequence of smooth connected affine
groups over a global field k, and assumeG(Ak)→G′′(Ak) has normal image (e.g.,G′ central inG,
or char(k) = 0 [Oes84, III, 2.4]). Oesterlé’s formula for τG/(τG′τG′′ ) over number fields in [Oes84,
III, 5.3] is valid unconditionally when char(k)> 0, by Theorem 1.3.3(i) and Corollary 7.3.5.

Going beyond the affine case, it was conditionally proved by Mazur [Maz93, §§ 15–17] over
number fields k (assuming the finiteness of Tate–Shafarevich groups X1

∅(k, A) for abelian
varieties A over k) that Theorem 1.3.3 holds for S = ∅ with any k-group scheme G locally of
finite type for which the geometric component group (G/G0)(ks) =G(ks)/G0(ks) satisfies certain
group-theoretic finiteness properties. In § 7.5 we use Theorem 1.3.3 to prove an analogous result
over global function fields k. Mazur’s proof does not work in nonzero characteristic (for reasons
we explain after Example 7.5.1), so we use another argument that also works over number fields
and relies on additional applications of [CGP10] over global function fields.

1.4 Strategy of proof of Theorem 1.3.1

If 1→G′→G→G′′→ 1 is an exact sequence of smooth connected affine groups over a global
field k, then the open image of G(Ak)→G′′(Ak) can fail to have finite index, even if G′ is a
torus (e.g., take G→G′′ to be the norm Rk′/k(GL1)→GL1 for a quadratic Galois extension
k′/k). The same problem can occur for G(kS)→G′′(kS) when char(k)> 0 if G′ is unipotent but
not k-split [CGP10, Ex. 11.3.3]. Over global function fields, it is a serious problem to overcome
such difficulties.

A well-known strategy to bypass some of these problems is to find a presentation of G that
allows us to exploit the cohomological and arithmetic properties of simply connected semi-simple
groups. Let us recall how this goes in the familiar case of a connected reductive group G over
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a global field k. The so-called z-construction (reviewed in § 5.1) produces a diagram of short
exact sequences

1

��
D(E)

��
1 // T ′ // E

��

// G // 1

T ′′

��
1

(1.4.1)

in which T ′ and T ′′ are tori and E is a connected reductive k-group such that the semi-simple
derived group D(E) is simply connected and T ′ has trivial degree-1 Galois cohomology over k
and its completions. By strong approximation for (connected and) simply connected semi-simple
groups (and a compactness argument in the k-anisotropic case), D(E) has finite class numbers.
By theorems of Kneser and Bruhat–Tits [BrT87, Theorem 4.7(ii)] and Harder [Har75, Satz A],
the degree-1 Galois cohomology of (connected and) simply connected semi-simple groups over
non-archimedean local fields and global function fields vanishes. Thus, finiteness of class numbers
for E can be deduced from the cases of D(E) and the commutative T ′′ when char(k)> 0.
Finiteness for G follows from that of E via (1.4.1) due to the vanishing of degree-1 Galois
cohomology for T ′.

Adapting the z-construction beyond the reductive case is non-trivial when char(k)> 0; this is
done by using the structure theory from [CGP10] for pseudo-reductive groups. There are several
ways to carry it out, depending on the circumstances, and in the role of T ′ we sometimes use a
solvable smooth connected affine k-group whose local Galois cohomology in degree 1 is infinite.
To overcome such infinitude problems we use a toric criterion for an open subgroup of G(L) to
have finite index when L is a non-archimedean local field and G is a smooth connected affine
L-group that is ‘quasi-reductive’ in the sense of Bruhat and Tits [BrT84, 1.1.12] (i.e., G has no
non-trivial smooth connected unipotent normal L-subgroup that is L-split). The proof of this
criterion (Proposition 4.1.9) also rests on the structure theory from [CGP10].

1.5 Overview

Let us now give an overview of the paper. The general structure theorems from [CGP10] are
recorded in § 2 in a form sufficient for our needs. In § 3, which involves no novelty, we adapt
arguments of Borel over number fields from [Bor63, § 1] to show that a smooth affine group over
a global field has finite class numbers if its identity component does. In § 4 we recall (for ease of
later reference) some well-known finiteness properties of tori over local fields and of adelic coset
spaces, and record some generalizations.

In § 5 we use the structure theory for pseudo-reductive groups to prove Theorem 1.3.1 for
pseudo-reductive groups over global function fields via reduction to the known case of (connected
and) simply connected semi-simple groups. We prove the smooth case of Theorem 1.3.1 by
reduction to the pseudo-reductive case. Although the underlying reduced scheme of an affine finite
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type k-group is generally not k-smooth (nor even a k-subgroup) when k is a global function field,
there is a trick that enables us to reduce the proof of Theorem 1.3.1 to the case when G is smooth.
This trick is also useful in the proof of Theorem 1.3.3 because (as we noted in Remark 1.3.4)
the proof of part (ii) of this theorem requires part (i) for the isotropy group scheme Gx ⊆G that
may be non-smooth even if G is smooth.

In § 6 we prove Theorem 1.3.3 as an application of Theorem 1.3.1 and the structure of
pseudo-reductive groups. In § 7 we give applications of Theorem 1.3.3, including Theorem 1.3.6
and an extension of Theorem 1.3.3(i) to non-affine k-groups conditional on the Tate–Shafarevich
conjecture for abelian varieties. A difficulty encountered here is that Chevalley’s well-known
theorem expressing a smooth connected group over a perfect field as an extension of an abelian
variety by a smooth connected affine group is false over every imperfect field.

In Appendix A we prove a technical result on properness of a certain map between adelic
coset spaces. This is used in § 5, and in §A.5 we combine it with results from [CGP10] to give the
first general proof of the sufficiency of the function field analogue of a compactness criterion of
Godement for certain adelic coset spaces over number fields; see Theorem A.5.5(i). (The necessity
of Godement’s criterion is proved in [Oes84, IV, 1.4], and sufficiency was previously known in
the semi-simple and solvable cases.) We also prove a local analogue of Godement’s criterion
(Proposition A.5.7). In Appendix B we review (as a convenient reference) how to generalize
the low-degree cohomology of smooth algebraic groups [Ser97, I, § 5] to the case of general
group schemes of finite type over a field, especially the twisting method and the necessity of
computing degree-2 commutative cohomology in terms of gerbes rather than via Čech theory in
the non-smooth case.

1.6 Notation and terminology

We make no connectivity assumptions on group schemes. If G is an affine group scheme of finite
type over a field k then Xk(G) denotes the character group Homk(G,GL1) over k; this is a finitely
generated Z-module (and torsion-free when G is smooth and connected).

The theory of forms of smooth connected unipotent groups over imperfect fields is very
subtle (even for k-forms of Ga; see [Rus70]). We require facts from that theory that are not
widely known, and refer to [CGP10, Appendix B] for an account of Tits’ important work on this
topic (including what is required in [Oes84], whose results we use extensively).

A smooth connected unipotent group U over a field k is k-split if it admits a composition
series by smooth connected k-subgroups with successive quotients k-isomorphic to Ga. The
k-split property is inherited by arbitrary quotients [Bor91, 15.4(i)], and every smooth connected
unipotent k-group is k-split when k is perfect [Bor91, 15.5(ii)]. Beware that (in contrast with
tori) the k-split property in the unipotent case is not inherited by smooth connected normal
k-subgroups when k is not perfect. For example, if char(k) = p > 0 and a ∈ k is not in kp then
yp = x− axp is a k-subgroup of the k-split Ga ×Ga and it is a k-form of Ga that is not k-split.
(Its regular compactification yp = xzp−1 − azp has no k-rational point at infinity.)

If A→A′ is a map of rings and Z is a scheme over A then ZA′ denotes the base change of Z
to an A′-scheme. If Y is a scheme, then Yred denotes the underlying reduced scheme.

We use scheme-theoretic Weil restriction of scalars (in the quasi-projective case) with respect
to possibly inseparable finite extensions of the base field (as well as a variant for base rings).
For a development of Weil restriction in the context of schemes we refer the reader to [Oes84,
Appendices 2, 3], [BLR90, § 7.6] and [CGP10, §§A.5, A.7]. If k is a field and k′ is a non-zero finite
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reduced k-algebra (i.e., a product of finitely many finite extension fields of k) then Rk′/k denotes
the Weil restriction functor from quasi-projective k′-schemes to (quasi-projective) k-schemes.
If k′/k is a finite separable field extension then this functor coincides with the Galois descent
construction as used in [Wei82] and many other works on algebraic groups.

We shall need to use the equivalent but different approaches of Weil and of Grothendieck for
adelizing separated schemes of finite type over global fields, and we use without comment the
functorial properties of these constructions (e.g., good behavior with respect to Weil restriction
of scalars and smooth surjective maps with geometrically connected fibers). This material is ‘well
known’ (cf. [CS04, p. 87]), and we refer to [Oes84, I, 3.1] and [Con10] for a detailed discussion.

A diagram 1→G′→G→G′′→ 1 of group schemes of finite type over a noetherian scheme
is a short exact sequence if G→G′′ is faithfully flat with scheme-theoretic kernel G′; e.g., we use
this over rings of S-integers of global fields. Non-smooth group schemes naturally arise in our
arguments, even in the study of smooth groups (e.g., kernels may not be smooth), so we will
need to form quotients modulo non-smooth normal subgroups.

For any finite type group scheme G and normal closed subgroup scheme N over a field F ,
the F -group G/N is taken in the sense of Grothendieck; see [SGA3, VI, 3.2(iv), 5.2]. We now
make some comments on the quotient process over F , for the benefit of readers who are more
comfortable with smooth groups. In general the quotient map G→G/N is faithfully flat with
the expected universal property for N -invariant maps from G to arbitrary F -schemes, and its
formation commutes with any extension on F . If G is F -smooth then G/N is F -smooth even if N
is not (since we can assume F is algebraically closed, and regularity descends through faithfully
flat extensions of noetherian rings). By [SGA3, VIB, 11.17], G/N is affine when G is affine. If
G is smooth and affine and N is smooth then G/N coincides with the concept of quotient used
in textbooks on linear algebraic groups, as both notions of quotient satisfy the same universal
property.

2. Pseudo-reductive groups

Recall from § 1.1 that a pseudo-reductive group G over a field k is a smooth connected affine
k-group whose only smooth connected unipotent normal k-subgroup is {1}. A smooth connected
affine k-group G is pseudo-simple (over k) if G is non-commutative and has no non-trivial smooth
connected normal proper k-subgroup. Finally, G is absolutely pseudo-simple over k if Gks is
pseudo-simple over ks. By [CGP10, Lemma 3.1.2], G is absolutely pseudo-simple over k if and
only if the following three conditions hold: (i) G is pseudo-reductive over k, (ii) G= D(G),
and (iii) Gss

k
is simple.

Below we discuss a general structure theorem for pseudo-reductive groups over an arbitrary
(especially imperfect) field k, assuming [k : k2]6 2 when char(k) = 2. The case of most interest
to us will be when k is a local or global function field (so [k : k2] = 2 when char(k) = 2), but the
results that we are about to describe are no easier to prove in these cases than in general.

2.1 Standard pseudo-reductive groups

The following pushout construction provides a large class of pseudo-reductive groups.

Example 2.1.1. Let k′ be a non-zero finite reduced k-algebra and let G′ be a k′-group whose fiber
over each factor field of k′ is connected and reductive. Let T ′ ⊆G′ be a maximal k′-torus, ZG′

the (scheme-theoretic) center of G′, and T ′ = T ′/ZG′ . The left action of T ′ on G′ via conjugation
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factors through a left action of T ′ onG′, so Rk′/k(T
′) acts on Rk′/k(G′) on the left via functoriality.

It can happen (e.g., if k′ is a non-trivial purely inseparable extension field of k and ZG′ is not
k′-étale) that Rk′/k(T ′)→ Rk′/k(T

′) is not surjective.
By [CGP10, Proposition A.5.15], the k-group Rk′/k(T ′) is a Cartan k-subgroup of the pseudo-

reductive k-group Rk′/k(G′) (i.e., it is the centralizer of a maximal k-torus). Its conjugation action
on Rk′/k(G′) factors as the composition of the natural homomorphism Rk′/k(T ′)→ Rk′/k(T

′) and
the natural left action of Rk′/k(T

′). Now the basic idea is to try to ‘replace’ the Cartan k-subgroup
Rk′/k(T ′) with another commutative pseudo-reductive k-group C that acts on Rk′/k(G′) through
a k-homomorphism to Rk′/k(T

′).
To make the idea precise, suppose that there is given a factorization

Rk′/k(T
′)

φ−−→ C→ Rk′/k(T
′) (2.1.1)

of the Weil restriction to k of the canonical projection T ′→ T
′ over k′, with C a commutative

pseudo-reductive k-group; it is not assumed that φ is surjective. We let C act on Rk′/k(G′) on
the left through its map to Rk′/k(T

′) in (2.1.1), so there arises a semi-direct product group
Rk′/k(G′) o C. Using the pair of homomorphisms

j : Rk′/k(T
′) ↪→ Rk′/k(G

′), φ : Rk′/k(T
′)→ C,

consider the twisted diagonal map

α : Rk′/k(T
′)→ Rk′/k(G

′) o C (2.1.2)

defined by t′ 7→ (j(t′)−1, φ(t′)). This is easily seen to be an isomorphism onto a central subgroup.
The resulting quotient G= coker(α) is a kind of non-commutative pushout that replaces
Rk′/k(T ′) with C. By [CGP10, Proposition 1.4.3], it is pseudo-reductive over k (since C is pseudo-
reductive).

Definition 2.1.2. A standard pseudo-reductive k-group is a k-group scheme G isomorphic to
a k-group coker(α) arising from the pushout construction in Example 2.1.1.

If the map φ in (2.1.1) is surjective then the k-group G= coker(α) is the quotient of
Rk′/k(G′) modulo a k-subgroup scheme Z := ker φ⊆ Rk′/k(ZG′ ). Beware that in general not
every quotient of Rk′/k(G′) modulo a k-subgroup scheme Z of Rk′/k(ZG′ ) is pseudo-reductive
over k. (By [CGP10, Remark 1.4.6], Rk′/k(G′)/Z is pseudo-reductive over k if and only if the
commutative C := Rk′/k(T ′)/Z is pseudo-reductive.) At the other extreme, if G′ is trivial then
G= C is an arbitrary commutative pseudo-reductive k-group.

By [CGP10, Remark 1.4.2], if G is a standard pseudo-reductive k-group constructed from
data (G′, k′/k, T ′, C) as in Example 2.1.1 then C is a Cartan k-subgroup of G. This Cartan
k-subgroup is generally not a k-torus, in contrast with the case of connected reductive groups. In
fact, by [CGP10, Theorem 11.1.1], if char(k) 6= 2 then a pseudo-reductive k-group is reductive if
and only if its Cartan k-subgroups are tori; this equivalence lies quite deep (e.g., its proof rests
on nearly everything in [CGP10]), and it is false over every imperfect field of characteristic 2
(even in the standard case; see [CGP10, Ex. 11.1.2]).

2.2 Standard presentations
There is a lot of flexibility in the choice of (G′, k′/k, T ′, C) and the diagram (2.1.1) giving rise
to a fixed standard pseudo-reductive k-group G. In [CGP10, Theorem 4.1.1] it is shown that
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if G is a non-commutative standard pseudo-reductive k-group then it arises via the construction
in Example 2.1.1 using a 4-tuple (G′, k′/k, T ′, C) for which the fibers of G′ over the factor
fields of k′ are semi-simple, absolutely simple, and simply connected. Under these properties, the
map j : Rk′/k(G′)→G with central kernel ker φ has image D(G) due to the simply connected
condition on G′ [CGP10, Corollary A.7.11], and the triple (G′, k′/k, j) is uniquely determined
by G up to unique k-isomorphism [CGP10, Propositions 4.2.4, 5.1.7(1)].

By [CGP10, Proposition 4.1.4], the triple (G′, k′/k, j) corresponding to such (non-
commutative) G satisfies the following properties. There is a natural bijection between the
set of maximal k-tori T ⊂G and the set of maximal k′-tori T ′ ⊂G′, for each such matching
pair (T, T ′) there is a diagram (2.1.1) that (together with (G′, k′/k)) gives rise to G via the
pushout construction in Example 2.1.1, and the commutative pseudo-reductive k-group C in
the associated diagram (2.1.1) is identified with the Cartan k-subgroup ZG(T ) in G.

For a non-commutative standard pseudo-reductive k-group G, there is a uniqueness property
for the diagram (2.1.1) in terms of the above canonically associated (G′, k′/k, j) and the
choice of T . This is stated precisely in [CGP10, Proposition 4.1.4(3)], and here we record
an important consequence from [CGP10, Proposition 5.2.2]: the 4-tuple (G′, k′/k, T ′, C) is
(uniquely) functorial with respect to k-isomorphisms in the pair (G, T ). This 4-tuple is called
the standard presentation of G adapted to the choice of T , suppressing the mention of the
factorization diagram (2.1.1) that is an essential ingredient in the usefulness of this concept.

2.3 Structure theorems for pseudo-reductive groups

Any connected reductive k-group G is standard (use k′ = k, G′ =G, and C = T ′), as is any
commutative pseudo-reductive k-group (use k′ = k, G′ = 1, and C =G). It is difficult to say much
about the general structure of commutative pseudo-reductive groups, but the commutative case
is essentially the only mystery. This follows from the ubiquity of the pseudo-reductive k-groups
arising via Example 2.1.1, modulo some complications when char(k) ∈ {2, 3}, as we now explain.

Let G be a pseudo-reductive group, and T a maximal k-torus in G. The set of weights for Tks
acting on Lie(Gks) naturally forms a root system [CGP10, § 3.2], but this may be non-reduced.
(If G is a standard pseudo-reductive group then this root system is always reduced [CGP10,
Ex. 2.3.2, Proposition 2.3.15].) The cases with a non-reduced root system can only exist when k
is imperfect and char(k) = 2 [CGP10, Theorem 2.3.10], and conversely for any imperfect k with
char(k) = 2 and any integer n> 1 there exists (G, T ) over k such that the associated root system
is non-reduced and dim T = n [CGP10, Theorem 9.3.10].

Before we can state the general classification theorems for pseudo-reductive groups (in all
characteristics), we need to go beyond the standard case, by introducing Tits’ constructions of
additional absolutely pseudo-simple groups G over imperfect fields k of characteristic 2 or 3.
There are two classes of such constructions, depending on whether or not the root system
associated to Gks is reduced or non-reduced. First we take up the cases with a reduced root
system.

Let k be an arbitrary field of characteristic p ∈ {2, 3}, and let G be a connected semi-simple
k-group that is absolutely simple and simply connected with Dynkin diagram having an edge
with multiplicity p (i.e., type G2 when p= 3, and type Bn, Cn (n> 2), or F4 when p= 2).
By [CGP10, Lemma 7.1.2], the relative Frobenius isogeny G→G(p) admits a unique non-trivial
factorization in k-isogenies

G
π−−→G→G(p) (2.3.1)

566

https://doi.org/10.1112/S0010437X11005665 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005665


Finiteness theorems for algebraic groups over function fields

such that π is non-central and has no non-trivial factorization; π is the very special k-isogeny
for G, and G is the very special quotient of G. The p-Lie algebra of the height-1 normal
k-subgroup scheme ker π in G is the unique non-central G-stable Lie subalgebra of Lie(G) that
is irreducible under the adjoint action of G [CGP10, Lemma 7.1.2]. The connected semi-simple
k-group G is also simply connected, with type dual to that of G [CGP10, Proposition 7.1.5].

Now also assume k is imperfect and let k′/k be a non-trivial finite extension such that k′p ⊆ k.
Let G′ be a connected semi-simple k′-group that is absolutely simple and simply connected with
Dynkin diagram having an edge with multiplicity p. Let π′ :G′→G

′ be the very special k′-
isogeny. The Weil restriction f := Rk′/k(π′) of π′ is not an isogeny since k′ 6= k. (Its kernel is
non-smooth with dimension >0.)

Definition 2.3.1. Let k be an imperfect field of characteristic p ∈ {2, 3}. A k-group scheme G
is called a basic exotic pseudo-reductive k-group if there exists a pair (G′, k′/k) as above and a
Levi k-subgroup G⊆ Rk′/k(G

′) such that G is k-isomorphic to the scheme-theoretic preimage
f−1(G)⊆ Rk′/k(G′) as a k-group and f−1(G)ks contains a Levi ks-subgroup of Rk′/k(G′)ks .

Applying [CGP10, Lemma 7.2.1, Theorem 7.2.3] over ks, any k-group G as in Definition 2.3.1
is pseudo-reductive (hence connected and k-smooth). Moreover, by [CGP10, Proposition 7.2.7(1),
(2)], the k-group G satisfies the following properties: it is not reductive, Gks has a reduced root
system, the triple (G′, k′/k, G) is uniquely determined by G up to a unique k-isomorphism, and
the induced map f : G →G is surjective. By [CGP10, Proposition 8.1.1, Corollary 8.1.3], such G
are absolutely pseudo-simple and are never standard pseudo-reductive groups.

Examples exist in abundance: by [CGP10, Theorem 7.2.3], any pair (G′, k′/k) as above with
k′-split G′ arises from some such G . The odd-looking Levi subgroup condition over ks at the
end of Definition 2.3.1 cannot be dropped; see [CGP10, Ex. 7.2.2, Propositions 7.3.1, 7.3.6] for
the significance of this condition, as well as more natural-looking formulations of it. Basic exotic
pseudo-reductive groups are used in the following generalization of the ‘standard construction’
from Example 2.1.1.

Example 2.3.2. Let k be a field, k′ a non-zero finite reduced k-algebra, and G′ a k′-group with
absolutely pseudo-simple fibers. For each factor field k′i of k′, assume that the k′i-fiber G′i of
G′ is either semi-simple and simply connected or (if k is imperfect with char(k) ∈ {2, 3}) basic
exotic in the sense of Definition 2.3.1. Let T ′ be a maximal k′-torus in G′, and C ′ the associated
Cartan k′-subgroup ZG′ (T ′). By [CGP10, Proposition A.5.15(3)], it follows that Rk′/k(C ′) is
a Cartan k-subgroup of Rk′/k(G′).

Consider a k-homomorphism φ : Rk′/k(C ′)→ C to a commutative pseudo-reductive k-group
C, and a left action of C on Rk′/k(G′) whose composition with φ is the standard action and whose
effect on the k-subgroup Rk′/k(C ′)⊂ Rk′/k(G′) is trivial. We then obtain a semi-direct product
Rk′/k(G′) o C and (as in (2.1.2) in the standard construction) the anti-diagonal embedding

Rk′/k(C
′)→ Rk′/k(G

′) o C

is a central k-subgroup. Thus, it makes sense to form the quotient

G := (Rk′/k(G
′) o C)/Rk′/k(C

′).

The k-group G is pseudo-reductive [CGP10, Proposition 1.4.3], and D(G) is the image of
Rk′/k(G′) [CGP10, Corollary A.7.11, Proposition 8.1.2].

By [CGP10, Proposition 10.2.2(1)], there is a unique maximal k-torus T inG that contains the
image of the maximal k-torus of Rk′/k(C ′) under the composite map Rk′/k(C ′)→ Rk′/k(G′)→G,
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and C = ZG(T ). In particular, C is a Cartan k-subgroup of G. Moreover, (Gks , Tks) has a reduced
root system for the same reasons as in the standard case [CGP10, Remark 2.3.9].

Definition 2.3.3. A pseudo-reductive group G over a field k is generalized standard if it is
commutative or isomorphic to the construction in Example 2.3.2 arising from some 4-tuple
(G′, k′/k, T ′, C) as considered there. For non-commutative G this 4-tuple is called a generalized
standard presentation of G adapted to the unique maximal k-torus T in the Cartan k-subgroup
C ⊂G. (By [CGP10, Theorem 1.3.9], this recovers Definition 2.1.2 and § 2.2 unless k is imperfect
with char(k) ∈ {2, 3} and G′→ Spec k′ has a basic exotic fiber.)

Remark 2.3.4. By [CGP10, Proposition 10.2.4], the generalized standard presentation
is (uniquely) functorial with respect to isomorphisms in (G, T ). In this sense, the
generalized standard presentation of G is uniquely determined by T . Moreover, by [CGP10,
Proposition 10.2.2(3)], if a non-commutative G admits a generalized standard presentation
adapted to one choice of T then the same holds for any choice, so the ‘generalized standard’
property is independent of T . Finally, in the non-commutative case, the triple (G′, k′/k, j)
encoding the map j : Rk′/k(G′)→G is uniquely functorial with respect to isomorphisms in the
k-group G [CGP10, Remark 10.1.11, Proposition 10.1.12(1)], so (G′, k′/k, j) is independent of
the choice of generalized standard presentation of G.

Next we turn to the case of absolutely pseudo-simple G for which Gks has a non-reduced root
system.

Definition 2.3.5. Assume k is imperfect with char(k) = 2. A basic non-reduced pseudo-simple
k-group is an absolutely pseudo-simple k-group G such that Gks has a non-reduced root system
and the field of definition k′/k for R(Gk)⊂Gk is quadratic over k; we write (Gk′ )ss to denote
the k′-descent of Gk/R(Gk) as a quotient of Gk′ .

Theorem 2.3.6. Let k be a field of characteristic 2 such that [k : k2] = 2.

(i) For each n> 1, up to k-isomorphism there exists exactly one basic non-reduced pseudo-
simple k-group for which the maximal k-tori have dimension n.

(ii) For a pseudo-reductive k-group G such that Gks has a non-reduced root system, there is
a unique decomposition

G=G1 ×G2 (2.3.2)
such that (G2)ks has a reduced root system and G1 ' RK/k(G ) for a pair (G , K/k) consisting
of a nonzero finite reduced k-algebra K and a K-group G whose fibers are basic non-reduced
pseudo-reductive groups over the factor fields of K. (The k-group G2 may be trivial.)

Moreover, (G , K/k) is uniquely functorial with respect to k-isomorphisms in G1, and if {Ki}
is the set of factor fields of K and Gi is the Ki-fiber of G then the smooth connected normal
k-subgroups of G1 are precisely the products among the k-subgroups RKi/k(Gi). In particular,
G1 is perfect.

Proof. Part (i) is [CGP10, Theorem 9.4.3(1)], and (2.3.2) is [CGP10, Theorem 5.1.1(3),
Proposition 10.1.4(1)]. The uniqueness and properties of (G , K/k) are [CGP10, Proposi-
tion 10.1.4(2),(3)]. 2

Remark 2.3.7. The uniqueness in Theorem 2.3.6(i) fails whenever [k : k2]> 2. The construction
of basic non-reduced pseudo-simple k-groups is very indirect, resting on the theory of birational
group laws. There is an explicit description of the birational group law on an ‘open Bruhat cell’
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when [k : k2] = 2 (see [CGP10, Thmeorem 9.3.10(2)]). For our purposes this can be suppressed,
due to Theorem 2.3.8(ii) below.

The decomposition in (2.3.2) shows that the general classification of pseudo-reductive
k-groups, assuming [k : k2]6 2 when char(k) = 2, breaks into two cases: the case when Gks has
a reduced root system, and the case when G is a basic non-reduced pseudo-simple k-group. The
main classification theorem from [CGP10] is the following theorem.

Theorem 2.3.8. Let G be a pseudo-reductive group over a field k, with p := char(k). If p= 2
then assume [k : k2]6 2.

(i) If Gks has a reduced root system then the k-group G is generalized standard (so it is
standard except possibly if k is imperfect with p ∈ {2, 3}).

(ii) Assume p ∈ {2, 3}, [k : kp] = p, and either that G is a basic exotic pseudo-reductive k-
group or p= 2 and G is a basic non-reduced pseudo-simple k-group. In the basic exotic case,
there is a surjective k-homomorphism f :G�G onto a connected semi-simple k-group G that
is absolutely simple and simply connected such that the following properties hold.

(a) The induced maps G(k)→G(k) and H1(k, G)→H1(k, G) are bijective.
(b) If T is a maximal k-torus (respectively maximal k-split k-torus) in G then the same holds

for T := f(T ) in G and T → T is an isogeny.
(c) The formation of f is functorial with respect to k-isomorphisms in G and commutes with

separable extension on k.
(d) If k is equipped with an absolute value (respectively is a global function field) then

G(k)→G(k) (respectively G(Ak)→G(Ak)) is a homeomorphism.

In the basic non-reduced pseudo-simple case the same holds using G= Rk1/2/k(G
′) for a k1/2-

group G
′

that is functorial with respect to k-isomorphisms in G and is k1/2-isomorphic to Sp2n,
where n is the dimension of maximal tori of G.

By [CGP10, Theorem C.2.3], the maximal k-split k-tori in any smooth connected affine
group H over a field k are H(k)-conjugate.

Proof. The assertion in part (i) is [CGP10, Theorem 10.2.1(2), Proposition 10.2.4]. For part (ii),
we first dispose of the case when p= 2 and G is a basic non-reduced pseudo-simple k-group.
Let k′ = k1/2 and G′ = (Gk′ )ss = (Gk′ )red, and define ξG :G→ Rk′/k(G′) to be the natural k-map
(so ker ξG is a unipotent group scheme). By [CGP10, Theorem 9.4.3(1)], we have G′ ' Sp2n as
k′-groups for some n> 1, and, by [CGP10, Proposition 9.4.12(1)], the natural map G(k)→G′(k′)
is bijective and H1(k, G) = 1. Moreover, if k is topologized by an absolute value (respectively is
a global function field) then G(k)→G′(k′) is a homeomorphism (respectively G(Ak)→G′(Ak′ )
is a homeomorphism) due to [CGP10, Proposition 9.4.12(2), (3)]. Thus, if we take G= Rk′/k(G′)
then all assertions in part (ii) are satisfied for G as above, except for possibly the assertions
concerning maximal k-tori and maximal k-split k-tori.

By [CGP10, Corollary 9.4.13], we have the following results concerning tori in the basic non-
reduced pseudo-simple case. The maximal k-split k-tori in G are maximal as k-tori (as is also
the case over k′ for the k′-group G′ ' Sp2n), for each maximal k-torus T in G there is a unique
maximal k′-torus T ′ in G′ ' Sp2n such that T ⊆ ξ−1

G (Rk′/k(T ′)), and for such T the map ξG
carries T isomorphically onto the maximal k-torus in Rk′/k(T ′). In particular, dim T = dim T ′

and T is k-split if and only if T ′ is k′-split, so the basic non-reduced pseudo-simple case is settled.
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It remains to treat the case that G is basic exotic (with p ∈ {2, 3}). Since [k : kp] = p,
it follows from [CGP10, Propositions 7.3.1, 7.3.3, 7.3.5(1)] that there is a canonical k-
homomorphism f :G�G onto a connected semi-simple k-group G that is absolutely simple
and simply connected such that assertions (a), (c), and (d) hold. Assertion (b) is immediate
from [CGP10, Corollary 7.3.4]. 2

3. Preliminary simplifications

3.1 Smoothness
We now explain why the lack of a smoothness hypothesis on G in Theorem 1.3.1 involves no
extra difficulty. This rests on the following useful lemma, which is [CGP10, Lemma C.4.1].

Lemma 3.1.1. Let X be a scheme locally of finite type over a field k. There is a unique
geometrically reduced closed subscheme X ′ ⊆X such that X ′(K) =X(K) for all separable
extension fields K/k. The formation of X ′ is functorial in X, and it commutes with the formation
of products over k as well as separable extension of the ground field. In particular, if X is a
k-group scheme then X ′ is a smooth k-subgroup scheme.

Remark 3.1.2. Two consequences of Lemma 3.1.1 that will often be used without comment are
that if G is a group scheme locally of finite type over a field k then (i) the maximal k-split k-tori
in G are all G(k)-conjugate and (ii) for any maximal k-torus T ⊆G and extension field K/k,
TK is a maximal K-torus in GK provided that G is k-smooth or K/k is separable. Lemma 3.1.1
reduces both assertions to the case of smooth G. Assertion (i) is [CGP10, Proposition C.4.5] (via
reduction to the smooth connected affine case, which is [CGP10, Theorem C.2.3]). Assertion (ii)
is [CGP10, Lemma C.4.4].

Lemma 3.1.1 will be applied to separable extensions such as kv/k for a global field k and
place v of k. It is also used in the proof of the following result that will be needed later.

Proposition 3.1.3. Let G be a group scheme locally of finite type over an arbitrary field k.
Any smooth map f :G�G′ onto a k-group G′ locally of finite type carries maximal k-tori
onto maximal k-tori, and likewise for maximal k-split k-tori. Moreover, every maximal k-torus
(respectively maximal k-split k-torus) in G′ lifts to one in G.

Proof. This is [CGP10, Proposition C.4.5(2)]. 2

To illustrate the usefulness of Lemma 3.1.1, we now reduce the proof of Theorem 1.3.1
to the case of smooth groups. Let k be a global field, G an affine k-group scheme of finite
type, and G′ as in Lemma 3.1.1 applied to G. The extension of fields kv/k is separable
for all places v of k, so the closed embedding G′(kv) ↪→G(kv) of topological groups is an
isomorphism for all v. By standard ‘spreading out’ arguments, there is a finite non-empty
set S0 of places of k (containing the archimedean places) such that the inclusion G′ ↪→G
spreads out to a closed immersion of affine finite type Ok,S0-group schemes G′S0

↪→GS0 . For
any place v 6∈ S0, we have GS0(Ov)⊆G(kv) =G′(kv) =G′S0

(kv), so GS0(Ov) =G′S0
(Ov) since

G′S0
(Ov) =GS0(Ov) ∩G′(kv) inside G′(kv) (i.e., to check if an Ov-valued solution to the Ok,S0-

equations defining GS0 satisfies the additional Ok,S0-equations defining G′S0
, we can equivalently

work with the corresponding kv-valued point). Hence, G′(Ak) =G(Ak) as topological groups.
The natural map G′(k)\G′(Ak)/G′(kS)→G(k)\G(Ak)/G(kS) is therefore a homeomorphism for
all S, so one side is quasi-compact if and only if the other side is. Thus, G has finite class numbers
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provided that G′ does, so to prove Theorem 1.3.1 for G it suffices to prove it for the smooth G′.
Note that G′ may be disconnected even if G is connected (e.g., see [CGP10, Remark C.4.2]).

