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Basics of QCD

In this chapter, we review some basic properties of QCD that directly follow from its
definition. This material is completely standard, and will form a foundation for the rest
of the book. More details can be found in a standard textbook on quantum field theory,
e.g., Peskin and Schroeder (1995), Srednicki (2007), Sterman (1993) and Weinberg (1995,
1996). For specific information on renormalization and the renormalization group see also
my book on renormalization (Collins, 1984).

I first review how the theory is quantized and renormalized. Then I discuss the renormal-
ization group (RG) and the calculation of the asymptotic freedom of QCD. A brief review
of the flavor symmetries follows. Finally I show some of the complications that arise in
perturbative calculations because some of the fields are much more massive than others.

3.1 Quantization

3.1.1 Definition; functional integral

A list of the fields of QCD and the formula for its gauge-invariant Lagrangian density
(2.1) are sufficient to specify the theory, with the aid of general principles. Although there
are some mathematical issues that have not been solved properly, it is standard to assume
that the theory can be constructed (with some complications) through a functional integral.
This gives Green functions, i.e., vacuum expectation values of time-ordered products of
fields, as 〈

0 Tf [A,ψ, ψ̄] 0
〉 = N

∫
DADψ Dψ̄ eiS[A,ψ,ψ̄] f [A,ψ, ψ̄]. (3.1)

Here f [A,ψ, ψ̄] is a functional of the fields, e.g., a product G2(x) ψ̄ψ(y). On the left-hand
side, the fields are the quantum fields of QCD, time-ordered, while |0〉 is the true vacuum
state. But on the right-hand side the fields are corresponding classical fields (Grassmann-
valued in the case of the fermion fields ψ and ψ̄). The normalization factor N is set so that
〈0 0〉 = 1.

From the Green functions can be reconstructed the state space and the operators. This
includes an extraction of the particle content of the theory, from an examination of the
positions of the poles in propagators and other Green functions. The S-matrix and scattering
theory follow by the Lehmann-Symanzik-Zimmermann (LSZ) method. Note that the poles
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3.1 Quantization 37

of Green functions need not be the same as in free field theory, and so the particle content
can be different from a free field theory of quarks and gluons.

3.1.2 Faddeev-Popov method; Feynman rules

The rules for Feynman perturbation theory are readily derived from the functional integral,
with the Faddeev-Popov technique being used for gauge fixing. In this technique, a change
of variables is used on sets of field configurations equivalent under gauge transformations.
The implementation involves fermion scalar “ghost” fields, ηα and η̄α . See most modern
textbooks on QFT for details.

In the covariant gauges we will normally use, the gauge-invariant Lagrangian of (2.1) is
replaced by

L = LGI from (2.1) + LGF + LGC, (3.2)

where the gauge-fixing and “gauge-compensating” terms are

LGF = − 1

2ξ0
(∂ · A(0) α)2, (3.3)

LGC = ∂μη̄0 α∂μη0 α + g0∂
μη̄0 γ fαβγ A

β
(0) μη0 α, (3.4)

in terms of bare quantities. This gives

L = ψ̄0(i /D −m0)ψ0 − 1

4
(Gα

(0) μν)2 − 1

2ξ0
(∂ · Aα

(0))
2

+ ∂μη̄0 α∂μη0 α + g0∂
μη̄0 γ fαβγ A

β
(0) μη0 α. (3.5)

Feynman rules for Green functions are derived in the usual way. In Sec. 3.2, we will
formulate Feynman rules for renormalized Green functions with a counterterm method.
Rules for elementary perturbation theory in terms of bare quantities can be obtained from
those listed in Fig. 3.1 below by replacing each occurrence of gμε in that figure by the bare
coupling g0, and each renormalized quark mass mf by the bare mass m0 f .

Note that without gauge fixing in the Lagrangian, Green functions of the elementary
gauge-variant field operators are zero (Elitzur, 1975).

3.1.3 BRST symmetry

The full Lagrangian (3.2) is not gauge invariant, which considerably complicates the
derivation and formulation of generalized Ward identities. The appropriate identities for
non-abelian gauge theories were first found by Slavnov (1972) and Taylor (1971). The
derivations were greatly simplified by Becchi, Rouet, and Stora (1975, 1976) and by Tyutin
(1975), who discovered a new symmetry of the full Lagrangian.