Since non-affine groups will arise in our considerations in § 7.5, it is convenient to record two
general structure theorems for smooth connected groups over a field. The first is well known,
but only applicable over perfect fields, whereas the second is not widely known but has been
available for a long time and is very useful over imperfect fields.

Theorem 3.1.4 (Chevalley). Let G be a smooth connected group over a perfect field k. There
is a unique short exact sequence of smooth connected k-groups

1→H →G→A→ 1

with H affine and A an abelian variety.

Proof. Chevalley’s original proof is given in [Che60], but it may be difficult to read nowadays
due to the style of algebraic geometry that is used. See [Con02] for a modern exposition. 2

If the perfectness hypothesis on k is dropped in Theorem 3.1.4 then the conclusion can fail;
counterexamples are given in [CGP10, Ex. A.3.8] over every imperfect field. Here is a remarkable
substitute for Theorem 3.1.4 that is applicable over all fields (and whose proof uses Theorem 3.1.4
over an algebraic closure of the ground field).

Theorem 3.1.5. Let F be a field and G a smooth connected F -group. The F -algebra O(G)
is finitely generated and smooth, and when Gaff := Spec(O(G)) is endowed with its natural F -
group structure the natural map G→Gaff is a surjection with smooth connected central kernel
Z satisfying O(Z) = F . If char(F )> 0 then Z is semi-abelian (i.e., an extension of an abelian
variety by an F -torus).

The centrality of Z makes this extension structure on G very convenient for cohomological
arguments (in contrast with Theorem 3.1.4, where the commutative term is the quotient).

Proof. See [DG70, III, §§ 3, 8.2, 8.3] for all but the semi-abelian property in non-zero
characteristic. This special feature in non-zero characteristic is proved in [Bri09, Proposition 2.2]
resting on the commutative case of Theorem 3.1.4 over F (and was independently proved
in [SS09] by another method). A proof of the semi-abelian property is also given in [CGP10,
Theorem A.3.9]. 2

3.2 Connectedness
We now review (in scheme-theoretic language) an argument of Borel [Bor63, 1.9] to show that
G has finite class numbers if G0 has finite class numbers, where G is an affine group scheme of
finite type over a global field k and G0 is its identity component. Since G0 is a closed normal
subgroup subscheme of G [SGA3, IVA, 2.3], G0(Ak) is a closed normal subgroup of G(Ak).
In particular, the quotient space G(Ak)/G0(Ak) is locally compact and Hausdorff, and it is
naturally a topological group. By standard ‘spreading out’ arguments, for a suitable finite non-
empty set S of places of k (containing the archimedean places) there exists an affine group
scheme GS of finite type over Spec Ok,S with generic fiber G and an open and closed subgroup G0

S

of GS that fiberwise coincides with the identity component of the fibers of GS over Spec Ok,S .
This interpolation of the fibral identity components is used in the proof of the next result.

Proposition 3.2.1 (Borel). For any global field k and affine k-group scheme G of finite type,
the Hausdorff quotient G(Ak)/G0(Ak) is compact. In fact, it is profinite.

571

https://doi.org/10.1112/S0010437X11005665 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005665


B. Conrad

Proof. Let G′ ⊆G be as in Lemma 3.1.1. As we have seen in the discussion following
Proposition 3.1.3, G′(Ak) =G(Ak) as topological groups. Likewise, (G′)0(Ak)⊆G0(Ak) since
(G′)0 ⊆G0, so G(Ak)/G0(Ak) is topologically a Hausdorff quotient group of G′(Ak)/(G′)0(Ak).
We may therefore replace G with G′ so as to assume that G is smooth. The smooth case was
treated by Borel, using the crutch of GLn. A well-known expert in algebraic groups requested
an exposition of Borel’s argument without that crutch; this is given in Appendix C, using GS
and G0

S as mentioned above. 2

To get a feeling for Proposition 3.2.1 consider the special case when G is the constant k-group
associated to a finite group Γ. In this caseG0 is trivial andG(Ak) is the set of Γ-tuples of mutually
orthogonal idempotents in Ak with sum adding up to 1. In other words, if Vk denotes the set
of places of k (index set for the ‘factors’ of Ak), then G(Ak) is the set HomSet(Vk, Γ) =

∏
Vk

Γ
(product with index set Vk). The topology induced by Ak is equal to the product topology, so
profiniteness is evident in this case.

Corollary 3.2.2 (Borel). An affine group scheme G of finite type over a global field k has
finite class numbers if its identity component G0 does.

Proof. The inclusion
G(k)/G0(k) ↪→ (G/G0)(k)

implies that G(k)/G0(k) is finite (since G/G0 is k-finite). Let S be a finite non-empty set of places
of k containing S∞ and let K be a compact open subgroup in G(AS

k ), so K0 :=K ∩G0(AS
k )

is a compact open subgroup of G0(AS
k ) (since G0(AS

k ) is a closed subgroup of G(AS
k )). By the

hypothesis that G0 has finite class numbers with respect to S, there exists a finite set {γ0
j } in

G0(AS
k ) such that

G0(AS
k ) =

∐
G0(k)γ0

jK
0.

By Proposition 3.2.1, G(AS
k )/G0(AS

k ) is compact, so there exists a finite subset {gi} in G(AS
k )

such that
G(AS

k ) =
∐

G0(AS
k )giK =

∐
G0(k)γ0

jK
0giK.

Since G0(k)⊆G(k) and each compact open subset K0giK in G(AS
k ) is a finite union of right

cosets gi,αK, we obtain finiteness of G(k)\G(AS
k )/K. 2

4. Finiteness properties of tori and adelic quotients

This section largely consists of well-known facts (for which we include some proofs, as a
convenience to the reader). We gather them here for ease of reference, and incorporate
generalizations (e.g., removal of smoothness hypotheses) that will be needed later. The only
new result in this section is Proposition 4.1.9.

4.1 Tori
Let L be a (possibly archimedean) local field and let | · |L be its normalized absolute value. For
an arbitrary torus T over L, we define

T (L)1 =
⋂

χ∈XL(T )

ker |χ|L.

For example, T (L)1 = T (L) if T is L-anisotropic. The subgroup T (L)1 ⊆ T (L) is functorial in
T , its formation commutes with direct products in T , and it contains all compact subgroups
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of T (L). The first two lemmas below are special cases of [Lan96, Proposition 1.2(ii)] and [Lan96,
Lemma 1.3(ii)] respectively.

Lemma 4.1.1. For a local field L, the maximal compact subgroup of T (L) is T (L)1.

Proof. The problem is to prove that T (L)1 is compact. By functoriality with respect to the closed
immersion of L-tori

T ↪→ RL′/L(TL′ )

for a finite separable extension L′/L that splits T , it is enough to consider the special case
T = RL′/L(GL1). In this case T (L) = L′× topologically and XL(T ) is infinite cyclic with NL′/L

as a non-trivial element, so

T (L)1 = ker(T (L)
NL′/L−−−−−→GL1(L) = L×

| · |L−−−−→R×>0) = O×L′ . 2

Lemma 4.1.2. Let G be a smooth group scheme over a local field L, and T an L-torus.

(i) Let G� T be a smooth surjective L-homomorphism. The natural map G(L)→ T (L) has
open image with finite index.

(ii) If T ′→ T is a map between L-tori and its restriction T ′0→ T0 between maximal
L-split subtori is surjective then the induced map T ′(L)/T ′(L)1→ T (L)/T (L)1 modulo maximal
compact subgroups has image with finite index.

Proof. We first reduce part (i) to part (ii). Since G→ T is smooth, has open image in T (L)
and hence (by Lemma 4.1.1) has image with finite index if and only if the image of G(L) in
T (L)/T (L)1 has finite index. By Proposition 3.1.3, any maximal L-torus T ′ in G maps onto T .
Thus, the maximal L-split subtorus in T ′ maps onto that of T , so it suffices to prove part (ii).

The map T0(L)/T0(L)1→ T (L)/T (L)1 is obviously injective, and we claim that its cokernel
is finite. There is an isogeny π : T0 × T1→ T with T1 ⊆ T the maximal L-anisotropic subtorus,
so T1(L) is compact and therefore lies in T (L)1. Hence, T0(L)→ T (L)/T (L)1 has cokernel that
is a subquotient of the group H1(L, ker π) that is finite when char(L) = 0.

Now assume char(L)> 0, or more generally that L is non-archimedean. Thus, T (L)1 is open
in T (L) and so its image in the compact quotient T (L)/T0(L) = (T/T0)(L) has finite index. By
applying the same reasoning to T ′ in the role of T , the map T ′0(L)/T ′0(L)1→ T ′(L)/T ′(L)1 is
injective with finite cokernel. Hence, we may and do assume that T and T ′ are L-split.

Consider the canonical isomorphism T (L)/T (L)1 'X∗,L(T ) := HomL(GL1, T ) defined by
λ 7→ λ(π) mod T (L)1 for any uniformizer π of OL (the choice of which does not matter).
The map X∗,L(T ′)→X∗,L(T ) has image with finite index, since T and T ′ are L-split and
surjections between L-tori admits sections in the isogeny category of L-tori. Hence, the map
T ′(L)/T ′(L)1→ T (L)/T (L)1 has image with finite index. 2

Lemma 4.1.3. Let L be a field, L′ a non-zero finite reduced L-algebra, G′ an L′-group scheme of
finite type, and G := RL′/L(G′) the Weil restriction to L. For any maximal L′-split torus T ′ ⊆G′,
the maximal L-split torus T in RL′/L(T ′) is a maximal L-split torus in G. Moreover, T ′ 7→ T is
a bijection between sets of maximal split tori. The same holds for the set of maximal tori.

In particular, if L is a non-archimedean local field and L′/L is a finite extension field
then for any such pair (T, T ′) of maximal split tori the subgroup of T ′(L′) generated by
T (L)⊆G(L) =G′(L′) and any compact open subgroup of T ′(L′) has finite index in T ′(L′).
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Proof. The final part follows from the rest by Lemma 4.1.2(ii). By (the proof of)
Lemma 3.1.1, we can assume that G′ is L′-smooth. In the smooth affine case, this is [CGP10,
Proposition A.5.15(2)]. Using Proposition 3.1.3 and [CGP10, Lemma C.4.4], the proof in the
affine case works in general. 2

The interesting case of Lemma 4.1.3 is when T ′ has a non-trivial fiber over a factor field of
L′ that is not separable over L, as then RL′/L(T ′) is not an L-torus. We only need the lemma
for smooth affine G′. For the reader interested in the general case, note that RL′/L(G′) makes
sense as an L-scheme because G′ is quasi-projective [CGP10, Proposition A.3.5].

Lemma 4.1.4. Let U be a k-split smooth connected unipotent group over a field k, and let T
be a k-torus. Any extension E of U by T is split.

Proof. This lemma is proved in [SGA3, XIV, 6.1.A(ii)], but for the convenience of the reader
we give a direct argument here. Since E is smooth and connected, such an extension must be
central (as the automorphism scheme Aut(T ) is étale). If a splitting exists then it is unique
(since Homk(U, T ) = 1), so we can assume k is separably closed and thus T is k-split. We may
therefore assume T = GL1. Also, by uniqueness of the splitting, we can use a composition series
for the k-split U to reduce to the case U = Ga. Since Pic(Ga) = 1, the quotient map E�Ga has
a k-scheme section, and we can arrange that it respects the identity points. Thus, E = GL1 ×Ga

such that the identity is (1, 0) and the group law is (t, x)(t′, x′) = (tt′ · f(x, x′), x+ x′) for some
map of k-schemes f : Ga ×Ga→GL1 satisfying f(0, 0) = 1. The only such f is the constant map
f = 1. 2

Proposition 4.1.5. Let G be a smooth connected affine group over a local field L and let
T ⊆G be a maximal L-split torus. Assume that G is either commutative with no L-subgroup
isomorphic to Ga or is in one the following classes of L-groups: absolutely simple semi-simple,
basic exotic pseudo-reductive (with char(L) ∈ {2, 3}), or basic non-reduced pseudo-simple (with
char(L) = 2).

An open subgroup U ⊆G(L) has finite index in G(L) if and only if U ∩ T (L) has finite
index in T (L).

See Proposition 4.1.9 for a generalization, building on the cases considered here.

Proof. The ‘only if’ direction is obvious, so we focus on the converse. The case of archimedean L
is trivial, since it is well known that the topological identity component G(L)0 has finite index
in G(L) for archimedean L. Hence, we can assume L is non-archimedean. First we treat the
case of commutative G containing no Ga. Note that G/T contains no GL1, by maximality of T .
The L-group G/T also cannot contain Ga as an L-subgroup, due to Lemma 4.1.4 applied to the
preimage of such a Ga in G. Thus, G/T contains neither GL1 nor Ga as an L-subgroup.

We claim that (G/T )(L) is compact. Granting this, let us show how to conclude the
commutative case. Since T is L-split, we know that G(L)/T (L) = (G/T )(L) topologically. Hence,
G(L)/T (L) is compact, so any open subgroup of G(L) has finite-index image in G(L)/T (L) for
topological reasons. Any open subgroup of G(L) that meets T (L) in a finite-index subgroup of
T (L) therefore has finite index in G(L), so we would be done in the commutative case.

By replacing G with G/T , we have reduced the commutative case to G that do not contain
GL1 or Ga as L-subgroups. Let T ′ be a maximal L-torus in G, so T ′(L) is compact (Lemma 4.1.1)
and G(L)/T ′(L) is an open subgroup of (G/T ′)(L). The group G/T ′ is smooth, connected, and
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unipotent, so it suffices to show that (G/T ′)(L) is compact. By [Oes84, VI, § 1], it is equivalent
to show that G/T ′ does not contain Ga as an L-subgroup. This is another application of
Lemma 4.1.4 since G is assumed to not contain Ga as an L-subgroup.

Next we consider the case when G is semi-simple. This case is a well-known result of Tits,
and for the convenience of the reader we now recall the argument. Let G(L)+ be the normal
subgroup in G(L) generated by the L-rational points of the unipotent radicals of the minimal
parabolic L-subgroups of G. Since G is semi-simple, by [BT73, 6.2, 6.14] the group G(L)+ is
a closed subgroup in G(L) and the quotient space G(L)/G(L)+ is compact. Thus, the open
subgroup U G(L)+/G(L)+ is also compact. The natural bijective continuous homomorphism
U/(U ∩G(L)+)→U G(L)+/G(L)+ is open and hence a homeomorphism, so U/(U ∩G(L)+)
is compact. If U ∩G(L)+ is also compact then it follows that U is compact, so U ∩ T (L) is
compact. This would force T (L) to be compact since U ∩ T (L) is a subgroup of finite index in
T (L) by hypothesis, so T = 1 since T is an L-split torus. That is, if U ∩G(L)+ is compact then
the semi-simple L-group G is L-anisotropic, in which case G(L) is compact (see [Pra82]) and so
the open subgroup U trivially has finite index.

Thus, we can assume that U ∩G(L)+ is non-compact. It is a theorem of Tits (proved
in [Pra82]) that every proper open subgroup of G(L)+ is compact, so U ∩G(L)+ =G(L)+.
That is, U contains G(L)+. The quotient U/G(L)+ is an open subgroup in the compact group
G(L)/G(L)+, so it has finite index and hence U has finite index in G(L).

Finally, suppose char(L) ∈ {2, 3} and G is either basic exotic pseudo-reductive or basic
non-reduced pseudo-simple (with char(L) = 2). Using the quotient map f :G→G provided by
Theorem 2.3.8(ii), by Lemma 4.1.2(ii) the problem for G reduces to the analogue for G. (The
key point with Lemma 4.1.2(ii) is that it enables us to bypass the fact that a non-étale isogeny
between L-split L-tori never has finite-index image on L-points.) In the basic exotic case the
L-group G is semi-simple (even simply connected), and this was handled above. In the basic
non-reduced case we have G' RL′/L(G′) for L′ = L1/2 and G′ ' Sp2n as L′-groups, so naturally
G(L)'G′(L′) as topological groups. An application of Lemma 4.1.3 then handles the interaction
of rational points of tori under this topological group isomorphism, reducing the problem for G
over L to the settled case of G′ over L′. 2

We next record some standard cohomological finiteness properties of group schemes of
multiplicative type over non-archimedean local fields, especially to allow non-smooth groups over
local function fields. First we recall Shapiro’s Lemma, stated in a form that allows inseparable
field extensions (as we will require later).

Lemma 4.1.6. Let k be a field, k′ a non-zero finite reduced k-algebra, and {k′i} its set of factor
fields. Let G′ be a smooth affine k′-group, and G′i its k′i-fiber.

There is a natural isomorphism of pointed sets

H1(k, Rk′/k(G
′))'H1(k′, G′) =

∏
H1(k′i, G

′
i),

and if G′ is commutative then this is an isomorphism of groups. Moreover, in the commutative
case there are natural group isomorphisms

Hm(k, Rk′/k(G
′))'Hm(k′, G′) =

∏
Hm(k′i, G

′
i)

for all m> 1.

Proof. This lemma is [Oes84, IV, 2.3] since Rk′/k(G′) =
∏

Rk′
i/k

(G′i). 2
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Proposition 4.1.7. Let k be a non-archimedean local field.

(i) If T is a k-torus then H1(k, T ) is finite.

(ii) If M is a finite k-group scheme of multiplicative type then H2(k, M) is finite.

Proof. For a k-torus T , consider the pairing

H1(k, T )×H1(k,X(T ))→H2(k,GL1) = Q/Z,

where X(T ) := Homks(Tks ,GL1) is the geometric character group (for a separable closure ks/k).
Since X(T ) is a finite free Z-module, it follows from local class field theory (see [Mil86, I,
Theorem 1.8(a)]) that this pairing identifies H1(k, T ) with the Q/Z-dual of H1(k,X(T )). Thus,
for part (i) we just have to show that H1(k,X(T )) is finite, and this follows by using inflation-
restriction with respect to a finite Galois extension k′/k that splits the discrete torsion-free
Gal(ks/k)-module X(T ).

Now consider M as in part (ii). Let F/k be a finite Galois splitting field for the finite étale
Cartier dual of M , with Galois group Γ = Gal(F/k). This Cartier dual is a quotient of a power of
Z[Γ] as a Γ-module, so M is naturally a k-subgroup of a k-torus T that is a power of RF/k(GL1).
The exact sequence

1→M → T →T → 1

with T := T/M a k-torus gives an exact sequence

H1(k,T )→H2(k, M)→H2(k, T )[n]

where n is the order of M . Since H1(k,T ) is finite, it suffices to prove that H2(k, T )[n] is finite
for any integer n> 1. By Lemma 4.1.6, H2(k, T ) is a power of Br(F ), and Br(F )[n] is finite, by
local class field theory. 2

For later use, we require a generalization of Proposition 4.1.5 that rests on the structure
theory in § 2.3 in the local function field case. First, we introduce a concept that arose in [BT78,
§ 6], using the terminology given for it later in [BrT84, 1.1.12].

Definition 4.1.8. A group scheme H over a field F is quasi-reductive if it is smooth, affine,
and contains no non-trivial F -split smooth connected unipotent normal F -subgroup.

A smooth connected unipotent normal F -subgroup V in a quasi-reductive F -group H cannot
contain Ga as an F -subgroup. Indeed, if U0 is such an F -subgroup of V then theH(Fs)-conjugates
of (U0)Fs generate a non-trivial smooth connected normal Fs-subgroup Us of HFs that descends
to an F -subgroup U ⊆ V (so it is unipotent) and, by construction, admits no non-trivial quotient
that is Fs-wound in the sense of Definition 7.1.1. Thus, Us is Fs-split (by [CGP10, Theorem B.3.4]
applied over Fs), so U is F -split (by [CGP10, Theorem B.3.4] applied over F ). However, U 6= 1, so
this contradicts that H is quasi-reductive over F . (It follows that quasi-reductivity is equivalent
to the condition that Ru,F (H) is F -wound in the sense of Definition 7.1.1.)

Proposition 4.1.9. Let L be a local field and H a smooth affine L-group that is quasi-reductive
in the sense of Definition 4.1.8. Let T0 ⊆H be a maximal L-split L-torus. An open subgroup
U ⊆H(L) has finite index if and only if U ∩ T0(L) has finite index in T0(L).

Proof. We focus on the non-trivial implication ‘⇐’. The archimedean case is trivial, so we
can assume that L is non-archimedean. If H is commutative then the commutative case of
Proposition 4.1.5 implies that U has finite index in H(L). Hence, we can assume that H is not

576

https://doi.org/10.1112/S0010437X11005665 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005665


Finiteness theorems for algebraic groups over function fields

commutative. We will first treat the case of pseudo-reductive H, and then use this to handle the
general quasi-reductive case.

With H now assumed to be pseudo-reductive, by Theorem 2.3.6(ii) (in case char(L) = 2) and
Theorem 2.3.8 we may and do assume H is a non-commutative generalized standard pseudo-
reductive L-group. (This reduction step uses Lemmas 4.1.2(ii) and 4.1.3, exactly as in the
treatment of basic non-reduced cases at the end of the proof of Proposition 4.1.5.)

Choose a maximal L-torus T ⊆H containing T0, and let C = ZH(T ) be the corresponding
Cartan k-subgroup of H. Consider the generalized standard presentation (H ′, k′/k, T ′, C) of
H adapted to T ; see Definition 2.3.3 and Remark 2.3.4. In particular, there is a factorization
diagram

RL′/L(C ′)→ C→ RL′/L(C ′/ZH′ )

such that

H ' (RL′/L(H ′) o C)/RL′/L(C ′). (4.1.1)

Note that T0 is the maximal L-split torus in C, and C does not contain Ga as an L-subgroup
(since C is pseudo-reductive over L). Thus, by the commutative case of Proposition 4.1.5,
U ∩ C(L) has finite index in C(L).

Write L′ '
∏
L′i as a finite product of local fields of finite degree (but possibly not separable)

over L. Let H ′i denote the fiber of H ′ over the factor field L′i of L′, so either H ′i is a simply
connected and absolutely simple semi-simple L′i-group or char(L) ∈ {2, 3} and H ′i is a basic
exotic pseudo-reductive L′i-group. Let C ′i denote the L′i-fiber of C ′, so it is a Cartan L′i-subgroup
of H ′i. In particular, C ′i is a torus when H ′i is semi-simple. Suppose instead that H ′i is basic
exotic, so the quotient map H ′i�H

′
i provided by Theorem 2.3.8(ii) carries C ′i onto a Cartan

L′i-subgroup C
′
i in H

′
i. For a separable closure L′i,s of L′i, the bijectivity of H ′i(L

′
i,s)→H

′
i(L
′
i,s)

implies that the injective map C ′i(L
′
i,s)→ C

′
i(L
′
i,s) is surjective (because C ′i is its own centralizer

in H ′i). Hence, Hm(L′i, C
′
i)→Hm(L′i, C

′
i) is an isomorphism for all m in such cases, with C

′
i a

torus since H ′i is semi-simple.
By Lemma 4.1.6 and Proposition 4.1.7 (applied over the factor fields L′i), it follows that

H1(L, RL′/L(C ′)) is always finite. Thus, the central pushout presentation (4.1.1) implies that the
open map

RL′/L(H ′)(L) o C(L)→H(L) (4.1.2)

has normal image V with finite index. It therefore suffices to show that U ∩ V has finite index
in V .

We have just seen that U meets the image of C(L) ↪→H(L) with finite index in C(L), so the
image of U ∩ V in the quotient V ′′ of V modulo the normal image of RL′/L(H ′)(L) has finite
index. It is trivial to check that if 1→ Γ′→ Γ→ Γ′′→ 1 is an exact sequence of abstract groups
then a subgroup of Γ has finite index if (and only if) its image in Γ′′ has finite index in Γ′′ and
its intersection with Γ′ has finite index in Γ′. Thus, it remains to check that the open preimage
of U ∩ V (equivalently, of U ) under (4.1.2) meets RL′/L(H ′)(L) in a subgroup of RL′/L(H ′)(L)
with finite index.

By [CGP10, Theorem C.2.3], any two maximal split tori in a smooth connected affine group
over a field are conjugate by a rational point. Applying this to H and using the functoriality of
(H ′, L′/L) with respect to L-automorphisms of H, T0 contains the image of a maximal L-split
torus T 0 in RL′/L(H ′). The open preimage U of U in RL′/L(H ′)(L) therefore meets T 0(L) in
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a finite-index subgroup. Thus, we just need to prove the analogue of Proposition 4.1.5 for the
L-group RL′/L(H ′).

The maximal L-split tori in

RL′/L(H ′)'
∏
i

RL′
i/L

(H ′i)

are products of maximal L-split tori in the factors. Applying Lemma 4.1.3 to each factor therefore
gives that T 0 =

∏
T 0,i, with T 0,i the maximal L-split torus in RL′

i/L
(T ′0,i) for some maximal L′i-

split torus T ′0,i in H ′i. Thus, by the final part of Lemma 4.1.3, the open subgroup U viewed in∏
i H
′
i(L
′
i) meets

∏
T ′0,i(L

′
i) in a finite-index subgroup. The technique of proof of Proposition 4.1.5

in the semi-simple and basic exotic cases applies to open subgroups of the product
∏
i H
′
i(L
′
i)

since each H ′i is either connected semi-simple or basic exotic over L′i with maximal L′i-split torus
T ′0,i for all i. This settles the general case of pseudo-reductive H.

Now consider any quasi-reductive L-group H. In characteristic 0 such H are reductive, so we
can apply the pseudo-reductive case to H0. Thus, we may assume char(L) = p > 0. We may also
assume H is connected, and we let U ⊆H be the maximal smooth connected unipotent normal
L-subgroup, so H/U is pseudo-reductive over L.

Since H →H/U is a smooth surjection with unipotent kernel, the map H(L)→ (H/U)(L)
is open and T0 is carried isomorphically onto a maximal L-split torus in H/U . The argument
following Definition 4.1.8 shows that the smooth normal L-subgroup U does not contain Ga

as an L-subgroup, since H is quasi-reductive. By [Oes84, VI, § 1], it follows that the group
U(L) is compact. Thus, U ∩ U(L) has finite index in U(L), so we can replace U with the open
subgroup U · U(L) in which U has finite index in order to reduce to the case U(L)⊆U . The
settled pseudo-reductive case can be applied to the open subgroup U/U(L)⊆ (H/U)(L) and the
L-torus T0 viewed as a maximal L-split torus in H/U , so U/U(L) has finite index in (H/U)(L)
and hence in H(L)/U(L). This proves that U has finite index in H(L). 2

4.2 Adelic quotients
Throughout this section, k is a global field. We begin by recalling a useful general result in the
theory of topological groups.

Theorem 4.2.1. Let G be a second-countable locally compact Hausdorff topological group, and
X a locally compact Hausdorff topological space endowed with a continuous right G-action. Let
x ∈X be a point and let Gx ⊆G be its stabilizer for the G-action. If the orbit x ·G is locally
closed in X then the natural map Gx\G→X induced by g 7→ xg is a homeomorphism onto the
orbit of x.

Proof. See [Bou98, IX, § 5] for a proof in a more general setting. The role of second-countability
is so that the Baire category theorem may be applied. 2

Definition 4.2.2. For an affine k-group scheme H of finite type and a k-rational character
χ ∈Xk(H) := Homk(H,GL1), let

|χ| :H(Ak)→R×>0

denote the continuous composition of χ :H(Ak)→GL1(Ak) = A×k and the idelic norm
homomorphism ‖ · ‖k : A×k →R×>0. The closed subgroup H(Ak)1 ⊆H(Ak) is defined to be

H(Ak)1 :=
⋂

χ∈Xk(H)

ker |χ|.
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Example 4.2.3. If H is a (connected) semi-simple k-group, a unipotent k-group, an anisotropic
k-torus, or more generally Xk(H) = {1}, then H(Ak)1 =H(Ak). In general, the subgroup
H(Ak)1 ⊆H(Ak) is normal and functorial in H, and H(Ak)/H(Ak)1 is commutative. If k is a
global function field then H(Ak)1 is open in H(Ak) because the idelic norm is discretely-valued
for such k and Xk(H) is finitely generated over Z.

Lemma 4.2.4. Let f : T ′→ T be a k-homomorphism between k-tori such that f restricts to an
isogeny between maximal k-split subtori. The induced map T ′(Ak)/T ′(Ak)1→ T (Ak)/T (Ak)1

is an isomorphism in the number field case and is injective with finite-index image in the function
field case.

Proof. When T ′ and T are k-split, so f is an isogeny, we can choose compatible bases of the
character groups to reduce to the trivial case when T ′ = T = GL1 and f is the nth-power map
for a non-zero integer n. In general, the hypotheses imply that f induces an isogeny between
maximal k-split quotients. Hence, it suffices to treat the case when T is the maximal k-split
quotient T ′0 of T ′. Every k-rational character of T ′ factors through T ′0, so injectivity always
holds. Since T ′ contains a k-split subtorus S such that S→ T ′0 is a k-isogeny, the settled split
case applied to this isogeny settles the general case. 2

Our interest in Definition 4.2.2 is due to the following lemma (which is well known in the
smooth case, and will be useful in the non-smooth case in Appendix A).

Lemma 4.2.5. Let H be a closed k-subgroup scheme of an affine k-group scheme H ′ of finite
type. The natural map of coset spaces

H(k)\H(Ak)1→H ′(k)\H ′(Ak)1

is a closed embedding. In particular, the map H(k)\H(Ak)1→H ′(k)\H ′(Ak) is a closed
embedding.

Proof. The target is a locally compact Hausdorff space admitting a continuous right action by
H ′(Ak)1 and hence by H(Ak)1, and H(Ak)1 is a second-countable locally compact Hausdorff
group. It follows from Theorem 4.2.1 that for x ∈H ′(k)\H ′(Ak)1 and its stabilizer subgroup Sx
in H(Ak)1, the natural orbit map

Sx\H(Ak)1→H ′(k)\H ′(Ak)1

is a homeomorphism onto the H(Ak)1-orbit of x if the orbit is closed. Taking x to be the coset
of the identity gives Sx =H ′(k) ∩H(Ak)1 =H(k), and so we are reduced to proving that the
H(Ak)1-orbit of the identity coset in H ′(k)\H ′(Ak)1 is closed.

We have to prove that H ′(k)H(Ak)1 is closed in H ′(Ak)1. An elegant proof is given in [Oes84,
IV, 1.1], where it is assumed that H ′ and H are smooth. This smoothness is not needed. More
precisely, the only role of smoothness is to invoke the standard result that if G is a smooth
affine group scheme over a field k and G′ is a smooth closed subgroup scheme then there is a
closed immersion of k-groups G ↪→GL(V ) for a finite-dimensional k-vector space V such that
G′ is the scheme-theoretic stabilizer of a line. The proof of this result in [Bor91, 5.1] works
without smoothness, by using points valued in artin local rings (not just fields); see [CGP10,
Proposition A.2.4]. 2

The analogue of Lemma 4.2.5 using H(Ak) and H ′(Ak) instead of H(Ak)1 and H ′(Ak)1

is false. For example, let G be a non-trivial k-split connected semi-simple k-group and P
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a proper parabolic k-subgroup, and consider H = P and H ′ =G. The natural continuous open
map H ′(Ak)/H(Ak)→ (G/P )(Ak) is a homeomorphism (because of the standard fact that
G(F )/P (F ) = (G/P )(F ) for any field F/k, such as F = kv). However, (G/P )(Ak) is compact
since G/P is projective, so H ′(k)H(Ak) is not closed in H ′(Ak) since otherwise the subset
G(k)/P (k)⊆ (G/P )(Ak) would admit a structure of compact Hausdorff space, an impossibility
since it is countably infinite (as the countable G(k) is Zariski-dense in G, and P 6=G).

The following standard notion allows us to extend the concept of a purely inseparable isogeny
between smooth groups of finite type over a field to cases in which smoothness does not hold.

Definition 4.2.6. A map of schemes f : Y → Z is radiciel if it is injective and induces a purely
inseparable extension on residue fields κ(f(y))→ κ(y) for all y ∈ Y .

A surjective map between finite type schemes over a field F is radiciel precisely when it
induces a bijection on F -points (with F an algebraic closure of F ), and for a surjective finite
map between connected normal F -schemes of finite type it is equivalent to say that the extension
of function fields is purely inseparable.

Lemma 4.2.7. For any affine k-group scheme G of finite type and any finite non-empty set S of
places of k containing the archimedean places, the subgroup G(Ak)1 ·G(kS) in G(Ak) has finite
index.

Proof. We initially give an argument that works in characteristic 0, and then modify it for non-
zero characteristic (using the discreteness of the idelic norm) to circumvent difficulties caused by
radiciel k-homomorphisms. Assume first that G is smooth and connected, with no hypotheses
on char(k), so Xk(G) is a finite free Z-module. Let T be the split k-torus Xk(G)∨ ⊗Z GL1 (i.e.,
the k-torus with character group Xk(G)). The natural map G→ T is the unique maximal k-split
torus quotient, and this map identifies Xk(T ) with Xk(G) in the natural manner. We thereby
obtain a natural injection of abelian groups

G(Ak)/G(Ak)1→ T (Ak)/T (Ak)1.

Consider the following commutative diagram of groups:

G(Ak)/G(Ak)1 // T (Ak)/T (Ak)1

G(kS)

OO

// T (kS)

OO

We need to prove that the map along the left has image with finite index, so, by injectivity of
the top row, it is enough to prove the maps along the bottom and right sides have images with
finite index.

First we check that the cokernel along the right side is finite. Since T is split, we only have
to consider the analogue for GL1. This case is obvious by separately considering number fields
and function fields (using that S contains archimedean places in the number field case and is
not empty in the function field case).

By Lemma 4.1.2 applied to the smooth kv-group Gkv for each v ∈ S, the map G(kS)→ T (kS)
has image with finite index as long as the scheme-theoretic kernel of the quotient map G→ T
is smooth. This is automatic in characteristic 0, so the case of number fields is settled for
connected G. To settle the general number field case (for which G is automatically smooth),
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we give an argument to reduce the general case to the connected case without smoothness
hypotheses on G or any hypotheses on char(k).