This BRST symmetry is a supersymmetry, i.e., one that relates Bose and Fermi fields. It
uses a parameter δλ0 that takes its value in the fermionic part of some Grassmann algebra.
For the gauge and matter fields, the BRST transformations are gauge transformations (2.4)
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38 Basics of QCD

with ωα(x) = η0 α(x)δλ0. Thus any gauge-invariant operator is also BRST invariant. The
linear terms in the variation of the bare fields are

δBRSTψ0 = −ig0η0 αδλ0t
αψ0 = ig0η0 αtαψ0δλ0, (3.6a)

δBRSTψ̄0 = ig0ψ̄0t
αη0 αδλ0, (3.6b)

δBRSTAα
(0) μ =

(
∂μη0 α + g0fαβγ η0 βA

γ
(0) μ

)
δλ0. (3.6c)

The ghost and antighost fields transform as

δBRSTη0 α = − 1
2g0fαβγ η0 βη0 γ δλ0, (3.6d)

δBRSTη̄0 α = 1

ξ0
∂ · A0 αδλ0. (3.6e)

It can readily be checked that the full Lagrangian is BRST invariant, up to a total derivative.
With a slight exception, BRST transformations are also nilpotent. That is, applying suc-
cessive BRST transformations with different anticommuting parameters δλ1 and δλ2 gives
zero: (

δBRST

δλ0

)2

field = 0. (3.7)

The exception is that the second variation of η̄0 only vanishes after using the equation
of motion for A(0); a third variation of the field is needed to get zero without use of the
equations of motion.

A good formulation of the quantum theory associated with Faddeev-Popov quantization
and BRST transformations is given by Nakanishi and Ojima (1990). In particular they
give a full formulation of the conditions to be applied to physical quantum-mechanical
states.

3.1.4 Relation to Euclidean lattice gauge theory

The functional integral contains an oscillating functional eiS , and it can be defined by
analytically continuing to Euclidean space-time, where the time coordinate becomes imag-
inary, t = −iτ , and by then putting the theory on a lattice in a finite volume of space-time.
The functional integral is then an ordinary finite-dimensional convergent integral (with
suitable modifications for the fermion integrations). Numerical evaluation of these inte-
grals by Monte-Carlo methods is the core of lattice gauge theory, a key technique for
non-perturbative calculations in QCD (DeGrand and Detar, 2006).

The infinite-volume limit is an ordinary thermodynamic limit, but the continuum limit
of zero lattice spacing is non-trivial, needing the use of renormalization: Sec. 3.2. However,
there is not yet a completely rigorous proof that the limit exists.

The continuation back to real time is potentially problematic. Typical time dependence
associated with high-energy states at large times, e−iEt , corresponds to strongly suppressed
exponentials e−Eτ in Euclidean time. Small errors in the Euclidean calculation, e.g., due
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3.2 Renormalization 39

to the neglect of weak-interaction effects or purely numerical errors, do not automatically
continue to small errors in the real-time formalism. Further research is clearly needed here.
Euclidean lattice methods are not suitable for high-energy scattering problems.

For our purposes, it suffices to assume that some method exists to construct real-time
functional integrals, as in (3.1).

3.2 Renormalization

Ultra-violet (UV) divergences appear in QCD (and in most other relativistic quantum
field theories) when the continuum limit is taken. These were first found in perturbative
calculations, but the divergences are a property of the exact theory, as is shown by a
renormalization-group analysis, particularly using Wilsonian methods (Polchinski, 1984).
The divergences are from large loop momenta, or, equivalently, from where interaction
vertices approach each other in space-time. In renormalizable theories, like QCD, the
divergences can be proved to be removed by a modification of the continuum limit, at least
in perturbation theory.

1. The theory is first defined with a regulator1 (or cutoff) of the UV divergences. Standard
UV regulators are a non-zero lattice spacing or dimensional regularization.

2. All parameters of the theory consistent with its symmetries are made adjustable as
functions of the cutoff. The parameters include the coefficients of terms like iψ̄∂μψ .

3. When the limit of no UV cutoff is taken, the cutoff dependence of the parameters is
chosen so as to remove the UV divergences and to obtain a non-trivial limiting theory.

Note that an entirely different status is to be given to the infra-red (IR) divergences
that appear in perturbation theory for the S-matrix in theories such as QCD and QED that
have massless fields. The S-matrix is derived given certain hypotheses about the large-time
behavior of Green functions. But in a theory like QED with actual massless particles, these
hypotheses are violated, while in QCD the particle content does not even correspond to the
elementary fields. In either case, perturbative calculations must be adapted to the correct
physics. But IR divergences do not affect the definition of the theory, only the interpretation
of its solution, unlike the case of UV divergences.

The general ideas and methods of renormalization are explained in almost any modern
QFT textbook, and a more specialized reference is Collins (1984), which is compatible
with the presentation here.

3.2.1 Reformulating L: bare parameters

To obtain finite Green functions, we use the freedom not only to change g0 and m0 in (3.5),
but also to change the normalization of the fields, i.e., to do field strength renormalization.

1 For mathematicians: In much of the mathematical literature, the word “regularization” has a different meaning,
equivalent to physicists’ “renormalization”.
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40 Basics of QCD

We therefore define the bare fields to be (square roots of) “wave-function renormalization”
factors times renormalized fields: A(0)μ = Z

1/2
3 Aμ, ψ0 = Z

1/2
2 ψ , and η0 = Z̃1/2η. It is

Green functions of the renormalized fields that are to be finite after removal of the UV
cutoff. This gives the following formula for L:

L = Z2ψ̄(i /∂ −m0)ψ − Z2Z
1/2
3 g0ψ̄tα /A

α
ψ

− Z3

4
(∂μAα

ν − ∂νA
α
μ)2 + Z

3/2
3 g0

2
fαβγ

(
∂μAα

ν − ∂νA
α
μ

)
Aβ

μAγ
ν

− Z2
3g

2
0

4

(
fαβγ Aβ

μAγ
ν

)2 − Z3

2ξ0
(∂ · Aα)2

+ Z̃∂μη̄α∂μηα + Z̃Z
1/2
3 g0∂

μη̄γ fαβγ Aβ
μηα. (3.8)

Note that Z2 could be a matrix relating bare and renormalized quark fields, diagonal in
quark flavor, but color-independent.

Both of the formulae (3.5) and (3.8) define the same Lagrangian density; they differ
only by a change of variables; the physical predictions are the same. Thus, provided that
the correct LSZ prescription is used, the S-matrix and cross sections are unchanged under
the field redefinitions.

The first form (3.5), with the bare fields, has unit coefficients for the terms iψ̄0 /∂ψ0,
etc., which implies that the bare fields obey canonical (anti)commutation relations. This is
a natural standard which then gives an invariant meaning to the normalization of the bare
coupling and mass.

We have restricted the change of parameters to those that preserve gauge-invariance
properties, admittedly with a renormalization of the definition of the gauge transformations.
It is a theorem that this is sufficient to obtain finite Green functions. It can also be proved
that ξ0/Z3 is finite, so that we can define ξ0 = ξZ3 with ξ a finite renormalized gauge-
fixing parameter; thus the gauge-fixing term in (3.8) has coefficient 1/ξ . For proofs, see,
for example, Collins (1984).

3.2.2 Renormalized BRST symmetry

The BRST transformations also need renormalization. This is done by a multiplicative
renormalization of the parameter δλ0:

δλ0 = δλZ
1/2
3 Z̃1/2. (3.9)

In the resulting formulae (Collins, 1984, p. 297) for the renormalized BRST transformations
of the renormalized fields, it is convenient to define

X = Z̃Z
1/2
3 g0/gR, (3.10)

where gR is a finite parameter that is a version of the renormalized coupling to be introduced
later. (The actual formula is gR = gμε ; see (3.14).) The resulting renormalized BRST
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transformations are finite:

δBRST, Rψ = −igRηαδλtαψ X, (3.11a)

δBRST, Rψ̄ = igRψ̄tαηα X δλ, (3.11b)

δBRST, RAα
μ =

(
∂μηαZ̃ +X gRfαβγ ηβAγ

μ

)
δλ. (3.11c)

The ghost and antighost fields transform as

δBRST, Rηα = − 1
2gRXfαβγ ηβηγ δλ, (3.11d)

δBRST, Rη̄α = 1

ξ
∂ · Aαδλ. (3.11e)

The finite operators on the right-hand sides of these equations are used in Slavnov-Taylor
identities.