As we noted at the beginning of § 3.2, there is a finite set S′ of places such that S ⊆ S′
and G spreads out to an affine finite type Ok,S′ -group GS′ containing an open and closed
normal subgroup G0

S′ with generic fiber G0. For any finite S′′ containing S′, let Ak,S′′ ⊂Ak

denote the open subring (
∏
v∈S′′ kv)×

∏
v 6∈S′′ Ov. (Don’t confuse this with the factor ring AS′′

k .)
The compact space G(Ak)/G0(Ak) (see Proposition 3.2.1) is the rising union of open subsets
GS′ (Ak,S′′ )/G0

S′ (Ak,S′′ ) for finite S′′ containing S′, so exhaustion is attained for large enough
S′′ that we may and do rename as S′. Since G0(kS) has finite index in G(kS), if G0(kS) has
finite-index image in G0(Ak)/G0(Ak)1 then we just have to show that

GS′ (Ak,S′ )/G0
S′ (Ak,S′ )G(kS)GS′ (Ak,S′ )1 (4.2.1)

is finite, where GS′ (Ak,S′ )1 :=GS′ (Ak,S′ ) ∩G(Ak)1. The compact factor
∏
v 6∈S′ GS′ (Ov) is killed

in (4.2.1), so (4.2.1) is a quotient of G(kS′ )/G0(kS′ )⊆ (G/G0)(kS′ ), which is finite. Hence, we
may replace G with G0.

It remains to consider the general case when k has characteristic p > 0. By the preceding
general argument resting on Proposition 3.2.1, we may and do now assume that G is connected.
If G is smooth then we have to address the possibility that the map G� T onto the maximal
k-split torus quotient may have non-smooth kernel. Let q be the size of the constant field in k,
so the idelic norm on A×k has image qZ. The group G(Ak)/G(Ak)1 is a subgroup of the finite
free Z-module Hom(Xk(G), qZ), so it is also a finite free Z-module and hence the abelian group
G(Ak)/G(Ak)1G(kS) is finite if it is killed by some non-zero integer. Thus, for smooth G, instead
proving that G(kv)→ T (kv) has image with finite index for each v ∈ S it suffices to prove that
the cokernel is killed by some non-zero integer.

When G is smooth, for a maximal k-torus T ′ ⊆G the map T ′→ T is a surjection of k-
tori [Bor91, 11.14]. (If G is not smooth then such a T ′ surjecting onto T may not exist.)
Surjections between tori over a field are split in the isogeny category over the field, so the
cokernel of T ′(kv)→ T (kv) is killed by a non-zero integer for all v. Hence, the case of smooth
connected G over k is settled, so the smooth case over k is settled.

The general case over function fields is reduced to the smooth case as follows. Let G′ ⊆G be as
in Lemma 3.1.1. (This may be disconnected even if G is connected; see [CGP10, Remark C.4.2].)
Since G′(Ak)→G(Ak) is an isomorphism that carries G′(Ak)1 into G(Ak)1 by functoriality,
G(Ak)/G(Ak)1 is a quotient of G′(Ak)/G′(Ak)1. The equality G′(kS) =G(kS) therefore reduces
us to showing that G′(kS) has finite-index image in G′(Ak)/G′(Ak)1, and this holds since G′ is
smooth. 2

5. Proof of finiteness of class numbers (Theorem 1.3.1)

By § 3, to prove the finiteness of class numbers for all affine group schemes of finite type over a
global function field k it is enough to restrict attention to smooth affine k-groups G, and passing
to G0 is harmless (Corollary 3.2.2). We now assume that G is a smooth connected affine k-group
and will use a quotient presentation of G over k to reduce the finiteness of class numbers for G
to the case of pseudo-reductive groups. We first review the known connected reductive case, to
clarify the ideas.
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5.1 Finiteness in the reductive case
In this section, assume that G is connected and reductive over a global function field k. Let
Z be its maximal central torus and D(G) its semi-simple derived group. The strategy in the
connected reductive case is to reduce the problem to the case of simply connected groups. The
special arithmetic features of simply connected groups over global function fields are triviality
of degree-1 Galois cohomology and strong approximation.

Finiteness of class numbers for commutative G is Example 1.3.2, so we may assume D(G) 6= 1.
Let {Gi} be the non-empty finite set of minimal non-trivial smooth connected normal k-
subgroups of D(G); they are k-simple and pairwise commute. For the simply connected central
cover G̃i→Gi, the multiplication map

H := Z ×
∏
i

G̃i→G

is a k-isogeny with finite central multiplicative kernel µ. The degree-1 local and global cohomology
of µ over k (for the fppf topology) may be infinite, so we need to pass to another quotient
presentation for G.

Let T be a maximal k-torus in Z ×
∏
i G̃i. (We have µ⊆ T since a maximal torus in a

connected reductive group is its own scheme-theoretic centralizer.) The T -action on H via
t · h= tht−1 factors through an action by the central quotient T/µ, and this action by T/µ
on H is trivial on the k-subgroup T ⊆H. The resulting twisted diagonal homomorphism
h : T → E :=H o (T/µ) analogous to (2.1.2) is a closed k-subgroup inclusion that makes T
a central torus in E. The natural homomorphism H → coker(h) between smooth k-groups
is surjective with scheme-theoretic kernel µ, so G'H/µ' coker(h). Thus, E is a central
extension of our initial connected reductive group G by the k-torus T , and E is also a semi-
direct product of the k-torus T = Z × (T/µ) against a product P :=

∏
G̃i of simply connected

and k-simple connected semi-simple k-groups G̃i. This is summarized by the diagram of exact
sequences

1

��
P

��
1 // T // E

��

// G // 1

T

��
1

(5.1.1)

in which the vertical sequence splits as a semi-direct product. The derived group D(E) is the
simply connected k-subgroup P =

∏
G̃i ⊆ E since T is commutative.

The following important result is largely due to Kneser, Bruhat–Tits, and Harder.

Theorem 5.1.1. Let k be a field and G a smooth connected affine k-group. Assume that G is
either reductive or basic exotic pseudo-reductive (with char(k) ∈ {2, 3}).

(i) Assume k is a global function field or a non-archimedean local field. If G either is semi-
simple and simply connected or is basic exotic then H1(k, G) = 1.
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(ii) Assume k is a global field. The k-group G is k-anisotropic if and only if G(k)\G(Ak)
is compact.

Proof. By Theorem 2.3.8(ii), the basic exotic case reduces to the simply connected semi-
simple case. It remains to consider reductive G. In this case, part (i) is due to Kneser and
Bruhat–Tits [BrT87, Theorem 4.7(ii)] for non-archimedean local k and Harder [Har75, Satz A]
for global function fields. Likewise, part (ii) is due to Harder [Har69, 2.2.7(i), (ii)] over global
function fields in the reductive case. Over number fields, part (ii) is an immediate consequence
of the general fact (for connected reductive G) that G(k)\G(Ak)1 is compact if and only if all
k-split tori in G are central; see the discussion early in §A.5 (including Proposition A.5.1). 2

Let S be a finite non-empty set of places of a global function field k. We now review why
P =

∏
i G̃i has finite class numbers. Since each G̃i is the Weil restriction of an absolutely simple

and simply connected group over a finite separable extension of k [BT65, 6.21(ii)] (or see [CGP10,
Proposition A.5.14]), we easily reduce to the case when P is absolutely simple and simply
connected. If the simply connected P is anisotropic over k then P (k)\P (Ak) is compact, by
Theorem 5.1.1(ii), so finiteness of class numbers for P is obvious in such cases. If P is k-isotropic
then P (kv) is non-compact for all v ∈ S, so, by the strong approximation theorem for (connected
and) absolutely simple and simply connected groups over global fields [Pra77, Theorem A], the
subgroup P (k)⊆ P (AS

k ) is dense. Hence, again finiteness of class numbers for P is clear.
The degree-1 Galois cohomology of T may be non-trivial (over k and its completions), so to

avoid the serious difficulties that this can cause we have to replace T with a better torus, as
follows. Let k′/k be a finite separable extension that splits T , so there is a closed immersion of k-
tori T ↪→ T ′ = Rk′/k(Tk′ ), and T ′ has vanishing degree-1 cohomology over k and every completion
kv. Since T is central in E, we can form the pushout E′ = (E × T ′)/T (with T embedded by
the twisted diagonal map t 7→ (t−1, t)). This pushout contains P as a normal closed k-subgroup
(since the scheme-theoretic intersection of P ⊆ E and T inside E × T ′ is trivial), so there is a
pair of exact sequences of k-groups

1→ P → E′→ T ′′→ 1 (5.1.2)

(with T ′′ = (T × T ′)/T commutative, even a torus) and

1→ T ′→ E′→ E/T =G→ 1. (5.1.3)

These sequences recover (1.4.1) for G, since D(E′) = P and the k-group P is simply connected.
The latter property of P will help us to handle the fact that (5.1.2) does not generally split as
a semi-direct product.

We shall use (5.1.2) to prove that E′ has finite class numbers and then feed this into (5.1.3)
to deduce via the cohomological properties of T ′ that the connected reductive G has finite class
numbers. By using Theorem 5.1.1(i), standard ‘spreading out’ arguments, and Lang’s theorem
(cf. proof of Lemma A.2.1), the exact sequence (5.1.2) induces an exact sequence of topological
groups

1→ P (AS
k )→ E′(AS

k )→ T ′′(AS
k )→ 1

with open projection map to the quotient as well as an exact sequence of abstract groups

1→ P (k)→ E′(k)→ T ′′(k)→ 1.

In particular, if we pick a compact open subgroup K ⊆ E′(AS
k ) then its image K ′′ in T ′′(AS

k )
is a compact open subgroup, so, by finiteness of class numbers for T ′′, there is a finite set of
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elements ti ∈ T ′′(AS
k ) such that T ′′(AS

k ) =
⋃
K ′′tiT

′′(k). Pick e′i ∈ E′(AS
k ) mapping to ti. Since

E′(k) surjects onto T ′′(k) we get

E′(AS
k ) =

⋃
i

Ke′iE
′(k)P (AS

k ) =
⋃
i

Ke′iP (AS
k )E′(k).

By finiteness of class numbers for P , for the compact open subgroup K̃i = (e′i)
−1(K ∩ P (AS

k ))e′i
in P (AS

k ) there is a finite set of elements hij ∈ P (AS
k ) (j ∈ Ji) such that P (AS

k ) =
⋃
j K̃ihijP (k),

so

E′(AS
k ) =

⋃
i,j

Ke′iK̃ihijE
′(k) =

⋃
i,j

Ke′ihijE
′(k).

This gives quasi-compactness of E′(k)\E′(AS
k ), so E′ has finite class numbers.

The k′-torus T ′ has trivial degree-1 cohomology over the completions kv, so E′(AS
k )→G(AS

k )
via (5.1.3) is surjective. Thus, G(k)\G(AS

k ) is a continuous image of E′(k)\E′(AS
k ), so it is quasi-

compact. Thus, finiteness of class numbers for connected reductive groups over global function
fields is proved.

We now adapt the preceding argument so that it works under some axioms that will be
applicable in our general proof of finiteness of class numbers in the function field case.

Theorem 5.1.2. Let G be a smooth connected affine group over a global field k. Let N be a
solvable smooth connected normal k-subgroup of G such that G :=G/N has finite class numbers.
If the open image of G(kv)→G(kv) has finite index for all places v then G has finite class
numbers.

The finite-index hypothesis holds if H1(kv, N) is finite for all v, but this cohomology can
be infinite in the function field case, even for commutative pseudo-reductive N ; see [CGP10,
Ex. 11.3.3]. The toric criterion in Proposition 4.1.9 will be especially useful to verify the finite-
index hypothesis.

Proof. Let S be a finite non-empty set of places of k containing the archimedean places. Choose
a compact open subgroup K in G(AS

k ) and let K be its compact image in G(AS
k ). The map

G(AS
k )→G(AS

k ) is open since N is smooth and connected, so the compact subgroup K is open.
Since G has finite class numbers by hypothesis, there exists a finite set of elements yi ∈G(AS

k )
such that

G(Ak) =
∐
i

G(k)yiG(kS)K; (5.1.4)

note that K and G(kS) commute since Ak = kS ×AS
k .

The k-subgroup N in G satisfies the requirements in Theorem A.1.1, so the natural map

pr0 :G(k)\G(Ak)1→G(k)\G(Ak)

is proper. Hence, for any y ∈G(kS) the preimage

(pr0)−1(G(k)\G(k)yiyK)⊆G(k)\G(Ak)1 (5.1.5)

is compact in G(k)\G(Ak)1.
Since K is a compact open subgroup in G(AS

k ), the product set G(kS) ·K =K ·G(kS) is
an open subgroup of G(Ak). Choose a set {g`} of coset representatives in G(kS) modulo right
multiplication by the image of G(kS), so for each yi in (5.1.4) the compact preimage in (5.1.5)
for y = g` is contained in a union of finitely subsets G(k)\G(k)gij`G(kS)K ⊆G(k)\G(Ak). There
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are only finitely many g` because the open image of G(kv) in G(kv) has finite index for all v ∈ S
by hypothesis. We have K ⊆G(Ak)1 since K is compact, so G(Ak)1G(kS) is the union of the
finitely many double cosets

G(k)gij`G(kS)K.

(Keep in mind that G(kS) commutes with K and that G(kS) commutes with K.)
By Lemma 4.2.7, G(Ak)1G(kS)\G(Ak) admits a finite set {xr} of representatives in G(AS

k ).
Let K̃ ⊆G(AS

k ) denote the compact open subgroup
⋂
r xrKx

−1
r . If we go through the preceding

argument again but use K̃ in the role of K (so the set of gij` will change: now we express
G(Ak)1G(kS) as a union of finitely many double cosets G(k)gij`G(kS)K̃), then for any g ∈G(Ak)
we can write g = grxr for a unique r and a unique gr ∈G(Ak)1G(kS). Since gr ∈G(k)gij`G(kS)K̃
for some gij`, we have

g ∈G(k)gij`G(kS)K̃xr ⊆G(k)gij`G(kS)xrK =G(k)gij`xrG(kS)K

because the element xr ∈G(AS
k ) commutes with G(kS). Thus, the finite set of products gij`xr

represents all elements of the double coset space ΣG,S,K . 2

5.2 Finiteness in the pseudo-reductive case

Now we prove finiteness of class numbers when G is a pseudo-reductive k-group and char(k)> 0.
By Theorems 2.3.6(ii) and 2.3.8, it suffices to treat the case when G is a generalized standard
pseudo-reductive k-group.

If G is commutative then finiteness of class numbers for G was established in Example 1.3.2.
Now assume that G is a non-commutative generalized standard pseudo-reductive k-group, and
let T be a maximal k-torus in G and C = ZG(T ) the corresponding Cartan k-subgroup. By
Remark 2.3.4, there is a generalized standard presentation (G′, k′/k, T ′, C) of G adapted to T ,
providing an isomorphism

G' (Rk′/k(G
′) o C)/ Rk′/k(C

′) (5.2.1)

where C ′ = ZG′ (T ′) is a commutative Cartan k′-subgroup of G′. The fiber G′i of G′ over
each factor field k′i of k′ is either a connected semi-simple k′i-group that is absolutely simple
and simply connected or is a basic exotic k′i-group. Hence, each G′i has finite class numbers:
in the simply connected semi-simple case this follows from strong approximation and adelic
compactness results, as we reviewed in § 5.1, and in the basic exotic case it is reduced to the
simply connected semi-simple case, by Theorem 2.3.8(ii).

The finiteness of class numbers for Rk′/k(G′) follows from such finiteness for the fibers of G′

over the factor fields of k′. Let Z denote the central subgroup Rk′/k(C ′) in H := Rk′/k(G′) o C.
The technique used for connected reductive groups over function fields in § 5.1 will now be
adapted to prove finiteness of class numbers for the pseudo-reductive group G=H/Z.

There is a finite extension F/k such that the smooth connected commutative F -group ZF
has an F -split maximal torus and an F -split unipotent quotient modulo this torus. Thus, ZF has
trivial degree-1 cohomology over F and its completions. The Weil restriction Z = RF/k(ZF ) is a
smooth connected commutative k-group with the analogous cohomological properties over k and
its completions (by Lemma 4.1.6), and the natural map Z→Z is a closed subgroup inclusion
that gives rise to the central pushout E = (H ×Z )/Z. Consider the pair of exact sequences

1→ Rk′/k(G
′)→ E → (C ×Z )/Z→ 1 (5.2.2)
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and

1→Z → E →H/Z =G→ 1 (5.2.3)

that are respectively analogous to (5.1.2) and (5.1.3). In particular, by Theorem 5.1.1(i), the
local and global degree-1 Galois cohomologies for Rk′/k(G′) are trivial (due to the fact that
the factor fields of k′ are global function fields). The quotient (C ×Z )/Z has finite class numbers
(as it is commutative). Thus, we can use the method of analysis of (5.1.2) and (5.1.3) to first
deduce finiteness of class numbers for E from such finiteness for Rk′/k(G′) and (C ×Z )/Z, and
then use this finiteness property for E to deduce the same for its quotient E /Z 'H/Z =G via
the cohomological properties of Z .

5.3 Another application of pseudo-reductive structure theory

Finally, we treat general (smooth connected) G. Let U ⊆G be the maximal smooth connected
unipotent normal k-subgroup, so Q :=G/U is pseudo-reductive over k. By § 5.2, Q has finite class
numbers. Thus, Theorem 5.1.2 (which rests on Theorem A.1.1, whose proof over function fields is
much harder than over number fields) can be applied provided that the open map G(kv)→Q(kv)
has image with finite index for all places v of k.

To establish that the open image Uv of G(kv) in Q(kv) has finite index for each v, let T v be
a maximal kv-split torus in Qkv . Since Q is pseudo-reductive over k, so Qkv is pseudo-reductive
over kv (as kv/k is separable), by Proposition 4.1.9 it suffices to show that Uv meets T v(kv)
with finite index. By Proposition 3.1.3, there exists a maximal kv-split torus T ′v in Gkv mapping
onto T v. The induced map T ′v(kv)/T

′
v(kv)

1→ T v(kv)/T v(kv)1 on quotients modulo the maximal
compact subgroups has image with finite index (Lemma 4.1.2). The open subgroup Uv ⊆Q(kv)
must meet the compact subgroup T v(kv)1 in a finite-index subgroup of T v(kv)1, so Uv ∩ T v(kv)
has finite index in T v(kv).

6. Proof of finiteness of X (Theorem 1.3.3)

Our proof of Theorem 1.3.3 will be characteristic-free, up to replacing the condition ‘S 6= ∅’ with
the condition ‘S ⊇ S∞’.

We begin by reviewing a standard argument to deduce Theorem 1.3.3(ii) from
Theorem 1.3.3(i). Let X be a k-scheme equipped with a right action by an affine k-group scheme
G of finite type. Fix a point x ∈X(k) and let Gx ⊆G be the stabilizer subgroup scheme of x
over k. That is, Gx is the pullback of the diagonal ∆X/k :X →X ×X under the map G→X ×X
defined by g 7→ (x · g, x). Consider x′ ∈X(k) such that x′ is G(kv)-conjugate to x in X(kv) for
all v 6∈ S, and let Hx′,x be the subscheme of G consisting of points carrying x′ to x. (That is,
for any k-algebra R, Hx′,x(R) is the set of g ∈G(R) such that x′ · g = x in X(R), so Hx′,x is the
pullback of the diagonal ∆X/k under the map G→X ×X defined by g 7→ (x′ · g, x).) There is
an evident right action of Gx on Hx′,x over k, and for any place v 6∈ S we see that the subscheme
(Hx′,x)kv ⊆Gkv is a left G(kv)-translate of (Gx)kv . In particular, Hx′,x is a right Gx-torsor over k
(for the fppf topology over k), and as such it is trivial over kv for all v 6∈ S. Since each kv/k is
separable, these torsors are even locally trivial for the étale topology over k.

If x′′ is a second such point and there is a k-isomorphism Hx′′,x 'Hx′,x as abstract Gx-torsors
over k (contained in G) then, by descent theory, such a k-isomorphism must be given by left
multiplication on G by some g ∈G(k). Thus, Hx′·g,x =Hx′′,x inside G. For any k-point h of this
common subscheme, x′′ = x′′ · (hh−1) = x · h−1 = x′ · g in X(k). That is, x′ · g = x′′ inside X(k).
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Hence, it suffices to prove that there are only finitely many k-isomorphism classes of right Gx-
torsors that are trivial over kv for all v 6∈ S. (It is equivalent to consider such torsors for the fppf
or étale topologies over k.) That is, we just need finiteness of X1

S(k, Gx). This is a special case
of the finiteness result in part (i) of Theorem 1.3.3, so we may now focus our efforts on proving
part (i).

6.1 Reduction to the smooth case

We turn to the task of proving Theorem 1.3.3(i), so k is a global function field and G is an
affine k-group scheme of finite type. The method of cohomological twisting will be used, so let
us review this technique. For c ∈H1(k, G) represented by a right G-torsor Y over k, we have the
associated inner form YG= AutG(Y ) of G as in §B.1. There is a commutative diagram of sets

H1(k, G)
θS,G //

tY,k '
��

∏
v H1(kv, G)∏

tY,kv'
��

H1(k, YG)
θS,Y G

// ∏
v H1(kv, YG)

in which the vertical twisting maps are as defined in §B.2, where it is also proved that these
twisting maps are bijective. Thus, the set θ−1

S,G(θS,G(c)) is in bijection with ker θS,Y G, so to prove
the finiteness of fibers of θS,G in general it suffices (after renaming YG as G) to prove finiteness
of the fiber X1

S(k, G) := ker θS,G over the distinguished point in general.

By Lemma 3.1.1, there is a unique smooth closed k-subgroup G′ ⊆G such that G′(K) =G(K)
for every separable extension field K/k, so the following lemma reduces our problem to the case
of smooth groups.

Lemma 6.1.1. The natural map H1(k, G′)→H1(k, G) carries X1
S(k, G′) isomorphically onto

X1
S(k, G).

The map H1(k, G′)→H1(k, G) is generally not surjective (e.g., consider an infinitesimal group
scheme G, such as µp in characteristic p > 0). Also keep in mind that G′ may be disconnected
even if G is connected.

Proof. This is proved in [CGP10, Ex. C.4.3]. The idea (as in the proof of [GM, Proposition 3.1])
is to show that an inverse is given at the level of torsors by assigning to any right G-torsor E
over k the right G′-torsor E′ as in Lemma 3.1.1; the local triviality of E is needed to prove that
E′ really is a G′-torsor (e.g., E′ 6= ∅). 2

6.2 Reduction to the connected case

Since we have reduced our finiteness problem to the case of smooth affine k-groups G, we may
identify the set H1(k, G) of isomorphism classes of right G-torsors over k with the degree-1 Galois
cohomology set H1(ks/k, G) for a fixed choice of separable closure ks of the global field k. We
also fix separable closures kv,s and embeddings ks→ kv,s over k→ kv for all places v of k when
we need to work with restriction maps to local Galois cohomology.

Assume that the finiteness of X1
S(k, H) is known for all smooth connected affine k-groups

H and all choices of S, and let us prove it in general for any smooth affine k-group G and any
choice of S. The method we will use is a variant of the argument of Borel and Serre in [BS64, § 7].
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Since they appeal to characteristic 0 (via finiteness of H1(kv, G)), we prefer to give an argument
that works in any characteristic.

Let G0 ⊆G be the identity component and let Γ =G/G0 be the finite étale component group
of G over k, so we have an exact sequence of smooth k-groups

1→G0 j−−→G
π−−→ Γ→ 1 (6.2.1)

with G0 connected and Γ finite. We can increase S since X1
S(k, G)⊆X1

S′ (k, G) when S′

contains S. By standard ‘spreading out’ arguments that are explained in §A.2, if we increase S
then we can arrange that S is non-empty and that the exact sequence (6.2.1) is the generic fiber
of a short exact sequence

1→G0
S →GS → ΓS → 1

of smooth affine Ok,S-groups with finite étale ΓS and an Ok,S-group G0
S whose fibers are

connected. Thus, the induced sequence on Ov-points is exact for all v 6∈ S, by Lang’s theorem.
However, for such v we have

Γ(kv) = ΓS(kv) = ΓS(Ov)

since ΓS is Ok,S-finite, so π :G(AS
k )→ Γ(AS

k ) is surjective.
By an application of the Chebotarev density theorem, X1

S(k, Γ) is finite since Γ is a finite
étale k-group [BS64, Lemme 7.3], so the natural map f : X1

S(k, G)→X1
S(k, Γ) has finite target.

Thus, the finiteness of X1
S(k, G) is equivalent to finiteness of the non-empty fibers of the map f .

That is, we choose c ∈X1
S(k, G) and wish to prove finiteness of f−1(f(c)). By choosing a

Galois cocycle in Z1(ks/k, G)⊆G(ks ⊗k ks) that represents c (or more conceptually, choosing
a right G-torsor that represents c), we get an associated inner form of G. Since G naturally acts
on both G0 and Γ, we can adapt this inner form construction as in [Ser97, I, § 5.3] to compatibly
twist both the normal subgroup G0 and the quotient Γ. The abstract k-isomorphism classes of
these resulting k-forms of G, G0, and Γ only depend on c, but for functoriality purposes we must
use a common choice of cocycle representative for c when performing the twisting constructions.
Nonetheless, we abuse notation by writing Gc, (G0)c, and Γc to denote these k-forms.

The k-form (G0)c of G0 is identified with the identity component of Gc, and there is a
‘c-twisted’ k-homomorphism πc :Gc→ Γc that is identified with the projection onto the étale
component group of Gc. Beware that G0

c is generally not an inner form of G0, so although we
have natural bijections between the global (respectively local) degree-1 cohomologies of G and
its inner form Gc [Ser97, I, § 5.3, Proposition 35bis] we do not have the same for G0 and G0

c ;
cf. [Ser97, I, § 5.5, Remark]. However, Γc is an inner form of Γ, so we do have such bijections for
Γ and Γc and thus we have a commutative diagram of sets

X1
S(k, G)

'
��

f // X1
S(k, Γ)

'
��

X1
S(k, Gc) fc

// X1
S(k, Γc)

in which the vertical maps are bijective and the left side carries c to the trivial point in X1
S(k, Gc).

Hence, by replacing G with Gc (and f with fc), it suffices to prove the finiteness of ker f .
Define the subset ∐

v 6∈S
H1(kv, G)⊆

∏
v 6∈S

H1(kv, G) (6.2.2)
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to consist of tuples (cv) such that the element cv ∈H1(kv, G) is the distinguished point for all
but finitely many v; if G is commutative then this is the direct sum inside a direct product.

Lemma 6.2.1. The localization map θS,G0 has image contained inside
∐
v 6∈S H1(kv, G0).

Proof. This lemma is [Oes84, IV, 2.4, Corollary] for affine G0; the proof there even works for
arbitrary smooth connected k-groups. Alternatively, a short direct proof in terms of torsors goes
as follows. By Remark 1.2.1, the elements of H1(k, G0) classify isomorphism classes of k-scheme
G0-torsors X. For any such X there is a finite non-empty set S′ of places of k (containing S)
such that G0 spreads out to a smooth Ok,S′ -group G of finite type with connected fibers and X
spreads out to a G -torsor X over Ok,S′ . By Lang’s theorem, for all v 6∈ S′ the fiber of X over the
residue field at v must have a rational point. This lifts to X (Ov) by smoothness, so X(kv) 6= ∅
for all v 6∈ S′. 2

An element c ∈X1
S(k, G)⊆H1(k, G) lies in ker f if and only if it is in the image of the

natural map j : H1(k, G0)→H1(k, G). Thus, for an element c0 ∈H1(k, G0) we have j(c0) ∈ ker f
if and only if the element θS,G0(c0) ∈

∐
v 6∈S H1(kv, G0) maps to the distinguished element in∐

v 6∈S H1(kv, G).
For each place v 6∈ S we have an exact sequence of pointed sets

G(kv)
πv−−−→ Γ(kv)

δv−−→H1(kv, G0)
jv−−→H1(kv, G),

so passing to the ‘direct sum’ and using the fact that GS(Ov)→ ΓS(Ov) is surjective for all v 6∈ S
gives an exact sequence of pointed sets

G(AS
k )→ Γ(AS

k ) δ−−→
∐
v 6∈S

H1(kv, G0)→
∐
v 6∈S

H1(kv, G).

To summarize, in terms of the diagram

G(k)

��

// Γ(k)

��

// H1(k, G0)
j //

θS,G0

��

H1(k, G)

G(AS
k ) π

// Γ(AS
k )

δ
//
∐
v 6∈S H1(kv, G0)

with exact rows, we have

ker f = j(θ−1
S,G0(δ(Γ(AS

k ))))

inside H1(k, G). However, as we have already noted below (6.2.1), π :G(AS
k )→ Γ(AS

k )
is surjective. Thus, δ(Γ(AS

k )) is the distinguished point. That is, ker f = j(ker θS,G0) =
j(X1

S(k, G0)). Finiteness of X1
S(k, G0) is therefore sufficient to deduce finiteness of ker f , as

desired. This completes the reduction to the case when the k-smooth G is connected.

6.3 Reduction to the pseudo-reductive case
Now assume that θS,G is known to have finite fibers whenever G is a pseudo-reductive k-group
and S is arbitrary. We shall use finiteness of class numbers (Theorem 1.3.1) to deduce the same for
any smooth connected affine k-group G. The twisting method (as reviewed at the start of § 6.1)
reduces our task to proving that X1

S(k, G) is finite for all smooth connected affine k-groups G.
We may assume that S is non-empty; the set S of places will remain fixed for the remainder of
this part of the argument. Whenever we speak of a k-form H ′ of a smooth affine k-group H,
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we mean a form for the étale topology on k (equivalently, H ′K 'HK as K-groups for some
separable algebraic extension K/k).

The k-unipotent radical Ru,k(G) (i.e., the maximal smooth connected unipotent normal
k-subgroup of G) gives rise to a quotient Q=G/Ru,k(G) that is pseudo-reductive over k. Since
pseudo-reductivity is insensitive to passing to a k-form (for the étale topology!) of a smooth
connected affine k-group, for every k-form Q′ of Q the set X1

S(k, Q′) is finite. Thus, to reduce
to the pseudo-reductive case it suffices (by the twisting method) to prove in general that if

1→ U
j−−→G

π−−→Q→ 1 (6.3.1)

is a short exact sequence of smooth connected affine k-groups with U a smooth connected
unipotent k-subgroup of G that is stable under all automorphisms of G defined over separable
extensions of k and if X1

S(k, Q′) is finite for all k-forms Q′ of Q then X1
S(k, G′) is finite for

all k-forms of G. The hypothesis that U is stable under G-automorphisms over all separable
extensions of k presents no set-theoretic ‘largeness’ problems because it suffices to check this
using only finitely generated separable extensions. We can make an exact sequence analogous
to (6.3.1) for any k-form of G (using suitable k-forms of U and Q).

We may assume U is non-trivial, as otherwise there is nothing to do. The finite-length derived
series of the k-group U is stable under all automorphisms of G defined over separable extensions
of k, and it has successive quotients that are commutative and connected, so, by inducting on the
length of the derived series of U , we may assume that U is commutative (and non-trivial). It is
enough to prove finiteness of X1

S(k, G), as all k-forms G′ of G admit an exact sequence analogous
to (6.3.1) (with a commutative left term). Since X1

S(k, Q) is finite, it suffices to prove that the
map X1

S(k, G)→X1
S(k, Q) has finite fibers. Exactly as in our reduction to the connected case

in § 6.2, we can use a twisting argument (replacing G, U , and Q with compatible k-forms) to
reduce to proving finiteness of the kernel of the map X1

S(k, G)→X1
S(k, Q).

Reasoning as in § 6.2, ker(X1
S(k, G)→X1

S(k, Q)) is identified with j(θ−1
S,U (δ(Q(AS

k )))), where

δ :Q(AS
k )→

∐
v 6∈S

H1(kv, U)

is the ‘direct sum’ of connecting maps, but in contrast with § 6.2 the map π :G(AS
k )→Q(AS

k )
now merely has open and not necessarily full image. Since the normal k-subgroup U ⊆G is
commutative, the right action of G on U through conjugation factors through a right action of
Q on U . Using this action, [Ser97, I, § 5.5, Proposition 39] provides a natural right Q(k)-action
on H1(k, U) such that the orbits are the non-empty fibers of the map j : H1(k, U)→H1(k, G)
and the orbit of the distinguished point is δ(Q(k)). Also, the π(G(k))-action on the distinguished
point is trivial. Similarly there is a right Q(AS

k )-action on
∐
v 6∈S H1(kv, U) such that its orbits

are the non-empty fibers of the map∐
v 6∈S

H1(kv, U)→
∐
v 6∈S

H1(kv, G)

and the orbit of the distinguished point is δ(Q(AS
k )). By the construction, it is clear that,

with respect to these actions, θS,U is equivariant via the group homomorphism Q(k)→Q(AS
k ).

Moreover, the π(G(AS
k ))-action on the distinguished point 0S,U ∈

∐
v 6∈S H1(kv, U) is trivial.

To prove finiteness of j(θ−1
S,U (δ(Q(AS

k )))) it is equivalent to show that θ−1
S,U (δ(Q(AS

k )))
is contained in finitely many Q(k)-orbits. However, δ(Q(AS

k )) = 0S,U ·Q(AS
k ) is a Q(AS

k )-
orbit of a point on which π(G(AS

k )) acts trivially, so it is the set of translates of 0S,U by
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a set of representatives for π(G(AS
k ))\Q(AS

k ). Equivariance of θS,U with respect to the group
homomorphism Q(k)→Q(AS

k ) therefore implies that θ−1
S,U (δ(Q(AS

k ))) is the union of Q(k)-
orbits of elements in the fibers θ−1

S,U (0S,U · q) as q ranges through a set of representatives for
π(G(AS

k ))\Q(AS
k )/Q(k). However, this double coset space is finite because the open subgroup

π(G(AS
k )) contains a compact open subgroup K and K\Q(AS

k )/Q(k) is finite (due to the
finiteness of class numbers for Q, via Theorem 1.3.1). Hence, the problem is reduced to showing
that θS,U has finite fibers for any smooth connected commutative unipotent k-group U . The
twisting method reduces this to the finiteness of X1

S(k, U) for all smooth connected commutative
unipotent k-groups U , and such finiteness in the commutative case was proved by Oesterlé [Oes84,
IV, 2.6(a)].

6.4 Application of structure of pseudo-reductive groups

By § 6.3, it remains to prove that X1
S(k, G) is finite whenever G is a pseudo-reductive

k-group and S is non-empty. The case of smooth connected commutative affine groups was
settled by Oesterlé [Oes84, IV, 2.6(a)], so we may and do assume G is non-commutative. By
Theorems 2.3.6(ii) and 2.3.8, we may also assume that G is a generalized standard pseudo-
reductive group.

Let (G′, k′/k, T ′, C) be the generalized standard presentation of G adapted to a choice of
maximal k-torus T in G (see Definition 2.3.3 and Remark 2.3.4), so C = ZG(T ) and there is a
central extension

1→ Rk′/k(C
′)→ Rk′/k(G

′) o C→G→ 1 (6.4.1)

in which k′ is a non-zero finite reduced k-algebra, G′ is a smooth affine k′-group whose fibers
are absolutely pseudo-simple and either simply connected semi-simple or basic exotic, and T ′ is
a maximal k′-torus in G′ whose centralizer is C ′.

The 7-term exact sequence in pointed cohomology sets associated to a central extension of
finite type k-group schemes is very well known in the smooth case using Galois cohomology
(see [Ser97, I, § 5.7]), and is reviewed from scratch in §B.3 without smoothness conditions since
this will be needed later. For now we only require smooth groups. More specifically, the central
extension (6.4.1) provides a canonical connecting map of pointed sets

∆ : H1(k, G)→H2(k, Rk′/k(C
′)), (6.4.2)

and similarly with kv-cohomologies. Thus, ∆ induces a map

∆X : X1
S(k, G)→X2

S(k, Rk′/k(C
′)) =

∏
X2

Si(k
′
i, C

′
i),

where k′ =
∏
k′i is the decomposition into factor fields, S′i is the set of places of k′i over S, C ′i

is the k′i-fiber of C ′, and X2
S denotes the kernel of the localization map away from S for H2 on

commutative group schemes of finite type.

Each C ′i is a Cartan k′i-subgroup of G′i, and so is a torus when G′i is semi-simple. If instead
G′i is basic exotic, then we saw in the proof of Proposition 4.1.9 that there is a natural quotient
map C ′i� C

′
i onto a k′i-torus such that the induced map on k′i,s-points is bijective. Thus, in

the basic exotic cases there is an isomorphism X2
Si

(k′i, C
′
i)'X2

Si
(k′i, C

′
i) onto the degree-2

Tate–Shafarevich group (relative to S′i) for a k′i-torus. It follows from [Oes84, IV, 2.7(a)] (an
application of Tate–Nakayama duality for tori), that X2

Si
(k′i, C

′
i) is finite for all i. Hence, it

suffices to prove that ∆X has finite fibers.
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Pick c ∈X1
S(k, G) and consider ∆−1

X(∆X(c)). If we choose a representative 1-cocycle
γ ∈ Z1(ks/k, G)⊆G(ks ⊗k ks) for c then we get an inner k-form Gγ of G. We likewise get a
k-form Eγ of the middle term E := Rk′/k(G′) o C in (6.4.1) by using the natural left G-action
on E arising from conjugation and the central extension structure (6.4.1). Hence, we obtain a
central extension

1→ Rk′/k(C
′)→ Eγ →Gγ → 1 (6.4.3)

for a smooth connected affine k-group Gγ equipped with a bijection tγ,k : H1(k, G)'H1(k, Gγ)
that carries c to the distinguished point. By [Ser97, I, § 5.7, Proposition 4.4], this carries (6.4.2)
to the connecting map δγ : X1

S(k, Gγ)→X2
S(k, Rk′/k(C ′)). Thus, it suffices to prove that ker δγ

is finite.
We cannot simply rename Gγ as G, since perhaps γ-twisting of (6.4.1) might not interact

well with the chosen generalized standard presentation of G. The essential issue is to understand
the effect of γ-twisting on the k-subgroup Rk′/k(G′) in E. By [CGP10, Proposition 8.1.2,
Corollary A.7.11], this subgroup is its own derived group since the fibers ofG′ over the factor fields
of k′ are absolutely pseudo-simple and either simply connected semi-simple or basic exotic. Hence,
Rk′/k(G′) is the derived group of E (as E/ Rk′/k(G′) = C is commutative). Thus, γ-twisting on
E induces a (generally non-inner) twisting Rk′/k(G′)γ of the derived subgroup Rk′/k(G′) = D(E)
of E and a twisting Cγ of the maximal commutative quotient C = E/D(E).

The commutative k-group Cγ is pseudo-reductive since it becomes isomorphic to C étale-
locally over k. The k-group Rk′/k(G′)γ can be described as a Weil restriction.

Proposition 6.4.1. Let k be an arbitrary field, k′ a non-zero finite reduced k-algebra, and
G′ a smooth affine k′-group whose fiber over each factor field of k′ is absolutely pseudo-simple
and either simply connected semi-simple or basic exotic. Let G be the smooth connected affine
k-group Rk′/k(G′).

Any k-form H of G relative to the étale topology over k is k-isomorphic to RF ′/k(H ′) for
a non-zero finite reduced k-algebra F ′ and a smooth affine F ′-group H ′ whose fiber over each
factor field of F ′ is absolutely pseudo-simple and either simply connected semi-simple or basic
exotic.

Proof. The k-group G is generalized standard, and its generalized standard presentation adapted
to a choice of maximal k-torus T has the form (G′, k′/k, T ′, C) where φ : Rk′/k(C ′)→ C
is an isomorphism. Since the formation of generalized standard presentations is compatible
with separable extension of the ground field, the property of φ being an isomorphism is
independent of the choice of T (as it can be checked over ks, and all maximal ks-tori are G(ks)-
conjugate). The generalized standard property is insensitive to separable extension on k [CGP10,
Corollary 10.2.5], so all k-forms of G for the étale topology over k are generalized standard and
satisfy the isomorphism property for φ in their generalized standard presentations. It follows
that all such k-forms are k-isomorphic to a Weil restriction of the desired type. 2

By Proposition 6.4.1, the k-form Rk′/k(G′)γ = D(Eγ) of Rk′/k(G′) = D(E) is k-isomorphic to
RF ′/k(G ′) for a non-zero finite reduced k-algebra F ′ and a smooth affine F ′-group G ′ whose fiber
over each factor field of F ′ is absolutely pseudo-simple and either simply connected semi-simple
or basic exotic. This underlies the proof the following lemma.

Lemma 6.4.2. With notation as above, the natural map of sets q : H1(k, Eγ)→H1(k, Cγ) is
injective.
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This lemma says that all non-empty fibers of q have one point, not just the fiber of q over
the distinguished point of the target.

Proof. Choose c ∈H1(k, Eγ) and let γ′ be a representative 1-cocycle for c. By γ′-twisting, we get
a k-form RF ′/k(G ′)′ of RF ′/k(G ′) and an inner form E′γ of Eγ fitting into a short exact sequence

1→ RF ′/k(G
′)′→ E′γ → C ′γ → 1

such that there is a bijection H1(k, Eγ)'H1(k, E′γ) carrying the fiber q−1(q(c)) over to the kernel
of the map of pointed sets H1(k, E′γ)→H1(k, C ′γ). Thus, it suffices to prove that H1(k, RF ′/k(G ′)′)
is the trivial pointed set.

For each factor field F ′i of F ′, the fiber G ′i of G ′ over F ′i is absolutely pseudo-simple and either
simply connected semi-simple or basic exotic. Thus, by applying Proposition 6.4.1 to (G ′, F ′/k),
Lemma 4.1.6 and Theorem 5.1.1(i) yield the triviality of H1(k, RF ′/k(G ′)′) since k is a global
function field. 2

Lemma 6.4.2 now reduces us to the following axiomatic finiteness problem (upon renaming
Gγ as G and forgetting about pseudo-reductivity, which has served its purpose). Consider a
central extension

1→ C
j−−→ E

π−−→G→ 1 (6.4.4)

of a smooth connected affine k-group G by a smooth connected commutative affine k-group
C . Assume that the abelianization map E→ C := E/D(E) induces an injective map of sets
H1(k, E)→H1(k, C) and that C ' Rk′/k(C ′) for a non-zero finite reduced k-algebra k′ and a
smooth commutative k′-group C ′ with connected fibers. We claim that the connecting map

∆X : X1
S(k, G)→X2

S(k, C )

has finite kernel. Applying this to (6.4.3) (thanks to Lemma 6.4.2) would then complete the
proof of Theorem 1.3.3.

An easy diagram chase gives that ker ∆X is the image by π : H1(k, E)→H1(k, G) of the
set of elements x ∈H1(k, E) such that the element θS,E(x) ∈

∐
v 6∈S H1(kv, E) is in the image of∐

v 6∈S H1(kv, C ) =
⊕

v 6∈S H1(kv, C ) under j. In other words,

ker ∆X = π

(
θ−1
S,E

(
j

(⊕
v 6∈S

H1(kv, C )
)))

.

Let f : C → C denote the composition of j : C → E and the quotient map E� C. Using the
assumed injectivity of the map of sets H1(k, E)→H1(k, C), the k-group map E� C thereby
induces an injective map

θ−1
S,E

(
j

(⊕
v 6∈S

H1(kv, C )
))

↪→ θ−1
S,C

(
f

(⊕
v 6∈S

H1(kv, C )
))

.

The centrality of the given extension structure (6.4.4) implies that H1(k, C ) naturally acts on
H1(k, E) with orbits that are the non-empty fibers of π : H1(k, E)→H1(k, G). Moreover, by
the method of construction, the natural map H1(k, E) ↪→H1(k, C) is H1(k, C )-equivariant with
respect to the natural additive translation of H1(k, C ) on H1(k, C) via H1(f). Our finiteness
problem is to show that θ−1

S,E(j(
⊕

v 6∈S H1(kv, C ))) is contained in finitely many H1(k, C )-orbits
on H1(k, E), so it suffices to prove that θ−1

S,C(f(
⊕

v 6∈S H1(kv, C ))) is contained in finitely many
H1(k, C )-orbits on H1(k, C).
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In terms of the commutative diagram of abelian groups

H1(k, C )

θS,C
��

H1(f) // H1(k, C)

θS,C
��⊕

v 6∈S H1(kv, C ) //
⊕

v 6∈S H1(kv, C)

we have to show that the θS,C-preimage of the image along the bottom side has finite image in the
cokernel along the top side. Since C ' Rk′/k(C ′), in terms of the factor fields k′i of k′ and the k′i-
fiber C ′i of C ′ we have H1(k, C )'

∏
i H1(k′i, C

′
i) and similarly H1(kv, C )'

∏
i(
∏
wi

H1(k′i,wi , C
′
i))

for each v 6∈ S, with wi ranging through the places of k′i over v (Lemma 4.1.6). Hence, θS,C is
identified with the product map

∏
i θS′

i,C
′
i

where S′i is the set of places of k′i over S. Each map
θS′

i,C
′
i

has finite cokernel, by [Oes84, IV, 2.6(b)], so θS,C has finite cokernel. Moreover, θS,C has
finite fibers since C is commutative, so the desired result is now obvious. This completes the
proof of Theorem 1.3.3.

7. Applications

Our finiteness results for class numbers and Tate–Shafarevich sets in the affine case have
interesting consequences for finiteness properties of cohomology of group schemes over rings
of S-integers of global function fields, as well as over proper curves over finite fields. This rests
on some additional finiteness results in the local case, so we begin with the latter before turning
to global applications.

7.1 Cohomological finiteness over local function fields
For what follows it will be convenient to first recall a few general facts concerning smooth
connected unipotent groups over imperfect fields. Although a quotient of a k-split smooth conne-
cted unipotent k-group is always k-split, we noted in § 1.6 that smooth connected
k-subgroups can fail to be k-split even in the commutative case. The following notion for
unipotent groups is analogous to anisotropicity for tori.

Definition 7.1.1. A smooth connected unipotent group U over a field k is k-wound if there
are no nonconstant k-morphisms to U from the affine k-line (as k-schemes).

If k is perfect then the only k-wound U is the trivial k-group. By [CGP10, Theorem B.3.4], for
any smooth connected unipotent k-group U there is a unique maximal k-split smooth connected
k-subgroup Usplit ⊆ U and it enjoys the following properties: it is normal in U , the quotient
U/Usplit is k-wound, the formation of Usplit commutes with separable extension on k, and there
are no non-trivial k-homomorphisms U ′→ U when U ′ is k-split and U is k-wound.

Proposition 7.1.2. Let K/k be a finite separable extension of non-archimedean local fields
and let G be a smooth connected affine k-group. The fibers of the restriction map H1(k, G)→
H1(K, G) are finite.

This result is only interesting when char(k)> 0, since otherwise H1(k, G) is finite. In [CGP10,
Ex. 11.3.3] there are examples (over any local function field k) of commutative pseudo-reductive
k-groups C for which H1(k, C) is infinite.

Proof. By the étale twisting method, it is equivalent to prove in general that the kernel of the
restriction map in cohomology is finite. Grant the pseudo-reductive case for a moment. In general
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there is a unique exact sequence of smooth connected affine k-groups

1→ U →G
π−−→G′→ 1

with unipotent U and a pseudo-reductive k-group G′. By the twisting method (for the étale
topology over k), which preserves pseudo-reductivity, it suffices to show that the kernel of
H1(k, G)→H1(K, G) meets the image of H1(k, U)→H1(k, G) in a finite set. The open map
π :G(K)→G′(K) has image with finite index, by Propositions 3.1.3 and 4.1.9. The connecting
map δ :G′(K)→H1(K, U) carries any g′ ∈G′(K) to the K-isomorphism class of the right
U -torsor π−1(g′), so δ(g′) only depends on g′ modulo left multiplication by π(G(K)). Hence,
δ factors through the finite set π(G(K))\G′(K) and thus has finite image. It suffices to show
that the finite set δ(G′(K)) has finite preimage in H1(k, U), so we have reduced the general
problem to two cases: pseudo-reductive k-groups and unipotent k-groups.

Consider the unipotent case. The case of k-split U is trivial, so we can assume char(k)> 0.
The formation of the maximal k-split smooth connected unipotent normal k-subgroup Rus,k(U)
of U is étale-local on k [CGP10, Theorem B.3.4] and the degree-1 Galois cohomology of Rus,k(U)
vanishes, so, by twisting, we see that H1(k, U)→H1(k, U/Rus,k(U)) is injective. The same holds
over K, so we may replace U with U/Rus,k(U) to reduce to the k-wound unipotent case.
In this case there is a composition series whose successive quotients are commutative and k-
wound [CGP10, Proposition B.3.2], so we reduce to the commutative k-wound case.

For a commutative k-wound U , the restriction map of interest is the degree-1 cohomology
map over k induced by the inclusion j : U → RK/k(UK). Let U ′ = coker j. The kernel of H1(j)
is identified with the cokernel of the map RK/k(UK)(k)→ U ′(k) whose image is open (by
smoothness). It is therefore enough to show that U ′ is k-wound, as then U ′(k) is compact,
by [Oes84, VI, § 1]. Rather more generally, if k is an arbitrary field, K is a non-zero finite étale
k-algebra, and U is a commutative k-wound smooth connected unipotent k-group then we claim
that RK/k(UK)/U is k-wound. It suffices to treat the case when k is separably closed since the
property of being wound (or not) is insensitive to separable algebraic extension of the ground
field, and then the result is obvious since K is a product of copies of k (so RK/k(UK) is a power
of U in which U is diagonally embedded via j).

Now we treat the pseudo-reductive case. First assume G is commutative. If T is the
maximal k-torus in G then the unipotent quotient G/T is k-wound, by Lemma 4.1.4, so
(G/T )K is K-wound (as K/k is separable). Thus, (G/T )(K) is compact, so the open image of
G(K)→ (G/T )(K) has finite index. By a simple diagram chase with commutative cohomology,
the finiteness problem for G is reduced to the analogous problems for G/T (which was already
settled) and for T (which is immediate from Proposition 4.1.7(i)).

In the non-commutative pseudo-reductive case, by Theorem 2.3.6(ii) and Theorem 2.3.8,
it suffices to treat non-commutative generalized standard pseudo-reductive k-groups G. The
twisting method (which preserves generalized standardness, due to [CGP10, Corollary 10.2.5])
reduces the problem to proving that H1(k, G)→H1(K, G) has finite kernel. Choose a maximal
k-torus T in G and let (G′, k′/k, T ′, C) be the generalized standard presentation of G adapted
to T (Remark 2.3.4), so C = ZG(T ) and there is a central extension

1→ Rk′/k(C
′)→ Rk′/k(G

′) o C→G→ 1

with k′ a non-zero finite reduced k-algebra,G′ a smooth affine k′-group whose fibers are absolutely
pseudo-simple and either simply connected semi-simple or basic exotic, and C a commutative
pseudo-reductive k-group. For E := Rk′/k(G′) o C and a G-valued 1-cocycle γ for the étale
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topology on Spec(k), the injectivity in Lemma 6.4.2 (which applies just as well forK-cohomology)
gives that H1(k, Eγ)→H1(K, Eγ) has finite fibers since the same holds for C in place of E by the
settled commutative pseudo-reductive case. Since Rk′/k(C ′)K = RK′/K(C ′K′ ) for K ′ = k′ ⊗k K,
for all m we have Hm(K, Rk′/k(C ′)) = Hm(k′ ⊗k K, C ′) (Lemma 4.1.6). This is identified with
Hm(k′ ⊗k K,T ) for a suitable k′-torus T (via the argument with Theorem 2.3.8(ii) used in
the proof of Proposition 4.1.9), so, by Proposition 4.1.7(i), it is finite for m= 1. Also, Rk′/k(C ′)
is invariant under γ-twisting for any γ (by centrality). Thus, by a straightforward diagram
chase with the twisting method and its compatibility with the connecting map H1→H2 in the
smooth case [Ser97, I, § 5.7, Proposition 44], the finiteness of the kernel of H1(k, G)→H1(K, G)
is reduced to the finiteness of the kernel of the analogous restriction map for degree-2 cohomology
of Rk′/k(C ′).

The composite isomorphisms

H2(k, Rk′/k(C
′))'H2(k′, C ′)'H2(k′,T )

and

H2(K, Rk′/k(C
′))'H2(k′ ⊗k K, C ′)'H2(k′ ⊗k K,T )

are compatible with the evident restriction maps in Galois cohomology over the factor fields.
Thus, it suffices to prove that for any finite separable extension K/k of non-archimedean local
fields and any k-torus T , the restriction map H2(k, T )→H2(K, T ) has finite kernel. If n= [K : k]
then this kernel is contained in H2(k, T )[n]. Such n-torsion is the image of H2(k, T [n]) (using
fppf cohomology in case char(k)|n), and this latter H2 is finite, by Proposition 4.1.7(ii). 2

There is an interesting refinement concerning finiteness for the Galois cohomology of pseudo-
reductive groups over local function fields (cf. [Ser97, III, § 4.3, Remark (2)]).

Proposition 7.1.3. Let k be a local function field. If G is a pseudo-reductive k-group that is
generated by its maximal k-tori then H1(k, G) is finite.

The torus hypothesis on G is satisfied when G= D(G) [CGP10, Proposition A.2.11] and
this hypothesis cannot be removed: for any local function field k, [CGP10, Ex. 11.3.3] provides
examples of non-reductive commutative pseudo-reductive k-groups C such that H1(k, C) is
infinite.

Proof. If G is commutative then it is a k-torus due to the hypotheses, so the commutative
case follows from Lemma 4.1.7(i). Now we may and do assume that G is non-commutative.
By Theorems 2.3.6(ii) and 2.3.8, we may assume that G is a generalized standard pseudo-
reductive k-group. In particular, D(G) is generalized standard [CGP10, Proposition 10.2.3].
The quotient G/D(G) is commutative and generated by k-tori, so it is a k-torus. Thus, any
maximal k-torus T in G maps onto G/D(G). Letting Z denote the maximal central k-torus
in G, the multiplication map Z × (T ∩D(G))→ T is surjective with finite kernel [CGP10,
Lemma 1.2.5(ii)], so Z→G/D(G) is surjective. Hence, there is a central extension

1→ µ→D(G)× Z→G→ 1

with µ= Z ∩D(G) = Z ∩ (T ∩D(G)) a finite k-group of multiplicative type.
Using the finiteness of H2(k, µ) (Proposition 4.1.7(ii)), the twisting method (which preserves

generalized standardness [CGP10, Corollary 10.2.5]) reduces the finiteness of H1(k, G) to the
finiteness of H1(k,D(G)) since H1(k, ·) is finite on k-tori (Proposition 4.1.7(i)). We may therefore
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replace G with D(G), so now G is also perfect [CGP10, Proposition 1.2.6]. Of course, we can
also assume G 6= 1.

Since G is a non-trivial perfect generalized standard pseudo-reductive k-group, for a
generalized standard presentation (G′, k′/k, T ′, C) the associated k-homomorphism Rk′/k(G′)→
G with central kernel and normal image is surjective (the cokernel is perfect, yet is also
a quotient of the commutative C). The compatibility of Rk′/k with the formation of the
scheme-theoretic center of smooth affine groups [CGP10, Proposition A.5.15(1)] implies that
G' Rk′/k(G′)/Z for some k-subgroup scheme Z ⊆ Rk′/k(ZG′ ). The pseudo-reductivity of such a
quotient G is equivalent to the pseudo-reductivity of Rk′/k(C ′)/Z for the commutative Cartan
k′-subgroup C ′ = ZG′ (T ′) in G′, but we will not use this property; we shall prove the finiteness of
H1(k, Rk′/k(G′)/Z) for any non-archimedean local field k, non-zero finite reduced k-algebra k′,
smooth affine k′-group G′ with absolutely pseudo-simple fibers that are either simply connected
semi-simple or basic exotic, and k-subgroup scheme Z ⊆ Rk′/k(ZG′ ).

Consider the central extension

1→ Z→ Rk′/k(G
′)→G→ 1

and the connecting map δ : H1(k, G)→H2(k, Z) (using fppf cohomology and §B.3 in case Z is
not smooth). Let us prove that this map is injective. By Proposition B.3.3(i), under twisting
by a 1-cocycle γ ∈ Z1(ks/k, G) the resulting bijection tγ,k : H1(k, G)'H1(k, Gγ) of sets carries
δ over to the connecting map δγ arising from the γ-twisted central extension

1→ Z→ Rk′/k(G
′)γ →Gγ → 1. (7.1.1)

Injectivity of δ is now reduced to the triviality of ker δγ for all γ. For this it suffices to prove that
the middle term in (7.1.1) has vanishing degree-1 cohomology. However, Rk′/k(G′)γ ' Rk′

1/k
(G′1)

for another pair (G′1, k
′
1/k) that depends on γ (by Proposition 6.4.1), so H1(k, Rk′/k(G′)γ) = 1,

by Lemma 4.1.6 and Theorem 5.1.1(i). Since δ is now proved to be injective, it suffices to prove
that H2(k, Z) is finite.

There is a unique finite k-subgroup M in Z of multiplicative type such that Z/M is unipotent.
Indeed, uniqueness is clear and for existence it suffices to treat the case Z = Rk′/k(ZG′ ) =∏

Rk′
i/k

(ZG′
i
) where {k′i} is the set of factor fields of k′ and G′i denotes the k′i-fiber of G′. Each

G′i is either simply connected semi-simple or basic exotic. If G′i is semi-simple then the k′i-fiber
ZG′

i
is a finite k′i-group of multiplicative type, and, by [CGP10, Corollary 7.2.5(2)], the same

holds in all basic exotic cases except for when char(k) = 2 and (G′i)
ss
k

′
i

is of type Cn with even n,
in which case ZG′

i
= Rk′′

i /k
′
i
(µ2) for k′′i = k′i

1/2. Thus, in all cases Z := Rk′/k(ZG′ ) = Rk′′/k(µ′′) for
a non-zero finite reduced k-algebra k′′ and a finite k′′-group µ′′ of multiplicative type. Hence,
the existence of M in Z is clear over a sufficiently large finite Galois extension F/k such that
the Cartier dual of µ′′ has constant fibers over F ⊗k k′′. Uniqueness and Galois descent imply
existence over k.

It now suffices to prove that if C is any commutative affine k-group scheme of finite type
containing a finite multiplicative k-subgroup M such that U := C/M is unipotent then H2(k, C)
is finite. Since H2(k, M) is finite (Proposition 4.1.7(ii)), it suffices to prove that H2(k, U) = 0
for commutative unipotent k-group schemes U . By [SGA3, VIIA, 8.3], there is an infinitesimal
k-subgroup U0 ⊆ U such that U/U0 is smooth (but possibly disconnected). Hence, it suffices to
separately treat the cases when U is finite or U is smooth and connected. By using a composition
series provided by [SGA3, XVII, Theorem 3.5], the case of finite U is reduced to the cases when
U = αp or U is a finite étale p-torsion k-group. In both of these cases, as well as in the smooth
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connected case, there is a finite extension field k′/k such that Uk′ is a k′-subgroup of a k′-split
smooth connected commutative unipotent k′-group U ′. The k-group embedding U ↪→ Rk′/k(Uk′ )
realizes U as a k-subgroup of the k-split smooth connected commutative unipotent k-group
Rk′/k(U ′). The smooth connected unipotent quotientQ= Rk′/k(U ′)/U is k-split since Rk′/k(U ′) is
k-split, so the vanishing of H2(k, U) is reduced to the vanishing of H1(k, Q) and H2(k, Rk′/k(U ′)).
Since Q and Rk′/k(U ′) are k-split, it remains to prove the vanishing of Hi(k,Ga) for all i > 0.
It is a classical result that even Hi(K/k, K) = 0 for i > 0 and any finite Galois extension K/k,
since K is an ‘induced’ Gal(K/k)-module due to the normal basis theorem. 2

7.2 Finiteness with integrality conditions
In the study of arithmetic groups it is natural to consider integral structures on groups over
local and global fields. Over rings of S-integers and their completions in characteristic 0, some
interesting finiteness results for the cohomology of affine group schemes of finite type were proved
in [Nis82] and [GM, §§ 1–6]. It is explained in [GM, § 7] how to prove weaker analogous results in
the function field case. The key missing ingredient for proving such results in full strength in the
function field case was Theorem 1.3.3(i), so now the method of proof of [GM, Proposition 5.1]
works verbatim to establish the following analogous result.

Proposition 7.2.1. Let k be a global function field and S a finite non-empty set of places of
k. Let G be an affine Ok,S-group scheme of finite type with smooth connected generic fiber. The
set H1(Ok,S , G) of isomorphism classes of right G-torsors over Ok,S for the fppf topology is finite.

The hypotheses on the generic fiber are necessary, as is seen by the examples G= µp and
G= Z/pZ with p= char(k)> 0. By using Proposition 7.2.1, the proof of the main result in [GM]
(i.e., [GM, Theorem 1.1]) in characteristic 0 carries over to the global function field case provided
that we impose smoothness and connectedness conditions over k:

Theorem 7.2.2. Let k be a global function field and S a finite non-empty set of places of k. Let
X be a flat Ok,S-scheme of finite type equipped with an action by an affine Ok,S-group scheme
G of finite type. For each v 6∈ S, let Ov denote the valuation ring of an algebraic closure of kv.

Let Z0 ⊆X be an Ok,S-flat closed subscheme such that the (representable) Gk-stabilizer of
(Z0)k in Xk is smooth and connected. The set of closed subschemes Z ⊆X such that Z ⊗ Ov is
G(Ov)-conjugate to Z0 ⊗ Ov for all v 6∈ S consists of finitely many G(Ok,S)-orbits.

This result improves on [GM, Theorem 7.9] by eliminating hypotheses on unipotent radicals.
An interesting non-trivial case of this theorem is Z0 ∈X(Ok,S) with generic point in X(k) having
smooth connected Gk-stabilizer; this is an ‘integral’ analogue of Theorem 1.3.3(ii).

7.3 The case S = ∅
Let k be a global function field, and let G be an affine k-group scheme of finite type.
Although finiteness of class numbers for G requires working with a finite non-empty set S
of places of k, we can prove finiteness results even when S is empty. Let U be an open
subgroup of G(Ak) and consider the double coset space G(k)\G(Ak)/U . Without any further
hypothesis on U this is generally not finite: if U is compact then such finiteness amounts to the
compactness of G(k)\G(Ak), which fails when G is a k-isotropic connected semi-simple k-group
(Theorem 5.1.1(ii)). However, if U is large enough then we do have a finiteness result, as follows.

Theorem 7.3.1. Let k be a global function field and G a smooth connected affine k-
group. Let T be a maximal k-split torus in G, and let U be an open subgroup of G(Ak).
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Define T (Ak)1 ⊆ T (Ak) as in Definition 4.2.2. If U ∩ T (Ak) has finite-index image in the
Z-lattice T (Ak)/T (AK)1 then G(k)\G(Ak)/U is finite. In particular, if G does not contain
GL1 as a k-subgroup then G(k)\G(Ak) is compact.

Note that all choices of T are G(k)-conjugate [CGP10, Theorem C.2.3], but the hypothesis
on U is sensitive to the choice of T .

Proof. The strategy is to revisit the proof in § 5 of finiteness of class numbers over function
fields (Theorem 1.3.1) and adapt those arguments to work for the (typically non-compact) open
subgroup U in place of the preimage in G(Ak) of a compact open subgroup of G(AS

k ).

Step 1. Suppose G is commutative. The quotient G=G/T has an anisotropic maximal k-torus,
hence no nontrivial k-rational characters, so the coset space G(k)\G(Ak) is compact [Oes84, IV,
1.3]. Due to the cohomological triviality properties of T , the short exact sequence of k-groups

1→ T →G→G→ 1

induces exact sequences on k-points and Ak-points. Moreover, G(Ak)→G(Ak) is an open map
since T is smooth and connected. For the open image U of U under this map, G(k)\G(Ak)/U
is finite due to the compactness of G(k)\G(Ak). Thus, it suffices to prove finiteness of the fibers
of the map

G(k)\G(Ak)/U →G(k)\G(Ak)/U.

This map is a homomorphism since G is commutative, and its kernel is the image of
T (k)\T (Ak)/(U ∩ T (Ak)), so it suffices to prove finiteness of this latter double coset space. By
the compactness of T (k)\T (Ak)1, the set T (k)\T (Ak)1/(U ∩ T (Ak)1) is finite and passing to
the quotient by this yields the quotient of T (Ak)/T (Ak)1 modulo the image of U ∩ T (Ak). By
hypothesis, this latter quotient is finite.

Step 2. Next, we show that it suffices to prove the result for the pseudo-reductive quotient
G :=G/Ru,k(G). The connectedness of Ru,k(G) ensures that the diagram of smooth affine
k-groups

1→Ru,k(G)→G→G→ 1

induces an open map G(Ak)→G(Ak), so the image U of U in G(Ak) is an open subgroup of
G(Ak). By Proposition 3.1.3, the k-isomorphic image T of T in G is a maximal k-split torus
in G.

The identification of T with T carries U ∩ T (Ak) into U ∩ T (Ak), so U satisfies the same
initial hypotheses with respect to (G, T ) as U does with respect to (G, T ). Hence, granting
the pseudo-reductive case, G(k)\G(Ak)/U is finite. The intersection of G(k) with the image
of G(Ak)→G(Ak) contains the image of G(k) with finite index due to [Ser97, I, § 5.5,
Proposition 39] and the finiteness of X1

∅(k,Ru,k(G)) [Oes84, IV, 2.6(a)], so the fiber of the
map

G(k)\G(Ak)/U →G(k)\G(Ak)/U

through the double coset of a fixed g ∈G(Ak) consists of points represented by ugi for a finite
set of elements gi ∈G(Ak) and arbitrary u ∈Ru,k(G)(Ak). However, u only matters modulo
left multiplication by Ru,k(G)(k), so compactness of Ru,k(G)(k)\Ru,k(G)(Ak) [Oes84, IV, 1.3]
completes the reduction to the case when G is pseudo-reductive.
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Step 3. From now on G is pseudo-reductive over k, and non-commutative (by Step 1). By
Theorems 2.3.6(ii) and 2.3.8, we can assume that G is a generalized standard pseudo-reductive
k-group. (When applying Theorem 2.3.6(ii) we also use Lemma 4.2.4.) Using notation from
§ 5.2 that rests on a choice of generalized standard presentation of G (see Definition 2.3.3 and
Remark 2.3.4), there is a pair of exact sequences of k-groups

1→ Rk′/k(G
′)→ E → (C ×Z )/Z→ 1

and
1→Z → E →G→ 1

that are respectively (5.2.2) and (5.2.3).

Let U denote the open preimage of U in E (Ak), so U maps onto U due to the cohomological
triviality properties of Z . The smooth connected preimage of T in E contains a maximal
k-split k-torus T of E (Proposition 3.1.3), and T maps onto T . Since (T ∩Z )0

red is the unique
maximal k-split k-torus of Z , U ∩T (Ak) has finite-index image in T (Ak)/T (Ak)1. However,
E (k)\E (Ak)/U →G(k)\G(Ak)/U is surjective (due to the cohomological triviality properties
of Z ), so we may therefore replace (G, T ) with (E ,T ) to reduce to the case when there is an
exact sequence of smooth connected affine k-groups

1→ Rk′/k(G
′)→G→G′′→ 1 (7.3.1)

with a non-zero finite reduced k-algebra k′, a smooth affine k′-groupG′ whose fibers are absolutely
pseudo-simple and either simply connected semi-simple or basic exotic, and a smooth connected
affine k-group G′′ for which the desired finiteness result holds (such as commutative G′′).

Consider the decomposition k′ =
∏
k′i into a finite product of fields. Let G′i be the fiber of G′

over k′i, so Rk′/k(G′) =
∏

Rk′
i/k

(G′i). We need the following general claim concerning (7.3.1).