3.2.3 Counterterms, renormalized parameters, dimensional regularization

To implement renormalization in perturbation theory, we use a counterterm approach. The
Lagrangian is split into three parts:

L = Lfree + Lb.i. + Lc.t.. (3.12)

Free propagators correspond to the free Lagrangian Lfree, which has the standard form
in which appear derivative terms with unit coefficient, and mass terms with renormal-
ized masses. The “basic interaction” Lagrangian Lb.i. contains interaction terms, but with
coefficients constructed using only finite renormalized couplings. Graphs constructed with
only the basic interaction contain divergences in some of their one-particle-irreducible
(1PI) subgraphs. The divergences are canceled by graphs in which divergent subgraphs
are replaced by counterterm vertices derived from the counterterm Lagrangian Lc.t.. The
rules for perturbation theory ensure that subdivergences in multiloop graphs are correctly
canceled, order-by-order in an expansion in powers of the renormalized coupling.

Since the counterterms cancel the divergent contributions to loop graphs from UV
momenta, it does not matter how UV divergences are regulated. After removal of the
regulator, the same results are obtained for renormalized Green functions expressed in
terms of renormalized parameters. The only requirement is a suitable adjustment of the
finite parts of the counterterms when the method of UV regulation is changed.

For QCD perturbation theory, the most convenient UV regulator is often dimensional
regularization, where the dimension n of space time is a continuous complex parameter, also
written2 as n = 4− 2ε. Although it is not known how to apply dimensional regularization
to the exact theory, there are no problems in perturbation theory. A concrete mathematical

2 Warning: Although this is the most common definition of ε, other definitions also appear in the literature, notably
ε = n− 4 and ε = 4− n.
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42 Basics of QCD

definition can be made (Wilson, 1973; Collins, 1984) by using an infinite dimensional space
for momenta (and coordinates), and by using pathologies of infinite dimensional spaces
to define integration so that it gives the scaling properties appropriate for a non-integer
dimension.

3.2.4 Implementation in QCD

The free and basic interaction Lagrangians are defined to be

Lfree = ψ̄(i /∂ −m)ψ − 1

4

(
∂μAα

ν − ∂νA
α
μ

)2 − 1

2ξ
(∂ · Aα)2 + ∂μη̄α∂μηα, (3.13)

Lb.i. = −gμεψ̄tα /A
α
ψ + gμεfαβγ AβμAγν∂μAα

ν −
g2μ2ε

4

(
fαβγ Aβ

μAγ
ν

)2

+ gμεfαβγ ∂μη̄γ Aβ
μηα. (3.14)

Here is introduced the well-known unit of mass μ for dimensional regularization, so that
the renormalized coupling is gμε , with g dimensionless for all ε. The Feynman rules that
follow from these parts of L are listed in Fig. 3.1.

The counterterm Lagrangian is everything else in the full Lagrangian (3.8):

Lc.t. = (Z2 − 1)ψ̄i /∂ψ −
(
g0Z2Z

1/2
3 − gμε

)
ψ̄ /A

α
tαψ + . . . (3.15)

In renormalized perturbation theory, the counterterm Lagrangian is treated as part of the
interaction. We therefore have an extra set of vertices, the counterterm vertices, listed in
Fig. 3.2. These are like those in the basic interaction, Fig. 3.1, but with modified coefficients,
together with extra two-point vertices.

3.2.5 Mass-dependence and gauge-invariance relations for counterterms

In renormalization theory (e.g., Collins, 1984) the following is shown:

• The Ward identities that follow from gauge invariance imply that independent renormal-
ization of the different interaction vertices is not needed; a single renormalization factor
applied to g0 is suitable. Thus gauge invariance is preserved.

• No counterterm proportional to the gauge-fixing term is needed. That is, ξ0 = Z3ξ , within
the class of gauges we are using.

• With the exception of the mass parameters, the renormalization counterterms can be
chosen to be independent of the quark masses.

• Renormalization of the bare coupling g0 and the bare mass m0 can be chosen to be
independent of the gauge-fixing parameter ξ .

• The bare quark mass is linear in the renormalized mass: m(0)f = Zmmf +m00, with Zm

and m00 independent of mass. With dimensional regularization, we can set m00 = 0, so
that m(0)f = Zmmf .

• Z2 and Zm can be chosen to be independent of quark flavor. (But other choices of scheme
can be useful in treating heavy quarks: Secs. 3.9 and 3.10.)
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Fig. 3.1. Basic Feynman rules of QCD. The coupling has been replaced by gμε , according to
the standard convention for use in 4− 2ε dimensions. Propagators and vertices are diagonal
in any indices (flavor or color) that are not explicitly indicated. For the renormalization
counterterm vertices, see Fig. 3.2.