Lemma 7.3.2. Each factor Rk′
i/k

(G′i) is normal in G.

Proof. By Galois descent, we may make a preliminary finite Galois extension on k so that
each k′i/k is purely inseparable, and hence each factor ring k′i,s := k′i ⊗k ks of k′s := k′ ⊗k ks is
a field. Thus, conjugation on Gks by any g ∈G(ks) permutes the finite set of ks-subgroups
Rk′

i/k
(G′i)ks = Rk′

i,s/ks
(G′i,k′

i,s
) since the pair (G′, k′/k)ks = (G′k′

s
, k′s/ks) is functorial with respect

to ks-isomorphisms in the ks-group Rk′/k(G′)ks = Rk′
s/ks

(G′ks) due to (the proof of) [CGP10,
Proposition 10.2.4]. Hence, each Rk′

i/k
(G′i)ks is normalized by a finite-index subgroup of G(ks).

However, every finite-index subgroup of G(ks) is Zariski-dense in Gks (since the Zariski closure H
of such a subgroup is smooth, so (G/H)(ks) =G(ks)/H(ks) yet Gks/H is smooth and connected).
Thus, each Rk′

i/k
(G′i) is normal in G because such normality holds over ks. 2

We may now form the exact sequence

1→ Rk′/k(G
′)/ Rk′

1/k
(G′1)→G/ Rk′

1/k
(G′1)→G′′→ 1,

so, by induction on the number of k′i, it suffices to treat the case when k′ is a field.
Let H = Rk′/k(G′), so H(k) =G′(k′) and H(Ak) =G′(Ak′ ) as topological groups. Since G′ is

an absolutely pseudo-simple k′-group that is either simply connected semi-simple or basic exotic,
the sequences of k-points and Ak-points arising from (7.3.1) are exact due to Lemma 4.1.6 and
Theorem 5.1.1(i). The image of T in G′′ is a maximal k-split torus T ′′ ⊆G′′ since G�G′′ has
smooth kernel, and the map T (Ak)/T (Ak)1→ T ′′(Ak)/T ′′(Ak)1 between finite free Z-modules
has finite-index image (because T and T ′′ are k-split; see Lemma 4.2.4). Hence, for the open
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image U ′′ of U in G′′(Ak) we see that U ′′ ∩ T ′′(Ak) has finite-index image in T ′′(Ak)/T ′′(Ak)1,
so G′′(k)\G′′(Ak)/U ′′ is finite by the hypothesis on G′′. We can therefore choose a finite set of
elements g′′i ∈G′′(Ak) such that G′′(Ak) =

⋃
U ′′g′′i G

′′(k).
We may and do choose gi ∈G(Ak) lifting g′′i , so, by surjectivity of the map G(k)→G′′(k),

we have

G(Ak) =
⋃
i

UgiG(k)H(Ak) =
⋃
i

UgiH(Ak)G(k).

For each i and open subgroup Ũi := g−1
i (U ∩H(Ak))gi in H(Ak), if H(k)\H(Ak)/Ũi is finite

then H(Ak) =
⋃
ŨihijH(k) for a finite set {hij}j∈Ji ⊆H(Ak). Thus, assuming such finiteness

for all i would give G(Ak) =
⋃
i,j UgihijG(k) (since giŨi ⊆ Ugi), thereby establishing the desired

finiteness of G(k)\G(Ak)/U . Hence, it remains to show that H(k)\H(Ak)/(g−1(U ∩H(Ak))g)
is finite for all g ∈G(Ak).

Step 4. If G′ is k′-anisotropic then the coset space H(k)\H(Ak) =G′(k′)\G′(Ak′ ) is compact
(by Theorem 5.1.1(ii)), so the desired finiteness is clear in such cases. We now have to consider
when G′ is k′-isotropic. The canonical topological group isomorphism H(Ak)'G′(Ak′ ) identifies
H(k) with G′(k′) and carries U ∩H(Ak) isomorphically onto an open subgroup U ′ ⊆G′(Ak′ ),
so the following criterion will be very useful.

Lemma 7.3.3. Let k′ be a global function field and G′ a k′-isotropic absolutely pseudo-simple
k′-group that is either simply connected semi-simple or basic exotic. For an open subgroup
U ′ ⊆G′(Ak′ ), G′(k′)\G′(Ak′ )/U ′ is finite if and only if U ′ is non-compact, in which case this
double coset space consists of a single point.

Proof. By Theorem 2.3.8(ii), the basic exotic case reduces to the simply connected semi-simple
case. Hence, we may and do assume that G′ is a connected semi-simple k′-group that is
absolutely simple and simply connected. Since G′ is k′-isotropic, G′(k′)\G′(Ak′ ) is non-compact
by Theorem 5.1.1(ii). Thus, the double coset space G′(k′)\G′(Ak′ )/U ′ cannot be finite if U ′ is
compact.

Now we assume that U ′ is non-compact and will show that there is a place v′0 of k′ such
that U ′ has non-compact projection into the factor G′(k′v′

0
). Grant this for a moment. Since G′

is absolutely simple and simply connected over k′, by a theorem of Tits (proved in [Pra82])
the only non-compact open subgroup of G′(k′v′

0
) is the entire group, so U ′ maps onto G′(k′v′

0
).

We claim that the open subgroup U ′ in G′(Ak′ ) must contain the entire factor group G′(k′v′
0
).

Clearly U ′0 := U ′ ∩G′(k′v′
0
) is an open subgroup of G′(k′v′

0
). The conjugates u′U ′0u

′−1 for u′ ∈ U ′

lie in U ′ and have trivial projection into the factors G′(k′v′ ) for all v′ 6= v′0, so these conjugates
are contained in U ′0. However, each element of G′(k′v′

0
) occurs as the v′0-factor of some element

u′ of U ′, so, by varying u′, we see that U ′0 is an open normal subgroup of G′(k′v′
0
). There is no

proper open normal subgroup of G′(k′v′
0
), so U ′ =G′(k′v′

0
).

(For the convenience of the reader, here is a proof that an open normal subgroup U ′0 in
G′(k′v′

0
) must be full. By the theorem of Tits [Pra82] mentioned above, it suffices to prove

that U ′0 is non-compact. We will construct a non-compact closed subset of U ′0. Using the k′v′
0
-

points of an open Bruhat cell relative to a choice of maximal k′v′
0
-split torus T ′ 6= 1 in G′k′

v′
0

,

there exists a non-trivial point u′0 ∈ U ′0 that lies in the root group of (G′k′
v′
0

, T ′) for
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some λ ∈ Φ(G′k′
v′
0

, T ′). The orbit map T ′→G′k′
v′
0

defined by t′ 7→ t′u′0t
′−1 lands in U ′0 on k′v′

0
-points

by normality, and it has image Ga − {0} as a map of varieties. Let T ′′ be the codimension-1
subtorus (ker λ)0

red, so the orbit map factors through T ′/T ′′ 'GL1 with (T ′/T ′′)(k′v′
0
) =

T ′(k′v′
0
)/T ′′(k′v′

0
), and the induced map T ′/T ′′→Ga − {0} is identified with the nth-power

endomorphism of GL1 for some n 6= 0. We conclude that there is a closed k′v′
0
-subgroup Ga ⊂G′k′

v′
0

such that the map GL1→Ga defined by c 7→ cn has image on k′v′
0
-points contained in U ′0. Hence,

U ′0 ∩Ga(k′v′
0
) is a subset of k′v′

0
that contains all non-zero nth powers in k′v′

0
and so is non-compact.

However, it is also closed in U ′0, so we are done.)

We conclude from the containment G′(k′v′
0
)⊆ U ′ that the natural surjective map

G′(k′)\G′(Ak′ )/U ′�G′(k′)\G′(Av′
0
k′ )/(U ′ ∩G′(Av′

0
k′ ))

(arising from the quotient ring map Ak′ �Av′
0
k′ ) is injective. The target is a singleton due

to strong approximation for isotropic simply connected and absolutely simple semi-simple
groups [Pra77, Theorem A]. This completes the reduction to proving that U ′ has non-compact
image in the local factor group G′(k′v′ ) for some place v′ of k′. We will assume to the contrary
and seek a contradiction.

Choose a finite non-empty set S′ of places of k′ so that G′ spreads out to a semi-simple
group scheme G ′ over Ok′,S′ with connected fibers. Increase S′ so that U ′ contains an open
subgroup of the form K =

∏
Kv′ such that Kv′ is a compact open subgroup of G′(k′v′ ) for all v′

and is equal to the compact open subgroup G ′(Ov′ ) for all v′ 6∈ S′. For all v′ 6∈ S′ it follows from
Bruhat–Tits theory that the compact open subgroup G ′(Ov′ ) in G′(k′v′ ) is maximal. Suppose U ′

has compact projection into G′(k′v′ ) for all places v′ of k′. Since G′(Ak′ ) =G′(k′S′ )×G′(AS′
k′ )

topologically, the open subgroup image W ′ of U ′ in G′(AS′
k′ ) must be non-compact (as U ′ is

non-compact). However, W ′ contains the compact open subgroup
∏
v′ 6∈S′ Kv′ whose local factors

are maximal compact open subgroups, so, by compactness of the local projections of W ′, we get
W ′ =

∏
v′ 6∈S′ Kv′ , contrary to the non-compactness of W ′. 2

By Lemma 7.3.3, our task in the pseudo-reductive case is reduced to showing that U ∩H(Ak)
is non-compact when G′ is k′-isotropic. Note that H is necessarily k-isotropic. Suppose that
U ∩H(Ak) is compact. The intersection T ∩H clearly contains a (unique) maximal k-split
torus T0 ⊆H, and T0 6= 1 due to the maximality of T as a k-split torus in G. Since U ∩ T0(Ak)
is compact (due to our hypothesis that U ∩H(Ak) is compact), it lies in T (Ak)1. Hence, the
finite-index image of U ∩ T (Ak) in the Z-lattice T (Ak)/T (Ak)1 is a Z-lattice with rank equal
to dim T and it is also a discrete torsion-free quotient of the group (U ∩ T (Ak))/(U ∩ T0(Ak)).
However, this latter group is an open subgroup of T (Ak)/T0(Ak) = (T/T0)(Ak), so it has a
maximal compact open subgroup modulo which it is a Z-lattice with rank at most dim(T/T0).
Since dim(T/T0)< dim T , we have a contradiction. This shows that U ∩H(Ak) is indeed non-
compact, so the case of pseudo-reductive G (and hence the general case) is settled. 2

Remark 7.3.4. The connectedness hypothesis on G in Theorem 7.3.1 cannot be removed. Letting
E :=G/G0, the problem is that even if G0 = T is a split torus, the E(Ak)-action on G0(Ak)
may not preserve T (Ak)1 and so may interact badly with the hypothesis on U . Here is a
counterexample using G= T o Γ, where T = GL1 and Γ = 〈−1〉 with the non-trivial element
of Γ acting on T via inversion.
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Pick a pair of distinct places v0 and v1 of k, and let a ∈A×k be an idele such that the
components av0 and av1 have the same non-trivial norm (in qZ) and av = 1 for all other v. Inside
of G(Ak) = A×k o

∏
v Γ, let

U =
〈
a,
∏
v

O×v

〉
o

∏
v 6=v0,v1

Γ;

this makes sense as a subgroup because we drop the v0-factor and v1-factor from the product
on the right side. Obviously U is open in G(Ak), and U ∩A×k has non-trivial image under the
idelic norm, so U ∩ T (Ak) has finite-index image in T (Ak)/T (Ak)1 = qZ.

Consider the element g ∈
∏
v Γ⊂G(Ak) with trivial components away from v1 and non-trivial

component at v1. The conjugate gag−1 ∈A×k is the idele whose components away from v0 and
v1 are trivial and components at v0 and v1 are respectively av0 and a−1

v1 . Hence, gag−1 ∈ T (Ak)1!
We claim that for t ∈ T (Ak) = A×k , G(k)tgU determines the idelic norm of t, so then varying
over the infinitely many idelic norms gives infinitely many classes in G(k)\G(Ak)/U .

For t′ ∈A×k , suppose t′g = γtgu with γ ∈G(k) = k× o Γ and u ∈ U , so γt(gug−1) = t′ ∈A×k .
Either γ = c ∈ k× or γ = (c,∆(−1)), where ∆ : Γ→

∏
v Γ is the diagonal. Likewise, writing u=

(uT , uΓ) with uT ∈ T (Ak) = A×k and uΓ = Γ(Ak) =
∏
v Γ, we have gug−1 = (g · uT , uΓ). If γ = c ∈

k× then γt(gug−1) = (ct · g · uT , uΓ), and if γ = (c,∆(−1)) then γt(gug−1) = (ct · g · u−1
T ,−uΓ).

In both cases uT = anx with n ∈ Z and x ∈
∏
v O×v ⊂ T (Ak)1 by the definition of U . Thus,

g · uT = (g · a)n(g · x) ∈ T (Ak)1, so t and t′ have the same idelic norm. 2

Corollary 7.3.5. Let π :G′�G be a smooth surjective homomorphism between smooth
connected groups over a global function field k, and assume that G affine. If ker π is connected
then G(k)\G(Ak)/π(G′(Ak)) is finite.

Proof. Since π is smooth with connected kernel, π(G′(Ak)) is an open subgroup of G(Ak). Let
T ⊆G be a maximal k-split k-torus. We apply Proposition 3.1.3 to get a maximal k-split k-torus
T ′ ⊆G′ mapping onto T . By Theorem 7.3.1, we just have to note that the map of Z-lattices
T ′(Ak)/T ′(Ak)1→ T (Ak)/T (Ak)1 has image with finite index, by Lemma 4.2.4. 2

The case of non-affine G′ (with affine G) in Corollary 7.3.5 will be used at the end of the
proof of Theorem 7.5.3(ii). The connectedness hypothesis on ker π cannot be dropped, as we see
by taking G=G′ = GL1 and π to be the nth-power map for n > 1 not divisible by char(k).

Corollary 7.3.6. Let 1→G′→G→G′′→ 1 be a short exact sequence of smooth connected
affine groups over a global function field k. Assume the open image of G(Ak) in G′′(Ak) is
normal. The Tamagawa number τG is finite if and only if the Tamagawa numbers τG′ and τG′′

are finite.

Proof. In [Oes84, III, 5.3] such an equivalence is proved conditional on two finiteness hypotheses
that we now know always hold: the first is a special case of the conclusion of Corollary 7.3.5,
and the second is an immediate consequence of Theorem 1.3.3(i). 2

The normality hypothesis in Corollary 7.3.6 is satisfied whenever G′ is central in G, such as
in the quotient procedure that defines the generalized standard construction of pseudo-reductive
groups in Definition 2.3.3.

As another application of Theorem 7.3.1, there are analogues of the results in § 7.2 for S = ∅
using the same proofs, provided that we assume G is k-anisotropic. We will not use these
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analogues later, so we content ourselves with stating the analogue of Proposition 7.2.1; the
interested reader can formulate an analogue of Theorem 7.2.2.

Proposition 7.3.7. Let k be a global function field and let X be the associated smooth proper
geometrically connected curve over the finite field of constants F of k. Let G be an X-group
scheme of finite type with affine structural morphism to X and smooth connected generic fiber
Gη over F(η) = k that is k-anisotropic. The cohomology set H1(X, G ) is finite.

In this result it is natural to try to relax the restrictive k-anisotropicity hypothesis on Gη.
This requires interpreting ‘finiteness’ of cohomology in a manner other than the set-theoretic
one, as the following standard examples show. Since Br(X) = 1 by global class field theory for
k, for all n> 1 the pointed set H1(X, PGLn) is identified with the quotient Vecn(X)/Pic(X) of
the set Vecn(X) of isomorphism classes of rank-n vector bundles on X modulo twisting by line
bundles. Also, H1(X, SLn) maps onto the pointed set Vecn(X)det=1 of rank-n vector bundles
with determinant 1 for any n> 1. Both sets Vecn(X)/Pic(X) and Vecn(X)det=1 are infinite
when n > 1, as we see by using direct sums of line bundles on X (with varying degrees) since
such a direct sum determines the unordered n-tuple of line bundles up to isomorphism. Hence,
H1(X, PGLn) and H1(X, SLn) are infinite.

For any X-affine flat X-group scheme G of finite type with connected generic fiber, a more
natural way to define the ‘size’ of H1(X, G ) is to assign non-trivial mass to cohomology classes as
follows. The fibered category BunG of G -torsors on X (fibered over the category of F-schemes) is
a (quasi-separated) Artin stack locally of finite type over F [Bro, Theorem 2.1]. The cohomology
set H1(X, G ) is the set of isomorphism classes in BunG (F), so this inspires assigning each
ξ ∈H1(X, G ) the mass |AutX(ξ)|−1 (this automorphism group is finite since F is finite) and
asking if the sum of the masses (over the countably many ξ) is finite.

When the generic fiber Gη is smooth and connected with no non-trivial k-rational characters
(e.g., G is perfect) then this sum of masses is related to the Tamagawa number τGη whose
finiteness in general is established in § 7.4. We will address the precise relationship between this
refined counting procedure and Tamagawa numbers elsewhere.

7.4 Finiteness for Tamagawa numbers

In this section we prove Theorem 1.3.6. The proof will rest on several ingredients: Oesterlé’s
work on Tamagawa numbers in [Oes84], the structure theory of pseudo-reductive groups, and
the result in Corollary 7.3.5 that is a version of finiteness of class numbers in the case S = ∅.

Let G be a smooth connected affine group over a global field k. The definitions of the
Tamagawa measure µG on G(Ak), the closed subgroup G(Ak)1 ⊆G(Ak), and the induced
measure µ1

G on G(k)\G(Ak)1 (as in the discussion preceding Theorem 1.3.6) all rest on
the k-group G and not merely the topological group G(Ak) equipped with its discrete
subgroup G(k). Thus, in general the definition of the Tamagawa number τG has the same
dependence. Consequently, to prove the finiteness of τG for general G over a global function
field, after passing to the pseudo-reductive case below we will not be able to immediately apply
Theorem 2.3.8(ii) to pass to the generalized standard pseudo-reductive case when char(k) = 2
(as we have done in all preceding considerations).

Now assume k is a global function field. Consider the short exact sequence

1→G′
j−−→G

π−−→G′′→ 1
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with G′ = Ru,k(G), so G′ is solvable and G′′ is pseudo-reductive. By [Oes84, IV, 1.3], for any
solvable smooth connected affine k-group H, the coset space H(k)\H(Ak)1 is compact and hence
has finite volume under µ1

H . Thus, τG′ is finite, so, by [Oes84, III, 5.2], the finiteness of τG is
equivalent to the simultaneous finiteness of the µ1

G′′ -volume of

G′′(k)\(G′′(Ak)1 ∩ π(G(Ak)))

(which obviously holds if τG′′ is finite) and of

ker(X1
∅(k, G

′)→X1
∅(k, G)).

Since X1
∅(k, G

′) is finite (by the finiteness of Tate–Shafarevich sets in the solvable case [Oes84,
IV, 2.6(a)]), it follows that the finiteness of τG is reduced to that of τG′′ . Hence, we have reduced
to the case when G is pseudo-reductive. The finiteness of Tamagawa numbers in the commutative
(even solvable) case has already been noted, so we may assume G is non-commutative.

If G=G1 ×G2 then it is obvious that finiteness of τG is equivalent to that of τG1 and
τG2 . Moreover, by [Oes84, II, 1.3], the measures µG and µ1

G as well as the Tamagawa number
(including finiteness) are ‘invariant’ under Weil restriction through any finite extension of global
fields. Thus, by applying Theorem 2.3.6 if Gks has a non-reduced root system, and then applying
Theorem 2.3.8(i), for pseudo-reductive G it suffices to separately treat two cases: G is generalized
standard (in any characteristic) or char(k) = 2 and G is a basic non-reduced pseudo-simple
k-group in the sense of Definition 2.3.5.

Consider the basic non-reduced pseudo-simple case in characteristic 2. In such cases G(Ak)1 =
G(Ak) and this is unimodular. Hence, finiteness of τG amounts to the condition that the
coset space G(k)\G(Ak) modulo the discrete subgroup G(k) has finite volume when equipped
with the induced measure from the Haar µG measure on G(Ak). Clearly the choice of Haar
measure does not matter, so this problem is intrinsic to the topological group G(Ak) equipped
with its discrete subgroup G(k). By Theorem 2.3.8(ii), there is a surjective k-homomorphism
G→G' Rk1/2/k(Sp2n) that induces a homeomorphism G(Ak)'G(Ak) carrying G(k) onto
G(k). This allows us to replace G with G= Rk1/2/k(Sp2n).

Thus, we now may assume G is non-commutative and generalized standard with k of any
non-zero characteristic. Let (G′, k′/k, T ′, C) be the generalized standard presentation adapted
to a choice of maximal k-torus T (Remark 2.3.4). This yields a central extension

1→ Rk′/k(C
′)

j−−→ Rk′/k(G
′) o C

π−−→G→ 1 (7.4.1)

where C ′ = ZG′ (T ′) is the (commutative) Cartan k′-subgroup of G′ associated to the maximal
k′-torus T ′ ⊂G′ corresponding to the choice of T . By Corollary 7.3.6, to prove the finiteness of
τG it suffices to prove the finiteness of the Tamagawa number of the middle term in (7.4.1). (This
application of Corollary 7.3.6 only requires finiteness of Tate–Shafarevich sets in the commutative
case, so the main content is the input from Corollary 7.3.5.)

To prove that the semi-direct product term in the middle of (7.4.1) has finite Tamagawa
number, by (an easy instance of) Corollary 7.3.6, it suffices to prove finiteness of the Tamagawa
numbers for the factors of the semi-direct product. Let {k′i} be the set of factor fields of k′, and
G′i the k′i-fiber of G′. Since τC is finite by the commutativity of C, and

τRk′/k(G′) =
∏

τRk′
i
/k(G′

i)
=
∏

τG′
i

(by the invariance of Tamagawa numbers with respect to Weil restriction through finite
extensions of global fields [Oes84, II, 1.3]), for the middle term in (7.4.1) it remains to treat
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the finiteness problem for τG when G is either absolutely simple and simply connected or is basic
exotic with char(k) ∈ {2, 3}. The case of connected semi-simple groups is well-known, so we may
assume that G is basic exotic. In such cases we can use Theorem 2.3.8(ii) exactly as in the basic
non-reduced pseudo-simple case above to reduce the finiteness problem to the known connected
semi-simple case. This takes care of the finiteness for the middle term in (7.4.1) and so completes
the proof of Theorem 1.3.6.

The following corollary affirmatively answers a question raised by M. Emerton.

Corollary 7.4.1. Let G be a smooth connected affine group over a global field k, and R
its maximal k-split solvable smooth connected normal k-subgroup. The group G(Ak)/R(Ak) =
(G/R)(Ak) is unimodular and the quotient G(k)\G(Ak)/R(Ak) = (G/R)(k)\(G/R)(Ak) by a
discrete subgroup has finite volume.

Proof. The k-split property implies G(Ak)/R(Ak) = (G/R)(Ak) and G(k)/R(k) = (G/R)(k), so
we may replace G with G/R to reduce to the case R= 1. In particular, the maximal k-split
smooth connected unipotent normal k-subgroup of G is trivial, so U := Ru,k(G) is k-wound in
the sense of Definition 7.1.1. (See [CGP10, Corollary B.3.5].) Our aim is to prove that G(Ak)
is unimodular and that G(k)\G(Ak) has finite volume. In fact, we shall prove that Xk(G) = 1,
so G(Ak) =G(Ak)1. This would imply the unimodularity, and the volume-finiteness is then the
established finiteness of the Tamagawa number τG.

To prove that G has no non-trivial k-rational characters, it is equivalent to prove the same
for the pseudo-reductive quotient G′ =G/U . The key step is to show that the maximal central
k-split torus Z ′ in G′ is trivial. The preimage H of Z ′ in G is a solvable smooth connected affine
k-group in which a maximal k-torus T maps isomorphically onto Z ′, so H is identified with a
semi-direct product U o Z ′. However, U is k-wound, so the only action on it over k by a k-torus
is the trivial one [CGP10, Corollary B.4.4], and hence H = U × Z ′. It follows that Z ′ is normal
in G (since H is), so Z ′ ⊆R= 1.

Now it remains to prove that if G is a pseudo-reductive k-group with no non-trivial
central k-split torus then Xk(G) = 1. This is a general fact over any field. Indeed, by [CGP10,
Lemma 1.2.5(iii)], any maximal k-torus T in G is an almost direct product of the maximal
k-torus T ∩D(G) in D(G) and the maximal central k-torus S in G, and any k-rational character
χ of G kills D(G) as well as the maximal k-anisotropic k-torus in S. Since S is k-anisotropic in
our case, it follows that χ(T ) = 1. However, maximal tori are carried onto maximal tori under
any surjective homomorphism between smooth linear algebraic groups, so χ= 1. 2

Remark 7.4.2. By [Bor63, 15.4(i)], U := Ru,k(R) is k-split and R/U is a k-split torus. In
particular, U is the maximal k-split smooth connected unipotent normal k-subgroup of G, so,
by [CGP10, Corollary B.3.5] and the discussion immediately preceding Proposition 4.1.9, R
is the maximal central k-split torus in G precisely when G is quasi-reductive in the sense of
Definition 4.1.8 (which includes pseudo-reductive G).

7.5 Non-affine groups
Let k be a field and X a proper algebraic space over k. By [Art69, Theorem 6.1] (and standard
flatness and graph arguments with Hilbert functors), the automorphism functor S AutS(XS)
is a (quasi-separated) algebraic space group locally of finite type over k. Hence, by [Art69,
Lemma 4.2], it is represented by a k-group scheme AutX/k locally of finite type. Thus, the
identity component Aut0

X/k is a k-group scheme of finite type [SGA3, VIA, 2.4] (generally not
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reduced if char(k)> 0) and the component group AutX/k/Aut0
X/k is an étale k-group whose

geometric fiber can fail to be finite (e.g., X = E × E for an elliptic curve E). It is not known if
this component group is always finitely generated, and in the projective case it is equivalent to ask
that the image of AutX/k(k) in the automorphism group of the finitely generated Néron–Severi
group (PicX/k/Pic0

X/k)(k) is finitely generated.
One reason for interest in the structure of the automorphism group scheme is that the set of

k-isomorphism classes of forms of X for the fppf-topology is identified with H1(k,AutX/k). This
rests crucially on the fact that we work with k-forms of X that may be algebraic spaces, even if
X is a scheme. More specifically, if X is a proper k-scheme then the fppf k-forms of X classified
by H1(k,AutX/k) may not be schemes, due to problems with effectivity of descent (this already
arises for étale k-forms of smooth three-dimensional complete non-projective k-schemes), but if
X is projective then such forms are again (projective) k-schemes.

Now assume that k is a global field. In this case it is natural to consider whether or not the
pointed set

S (X/k) := {isom. classes of k-proper algebraic spaces X ′|X ′kv 'Xkv for all places v of k}

is finite. For number fields this problem was studied by Mazur in [Maz93, §§ 17–18]. By descent
theory, S (X/k) is naturally isomorphic to the pointed set X(AutX/k), where

X(G) := X1
∅(k, G) = ker

(
H1(k, G)→

∏
v

H1(kv, G)
)

for any locally finite type k-group scheme G. For such G, when is X(G) finite? For connected
affine G, finiteness holds by Theorem 1.3.3(i). For abelian varieties such finiteness is the Tate–
Shafarevich conjecture over k. In the Tate–Shafarevich conjecture it is essential to require local
triviality at all places.

Example 7.5.1. Let A be an abelian variety of dimension g > 0 over a number field k, with
r := rankZ(A(k)). Fix a prime p and let S be a set of p-adic places of k. We claim X1

S(k, A)
is infinite if r < g

∑
v∈S [kv : Qp]. For each n> 1 let Mn =A[pn] and let M∗n denote its Cartier

dual. Let L = {Lv} be the set of local conditions on H1(k, Mn) given by the Selmer condition
away from S and no local condition at places in S; that is, Lv = H1(kv, Mn) for v ∈ S and
Lv =A(kv)/(pn) for v 6∈ S (including v|∞). Letting L ⊥ denote the dual set of local conditions
on H1(k, M∗n), the Wiles product formula [NSW08, VIII, Theorem 8.6.20] gives

h1
L (k, Mn)

h1
L ⊥ (k, M∗n)

=
h0(k, Mn)
h0(k, M∗n)

·
∏
v

#Lv

h0(kv, Mn)
=

#A(k)[pn]
#A[pn]∗(k)

·
∏
v

#Lv

h0(kv, Mn)
, (7.5.1)

where hi denotes the cardinality of Hi and we form the product over all places. (Wiles’ version
in [Wil95, Proposition 1.6] for odd-order Galois modules M has local factors differing from (7.5.1)
at archimedean places and at finite places dividing #M , but the product of the local discrepancies
is 1 due to the global product formula for #M ∈ k×.)

If v 6∈ S then the local term at v in (7.5.1) is the Herbrand quotient for multiplication by pn

on A(kv). This is invariant under replacing A(kv) with an finite-index subgroup, so for v|∞ it is
p−g[kv :R]n, for non-archimedean v - p it is 1, and for v|p with v 6∈ S it is pg[kv :Qp]n. However, for
v ∈ S the local factor is

h1(kv, Mn)
h0(kv, Mn)

=
h2(kv, Mn)
‖#Mn‖v

=
h0(kv, M∗n)
‖#Mn‖v

= h0(kv, M∗n)p2g[kv :Qp]n.
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Let A∨ be the dual abelian variety. Since A[pn]∗ 'A∨[pn] via the Weil pairing, and for large
n both #A(k)[pn] and #A∨(k)[pn] become constant (and likewise for kv-points for v ∈ S), for
large n we get

h1
L (k, Mn)

h1
L ⊥ (k, Mn)

= C ·
∏
v|∞

p−g[kv :R]n ·
∏

v|p,v 6∈S

pg[kv :Qp]n ·
∏
v∈S

p2g[kv :Qp]n = C · pg
∑
v∈S [kv :Qp]n

for some C > 0. There is also an exact sequence

0→A(k)/(pn)→H1
L (k, A[pn])→X1

S(k, A)[pn]→ 0,

and #(A(k)/(pn)) is a constant multiple of prn for large n. However, h1
L ⊥ (k, Mn)> 1, so

#X1
S(k, A)[pn]> C ′p(g

∑
v∈S [kv :Qp]−r)n

for large n with some C ′ > 0. Thus, if r < g
∑

v∈S [kv : Qp] then X1
S(k, A) is infinite.

If one grants the Tate–Shafarevich conjecture over k then when char(k) = 0 the finiteness
of X(G) was proved by Mazur in [Maz93, § 17] whenever Γ :=G(ks)/G0(ks) = (G/G0)(ks) is
finitely presented and Γ o Gal(K/k) has finitely many conjugacy classes of finite subgroups,
where K ⊆ ks is the finite Galois splitting field over k for Γ. (If Γ is the constant group over k
associated to an arithmetic group then these two finiteness hypotheses on Γ are satisfied. For the
example G= AutX/k with a geometrically reduced and geometrically connected proper k-scheme
X, arithmetic groups naturally intervene because Γ acts on the finitely generated Néron–Severi
group of Xk. However, verifying arithmeticity or any finiteness conditions on Γ is a difficult
problem in general, and Borcherds [Bor98, Ex. 5.8] has given examples of K3 surfaces X over C
for which the image of Γ in Aut(NS(X)Q) is not an arithmetic group.)

Mazur’s finiteness result for X(G) over number fields (conditional on the Tate–Shafarevich
conjecture over number fields and some finiteness hypotheses on G/G0) uses characteristic 0 in an
essential way. His method rests on Theorem 3.1.4, which is only available over perfect fields. To
prove the function field analogue of Mazur’s result we shall change the argument so that it uses
Theorem 3.1.5 as a substitute for Theorem 3.1.4. In fact, our modified method also works over
number fields, where it gives a simplified version of Mazur’s argument (avoiding cohomological
considerations over rings of S-integers). First we handle the smooth connected case, and then
we address the problems introduced by the component group.

Lemma 7.5.2. Let k be a global field. Assume the Tate–Shafarevich conjecture over k. For every
smooth connected k-group G the localization map θG : H1(k, G)→

∏
H1(kv, G) has finite fibers;

in particular, X(G) is finite for such G.

Proof. By the twisting method (as reviewed at the start of § 6.1), finiteness of X(G) = ker θG for
general such G implies the finiteness of fibers of the localization map. Thus, we focus on proving
finiteness of X(G).

As a first step, we treat the case when G is a semi-abelian variety. We shall use a simple
variant on the method in § 6.3, the main issue being to make the argument work with empty S.
Since G is commutative, things will simplify considerably. Consider the unique exact sequence

0→ T
j−−→G

π−−→A→ 0

over k with T a k-torus and A an abelian variety. The formation of this sequence is compatible
with passage to k-forms of G for the étale topology, so since X(A ) is assumed to be finite for
every abelian variety A over k we may use the twisting method to reduce the general finiteness
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problem for X(G) to the finiteness of ker(X(G)→X(A)). This kernel is j(θ−1
T (δ(A(Ak)))),

where θT : H1(k, T )→
∏

H1(kv, T ) is the localization map and δ :A(Ak)→
⊕

H1(kv, T ) is the
‘direct sum’ of connecting maps. Our problem is therefore to show that θ−1

T (δ(A(Ak))) is
contained in finitely many δ(A(k))-orbits in H1(k, T ). However, θT has finite fibers since T
is a torus, so it suffices to prove that δ(A(Ak))/δ(A(k)) is finite. Even better, δ(A(Ak)) is finite:
it is an image of π(G(Ak))\A(Ak), and π(G(Ak)) is an open subgroup of the group A(Ak) that
is compact since A is projective over k.

In general, by Theorem 3.1.5, there is an exact sequence

1→ Z
j−−→G

π−−→Q→ 1 (7.5.2)

with a smooth connected commutative k-group Z satisfying O(Z) = k and a smooth connected
affine k-group Q, and if char(k)> 0 then Z is semi-abelian. Such an exact sequence is clearly
unique, so its formation is compatible with passage to k-forms of G for the étale topology.

Theorem 1.3.3 and its number field analogue (due to Borel and Serre) imply finiteness of
X(Q), and the settled semi-abelian case (and evident injectivity of X(Z)→X(Z/Ru,k(Z)) in
the number field case) yields the finiteness of X(Z). Thus, since Z is commutative, finiteness
of X(G) is proved via the same argument as at the end of § 6.3 (taking S = ∅ there) provided
that π(G(Ak))\Q(Ak)/Q(k) is finite. In the number field case such finiteness is obvious because
if v|∞ then the open subgroup π(G(kv)) has finite index in Q(kv) (so we can invoke finiteness
of class numbers for Q with S taken to be the set of archimedean places). In the function field
case we cannot appeal to such a trick, so the finiteness of class numbers for Q does not help if
char(k)> 0. To handle function fields we apply Corollary 7.3.5 to π :G�Q. 2

Theorem 7.5.3. Let k be a global field and assume the Tate–Shafarevich conjecture over k.
Assume E :=G(ks)/G0(ks) is finitely generated, and define the pointed set X(E) := X1

∅(k, E)
in the evident manner.

(i) Let K/k be a finite Galois splitting field for the Gal(ks/k)-action on E. If E o Gal(K/k)
has finitely many conjugacy classes of finite subgroups (a condition visibly independent of the
choice of K) then X(E) is finite.

(ii) If X(E) is finite and E is finitely presented then X(G) is finite.

The finiteness hypotheses on E are satisfied if E is an arithmetic group. One source of
complications in the proof of part (ii) is that over rings of S-integers certain torsors are a priori
algebraic spaces rather than schemes (since finite étale covers are not cofinal among all étale
covers of rings of S-integers). This issue seems to arise implicitly in [Maz93].

Proof. To prove part (i) we easily modify the proof of [Maz93, § 16, Lemma] (whose conclusion
is false in non-zero characteristic) as follows. By the Chebotarev density theorem, it follows that
X1
∅(K, E) is trivial, so X(E)⊆H1(Gal(K/k), E). This latter H1 is finite, by the group-theoretic

finiteness hypothesis on E o Gal(K/k), completing the proof of part (i).
Now we turn to part (ii), so we assume X(E) is finite and E is finitely presented. Let G′ ⊆G

be the smooth closed k-subgroup descending the Zariski closure of G(ks) in Gks , and define
Γ :=G′(ks)/(G′)0(ks) = (G′/(G′)0)(ks). Since G′(ks) =G(ks), there is a Gal(ks/k)-equivariant
short exact sequence of groups

1→G0(ks)/(G′)0(ks)→ Γ→ E→ 1. (7.5.3)
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The group G0(ks)/(G′)0(ks) is finite because G0 ∩G′ is an open and closed k-subgroup of G′

(and so is a union of finitely many (G′)0-cosets). Any extension of a finitely presented group
by a finitely presented group is finitely presented, so Γ must be finitely presented. The proof of
part (i) shows that X(Γ)⊆H1(Gal(K/k), Γ) for a finite Galois splitting field K/k of Γ, so, by
the twisting method and the finiteness of the left term in (7.5.3), the finiteness of X(E) implies
finiteness of X(Γ) because H1(Gal(K/k), H) is finite for any finite group H equipped with a
Gal(K/k)-action.

By Remark 1.2.1, the elements of H1(k, G) classify isomorphism classes of right G-torsor
schemes over k. Hence, the proof of Lemma 6.1.1 works verbatim for G and thereby permits
us (in view of the preceding arguments with Γ) to assume that G is smooth. Now E coincides
with (G/G0)(ks) equipped with its natural Gal(ks/k)-action. The key point is to use a finite
presentation of E to make an integral model of the connected-étale sequence of G.

Proposition 7.5.4. The connected-étale sequence for G over k spreads out to an exact sequence

1→G0
S →GS → ES → 1

of smooth separated group schemes over some ring of S-integers Ok,S such that G0
S is quasi-

projective with connected fibers and all connected components of ES are finite étale over Ok,S .

Proof. A proof is given in [Maz93, § 17, pp. 27–28] using abstract bitorsor constructions. For the
convenience of the reader who is unfamiliar with bitorsors, we now explain the method in more
concrete terms.

Choose a finite Galois extension K/k splitting E that is large enough so that G(K)→ E
is surjective. Let S be a finite set of places of k containing the archimedean places so that K/k is
unramified away from S, and let T be the set of places of K over S. Since G/G0 is a Galois de-
scent over k of the constant group E over K, we can uniquely spread out G/G0 to a Galois descent
ES over Ok,S of the constant group E over OK,T . Since E is finitely presented, we may choose
a finite subset {gi} in G(K) whose image in E is a set of generators {γi} that admits a finitely
normally generated group of relations. By increasing S, we can arrange that G0 spreads out to a
smooth quasi-projective Ok,S-group G0

S with connected fibers and that the conjugation action on
G0
K by each of the finitely many gi (uniquely) extends to an automorphism of (G0

S)OK,T . Thus, the
subgroup of G(K) generated by the gi acts on (G0

S)OK,T extending its conjugation action on G0
K .

Viewing the k-map G→G/G0 as a left G0-torsor, we have a disjoint union decomposition

GK =
∐
γ∈E

G0
K · [γ]

where [γ] ∈G(K) is a point in the fiber over γ ∈ E that also lies in the subgroup generated by
the gi. (The coset G0

K · [γ] only depends on γ.) More specifically, write each γ as a word in the
γi and then define [γ] to be the corresponding word in the gi.

The group law on GK is given by pairings

G0
K · [γ]×G0

K · [γ′]→G0
K · [γγ′] (7.5.4)

for ordered pairs (γ, γ′) in E. Explicitly, the group law is determined by

(g · [γ], g′ · [γ′]) 7→ (g([γ]g′[γ]−1)([γ][γ′][γγ′]−1)) · [γγ′].

However, [γ] is in the subgroup [E]⊆G(K) generated by the gi, so its conjugation action on
G0
K extends to an automorphism of (G0

S)OK,T . Also, the element [γ][γ′][γγ′]−1 ∈G0(K) lies in
the subgroup [E].
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Assume for a moment that [γ][γ′][γγ′]−1 ∈G0
S(OK,T ) for all γ, γ′ ∈ E. Hence, the description

of the K-group GK in terms of the K-group G0
K and pairings (7.5.4) indexed by ordered

pairs in E makes sense over OK,T , so we may spread out GK to a smooth separated OK,T -
group GT containing (G0

S)OK,T as an open and closed subgroup. The action on G(K) by any
element σ ∈Gal(K/k) carries each [γ] ∈G(OK,T )⊆G(K) to a point σ([γ]) ∈G(K). If the point
[σ(γ)]σ([γ])−1 ∈G0(K) lies in G0

S(OK,T ) for all σ and γ then the finite Galois descent datum on
GK relative to K/k extends to one on GT relative to Ok,S → OK,T . Hence, by effective Galois
descent relative to the finite étale extension Ok,S → OK,T , we would then get the desired exact
sequence of smooth separated Ok,S-groups.

It remains to prove that if we increase S by a finite amount and increase T accordingly, then
the elements [γ][γ′][γγ′]−1 ∈G0(K) and [σ(γ)]σ([γ])−1 ∈G0(K) lie in G0

S(OK,T ) for all γ, γ′ ∈ E
and all σ ∈Gal(K/k). In other words, we want the obstructions in G0(K) to γ 7→ [γ] being
a group homomorphism or being Gal(K/k)-equivariant to all lie in G0

S(OK,T ), at least after
increasing S by a finite amount. Since E is finitely generated and Gal(K/k) is finite, if we can
handle the obstruction to being a group homomorphism (i.e., if [γ][γ′][γγ′]−1 ∈G0

S(OK,T ) for
all γ, γ′ ∈ E) then the obstruction to Galois-equivariance amounts to just finitely many more
obstruction elements in G0(K) (as we see by induction on the length of words in the γi). We
could then certainly increase S further by a finite amount to finish the proof. Hence, the problem
is to understand the obstruction to being a group homomorphism.

Now we use that E is finitely presented and not just finitely generated: the finite set of
generators γi of E was chosen so that its group of relations is finitely normally generated. Thus,
we can choose abstract words r1, . . . , rN in the γi that have trivial image in E and for which the
collection of their conjugates against all abstract words in the γi generates the group of relations
among the γi. The words w1, . . . , wN in the gi in G(K) corresponding to the rj lie in G0(K),
and we may increase S by a finite amount so that these finitely many words lie in the subgroup
G0
S(OK,T )⊆G0(K). The word in the gi that computes [γ][γ′][γγ′]−1 (for a choice of γ and γ′)

lies in G0(K) and is in the subgroup generated by the [E]-conjugates of the wj , so it also lies in
G0
S(OK,T ) since [E]-conjugation on G0

K respects the OK,T -structure. 2

Fix an exact sequence as in Proposition 7.5.4, and let K/k be a finite Galois extension
splitting the étale k-group E :=G/G0 such that G(K)→ E (K) = E is surjective. Let T be the
finite set of places of K over S. Since ES(Ov)→ ES(kv) = E (kv) is surjective for all v 6∈ S,
the map G(kv)→ E (kv) is surjective for v 6∈ S because the map GS(Ov)→ ES(Ov) is surjective
(due to G0

S being a smooth Ok,S-group scheme with connected fibers).

By Lemma 7.5.2, θG0 has finite fibers. Since X(E) is finite by hypothesis, the twisting
method reduces finiteness of X(G) to finiteness of the image of θ−1

G0 (
∐
δ(E (kv))) under

H1(k, G0)→H1(k, G) without requiring any finiteness assumption on X(E) (though we may
need to increase S, as the original G has been replaced with a k-form for the étale topology).
Since G(kv)→ E (kv) is surjective for all v 6∈ S, the pointed set δ(E (kv)) is trivial for v 6∈ S. Hence,
it suffices to prove finiteness of δ(E (kv)) for each v ∈ S. For any v′ ∈ T over v the restriction
map H1(kv, G0)→H1(Kv′ , G0) kills δ(E (kv)) because the map G(K)→ E = E (K) = E (Kv′ ) is
surjective. We may therefore conclude the proof of Theorem 7.5.3(ii) when G0 is affine by using
Proposition 7.1.2.

Now we turn to the general case of Theorem 7.5.3(ii) with smooth G (assuming E is finitely
presented and X(E) is finite), so G0 is not necessarily affine. Applying Theorem 3.1.5 to G0
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gives a unique exact sequence

1→ Z→G0→Q→ 1

with affine Q and a smooth connected commutative k-group Z such that O(Z) = k. Let X ⊆G0

denote the preimage of the k-unipotent radical U = Ru,k(Q), so X is an extension of U by Z and
is normal in G. By Lemma 7.5.2, the localization map θX : H1(k, X)→

∏
H1(kv, X) has finite

fibers. In the exact sequence

1→X
j−−→G

π−−→G→ 1 (7.5.5)

we have that G0 =Q/U is pseudo-reductive. (This will allow us to apply Proposition 4.1.9 to
G

0 at the end of the proof.) The formation of this exact sequence is compatible with passage
to k-forms of G for the étale topology.

Note that G→G induces an isomorphism on component groups. Thus, G has component
group E such that X(E) is finite by hypothesis, so since G0 is affine we conclude that X(G) is
finite (since we have settled all cases with an affine identity component). To deduce that X(G)
is finite we will use the twisting method, but beware that if Gc is an inner form of G for the
étale topology arising from twisting against some right G-torsor c then X(Gc) might not be
finite (in the original setup we only made an assumption of finiteness on X(E), and perhaps
X(Ec) is not finite). If we enlarge S to contain all places ramified in a finite separable splitting
field for the G-torsor c over k then we still have that Gc(kv) and Gc(kv) map onto Ec(kv) for
all v 6∈ S, so by finiteness of X(G) we may then apply the twisting method to (7.5.5) to reduce
the finiteness of X(G) to the finiteness of H1(j)(θ−1

X (δ(
∏
G(kv)))) provided that we abandon

(as we now do!) any hypothesis on X(E) or X(G), such as finiteness. Increase S so that the
conclusion of Proposition 7.5.4 holds over Ok,S , and let GS be as in that proposition. Define XS

to be the schematic closure of X in G0
S , so XS is a quasi-projective and flat Ok,S-group with

generic fiber X. Increase S some more so that XS is smooth with (geometrically) connected
fibers over Ok,S . The quotient GS :=GS/XS exists as a smooth algebraic space group over Ok,S ,
so (7.5.5) spreads out to a short exact sequence of smooth algebraic space groups

1→XS →GS →GS → 1

(here ‘short exact’ means that GS →GS is faithfully flat with functorial kernel XS).

There is a natural right action of G(k) on H1(k, X), and its orbits are precisely the fibers
of H1(j); see [Ser97, I, § 5.5]. By the definition of this action, δ :G(k)→H1(k, X) is G(k)-
equivariant when using the right translation action of G(k) on itself. Our problem is to show
that θ−1

X (δ(
∏
G(kv))) is contained in finitely many G(k)-orbits on H1(k, X). Using notation as

in (6.2.2), since θX lands in the subset
∐

H1(kv, X) (as the smooth k-group X is connected) we
may replace δ(

∏
G(kv)) with δ(

∐
G(kv)) or with the intermediate set δ(G(Ak)). The connecting

map G(kv)→H1(kv, X) carries each g ∈G(kv) to the isomorphism class of the right X-torsor
π−1(g) over kv, and this isomorphism class only depends upon g up to left multiplication by
π(G(kv)). Thus, the map δ :G(Ak)→

∐
H1(kv, X) factors through π(G(Ak))\G(Ak) due to

two properties: the calculation

G(Ak) = lim−→
S′⊇S

GS

(
kS′ ×

∏
v 6∈S′

Ov

)
= lim−→
S′⊇S

(∏
v∈S′

G(kv)×GS
(∏
v 6∈S′

Ov

))
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(which rests on GS being locally of finite presentation over Ok,S) and the surjectivity of the map

GS

(∏
v 6∈S′

Ov

)
→GS

(∏
v 6∈S′

Ov

)
,

which rests on the vanishing of H1(Spec(
∏
v 6∈S′ Ov), XS). To prove this latter vanishing, first

note that for R :=
∏
v 6∈S′ Ov the cohomology set H1(Spec(R), XS) classifies isomorphism classes

of algebraic spaces T over R equipped with a structure of XS-torsor for the étale topology
over R. Hence, we have to show T (R) 6= ∅ for such T . To prove this, a key point is to first
verify that every algebraic space over Spec(R) that is an XS-torsor (for the étale topology) is
necessarily a (quasi-projective) scheme.

Recall that XS is quasi-projective over Ok,S , so any algebraic space over R that is an XS-
torsor is the solution to an étale descent problem for a quasi-projective and finitely presented
scheme over an étale cover of Spec(R). We have to prove the effectivity of such descent problems
in the category of schemes. Although descent through an étale covering map Spec(A′)→ Spec(A)
between affine schemes can fail to be effective even for a quasi-projective and finitely presented
A′-scheme, when A′ is A-finite it is always effective. Indeed, by standard limit arguments, we may
assume that Spec(A) is noetherian and connected, in which case a cofinal system of finite étale
covers is given by connected Galois covers. Descent through such Galois coverings is a special
case of descent relative to the free action of a finite group, and such descent is always effective
for quasi-projective schemes (with the descent also quasi-projective). Hence, to prove the desired
scheme property for XS-torsor algebraic spaces over R, it suffices to prove that a cofinal system
of étale covers of Spec(R) is given by finite étale covers. Such cofinality is a consequence of the
following lemma.

Lemma 7.5.5. Let {Ri} be a (possibly infinite) collection of henselian local rings, and let
R=

∏
Ri. For any collection of local finite étale extensions Ri→R′i with bounded degree,

Spec(
∏
R′i) is a finite étale cover of Spec(R). Moreover, a cofinal system of étale covers of

Spec(R) is given by finite étale covers of this type.

Proof. The essential issue in the argument is to handle the fact that the functor Spec does
not carry infinite products over to disjoint unions. Let us first check that for any collection of
local finite étale extensions Ri→R′i with bounded degree, and R′ :=

∏
R′i, the map Spec(R′)→

Spec(R) is a finite étale covering. The partition of I according to the values of the constant degree
of R′i over Ri is a finite partition, so we may reduce to the case when these degrees are the same
for all i, say degree d > 0. By the henselian property of Ri, there is an Ri-algebra isomorphism
R′i 'Ri[x]/(fi) for a monic fi ∈Ri[x] with degree d and separable irreducible reduction over the
residue field of Ri. Hence, for the monic polynomial f ∈R[x] of degree d having ith component
fi for all i, we get R′ 'R[x]/(f) as R-algebras. Since the discriminant disc(f) ∈R=

∏
Ri is a

unit, Spec(R′)→ Spec(R) is a finite étale cover.
Now we show that such étale covers of Spec(R) are cofinal. Let ki denote the residue field

of Ri, so Spec(
∏
ki) is a closed subscheme of Spec(R). We claim that this closed subscheme

contains all closed points of Spec(R), or equivalently any open subscheme U ⊆ Spec(R)
that contains Spec(

∏
ki) is equal to Spec(R). Since Spec(

∏
ki) is quasi-compact, it suffices

to prove that if a quasi-compact open subscheme U in Spec(R) contains all of the points
Spec(ki) then U = Spec(R). We may replace U with the union of a finite collection of affine open
subschemes Spec(Rr1), . . . , Spec(RrN ). The condition that

⋃
Spec(Rrj ) contains every Spec(ki)

is unaffected by replacing each rj with its multiple r′j ∈R=
∏
Ri obtained by replacing each
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non-unit component with 0 and each unit component with 1. That is, we may assume that each
rj is an idempotent, and the condition of covering the subset of points {Spec(ki)}i∈I implies
that for every i ∈ I some rj has ith component equal to 1 (rather than 0). It is therefore clear
that the rj generate 1 in R, so the Spec(Rrj ) cover Spec(R), as desired. This argument also
shows that a cofinal system of finite open coverings of Spec(R) is given by the finite disjoint
open decompositions corresponding to finite partitions of I.

By [EGA, IV4, 18.4.6(ii)], a cofinal system of étale covers of Spec(R) is given by finite
collections of basic affine open subschemes Uj ⊆ Spec((R[x]/(fj))f ′

j
) for monic fj ∈R[x] such

that Spec(R) is covered by the open images of the Uj . The open images of such Uj constitute
a finite open cover of Spec(R), so by passing to a finite partition of I we reduce to considering
an étale cover given by a single basic affine open U in Spec((R[x]/(f))f ′ ) for some monic
f ∈R[x] with d := deg(f)> 0. In particular, if fi ∈Ri[x] denotes the ith component of f then
U ∩ Spec((Ri[x]/(fi))f ′

i
) = U ×Spec(R) Spec(Ri) maps onto Spec(Ri). This says that the monic

reduction f i ∈ ki[x] has a separable irreducible factor gi such that (i) f i = gihi with gcd(gi, hi) =
1 and (ii) the isolated point Spec(ki[x]/(gi)) in the special fiber of Spec(Ri[x]/(fi))→ Spec(Ri)
lies in U . Clearly 16 deg(gi)6 d for all i, so by partitioning I according to the finitely many
possible values of deg(gi) we may reduce to the case when deg(gi) is the same for all i.

Since Ri is henselian, by [EGA, IV4, 18.5.13(a′′)] there is a unique monic factorization
fi = gihi such that gi and hi respectively lift gi and hi, and moreover the map

Ri[x]/(fi)→ (Ri[x]/(gi))× (Ri[x]/(hi))

is an isomorphism. The polynomial hi has reduction hi that is a unit in the reduction ofRi[x]/(gi),
as does g′i, so localizing at f ′i = h′igi + g′ihi gives

Spec((Ri[x]/(fi))f ′
i
) = Spec(Ri[x]/(gi))

∐
Spec((Ri[x]/(hi))h′

igi
)

since gi is separable. Hence, for the henselian local R′i =Ri[x]/(gi) and residue fields k′i =
ki[x]/(gi), the quasi-compact open subscheme U ∩ Spec(

∏
R′i) in Spec(

∏
R′i) contains every

Spec(k′i) and so equals Spec(
∏
R′i). Thus, Spec(

∏
R′i)→ Spec(R) factors through U . 2

Continuing with the proof of the general case of Theorem 7.5.3(ii), by Lemma 7.5.5 and
the argument preceding it, we have shown that the algebraic space T is a quasi-projective
R-scheme. We claim that T (R) =

∏
v 6∈S′ T (Ov). More generally, we claim that if Z is any quasi-

compact separated scheme and {Ri}i∈I is any collection of local rings, the natural map of sets
hZ : Z(

∏
Ri)→

∏
Z(Ri) is bijective. This is clear when Z is affine, and in general injectivity

follows from separatedness (since pullback of the quasi-coherent ideal of the diagonal under
a map Spec(

∏
Ri)→ Z × Z gives an ideal in

∏
Ri, and this ideal vanishes if and only if its

projection into each Ri vanishes). For surjectivity of hZ , let {U1, . . . , Un} be a finite affine
open covering of Z and choose zi ∈ Z(Ri) for all i ∈ I, so, by locality of the Ri, each zi factors
through one of finitely many open affines U1, . . . , Un that cover Z. We may choose a finite
partition {I1, . . . , In} of I so that zi factors through Uj for all i ∈ Ij , and then we get a point
zj ∈ Uj(

∏
i∈Ij Ri) inducing zi for all i ∈ Ij because each Uj is affine. The points z1, . . . , zn are

points of Z valued in the respective rings
∏
i∈I1 Ri, . . . ,

∏
i∈In Ri, so collectively they define a

point z ∈ Z(
∏
i∈I R) valued in the product of these n rings. It is clear that hZ(z) = (zi)i∈I , as

desired.
Our description of T (R) as the product

∏
v 6∈S′ T (Ov) reduces the assertion T (R) 6= ∅ to

the assertion that T (Ov) is non-empty for all v 6∈ S′. However, H1(Ov, XS) = 1 for all v 6∈ S,
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by finiteness of the residue field at such v and the connectedness and smoothness of the fibers of
XS , so every XS-torsor over Ov is trivial. In other words, T (Ov) 6= ∅ for each v 6∈ S, so indeed
T (R) 6= ∅.

By finiteness of the fibers of the G(k)-equivariant θX , our problem is now reduced to showing
that the set π(G(Ak))\G(Ak)/G(k) is finite. It therefore suffices to prove the finiteness of

π(G(Ak))\G(Ak)/G
0(k).

If v 6∈ S then G(kv) and G(kv) both map onto (G/G0)(kv) (by Lang’s theorem and the choice of
S), so π(G(kv))\G(kv) = π(G0(kv))\G

0(kv) for v 6∈ S. Thus, we obtain that π(G(AS
k ))\G(AS

k ) =
π(G0(AS

k ))\G0(AS
k ). The map G→G induces an isomorphism between component groups, so

we get an inclusion

π(G0(Ak))\G
0(Ak) ↪→ π(G(Ak))\G(Ak)

and hence a product decomposition

π(G(Ak))\G(Ak) = (π(G(kS))\G(kS))× (π(G0(AS
k ))\G0(AS

k )). (7.5.6)

Since G0 is affine (though G0 generally is not) and ker π is smooth and connected, the double
coset space π(G0(Ak))\G

0(Ak)/G
0(k) is finite, by Corollary 7.3.5. We will show below that the

open subgroup π(G(kS)) in G(kS) has finite index, so π(G(kS)) then contains a subgroup N
that is normal (and even open) in G(kS) with finite index. Thus, we may then choose a finite
set of double-coset representatives {x1, . . . , xn} ⊆G

0(Ak) for π(G0(Ak))\G
0(Ak)/G

0(k), and
a finite set {y1, . . . , ym} of representatives in G(kS) for the quotient group G(kS)/N . It is then
easy to see that G(Ak) is covered by the double cosets π(G(Ak))(yj , 1)xiG

0(k) for 16 j 6m
and 16 i6 n, so we would be done.

We are now reduced to checking that for each of the finitely many v ∈ S, the coset space
π(G(kv))\G(kv) is finite. The argument will apply to any place v of k. Since G

0(kv) has
finite index in G(kv), it suffices to prove that π(G0(kv)) has finite index in G

0(kv). The map
π :G0→G

0 is a smooth surjection, so, by Proposition 3.1.3, a maximal kv-split torus in G
0
kv

is the image of a maximal kv-split torus in G0
kv

. By separability of kv/k, the kv-group G
0
kv is

pseudo-reductive. Hence, the criterion in Proposition 4.1.9 is applicable to the open subgroup
π(G0(kv))⊆G

0(kv), so this has finite index. 2
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Appendix A. A properness result

A.1 Main result
This appendix is largely devoted to proving the following theorem that is crucial in § 5. (In §A.5
we give another application, not used elsewhere: the function field case of a general compactness
criterion for G(k)\G(Ak)1, with G any smooth connected affine group over a global field k.)
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Theorem A.1.1. Let G be a connected affine group scheme of finite type over a global field k
and let H ⊆G be a closed normal subgroup scheme such that (Hk)

0
red is solvable. Let G=G/H

be the connected affine quotient. The natural map of topological spaces

G(k)\G(Ak)1→G(k)\G(Ak)

is proper, where G(Ak)1 is defined as in Definition 4.2.2.

We only use Theorem A.1.1 when G, H, and G are smooth, but G is not necessarily reductive
(e.g., we need to permit the pseudo-reductive case). The proof proceeds by reduction to the case of
semi-simpleG, and to carry out such a reduction step it seems essential to avoid smoothness hypo-
theses on H (when k is a function field). For this reason, we decided to eliminate smoothness
hypotheses on G and G as well since it required no new ideas to do so.

As a first step in the proof of Theorem A.1.1, we wish to reduce to the case when G is a
connected reductive group and H0 is its maximal central torus (so G is smooth and semi-simple).
We initially aim to reduce to a slightly more general situation in which the unipotent radical
of (H0

k
)red descends to a k-split smooth connected unipotent k-subgroup of H. To motivate

our argument, first suppose that k has characteristic 0. In this case the pullback in G of the
radical of G is smooth and may be renamed as H since if a composite map of topological spaces
X → Y → Z is proper and Y → Z is separated then X → Y is proper. By the perfectness of
number fields, we have therefore reduced to the case that G is semi-simple and H contains a
k-split smooth connected unipotent normal k-subgroup U such that H0/U is a torus. To get to
the same situation in non-zero characteristic we need to do some work. Most of §A.2 is devoted
to carrying out this reduction step in non-zero characteristic.

A.2 Reduction to the reductive case
Lemma A.2.1. Let k be a global field and let

1→H ′→H →H ′′→ 1

be a short exact sequence of affine k-group schemes of finite type such that H ′ is smooth and
connected with trivial degree-1 cohomology over k and over each kv. For every place v the
map H(kv)→H ′′(kv) is a topological fibration, and the map H(Ak)→H ′′(Ak) is a topological
fibration. Also,

H(k)\H(Ak)→H ′′(k)\H ′′(Ak)

is a topological fibration whose fibers are all homeomorphic to H ′(k)\H ′(Ak).

Proof. By descent theory, H →H ′′ is a smooth morphism since H ′ is smooth. The cohomological
hypothesis on H ′ ensures that each map H(kv)→H ′′(kv) is surjective. Since smooth maps are
Zariski-locally on the source expressed as étale over an affine space, by the local structure theorem
for étale morphisms [EGA, IV4, 18.4.6(ii)] and the classical theorem on continuity of simple roots
of a varying monic polynomial of fixed degree over kv it follows that the surjective continuous
open map of topological groups H(kv)→H ′′(kv) admits continuous sections locally on H ′′(kv),
with such sections existing through any point of H(kv). In particular, using the topological group
structure on H(kv) shows that this map is a topological fibration.

To prove the analogous result for the adelic points, we first ‘spread out’ the given short exact
sequence of k-groups to a short exact sequence

1→H ′→H →H ′′→ 1
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of affine flat group schemes of finite type over Spec Ok,S for a finite non-empty set S of places of
k containing the archimedean places. (By ‘short exact sequence’ we mean that H →H ′′ is
faithfully flat with functorial kernel H ′.) Increasing S enables us to arrange that H ′ is Ok,S-
smooth with geometrically connected fibers. Thus, by descent theory, the map H →H ′′ is a
smooth morphism and expresses H as an H ′-torsor over H ′′ for the étale topology. It is then
a standard consequence of Lang’s theorem that the map of topological groups H (Ov)→H ′′(Ov)
(for v 6∈ S) is surjective for all v 6∈ S; see the end of Appendix C for a review of that deduction.

For v 6∈ S the surjective map H (Ov)→H ′′(Ov) is induced by the fibration map H(kv)→
H ′′(kv) via restriction to open subgroups, so we can construct local cross-sections for the map
of topological groups H (Ov)→H ′′(Ov) for such v. Hence, this map on Ov-points is a fibration
for all v 6∈ S. However, H ′′(Ov) is compact and has a topological base of compact open sets for
all v 6∈ S, so there exists a global cross-section to H (Ov)→H ′′(Ov). It then follows that the
map of topological groups H(Ak)→H ′′(Ak) is surjective and admits local cross-sections (for
the adelic topology) through any point of H(Ak), and so it is a fibration.

Finally, consider the natural map

π :H(k)\H(Ak)→H ′′(k)\H ′′(Ak).

By the discreteness of H ′′(k) in H ′′(Ak), the map

H ′′(Ak)→H ′′(k)\H ′′(Ak)

has local cross-sections, so we get local cross-sections for π via local cross-sections for H(Ak)→
H ′′(Ak). Since H(k)→H ′′(k) and H(Ak)→H ′′(Ak) are surjective, the right action by H ′(Ak)
on H(k)\H(Ak) is transitive on fibers of π and all fibers are homeomorphic. Thus, all fibers of
π are homeomorphic to π−1(1).

The right action of H ′(Ak) on fibers is continuous, and the stabilizer in H ′(Ak) for the
identity coset in H(k)\H(Ak) is H ′(Ak) ∩H(k) =H ′(k). Since π−1(1) is closed, it follows from
Theorem 4.2.1 that the natural map H ′(k)\H ′(Ak)→ π−1(1) is a homeomorphism. By the
discreteness of H ′(k) in H ′(Ak) and of H(k) in H(Ak), we can use the local cross-sections
and the H ′(Ak)-action to verify that π is a topological fibration, since the topological diagram

H ′(k)\H(Ak) //

��

H ′′(Ak)

��
H(k)\H(Ak) π

// H ′′(k)\H ′′(Ak)

is cartesian. 2

To go further, we need to review Frobenius morphisms. If Y → Z is a map of Fp-schemes (the
case Z = Spec k for a field k will be of most interest to us), then Y (pn) denotes the Z-scheme
Y ×Z,FnZ Z, where FZ : Z→ Z is the absolute Frobenius map (identity on topological spaces,
pth-power map on the structure sheaf); loosely speaking, Y (pn) is the Z-scheme obtained from
Y by raising the coefficients in the defining equations of Y (over Z) to the pnth power.

Definition A.2.2. The n-fold relative Frobenius map FY/Z,n : Y → Y (pn) = Y ×Z,FnZ Z is the
morphism whose components are FnY : Y → Y and the structure map Y → Z.

Loosely speaking, FY/Z,n corresponds to the pnth-power map in local coordinates (over Z).
The formation of both Y (pn) and FY/Z,n commutes with any base change on Z and with fiber
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products over Z, and is functorial in the Z-scheme Y . In particular, if Y is a Z-group scheme
then FY/Z,n is a homomorphism of Z-group schemes.

Lemma A.2.3. Let H →H ′ be a radiciel surjective homomorphism between affine group
schemes of finite type over a global function field k. The natural map H(k)\H(Ak)→
H ′(k)\H ′(Ak) is a closed embedding.

Proof. Let p= char(k)> 0. Using relative Frobenius morphisms in the sense of Definition A.2.2,
if n is sufficiently large then, by [SGA3, VIIA, 8.3], the quotients Hn =H/ker FH/k,n and
H ′n =H ′/ker FH′/k,n are k-smooth. Consider the evident commutative diagram.

H //

��

H ′

��
Hn

// H ′n

The two vertical maps are finite flat quotient maps, and the bottom side is also finite flat since the
source and target are smooth and equidimensional and the map is a surjective homomorphism
with finite fibers. To prove the theorem for the top arrow it obviously suffices to prove it for the
other three sides. Hence, we can assume that H →H ′ is finite flat. In this case H ′ =H/K for a
finite infinitesimal normal closed subgroup scheme K in H. Such a K is killed by its own n-fold
relative Frobenius morphism for some n> 0, so, by the universal property of flat quotients, we
see that the corresponding relative Frobenius morphism H →H(pn) for H factors through the
map H →H ′. In general, if f :X → Y and f ′ : Y → Z are continuous maps between topological
spaces with f ′ separated and f ′ ◦ f a closed embedding, then f is a closed embedding. Thus, it
suffices to treat a relative Frobenius morphism FH/k,n :H →H(pn) (with possibly non-smooth H,
so FH/k,n may not be flat).

Let k′ = k1/pn , a global field of degree pn over k. We have a natural isomorphism of topological
groups H(pn)(Ak)'H(Ak′ ), and this carries H(pn)(k) over to H(k′). The composite map

H(Ak)
FH/k,n−−−−−→H(pn)(Ak)'H(Ak′ )

is induced by functoriality with respect to the inclusion map of k-algebras Ak→Ak′ , and likewise
the map

H(k)
FH/k,n−−−−−→H(pn)(k)'H(k′)

is induced by functoriality with respect to the inclusion map of fields k→ k′. Hence, our
problem is to prove that the natural map H(k)\H(Ak)→H(k′)\H(Ak′ ) is a closed embedding.

Rather more generally, for any finite extension of global function fields k′/k and any affine
finite type k-group H, the natural map

θ :H(k)\H(Ak)→H(k′)\H(Ak′ )

is a closed embedding. To see this, let H ′ = Rk′/k(Hk′ ), so θ is topologically identified with the
map

H(k)\H(Ak)→H ′(k)\H ′(Ak)

induced by the canonical closed immersion H →H ′. By applying Lemma 4.2.5 to the map
H →H ′, the natural map

H(k)\H(Ak)1→H ′(k)\H ′(Ak)1 (A.2.1)
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is a closed embedding. Due to the topological structure of the idelic norm in the case of global
function fields, H(k)\H(Ak) is topologically a disjoint union of copies of H(k)\H(Ak)1. More
precisely, if we let Λ = Hom(Xk(H), qZ) (where q is the size of the finite constant field of k)
then each h ∈H(Ak) induces an element of Λ via χ 7→ ‖χ(h)‖k, so if ΛH ⊆ Λ is the subgroup of
such elements obtained from elements h ∈H(Ak) and if for each λ ∈ ΛH we choose hλ ∈H(Ak)
giving rise to λ in this way then topologically we have

H(k)\H(Ak) =
∐
λ∈ΛH

H(k)\H(Ak)1 · hλ.

An analogous decomposition holds for H ′(k)\H ′(Ak) using Λ′ := Hom(Xk(H ′), qZ) and its
subgroup Λ′H′ defined in a manner similar to ΛH .

The natural map Xk(H ′)Q→Xk(H)Q is surjective because if χ :H →GL1 is a
homomorphism then χ[k′:k] factors as

H // H ′
Rk′/k(χk′ )

// Rk′/k(GL1)
Nk′/k // GL1

due to the functoriality of Weil restriction and the fact that GL1→ Rk′/k(GL1)→GL1 is raising
to the [k′ : k]th power. Thus, ΛH is naturally identified with a subgroup of Λ′H′ . For each λ ∈ ΛH
and associated choice hλ ∈H(Ak) we can use the image of hλ in H ′(Ak) as the corresponding
choice h′λ′ for the image λ′ of λ in Λ′H′ . In this way, the initial map that we want to be a closed
embedding is identified with a disjoint union of copies of the closed embedding (A.2.1), followed
by a further open and closed embedding. 2

Now we can reduce the proof of Theorem A.1.1 to the case when H and G are smooth (so
G=G/H is also smooth), as follows. We may and do assume char(k) = p > 0. The trick for
passing to smooth groups in Lemma 3.1.1 is useful for problems involving rational points and
cohomology, but is not useful for problems involving quotients (since the smoothening process
via Lemma 3.1.1 is poorly behaved with respect to quotients). On the other hand, when working
with quotients there is an alternative smoothening process that is rather convenient and was
already used in the proof of Lemma A.2.3 (but is not so useful for problems involving rational
points or cohomology): pass to the quotient by the kernel of a sufficiently high Frobenius iterate.
More specifically, by [SGA3, VIIA, 8.3], for sufficiently large n the quotient Gn :=G/ker FG/k,n
is k-smooth.

Since ker FG/k,n is an infinitesimal normal k-subgroup scheme in G=G/H, its scheme-
theoretic preimage Hn in G is a closed normal subgroup scheme containing H that has the same
underlying topological space asH. Hence, the quotientHn/H has no non-trivial geometric points,
so it is an infinitesimal group. Moreover, the map H(k)→Hn(k) on k-points is an isomorphism of
abstract groups, and the map of étale component groups π0(H)→ π0(Hn) is an isomorphism
(as it is a radiciel surjection between étale k-groups). The equality H(k) =Hn(k) implies that
((Hn)k)

0
red is solvable. Since Lemma A.2.3 may be applied to the map G→Gn, we may replace

H with Hn to reduce to the case that G is k-smooth.
By applying Lemma A.2.3 to the n-fold relative Frobenius morphisms G→G(pn) and

G→G
(pn) for any n> 0, to prove that G(k)\G(Ak)1→G(k)\G(Ak) is proper it suffices to

check the analogous assertion for the map G(pn)→G
(pn) (with kernel H(pn)) induced via base

change along the pn-power endomorphism of k for some n> 0. Using the isomorphism k1/pn ' k
induced by the pnth-power map, we get an isomorphism of schemes k1/pn ⊗k H 'H(pn) (even an
isomorphism of group schemes over the Frobenius isomorphism k1/pn ' k). Over the perfect
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closure kp of k, the underlying reduced scheme of any finite type group scheme is smooth
and hence is a subgroup scheme. Likewise, a smooth connected affine kp-group has its radical
(over k) defined over kp, by Galois descent. By expressing kp as the direct limit of the extensions
k1/pn of k, we thereby get some n> 0 such that the geometric radical of k1/pn ⊗k G is defined
over k1/pn , so, by passing to G(pn) and H(pn) (and G(pn)) for such n, we can assume that G has its
radical (over k) defined over k. We can replace H with the pullback in G of the radical of G with-
out affecting the solvability of (Hk)

0
red, so in this way we can arrange that G is semi-simple. There

exists n> 0 such that k1/pn ⊗k H has underlying reduced scheme that is a smooth k1/pn-subgroup
scheme, so the underlying reduced scheme of H(pn) is a k-smooth subgroup scheme. Hence, by
passing to G(pn) and H(pn) for such n, we may assume that Hred is a smooth k-subgroup of H.

Since G/Hred→G/H is a radiciel surjective homomorphism, by Lemma A.2.3 we can replace
H by Hred to reduce to the case when H is smooth (so H0 is solvable) but now G=G/H may
not be smooth; however, (Gk)red is smooth and semi-simple. A solvable smooth connected affine
group over the perfect closure kp has a (necessarily kp-split) smooth connected unipotent normal
kp-subgroup modulo which it is a torus. Thus, by repeating the same direct limit and base change
argument as was used above, we may use further Frobenius base change and descent from the
perfect closure to get to the case when H has a k-split smooth connected unipotent normal
k-subgroup U such that H0/U a torus. This is the same property of H that we noted (at the
end of §A.1) is automatically satisfied in the number field case.

To reduce to the case when G is smooth, argue as follows. Choose n> 0 such that Gn :=
G/ ker FG/k,n is k-smooth. (Of course, Gn :=G/ ker FG/k,n is then k-smooth, and even connected
semi-simple in view of our preceding reduction steps.) The surjective homomorphism Gn→Gn
is faithfully flat since the source and target are smooth, so it expresses Gn as the quotient of
Gn modulo a closed normal subgroup scheme whose k-fiber has underlying reduced subgroup
that is a quotient of (Hk)red by an infinitesimal normal subgroup and hence has solvable identity
component. By Lemma A.2.3 applied to G→Gn and G→Gn, it therefore suffices to prove
Theorem A.1.1 when G is smooth and G is smooth and semi-simple.

Going back through the preceding reduction steps concerning H (avoiding any changes to
G beyond extension of the base field, and preserving smoothness and semi-simplicity of G) now
brings us to the case when G and H are both smooth, G is semi-simple, and H contains a k-split
smooth connected unipotent normal k-subgroup U such that H0/U is a torus.

A.3 Arguments with reductive groups
We have now reduced to considering the common setup in all characteristics as at the end of
§A.1 in characteristic 0 and §A.2 in non-zero characteristic. Since H is normal in G, and Uk
must be the unipotent radical of H0

k
, the group U is normal in G because G is smooth. However,

U is a k-split smooth connected unipotent k-group, so it admits a composition series over k with
successive quotients equal to Ga. Thus, Lemma A.2.1 gives that G(k)\G(Ak) is topologically
fibered over (G/U)(k)\(G/U)(Ak) with fibers homeomorphic to U(k)\U(Ak), and U(k)\U(Ak)
is compact, by [Oes84, IV, 1.3]. Hence,

G(k)\G(Ak)→ (G/U)(k)\(G/U)(Ak)

is proper. We may therefore replace G with G/U to reduce to the case when H0 is a torus.
The normality of H in G implies that of H0 in G, and G/H0 is semi-simple since G=G/H is
semi-simple. Since G is connected and the automorphism functor of a torus is represented by an
étale group, H0 is in the center of G.
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The factorization

G→G/H0→G/H

reduces us to separately treating the cases when H is a torus and when H is finite étale, with
G connected and semi-simple. Thus, we now assume that H is a torus (hence maximal central
in G, as G is semi-simple), and in §A.4 we treat the case when H is étale.

Let k′/k be a finite separable extension that splits the central torus H. Consider the
central pushout G→ G̃ of G by the canonical closed immersion H → Rk′/k(Hk′ ) =: Z. We
have G/H = G̃/Z, and the map G→ G̃ is a closed immersion. Lemma 4.2.5 ensures that
G(k)\G(Ak)1→ G̃(k)\G̃(Ak)1 is a closed embedding, so we can replace H →G with Z→ G̃.
That is, we are reduced to the case when H is a power of Rk′/k(GL1) for some finite separable
extension k′/k. Hence, by (the proof of) Lemma A.2.1, the map

G(k)\G(Ak)→G(k)\G(Ak) (A.3.1)

is a fibration whose fibers are orbits for the continuous free right action of H(k)\H(Ak) on
G(k)\G(Ak). In particular, the map (A.3.1) has continuous local cross-sections.

We now separately treat the cases of number fields and function fields, due to the different
structure of the idelic norm and idelic topology in the two cases. The case H = 1 is trivial, so
we can assume H 6= 1.

The following argument was explained to me by G. Prasad in the number field case, and
it will be easily adapted to the function field case. Suppose that k is a number field. We will
show that the local cross-sections to the central fibration G(Ak)→G(Ak) can be chosen to land
inside G(Ak)1. This will provide local cross-sections to the natural map π :G(k)\G(Ak)1→
G(k)\G(Ak), showing that π is a fibration whose fibers are orbits for the continuous free action
of H(k)\H(Ak)1. (We have H(Ak)1 =G(Ak)1 ∩H(Ak) since H is the identity component of
the ‘reduced center’ of the connected reductive k-group G.) This latter quotient is compact since
it is a power of the norm-1 subgroup of k′×\A×k′ , so, by Theorem 4.2.1, the properness of π will
then follow. To build local cross-sections landing in G(Ak)1, it suffices to construct a continuous
map of topological spaces c :G(Ak)→H(Ak) such that c(g)−1g ∈G(Ak)1 for all g.

Let Z ⊆H be the maximal k-split subtorus of the central k-torus H. Clearly Z 6= 1, due
to the description of H in terms of Weil restrictions and the hypothesis H 6= 1. Since H is the
identity component of the reduced center of the connected reductive G, Z is the maximal k-split
central k-torus in G. By the structure of reductive groups, Xk(G) maps isomorphically onto
a finite-index subgroup of Xk(Z). Thus, we can choose a basis χ1, . . . , χr of Xk(Z) such that
χe11 , . . . , χ

er
r is a basis of Xk(G). We use the χj to define a k-isomorphism Z 'GLr1, so upon

choosing an archimedean place v ∈ S we get a closed embedding

t : (R×>0)r ↪→ (k×v )r = Z(kv) ↪→ Z(Ak)⊆H(Ak)

via the canonical inclusion R×>0 ↪→ k×v for the archimedean place v. For any g ∈G(Ak), define

c(g) = t(‖χe11 (g)‖1/e1k , . . . , ‖χerr (g)‖1/erk ).

It is clear that c has the desired property, due to unique divisibility of R×>0 and how the χj were
chosen. This settles the case of number fields.

Next, suppose k is a global function field with constant field of size q, so the idelic norm on
A×k has image Q= qZ in R×>0. Once again, let Z ⊆H be the maximal k-split subtorus and let
{χ1, . . . , χr} be a basis of Xk(Z) such that {χe11 , . . . , χ

er
r } is a basis of the finite-index image
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of Xk(G). The continuous homomorphism

Φ = (‖χe11 ‖k, . . . , ‖χ
er
r ‖k) :G(Ak)→Q⊕r ⊆ (R×>0)⊕r

has image equal to a subgroup Γ⊆Q⊕r (even of finite index, though we do not use this fact),
and the restriction of this map to H(Ak) has image that we denote as Λ⊆ Γ. For the maximal
quotient map π :G� T onto a k-split torus, the restriction of π to the maximal k-split central
torus Z in G is an isogeny since G is connected reductive. Thus, there is a map between these
tori in the other direction such that their composite is multiplication on T by some non-zero
integer. Hence, Γ/Λ is killed by this non-zero integer and so Λ has finite index in Γ.

Since G(k)→G(k) is surjective and G(k)⊆G(Ak)1, for each g ∈G(Ak) all elements g ∈
G(Ak) mapping to G(k) · g in G(k)\G(Ak) give rise to the same left coset H(Ak)G(Ak)1g. Thus,
by local constancy of the idelic norm, we arrive at a natural decomposition of G(k)\G(Ak) into
open and closed subsets Yj labeled by the finitely many elements of Γ/Λ; we enumerate the finite
set Γ/Λ as {γj}. For each j, let gj ∈G(Ak) be an element whose image in Γ/Λ is γj , and take
gj0 = 1 for the unique j0 such that γj0 = 1. Thus, we get a finite disjoint union decomposition

G(k)\G(Ak) =
∐

G(k)\H(Ak)G(Ak)1gj

into the open and closed preimages of the Yj . Define

E =
∐

G(Ak)1gj =
∐

gjG(Ak)1;

this is an open and closed set in G(Ak) that contains G(Ak)1 (since gj0 = 1) and is stable under
left and right translations by the normal subgroup G(Ak)1.

The topological group G(Ak) has a base of compact open sets, so on the open and closed
subgroup

Φ−1(Λ) =H(Ak)G(Ak)1 ⊆G(Ak)

it is trivial to construct a (locally constant) continuous map c : Φ−1(Λ)→H(Ak) such that
c(g)−1g ∈G(Ak)1 for all g ∈ Φ−1(Λ). By using both the continuous map

g 7→ c(gg−1
j )−1g ∈G(Ak)1gj

on each H(Ak)G(Ak)1gj and the local cross-sections to G(Ak)→G(Ak), we see that the
restriction of the H(k)\H(Ak)-equivariant fibration

G(k)\G(Ak)→G(k)\G(Ak)

to theH(k)\H(Ak)1-stable open and closed setG(k)\E admits local cross-sections. The resulting
map

πE :G(k)\E→G(k)\G(Ak)

must therefore be an H(k)\H(Ak)1-equivariant fibration. (The topology is easy to analyze
because E is open and closed in G(Ak) and we are using quotients by discrete subgroups.)

The continuous free action of H(k)\H(Ak)1 on fibers of πE is transitive. Thus, the fibration
πE has all fibers homeomorphic to H(k)\H(Ak)1. Since H(k)\H(Ak)1 is compact (argue as in
the number field case), the map πE is therefore a fibration with compact fibers and thus is proper.
The restriction π of πE to the closed subset G(k)\G(Ak)1 is therefore also proper, as desired.

622

https://doi.org/10.1112/S0010437X11005665 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005665


Finiteness theorems for algebraic groups over function fields

A.4 Cohomological arguments with étale H

In this section we finish the proof of Theorem A.1.1 by treating the case when H is étale. The
intervention of G(Ak)1 can be removed, as we prove the following stronger result.

Proposition A.4.1. Let G be an affine group scheme of finite type over a global field k, and
H a normal étale closed k-subgroup. For G=G/H, the natural map of topological spaces

G(k)\G(Ak)→G(k)\G(Ak)

is proper.

The applications in this paper only need the case of étale multiplicative H (for which there
are simpler arguments). I am grateful to Gabber for showing me how to go beyond the étale
multiplicative case.

Proof. Consider the maximal smooth k-subgroup G′ ⊆G as in Lemma 3.1.1 (so H ⊆G′). By
the construction of G′ and the smoothness of H, the image of G′ in G is the maximal smooth
k-subgroup of G. This maximal smooth k-subgroup also contains all adelic points, so we may
replace G with G′ to arrange that G is smooth. Define C =H ∩G0, so C is a finite étale normal
k-subgroup of the smooth connected G0. Thus, C is central in G0. Clearly G

0 =G0/C. In the
commutative square

G0(k)\G(Ak) //

��

G
0(k)\G(Ak)

��
G(k)\G(Ak) // G(k)\G(Ak)

the vertical maps are finite covering spaces, so properness along the bottom is reduced to
properness along the top. However, G/C→G is a proper map between separated k-schemes
of finite type, so (G/C)(Ak)→G(Ak) is topologically proper and hence

G
0(k)\(G/C)(Ak)→G

0(k)\G(Ak)

is proper. Thus, it suffices to prove that

G0(k)\G(Ak)→ (G/C)0(k)\(G/C)(Ak)

is proper. We can therefore replace H with C to reduce to the case that H ⊂G0 (so H is central
in G0), and in this case it suffices to prove the properness of

G0(k)\G(Ak)→G
0(k)\G(Ak).

Since π :G→G is a proper map between separated k-schemes of finite type, the map
G(Ak)→G(Ak) is topologically proper. Defining

N := im(G0(k)→G
0(k))' ker(H1(k, H)→H1(k, G0)),

the induced map

G0(k)\G(Ak)→N\G(Ak) (A.4.1)

is proper since its topological pullback by the quotient mapping G(Ak)→N\G(Ak) is the
natural map (G0(k) ∩H(k))\G(Ak)→G(Ak) that is proper due to the finiteness of G0(k) ∩
H(k). Since G0 is a central extension of G0 by H, N is a normal subgroup of G0(k) such that
G

0(k)/N commutative (and even a subgroup of H1(k, H)). Any compact subset of G0(k)\G(Ak)
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has the form K :=G
0(k)\G0(k)K for a compact subset K in G(Ak). Its closed preimage in

G0(k)\G(Ak) consists of the G0(k)-cosets of points g ∈G(Ak) such that π(g) ∈G0(k)K.

Consider the subset Y ⊆G0(k) of points y ∈G0(k) such that yK meets π(G(Ak)). Note
that Y is stable under left multiplication by N . To prove that the closed preimage Z of K in
G0(k)\G(Ak) is compact, by the properness of (A.4.1) it is equivalent to prove that Z maps onto
a compact set of N\G(Ak). The image of Z in N\G(Ak) consists of the N -cosets of points in the
non-empty compact overlaps yK ∩ π(G(Ak)) for y ∈ Y . (Note that these compact overlaps are
stable under left multiplication by N .) Provided that there are only finitely many such N -cosets
of points y ∈ Y , we will be done.

A collection of N -cosets in G
0(k) is finite precisely when its image in H1(k, H) is finite, so

the problem is reduced to proving that the connecting map

δ :G(k)→H1(k, H)

carries Y onto a finite set. We claim that finiteness of a subset of H1(k, H) can be detected using
‘strictly local’ methods:

Lemma A.4.2. Let M be a finite discrete Gal(ks/k)-module. For a non-archimedean place v of
k, let ksh

v denote the fraction field of a strict henselization of Ov. The fibers of the localization
homomorphism

H1(k, M)→
∏
v-∞

H1(ksh
v , M)

are finite, as are the fibers of H1(kv, M)→H1(ksh
v , M) for each v -∞.

Proof. Let Σ be a finite set of places of k, containing the archimedean places in the number field
case and non-empty in the function field case, such that M extends to a finite étale commutative
Ok,Σ-group M . By arguing in terms of unramified descent and finite étale torsors, we see that
the kernel of the localization map is contained in H1(Ok,Σ,M ), and this is finite in the number
field case. The local assertion at the end of the lemma is obvious in characteristic 0, as even
H1(kv, M) is finite in such cases.

Consider the global function field case. Let X be the smooth proper and geometrically
connected curve over a finite field κ such that the function field of X is k, and let j : U ↪→X
be the dense open subscheme corresponding to Spec Ok,Σ. Then M corresponds to a locally
constant constructible abelian sheaf F on Uét, and arguing in terms of finite étale torsors
identifies the kernel of the localization map with H1

ét(X, j∗F ). The pushforward G := j∗F is
a constructible abelian sheaf on Xét that is represented by the maximal X-étale open subscheme
of the normalization of X in M . The constructibility of G and the properness of the curve X
ensure that Hm

ét(Xκs , Gκs) is finite for all m> 0. In view of the finiteness properties of Galois
cohomology of a finite field, the Leray spectral sequence

Hn(κ,Hm
ét(Xκs , Gκs))⇒Hn+m

ét (X, G )

implies that H1
ét(X, j∗F ) is finite.

In the local function field case, the finiteness assertion at the end of the lemma amounts to the
finiteness of H1(Ov, G ) for any (necessarily constructible) étale abelian sheaf G on Spec Ov that
is the pushforward of the étale sheaf on Spec kv corresponding to a finite Galois module. Such
a pushforward is represented by a quasi-finite separated étale commutative group scheme whose
‘finite part’ (in the sense of [EGA, IV4, 18.5.11(c)] with S = Spec(Ov)) is an open and closed
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Ov-subgroup filling up the special fiber, so it suffices to separately prove the desired finiteness in
the cases when G is either (i) finite étale or (ii) has vanishing special fiber. In case (ii) the degree-1
cohomology vanishes, as the corresponding torsors admit unique Ov-points (due to unramified
descent of the obvious analogous property over Osh

v ). In case (i), the finiteness of H1(Ov, G ) is
due to the fact that the corresponding torsors split over a finite unramified extension of degree
bounded by rG !, where rG is the fiber-rank of G . 2

By Lemma A.4.2, to prove that Y has finite image in H1(k, H) it suffices to prove its image
in H1(ksh

v , H) is finite for all non-archimedean v and vanishes for all but finitely many such v.
The condition yq = π(g) for some g ∈G(Ak) and q ∈K ⊆G(Ak) implies (by [Ser97, I, § 5.6,
Corollary 1]) that

0 = δv(yvqv) = δv(qv) + q−1
v · δv(yv)

for all non-archimedean places v of k, where we use the natural action of G(kv)/π(G0(kv)) on
H1(kv, H). (Note that H may not be central in G(kv), but it is central in G0(kv).) Thus, if Kv

denotes the compact image of K under the projection G(Ak)→G(kv) then δv(Y ) has vanishing
image in H1(ksh

v , H) if the same holds for δv(Kv), and δv(Y ) has finite image in H1(ksh
v , H) if

the same holds for δv(Kv) (since the natural G(kv)-action on H1(kv, H) is through the discrete
quotient G(kv)/π(G0(kv)) in which the compact K−1

v must have finite image).
It remains to prove that the image of δv(Kv) in H1(ksh

v , H) vanishes for all but finitely many v
and is finite for all v. The image π(G0(kv))⊆G(kv) is an open subgroup, so the compact Kv is
covered by finitely many π(G0(kv))-cosets inside G(kv). Hence, the finiteness of δv(Kv) for all v
is clear. To get the vanishing for all but finitely many such v, we pick a finite non-empty set S
of places of k such that G extends to a smooth affine Ok,S-group GS in which H extends to a
finite étale closed normal subgroup HS . Then GS :=GS/HS is smooth and affine with generic
fiber G, so GS(Osh

v )→GS(Osh
v ) is surjective for all v 6∈ S. By Weil’s description of the topology

on G(Ak), there exists a finite set S′ containing S such that

K ⊆
∏
v∈S′

G(kv)×
∏
v 6∈S′

GS(Ov).

Hence, if v 6∈ S′ then Kv is in the image of G(ksh
v )→G(ksh

v ), so δv(Kv) has vanishing image in
H1(ksh

v , H). 2

A.5 An application to compactness

Let G be a smooth connected affine group over a global field k. It was conjectured by Godement
(at least if char(k) = 0) that G(k)\G(Ak)1 is compact if and only if the following two conditions
both hold.

(a) Every k-split torus T ⊆G satisfies Tk ⊆R(Gk).

(b) Every k-split smooth connected unipotent k-subgroup U ⊆G satisfies Uk ⊆R(Gk).

It was announced without proof by Borel and Tits that conditions (a) and (b) are equivalent
over any field; a proof is given in Proposition A.5.1 below. Obviously conditions (a) and
(b) always hold when G is solvable, and the compactness of G(k)\G(Ak)1 was proved in
general for solvable G by Godement and Oesterlé [Oes84, IV, 1.3]. In the number field
case, Godement’s conjecture was proved independently by Borel and Harish-Chandra [BH62,
Theorem 11.8] (see [Bor63, Theorem 5.8] for a treatment in adelic terms) and by Mostow and
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Tamagawa [MT62, II, § 3, Theorem]. Over global function fields the same assertion for reductive
G is due to Harder (Theorem 5.1.1(ii)).

In [Oes84, IV, 1.4] it is shown that in the function field case the compactness criterion
(a) is necessary in general, but the sufficiency is proved there under restrictive hypotheses on
the field of definition of the geometric radical. The key missing ingredient for avoiding such
hypotheses is the structure theory for pseudo-reductive groups as in § 2.3. Using that structure
theory and Theorem A.1.1, below we prove the sufficiency of criterion (a) in general (i.e., with
no hypotheses on the geometric radical). Our proof uses the global result in Theorem 5.1.1(i)
that is not applicable over number fields, so it does not give a new proof of the sufficiency of
Godement’s criterion (a) in the number field case.

Proposition A.5.1. The conditions (a) and (b) above are equivalent over an arbitrary field k.

Proof. The case of perfect k is easier, but we give a uniform argument over all fields. The first step
is to give a formulation of conditions (a) and (b) directly over k (i.e., without the intervention of
an algebraic closure) by working with certain quotients of G over k. Let G denote the maximal
pseudo-reductive quotient G/Ru,k(G) over k.

Lemma A.5.2. Property (a) for G is equivalent to the condition that every k-split torus in G
is central.

Proof. The sufficiency is clear, and for necessity suppose that Tk ⊆R(Gk) for every k-split
torus T in G. Let T be a k-split torus in G, so, by the smoothness of G�G, we can lift
T to a k-split torus T in G. Property (a) for G implies that T is contained in the k-radical
Rk(G) (i.e., the maximal solvable smooth connected normal k-subgroup of G), so likewise
T ⊆Rk(G). However, Rk(G) is pseudo-reductive since G is pseudo-reductive, so, by solvability,
it is commutative [CGP10, Proposition 1.2.3]. Thus, Rk(G) contains a unique maximal k-torus
and this torus is central in G since G is smooth and connected. In particular, T is central in G,
as desired. 2

Lemma A.5.3. Property (b) for G is equivalent to the condition that G contains no non-trivial
k-split smooth connected unipotent k-subgroup.

Proof. Sufficiency is once again obvious. For necessity, assume that G satisfies (b). Let Rus,k(G)
be the maximal k-split smooth connected unipotent normal k-subgroup of G. This is the
maximal k-split smooth connected normal k-subgroup of Ru,k(G) [CGP10, Corollary B.3.5],
so Ru,k(G)/Rus,k(G) is k-wound in the sense of Definition 7.1.1. Since every k-split smooth
connected unipotent k-subgroup U in G lies in Ru(Gk) by the hypothesis (b), it follows
from [CGP10, Lemma 1.2.1] (applied to the pseudo-reductive G) that U ⊆Ru,k(G) and hence
U ⊆Rus,k(G).

We may now rename G/Rus,k(G) as G to reduce to showing that if G contains no non-trivial
k-split smooth connected unipotent k-subgroup then the same holds for G. This is obvious if
k is perfect (as then Ru,k(G) = Rus,k(G) = 1, forcing G=G), so the real content is the case of
imperfect k. (The subtlety for imperfect k is due to the fact that there exists k-wound smooth
connected unipotent k-groups U admitting a smooth connected normal k-subgroup U ′ such that
U/U ′ = Ga [Oes84, V, 3.5].)

We claim that G cannot contain any non-central k-split torus, or equivalently that every
k-homomorphism λ : GL1→G is central. Our proof will rely on the associated closed k-subgroup
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schemes ZG(λ) and UG(±λ) from [CGP10, Lemma 2.1.5] that are normalized by λ. The
k-group ZG(λ) is the scheme-theoretic centralizer of λ, and the k-groups UG(±λ) are unipotent
and normalized by ZG(λ). By [CGP10, Proposition 2.1.8], these k-subgroups are smooth and
connected, and the multiplication map

UG(−λ)× ZG(λ)× UG(λ)→G

is an open immersion. The k-groups UG(±λ) are k-split [CGP10, Proposition 2.1.10], hence
trivial, so G= ZG(λ). This proves the desired centrality of λ in G.

Next, we need to use some elementary facts from theory of pseudo-parabolic k-subgroups,
developed in [CGP10, § 2.2]. The centrality of all k-homomorphisms λ : GL1→G implies that
the only pseudo-parabolic k-subgroup of G (in the sense of [CGP10, Definition 2.2.1]) is the
entire group G. Hence, by [CGP10, Lemma 2.2.3], the pseudo-reductive G contains no non-
central k-split torus and thus contains no proper pseudo-parabolic k-subgroup. However, [CGP10,
Theorem C.3.8] implies that any k-split smooth connected unipotent k-subgroup U in G is
contained in Rus,k(P ) for some pseudo-parabolic k-subgroup P in G. Since necessarily P =G,
we deduce that U = 1, as desired. 2

Returning to the proof of Proposition A.5.1, by Lemma A.5.2 it follows that property (a)
for G is equivalent to property (a) for G, and Lemma A.5.3 implies the same for property (b).
Thus, we may assume G is pseudo-reductive and have to prove that G contains GL1 as a non-
central k-subgroup if and only if G contains Ga as a k-subgroup. In the proof of Lemma A.5.3
we showed that if there is no Ga as a k-subgroup then there is no non-central GL1 as a k-
subgroup. Conversely, assuming there is a k-subgroup U 'Ga in G, we seek to construct a non-
central GL1 as a k-subgroup of G. By [CGP10, Theorem C.3.8], there exists a pseudo-parabolic
k-subgroup P in G such that U ⊆Rus,k(P ). In particular, P 6=G since G is pseudo-reductive and
U 6= 1. By definition P := PG(λ) = UG(λ)ZG(λ) for some k-homomorphism λ : GL1→G, due to
the pseudo-reductivity of G. Since P 6=G, so ZG(λ) 6=G, it follows that λ is non-central in G. 2

Remark A.5.4. Since torus centralizers in smooth connected affine groups H are connected
and have the expected Lie algebra inside Lie(H), by Proposition A.5.1 and Lemma A.5.2 we
may reformulate Godement’s compactness criterion as the condition that the maximal pseudo-
reductive quotient of G over k has an empty associated relative root system.

Here is the general sufficiency of Godement’s compactness criterion over global function fields.

Theorem A.5.5. Let k be a global function field, and let G be a smooth connected affine
k-group.

(i) If every k-split torus T in G satisfies Tk ⊆R(Gk) then G(k)\G(Ak)1 is compact.

(ii) If an affine k-group schemeH of finite type does not contain GL1 over k thenH(k)\H(Ak)
is compact.

Proof. Part (ii) is deduced from part (i) as follows. First suppose H is smooth and connected. We
simply have to check that H has no nontrivial k-rational characters (as then H(Ak)1 =H(Ak),
so we can conclude by part (i)). If χ :H →GL1 is a non-trivial k-rational character then any
maximal k-torus S in H must be carried onto GL1, forcing S to be k-isotropic and hence
contradicting the assumption that H does not contain GL1. Next, suppose H is smooth but
possibly disconnected. The compactness of the topological quotient group H(Ak)/H0(Ak)
(Corollary 3.2.1) implies that H(Ak) =H0(Ak)K for a compact subset K ⊆H(Ak). Since H0
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does not contain GL1 as a k-subgroup (due to the same for H), H0(k)\H0(Ak) is compact,
by the smooth connected case. Thus, H0(Ak) =H0(k)K ′ for a compact subset K ′ ⊆H0(Ak),
so H(Ak) =H0(k)K ′K. This proves the compactness of H(k)\H(Ak) when H is smooth. In
general, by Lemma 3.1.1, we can replace H with a suitable smooth closed k-subgroup without
changing the topological group H(Ak) or its subgroup H(k). This settles part (ii) in general.

We may and do now restrict our attention to part (i). First we reduce to the pseudo-
reductive case, so let G :=G/Ru,k(G) be the maximal pseudo-reductive quotient of G over k.
Every maximal k-split torus of G is the image of one of G, so the hypothesis on maximal
k-split tori in G is inherited by G. Also, since every k-rational character of G kills Ru,k(G),
we see that the map G(Ak)→G(Ak) carries G(Ak)1 into G(Ak)1. Thus, we get a natural
map G(k)\G(Ak)1→G(k)\G(Ak)1, and, by Theorem A.1.1, this latter map is proper. We may
therefore replace G with G to reduce to the case when G is pseudo-reductive over k. In particular,
the torus hypothesis on G now says that all maximal k-split tori in G are central (so there is
only one such torus).

If G is commutative then the compactness of G(k)\G(Ak)1 is [Oes84, IV, 1.3], so now assume
G is non-commutative. By Theorems 2.3.6(ii) and 2.3.8 (including the triviality of the k-rational
character group of the perfect k-group G1 in Theorem 2.3.6(ii)), G is a generalized standard
pseudo-reductive group. Let (G′, k′/k, T ′, C) be a generalized standard presentation adapted to
a choice of maximal k-torus T in G (Remark 2.3.4), so C is the Cartan k-subgroup ZG(T ) of
G and

G' (Rk′/k(G
′) o C)/ Rk′/k(C

′) (A.5.1)

with C ′ = ZG′ (T ′).

Lemma A.5.6. Let G be a non-commutative generalized standard pseudo-reductive group over
a field k, and let (G′, k′/k) be the canonically associated pair underlying all generalized standard
presentations of G. Godement’s condition (a) is equivalent to the k′-anisotropicity of G′ (i.e.,
each fiber of G′→ Spec k′ is anisotropic).

Proof. If (G′, k′/k, T ′, C) is the generalized standard presentation of G adapted to a maximal
k-torus T in G then, by [CGP10, Proposition 10.2.2(2)], the k-torus T is the unique maximal
one in G that contains the maximal k-torus of the commutative image of Rk′/k(C ′)→ C ↪→G,
and moreover T 7→ T ′ is a bijection between the sets of maximal k-tori in G and maximal k′-tori
in G′.

Now assume that Tk ⊆R(Gk) for every k-split torus T in G. We wish to prove that G′ is
k′-anisotropic. The explicit description of T given in [CGP10, Proposition 10.2.2(2)] in terms of
both T ′ and the maximal central k-torus in G implies that if G′ is not k′-anisotropic then D(G)
is k-isotropic. Since D(G) is perfect [CGP10, Proposition 1.2.6], the identity component of the
underlying reduced scheme U of D(G)k ∩R(Gk) is unipotent. If there exists a nontrivial k-split
torus S in D(G) then Sk ⊆ U by our hypothesis on k-split tori in G, which is absurd since U is
unipotent. This proves that G′ is k′-anisotropic when Godement’s condition (a) holds.

Conversely, assume G′ is k′-anisotropic, so G′/ZG′ is as well and hence Rk′/k(C ′/ZG′ )
is k-anisotropic. Thus, all k-split tori S in the Cartan k-subgroup C are killed by the
map C→ Rk′/k(C ′/ZG′ ) underlying the semi-direct product in (A.5.1) and so all such S are
central in G (due to how the semi-direct product Rk′/k(G′) o C is defined). By [CGP10,
Proposition 10.2.2(3)], the generalized standard presentation of G may be chosen to rest on
(G′, k′/k) and any choice of maximal k-torus of G (see Remark 2.3.4), or equivalently any choice
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of maximal k′-torus T ′ of G′ or choice of Cartan k-subgroup of G. Thus, our conclusion about C
given the k′-anisotropicity of G′ applies to every Cartan k-subgroup of G. That is, the maximal
k-split torus of each Cartan k-subgroup of G is central in G, so all k-split tori in G are central. 2

By Lemma A.5.6, our problem is to prove that G(k)\G(Ak)1 is compact when G′ is
k′-anisotropic. The pseudo-reductivity has served its purpose and will no longer be needed.
What we will continue to use is the ‘generalized standard presentation’ of G, so in other words
the pseudo-reductivity of C will no longer be relevant.

We next reduce to the case when C is k-anisotropic (possibly losing the pseudo-reductive
property in the process). The k′-anisotropicity hypothesis on G′ implies that the unique maximal
k-split torus T0 in C has trivial image in Rk′/k(C ′/ZG′ ) and hence is central in G, so it makes
sense to consider the exact sequence

1→ T0→G→G/T0→ 1.

The image C0 := C/T0 ⊆G/T0 of the commutative Cartan k-subgroup C ⊆G is the Cartan
subgroup ZG/T0

(T /T0). In particular, C0 is k-anisotropic; beware that C0 may not be pseudo-
reductive. It is obvious that G/T0 has a ‘generalized standard presentation’ essentially the same
as that of G except that we replace C with C0 (so G/T0 is pseudo-reductive if and only if C0

is pseudo-reductive), and since G/T0 contains a k-anisotropic maximal k-torus it has no non-
trivial k-rational characters. Thus, (G/T0)(Ak)1 = (G/T0)(Ak). By Theorem A.1.1, the natural
map G(k)\G(Ak)1→ (G/T0)(k)\(G/T0)(Ak) is proper. Hence, we may replace G with G/T0 to
reduce to the case when C is k-anisotropic at the expense of possibly losing pseudo-reductivity
but retaining the ‘generalized standard’ form. In this case we aim to prove that G(k)\G(Ak) is
compact.

Now we apply the technique from § 5.2, namely the exact sequences (5.2.2) and (5.2.3),
whose notation we freely use. As we have noted already, since G contains a k-anisotropic
maximal k-torus, the k-rational character group Xk(G) is trivial. It is important to check that
the restriction map Xk(E )→Xk(Z ) is an isomorphism. By definition, E = (H ×Z )/Z with
H := Rk′/k(G′) o C, so Xk(H) = 1 since C is k-anisotropic and Rk′/k(G′) is perfect (as each fiber
of G′→ Spec k′ is absolutely pseudo-simple and either simply connected semi-simple or basic
exotic, so its Weil restriction to k is perfect, by [CGP10, Proposition 8.1.2, Corollary A.7.11]).
Thus, any k-rational character of E must arise from one of Z that is trivial on Z. However,
Z := Rk′/k(C ′) is k-anisotropic since C ′ is k′-anisotropic, so all k-rational characters of Z are
trivial on Z. Hence, indeed Xk(E ) = Xk(Z ). It follows that E (Ak)1/Z (Ak)1 = E (Ak)/Z (Ak),
so the exactness of the sequence on Ak-points induced by (5.2.3) (due to the cohomological
triviality of Z ) implies that the sequence of abstract groups

1→Z (Ak)1→ E (Ak)1→G(Ak)→ 1

is exact. Since the induced sequence on k-points is also exact, the natural map E (k)\E (Ak)1→
G(k)\G(Ak) is surjective. It now suffices to prove the compactness of E (k)\E (Ak)1, and for this
we shall use the exact sequence (5.2.2) whose leftmost term has trivial local and global degree-1
Galois cohomology (Theorem 5.1.1).

Let C denote the rightmost term in (5.2.2), so it is a smooth connected commutative affine
k-group. The pullback mapping Xk(C )→Xk(E ) is an isomorphism since Rk′/k(G′) has no non-
trivial k-rational characters. Thus, the topological exactness of the sequence induced by (5.2.2)
on Ak-points and the discreteness of the idelic norm on A×k imply the topological exactness of
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the sequence
1→ Rk′/k(G

′)(Ak)→ E (Ak)1→ C (Ak)1→ 1.
We also have an induced exact sequence on k-points. By Lemma A.2.1 and the discreteness of
the idelic norm in the function field case, the continuous map Π : E (k)\E (Ak)1→ C (k)\C (Ak)1

is a fibration with all fibers topologically isomorphic to the space Rk′/k(G′)(k)\ Rk′/k(G′)(Ak) =∏
G′i(k

′
i)\G′i(Ak′

i
) (where {k′i} is the set of factor fields of k′ and G′i is the k′i-fiber of G′). This

fiber space is compact, by Theorem 5.1.1(ii) (since each G′i is k′i-anisotropic), so the fibration Π
is proper. Thus, the compactness of C (k)\C (Ak)1 (which follows from the settled commutative
case) implies the desired compactness of E (k)\E (Ak)1. 2

We end this section with a local analogue of Godement’s global compactness criterion.

Proposition A.5.7. Let G be a smooth connected affine group over a local field k. Then G(k)
is compact if and only if G contains neither GL1 nor Ga as k-subgroups.

In the reductive case this is a well-known result (with an elementary proof in [Pra82]). Our
proof in general will ultimately reduce to this case over finite extensions via the structure theory
of pseudo-reductive groups.

Proof. The ‘only if’ direction is obvious. For the converse, first note that Rus,k(G) = 1, so
U := Ru,k(G) is k-wound. (Obviously U = 1 if char(k) = 0.) Hence, U(k) is compact [Oes84,
VI, § 1]. Since G(k)/U(k) is naturally identified with an open subgroup of (G/U)(k), it suffices
to prove that (G/U)(k) is compact. Since G trivially satisfies Godement’s condition (b), by
Lemma A.5.3 it follows that G/U does not contain Ga as a k-subgroup. By Proposition 3.1.3
(or an elementary direct argument), the quotient G/U does not contain GL1 as a k-subgroup
since the same holds for G. Thus, G/U satisfies the initial hypotheses too, so we may and do
now assume that G is pseudo-reductive over k.

First consider the commutative case, so there is a short exact sequence

1→ T →G→ U → 1

with a k-anisotropic torus T and unipotent U . Since T (k) is compact and G(k)/T (k) is an open
subgroup of U(k), it suffices to prove that U(k) is compact. However, G does not contain Ga as
a k-subgroup, so the same holds for U =G/T due to Lemma 4.1.4. Hence, U is k-wound (U = 1
if char(k) = 0), so U(k) is compact.

Now we may assume that G is non-commutative. The argument at the end of the proof
of Proposition A.5.1 shows that in the pseudo-reductive case, the properties that GL1 and Ga

do not arise as k-subgroups are equivalent. Thus, we may now focus just on the property that
GL1 is not a k-subgroup of G. By Theorems 2.3.6(ii) and 2.3.8, we may assume that G is a
generalized standard pseudo-reductive group. (This reduction step uses Lemma 4.1.3.) Choose
a maximal k-torus T in G, so for C := ZG(T ) there is an associated isomorphism (A.5.1).
The settled commutative pseudo-reductive case implies that C(k) is compact. By [CGP10,
Proposition 10.2.2(2)], the k-anisotropicity of all maximal k-tori in G implies the same for all
maximal k′-tori in G′. Hence, if {k′i} is the set of factor fields of k′ and G′i is the k′i-fiber of G′ then
the group Rk′/k(G′)(k) =G′(k′) =

∏
G′i(k

′
i) is compact, by the known semi-simple case and its

analogue in the basic exotic case (which reduces to the semi-simple case, by Theorem 2.3.8(ii)).
The quotient on the right side of (A.5.1) is central, so the compact (Rk′/k(G′) o C)(k)

has image in G(k) that is an open normal subgroup. It suffices to check that this subgroup has
finite index. Such finiteness follows from that of H1(k, Rk′/k(C ′)) (see Lemma 4.1.6, as well as
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Proposition 4.1.7(i) and its trivial archimedean analogue; we implicitly use the identification of
the cohomology of C ′ with that of a related k′-torus in the presence of basic exotic fibers for
G′→ Spec(k′) in characteristics 2 and 3, as explained in the proof of Proposition 4.1.9). 2

Appendix B. Twisting in flat cohomology via torsors

Consider a group scheme G of finite type over a field k. It is necessarily quasi-projective
(see [CGP10, Proposition A.3.5]). The pointed set H1(k, G) of isomorphism classes of
right G-torsors over k for the fppf topology is a functor via pushout P  P ×G G′ along
k-homomorphisms G→G′ between k-group schemes of finite type. We now develop some theory
for this functor, since most literature on it is written in tremendous generality (over ringed topoi,
etc.) and omits a detailed discussion of the definitions and basic properties that we need.

The following discussion is a variant on [Ser97, I, §§ 5.3–5.7], bypassing smoothness hypotheses
on G. The case of smooth groups is sufficient for our needs except in two places: the reduction of
Theorem 1.3.3 to the case of smoothG in § 6.1 (see Remark 1.3.4); and the proof of Theorem 7.1.3.
What we do below is consistent with the cocycle constructions in [Ser97, I, §§ 5.3–5.7], but we
do not need this consistency and so we will not address it here aside from some remarks. Two
approaches can be used in the absence of smoothness: Isom-functors (cf. [GM, § 2]) and concrete
quotient constructions. We consider both points of view.

B.1 Inner forms of groups
Let Y be a right G-torsor over k. We shall use Y to define a k-form YG of G, called the twist of
G by Y . Let YG denote the fppf sheaf quotient of Y × Y modulo the diagonal right action by G
((y1, y2) · g = (y1 · g, y2 · g)). By descent from the case of split torsors over a finite extension of
k, and the effectivity of descent through such finite extensions for quasi-projective schemes, this
quotient is represented by a quasi-projective k-scheme.

Next, we endow YG with a k-group structure. For any points y1 and y2 of Y valued in a
k-algebra R we write [y1, y2] to denote the image of (y1, y2) in (YG)(R). In many situations
R will arise as a faithfully flat extension of a k-subalgebra R0 and [y1, y2] descends to R0;
we leave it to the interested reader to keep track of such descent issues when used implicitly
below. As but one example, the diagonal points (y, y) ∈ (Y × Y )(R) for all R (when Y (R) is
non-empty) descend to a common point e ∈ (YG)(k) that we shall denote as [y, y] even though
Y (k) is typically empty. Likewise, there is a unique well-defined associative composition law on
the k-scheme YG determined by the requirement

[y, y · g1] · [y, y · g2] = [y, y · (g1g2)].

It is clear that the distinguished point e is a two-sided identity for this composition law and that
the flip involution on Y × Y induces an inverse on YG over k.

In this way YG is endowed with a structure of quasi-projective k-group scheme. Conceptually,
YG represents the automorphism functor AutG(Y ) of the right G-torsor Y by assigning to any
pair (y1, y2) ∈ Y (R)× Y (R) the unique GR-automorphism of YR carrying y1 to y2. The formation
of YG commutes with arbitrary scalar extension on k, and if Y is a trivial right G-torsor then any
choice of y0 ∈ Y (k) defines an isomorphism of k-groups G' YG via g 7→ [y0, y0 · g]. (Equivalently,
this is the isomorphism G'AutG(Y ) carrying g to the automorphism y0 · g′ 7→ y0 · gg′.) Thus,
the k-groups YG and G become isomorphic over any extension K/k such that Y (K) is non-
empty, as is also clear via the isomorphism YG'AutG(Y ). We can always take K/k to be finite,
and even finite separable if G is k-smooth (as then Y is k-smooth).
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Remark B.1.1. The traditional language of Galois cohomology with smooth G as in [Ser97,
I, § 5] uses the set Z1(ks/k, G) of continuous functions g : σ 7→ gσ on Gal(ks/k) valued in the
discrete set G(ks) and satisfying the 1-cocycle relation gστ = σ(gτ ) · gσ. Continuous functions
Gal(ks/k)→G(ks) are induced by functions Gal(k′/k)→G(k′) for sufficiently large finite Galois
extensions k′/k inside ks, and so can be viewed as elements of

∏
σ∈Gal(k′/k) G(k′) =G(

∏
σ k
′).

By using the k-algebra isomorphism α : k′ ⊗k k′ '
∏
σ k
′ defined by a′ ⊗ b′ 7→ (a′σ(b′))σ and the

k-algebra isomorphism α ◦ (α⊗ 1) : k′⊗3 '
∏
σ,τ k

′ defined by a′ ⊗ b′ ⊗ c′ 7→ (a′σ(b′)τ(c′)), we
can identify these functions with elements of G(k′ ⊗k k′). Passing to the direct limit over k′,
we identify Z1(ks/k, G) with the set of elements γ ∈G(ks ⊗k ks) such that p∗13(γ) = p∗23(γ) · p∗12(γ)
in G(ks ⊗k ks ⊗k ks). (Look at the (σ, στ)-factor field of k′⊗3.) This latter point of view,
working with group functors on k-algebras and their values on the k-algebras K, K ⊗k K, and
K ⊗k K ⊗k K, likewise defines non-abelian degree-1 Čech theory for group functors relative to
any field extension K/k.

For any k-group scheme G of finite type, we can translate the construction of YG into
the language of non-abelian Čech theory relative to any field extension K/k that splits the
G-torsor Y (and may be taken to be of finite degree), as follows. For any y0 ∈ Y (K)
the points p∗1(y0), p∗2(y0) ∈ Y (K ⊗k K) satisfy p∗1(y0) = p∗2(y0) · γ0 for a unique γ0 ∈G(K ⊗k K).
By applying pullback along the three canonical k-algebra maps K ⊗k K→K ⊗k K ⊗k K, we
see that γ0 is a 1-cocycle in the sense that p∗13(γ0) = p∗23(γ0) · p∗12(γ0) in G(K ⊗k K ⊗k K). The
set H1(K/k,Aut(G)) of k-isomorphism classes of k-groups that become isomorphic to G over
K is described as follows in terms of non-abelian degree-1 Čech theory: it is the quotient of the
set Z1(K/k,Aut(G))⊆AutK⊗kK(GK⊗kK) of 1-cocycles of the functor Aut(G) relative to K/k
modulo the equivalence relation ϕ∼ ϕ′ defined by the property ϕ′ = p∗2(ψ) ◦ ϕ ◦ p∗1(ψ)−1 for some
ψ ∈AutK(GK). The natural map of group functors G→Aut(G) carrying g to the conjugation
operation cg : x 7→ gxg−1 induces a map of pointed sets H1(K/k, G)→H1(K/k,Aut(G)) whose
image is (by definition) the set of inner forms of G split by K/k.

The k-group YG is an inner form of G because for any y0 ∈ Y (K) with associated γ0 ∈
G(K ⊗k K) as above we have [p∗1(y0), p∗1(y0) · g] = [p∗2(y0), p∗2(y0) · (γ0gγ

−1
0 )] in (YG)(R) for any

K ⊗k K-algebra R and any g ∈G(R) (so the cohomology class of γ0 in H1(K/k, G) maps to the
class of YG in H1(K/k,Aut(G))). If we replace y0 with some y1 ∈ Y (K) then y1 = y0 · g for a
unique g ∈G(K), so the associated 1-cocycle in Z1(K/k, G)⊆G(K ⊗k K) is p∗2(g) · γ0 · p∗1(g)−1;
this is visibly cohomologous to γ0.

B.2 Twisting of torsors

We can make Y into a right YG-torsor over k by the requirement y1 · [y2, y1] = y2. It is easy to
check that this is indeed a well-defined right torsor structure over k, and it is denoted Y ′. In terms
of the isomorphism AutG(Y )' YG, this makes AutG(Y ) act on Y on the right through inversion
in this group functor (with its usual left action on Y ). We can repeat this construction to make
an inner form Y ′ (YG) of YG. There is a unique k-group isomorphism ιG :G' Y ′ (YG) that sends
any g ∈G(R) (for a k-algebra R) to the common class [y, y · g−1] for all points y of YR; the use
of g−1 rather than g is needed to make ιG a homomorphism of group schemes. An equivalent
formulation is that G is naturally the functor of automorphisms of the underlying k-scheme Y
that commute with the action of AutG(Y ) on Y ; this is a ‘double centralizer’ property for torsors.

The twisting operation G YG'AutG(Y ) on the k-group G by the fixed right G-torsor
Y can be generalized to convert right G-torsors into right YG-torsors as follows. If X is

632

https://doi.org/10.1112/S0010437X11005665 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005665


Finiteness theorems for algebraic groups over function fields

any right G-torsor then define YX to be the quotient of Y ×X modulo the diagonal right
G-action (y, x) · g = (y · g, x · g). As for YG in §B.1, this is easily checked to be represented
by a quasi-projective k-scheme, and if X =G is the trivial right G-torsor then this recovers
YG as defined above. There is no evident G-action on YX in general, and YX is really a
torsor for another k-group, namely YG. To describe this conceptually, we first note that, by
assigning to (y, x) ∈ Y (R)×X(R) the unique GR-torsor isomorphism YR 'XR carrying y to x,
we realize YX as representing the Isom-functor IsomG(Y, X) of G-torsor isomorphisms from Y
to X. On IsomG(Y, X) there is an evident structure of right torsor over AutG(Y )' YG. More
concretely, there is a unique well-defined right action of YG on YX over k determined by the
rule [y, x] · [y, y · g] = [y, x · g], and this makes YX into a right YG-torsor over k. It is clear that
the k-isomorphism class of the right YG-torsor YX only depends on the k-isomorphism class
of the right G-torsor X, so at the level of sets of isomorphism classes over k we get a well-defined
map of sets tY,k : H1(k, G)→H1(k, YG) carrying [X] to [YX].

We claim that the map tY,k is bijective. This can be seen by arguing in terms of Isom and Aut
functors as just described, but let us give another argument by providing a construction in the
opposite direction and verifying in terms of the quotient constructions of YG and YX that it is
an inverse. Since Y has been endowed with a structure of right YG-torsor (which we denoted Y ′),
for any right YG-torsor Z we get the right Y ′ (YG)-torsor Y ′Z and via the canonical isomorphism
ιG :G' Y ′ (YG) this is a right G-torsor. The reader can check that the map X → Y ′ (YX)
defined by carrying each x ∈X(R) (for a k-algebra R) to the common equivalence class of pairs
(y, [y, x]) for points y of YR is a torsor isomorphism over k that is equivariant with respect to ιG.
Thus, tY,k : H1(k, G)→H1(k, YG) defined by [X] 7→ [YX] has a left inverse provided by the map
H1(k, YG)→H1(k, Y ′ (YG))'H1(k, G) defined by [Z] 7→ [Y ′Z]. If Z is a right YG-torsor over k
and the right Y ′ (YG)-torsor Y ′Z is viewed as a right G-torsor via ιG then the twist Y (Y ′Z) by
the right G-torsor Y is a right YG-torsor over k that is naturally isomorphic to Z. (Concretely,
Y (Y ′Z) is the quotient of Y × (Y ′Z) modulo the equivalence relation (y1, [y1, z])∼ (y2, [y2, z]) for
all y1, y2 ∈ Y and z ∈ Z, and the resulting k-scheme isomorphism Z ' Y (Y ′Z) carrying each z
to the common equivalence class of (y, [y, z]) for all y ∈ Y is equivariant with respect to the
k-group isomorphism Y (ιG) : YG' Y (Y ′ (YG)).) We have therefore constructed an inverse to
the twisting map in cohomology.

B.3 Exact sequences via torsors and gerbes

Let 1→G′
j−−→G

π−−→G′′→ 1 be a short exact sequence of finite type k-group schemes. There
is a naturally associated 6-term complex of pointed sets

1→G′(k)→G(k)→G′′(k) δ0−−→H1(k, G′)→H1(k, G)→H1(k, G′′) (B.3.1)

in which δ0(g′′) is the fiber π−1(g′′) viewed as a right G′-torsor. (In the language of torsors, the
composite map G′′(k)→H1(k, G) carries g′′ ∈G′′(k) to the pushout of π−1(g′′) along j :G′ ↪→G,
and that pushout is a trivial G-torsor since the canonical inclusion π−1(g′′) ↪→G is equivariant
with respect to the right actions of G′ on the source and G on the target. Thus, (B.3.1) is indeed
a complex.) In case G′, G, and G′′ are all smooth, this complex coincides with the habitual one
in Galois cohomology as in [Ser97, I, § 5.7].

Our main goal in this section is to discuss the 7-term exact sequence of pointed sets obtained
when G′ is central in G, especially the interaction of the connecting map δ1 : H1(k, G′′) =
H1(k/k, G′′)→H2(k, G′) with the twisting methods in §§B.1–B.2. The subtlety is that if G′

is not smooth then Čech methods do not apply (because G(k ⊗k k)→G′′(k ⊗k k) is generally
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not surjective when G′ is not smooth). The definition of δ1 therefore requires going beyond Čech
methods, relying on gerbes (which we review below).

Remark B.3.1. The only place we use δ1 with non-smooth central G′ and non-commutative G
or G′′ is in the proof of Proposition 7.1.3, which in turn is not used anywhere in this paper.
Thus, the reader who is familiar with the Galois cohomological approach to δ1 in the smooth
case (especially the twisting aspect in [Ser97, I, § 5.7, Proposition 44]) and does not care about
Proposition 7.1.3 may ignore the rest of this section.

Proposition B.3.2. The complex of pointed sets (B.3.1) is exact.

Proof. Only at two steps is this not a tautology: at H1(k, G′) and H1(k, G). First consider a
right G′-torsor Y ′, so there exists y′ ∈ Y ′(K) for some finite-degree extension field K/k inside
k. Then p∗1(y′) = p∗2(y′) · g′ for g′ ∈ Z1(K/k, G′)⊆G′(K ⊗k K) that represents the class of Y ′ in
H1(K/k, G′). If H1(k, G′)→H1(k, G) kills the class of Y ′ then, by replacing K with a suitable
finite extension, there exists g ∈G(K) such that p∗2(g) = p∗1(g)j(g′), so applying π yields the
equality p∗2(π(g)) = p∗1(π(g)). Hence, by faithfully flat descent, the element π(g) ∈G′′(K) comes
from some g′′ ∈G′′(k). The right G′-torsor π−1(g′′) over k splits over K, by using the base point
g, so δ0(g′′) is represented by the unique g′1 ∈G′(K) such that p∗2(g) = p∗1(g)j(g′1). Clearly g′1 = g′

by uniqueness, so δ0(g′′) is the class of Y ′.
Next consider a right G-torsor Y over k that is split by pushout along π :G→G′. We want

to show that Y is the pushout of a G′-torsor along j. Let K/k be a finite extension such that
YK is split, so for a choice of y0 ∈ Y (K) we have p∗2(y0) = p∗1(y0)g for some g ∈ Z1(K/k, G)⊆
G(K ⊗k K). By hypothesis, π(g) = p∗1(g′′)−1p∗2(g′′) for some g′′ ∈G′′(K). Increasing K by a finite
amount, we have g′′ = π(g1) for some g1 ∈G(K). Replacing y0 with y0 · g1 (as we may) then brings
us to the case that π(g) = 1, so g = j(g′) for some g′ ∈G′(K ⊗k K). Since j is an inclusion, g′

inherits the 1-cocycle condition from g and so defines a right G′-torsor Y ′ whose pushout along
j is Y . 2

In the special case that G′ is central in G (i.e., G′-conjugation on G is trivial), there is a
derived functor cohomology group H2(k, G′); the natural map Ȟ2(k, G′)→H2(k, G′) is injective,
due to the limiting form of the Čech-to-derived functor cohomology spectral sequence. The
centrality of G′ in G ensures that if G′ is smooth then the habitual Čech-theoretic definition
of the connecting map of pointed sets δ : H1(k, G′′)→ Ȟ2(k, G′) makes sense (i.e., G(k ⊗k k)→
G′′(k ⊗k k) is surjective when G′ is smooth). Unfortunately, there is no such connecting map to
Čech cohomology when G′ is not smooth, so we need another method to allow for such G′: the
interpretation of commutative H2 (not just Ȟ2) in terms of gerbes.

We now review what a gerbe is. Let S be a scheme (such as Spec k) and A an abelian sheaf
for the fppf topology on the category of locally finitely presented S-schemes (e.g., the
sheaf represented by an fppf S-group scheme). An A-gerbe on S is a stack fibered in groupoids
X → S for the fppf topology on the category of locally finitely presented S-schemes such that
X (T ) is non-empty for some covering T → S and for any S′→ S and ξ ∈X (S′) the following
two conditions hold: (i) the automorphism group of ξ is identified with A(S′) functorially in
ξ and S′; and (ii) for any η ∈X (S′), ξ and η are isomorphic locally on S′. For example, the
fibered category TorA/S of A-torsors (in sheaves of sets) is an A-gerbe (the trivial A-gerbe), and
it is characterized (up to isomorphism) by the condition that X (S) 6= ∅: for any ξ ∈X (S), the
functor X → TorA/S defined on S′-fibers by η 7→ Isom(ξS′ , η) is an isomorphism (with inverse
defined by the effective descent condition in X ). Thus, loosely speaking, an A-gerbe over S is
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a kind of twisted descent of TorAS′/S′ relative to a covering map S′→ S for the fppf topology.
In particular, it is easy to define a pullback functor on A-gerbes relative to any map of schemes
T → S. (If A is an fppf S-group scheme then A-gerbes are Artin stacks and so can be studied
geometrically, but we do not use this deep fact since we need to allow general abelian group
sheaves A.)

The pointed set H2
g(S, A) of isomorphism classes of A-gerbes over S makes sense and is

functorial in S via pullback. By the universal δ-functor arguments with general abelian group
sheaves in [Mil80, § 2.5, ch. IV] (and references therein), the pointed set H2

g(S, A) has a natural
functoriality in A and as such is identified with the abelian group H2(S, A). Moreover, for any
short exact sequence 0→A′→A→A′′→ 0 in fppf abelian group sheaves over S, the connecting
map

δ : Ȟ1(S, A′′) = H1(S, A′′)→H2(S, A′) = H2
g(S, A′) (B.3.2)

is explicitly described as follows: it associates to the isomorphism class of any A′′-torsor P ′′ the
isomorphism class of the A-gerbe δ(P ′′) whose fiber over any locally finitely presented S-scheme
T is the groupoid of pairs (P, α) where P is an A-torsor over T and α : P ×A A′′ ' P ′′T is an
isomorphism of A′′-torsors over T (and an isomorphism (P1, α1)' (P2, α2) is defined to be
an isomorphism of A-torsors P1 ' P2 over T carrying α1 to α2). Note that δ(P ′′) is an A′-gerbe
because A→A′′ is surjective with central kernel A′.

The explicit description of (B.3.2) makes sense when A and A′′ are not commutative, provided
that A′ is central in A (and we use right torsors, for specificity). This motivates the following
useful result.

Proposition B.3.3. Let 1→ Z→G→G′′→ 1 be a short exact sequence of finite type group
schemes over a field k, with Z central in G. Define the connecting map of pointed sets
δ1 : H1(k, G′′)→H2(k, Z) by the procedure with gerbes as in the description of (B.3.2).

(i) The formation of δ1 is functorial in k and the diagram H1(k, G)→H1(k, G′′) δ1−−→
H2(k, Z) is an exact sequence of pointed sets.

(ii) Let Y ′′ be a right G′′-torsor. The connecting map H1(k, Y ′′G′′)→H2(k, Z) associated
to the Y ′′-twisted central extension 1→ Z→ Y ′′G→ Y ′′G′′→ 1 is carried to δ1 via composition
with the natural bijection of sets tY ′′,k : H1(k, G′′)'H1(k, Y ′′G′′).

In part (ii), Y ′′G denotes the k-form of G defined via H1(k, G′′)→H1(k/k,Aut(G)) using the
‘conjugation’ action of G′′ on its central extension G; it is generally not an inner form of G.

Proof. The exactness in part (i) is a tautology via the definition of δ1 and the meaning of
the triviality of a gerbe. The explicit description of the Y ′′-twisting operation in §B.2 via
Y ′′X ′′ = IsomG′′ (Y ′′, X ′′) and Y ′′G′′ = AutG′′ (Y ′′) makes it easy to verify part (ii) by hand. 2

Appendix C. Proof of Proposition 3.2.1 for smooth groups

In § 3.2 we reduced the proof of the general case of Proposition 3.2.1 to the smooth case via
Lemma 3.1.1. In this section we give a ‘modern’ proof of the result in the smooth case (bypassing
the crutch of GLn), so now use notation as in Proposition 3.2.1 and assume G is smooth. Pick a
finite non-empty set S of places of k (containing the archimedean places) for which there exists
a map of Ok,S-groups G0

S →GS as considered above the statement of Proposition 3.2.1. Since G
is k-smooth, we may and do arrange (by enlarging S if necessary) that GS is smooth over Ok,S .
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For S′ containing S, let Ak,S′ = (
∏
v∈S′ kv)×

∏
v 6∈S′ Ov as a topological product ring (open in

Ak) and let GS′ =GS ⊗Ok,S Ok,S′ and G0
S′ =G0

S ⊗Ok,S Ok,S′ .
Clearly G0

S′ (Ak,S′ ) is a closed subgroup of GS′ (Ak,S′ ): this is the inclusion∏
v∈S′

G0(kv)×
∏
v 6∈S′

G0
S(Ov)→

∏
v∈S′

G(kv)×
∏
v 6∈S′

GS(Ov).

The inclusions in each factor are open and closed embeddings. Clearly G(kv)/G0(kv) injects into
(G/G0)(kv), which is a finite set (since G/G0 is finite étale over k). Likewise, for v 6∈ S we see that
GS(Ov)/G0

S(Ov) injects into the finite set G(kv)/G0(kv) (since G0
S(Ov) =G0(kv) ∩GS(Ov) inside

G(kv), due to G0
S being closed in GS). Thus, GS(Ak,S)/G0

S(Ak,S) is topologically a product of
finite discrete groups, so it is profinite.

For finite S′ containing S, since Ak,S′ = Ok,S′ ⊗Ok,S Ak,S and G0
S is closed in GS we see that

G0
S(Ak,S) =GS(Ak,S) ∩G0

S′ (Ak,S′ )

inside GS′ (Ak,S′ ) =GS(Ak,S′ ). Thus, the continuous map of profinite groups

fS′,S :GS(Ak,S)/G0
S(Ak,S)→GS′ (Ak,S′ )/G0

S′ (Ak,S′ )

is injective and hence is a closed embedding. However, GS(Ak,S) is open in GS′ (Ak,S′ ), so the
closed embedding fS′,S between profinite groups is also an open embedding, whence it has finite
index. The same holds with (S, S′) replaced by (Σ, Σ′) for any finite sets Σ and Σ′ of places of
k containing S with Σ⊆ Σ′.

Since G(Ak) is the directed union of open subgroups GS′ (Ak,S′ ), and similarly for G0 with
the groups G0

S′ , G(Ak)/G0(Ak) is the directed union of open subgroups GS′ (Ak,S′ )/G0
S′ (Ak,S′ )

with their profinite quotient topologies. Thus, our problem is exactly to prove that this directed
chain stops. It is equivalent to show that for all sufficiently large S′, GS′ (Ak,S′ )G0(kv) contains

G(kv) for every v 6∈ S′. That is, GS(Ov)G0(kv)
?=G(kv) for all but finitely many v (outside S).

Here is the key point: if we consider the short exact sequence

1→G0 j−−→G
π−−→G/G0→ 1

of k-group schemes, the map π is smooth, separated, and faithfully flat (i.e., surjective), with
G/G0 a finite (étale) k-group scheme, so, by standard ‘spreading out’ arguments, we can enlarge
S such that there is a finite (étale) Ok,S-group scheme ES with generic fiber G/G0 and a
smooth, separated, surjective Ok,S-group scheme map πS :GS → ES of finite type that recovers
π over k. The kernel HS := ker(πS) is a smooth separated finite type Ok,S-group scheme, and its
generic fiber is identified with G0. Thus, by increasing S, we may find an isomorphism HS 'G0

S

compatible with the closed immersions into GS . By increasing S, we can therefore ‘spread out’
the maps j and π to maps in an exact sequence

1→G0
S

jS−−→GS
πS−−−→ ES → 1

of finite type separated Ok,S-group schemes. (That is, jS is a closed immersion that identifies
G0
S with the kernel of the faithfully flat πS .)

Now it suffices to prove the following well-known claim. Suppose R is a complete (or just
henselian) discrete valuation ring with fraction field K and finite residue field κ, and G is
a separated smooth finite type group scheme over R. Suppose there is a smooth surjection
G→ E onto a finite R-group scheme E such that the (necessarily smooth) kernel G has
(necessarily geometrically) connected fibers, so Gx =G0

x for each x ∈ Spec(R). Then we claim
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that G(K) = G (K)G(R). Since E(K) = E(R) by finiteness of E, and G(K)→ E(K) has kernel
G (K), we just have to show that for any g ∈G(K), its image g ∈ E(K) = E(R) is in the image
of G(R). In other words, we want X(R) 6= ∅, where X is the pullback in the cartesian diagram.

X //

��

G

��
SpecR

g
// E

Since G→ E is a torsor for the smooth E-group E ×SpecR G , X is a torsor for the R-group G .
Lang’s theorem ensures that torsors for smooth connected groups over finite fields are trivial, so
X(κ) is non-empty. However, X is R-smooth and R is henselian local, so a rational point on the
closed fiber lifts to an R-point.
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