• Minimal subtraction (Sec. 3.2.6) is among the schemes to which the above statements
on the lack of mass, flavor and gauge dependence apply.

3.2.6 Minimal subtraction

In a calculation order-by-order in the renormalized coupling, the requirement that a coun-
terterm cancels its corresponding divergence determines the part of the counterterm that
diverges as the UV regulator is removed, but not the finite part. A rule for determining the
finite part is called a renormalization prescription. The most common in QCD calculations
is minimal subtraction in its modified form, the MS scheme due to Bardeen et al. (1978).
When dealing with heavy quarks, it is convenient to apply a different scheme for graphs
with heavy quark lines: Sec. 3.10.
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Fig. 3.2. Counterterm vertices in QCD. The 2-point counterterms have diagonal dependence
on all but Dirac indices for quarks and Lorentz indices for gluons. The other counterterm
vertices simply correspond to vertices in Fig. 3.1 with the indicated modified coefficients
for the coupling factors.

Definition

In the MS scheme, counterterms are pure poles at ε = 0, except for unit-of-mass factors
and a special factor Sε for each loop:

g0 = gμε

[
1+ g2Sε

B11

ε
+ g4S2

ε

(
B22

ε2
+ B21

ε

)
+ . . .

]
, (3.16)

Z2 = 1+ g2Sε

Z2,11

ε
+ g4S2

ε

(
Z2,22

ε2
+ Z2,21

ε

)
+ . . . , (3.17)

etc. The rationale for the factor Sε and its value are explained below. For normal UV
divergences, the strength of the pole is at most 1/εL in an L-loop counterterm. The only
parameter on which the coefficients depend is the gauge-fixing parameter ξ , and this is
absent for the bare coupling: the coefficients Bij are pure numbers. In particular, the
coefficients are independent of mass and of μ (’t Hooft, 1973; Collins, 1974).

The role played in renormalization by the unit of mass μ is quite central. It is commonly
called the “renormalization mass” or “renormalization scale”.

The MS scheme differs from the simplest minimal subtraction scheme by inserting a
factor Sε for each loop in the counterterms. This was motivated (Bardeen et al., 1978) by
the observation that in a one-loop calculation, there is an ε-dependent factor that naturally
arises from an angular integration in 4− 2ε dimensions, and that would lead to certain
universally occurring extra terms in renormalized Green functions. These are eliminated
by choosing Sε suitably. I define

Sε = (4π )ε

�(1− ε)
= 1+ ε[ln(4π)− γE]+O(ε2) � 1+ 1.954ε +O(ε2). (3.18)

Here γE = 0.5772 · · · is the Euler constant, and � is the gamma function.
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3.3 Renormalization counterterms of QCD 45

Although there are several ways in which the MS scheme has been defined in the
literature, it can be proved (see problem 3.3) that all these definitions lead to identical
renormalized Green functions at ε = 0. For example, there are different formulae for Sε ,
but only the order ε part of Sε affects renormalized Green functions.3 The equivalence of
the definitions, to all orders of perturbation theory, applies to conventional Green functions,
where the UV divergences give at most one pole per loop. But in Chs. 10 and 13, we
will define quantities that have a double UV pole per loop. For these, it is the particular
definition, (3.18), that gives the maximal simplification.

Advantages

Among the advantages of minimal subtraction is that it automatically preserves simple
symmetries. For example, the counterterms for the 4-gluon interaction and for the 3-gluon
interaction, etc., will automatically give counterterms with the correct gauge-invariance
relations. Counterterms have their minimal mass dependence.

Mathematically, some care is needed in understanding the expansion about g = ε = 0.
Perturbative renormalization is done by first expanding in g and then analyzing the ε

dependence. Real physics is defined with ε → 0 taken at fixed g. The direct perturbative
calculation of the counterterms is really only valid in a region of g that shrinks to zero
as ε → 0. This is enough to obtain the coefficients for renormalized perturbation theory,
whose radius of applicability is not expected to shrink with ε.

As we will see in Sec. 3.5, renormalization-group methods can be used to calculate the
true behavior of the bare parameters when the UV regulator (e.g., dimensional regulariza-
tion, or a lattice) is removed with the renormalized couplings and mass fixed.

Renormalization group

A change of renormalization scheme, including a change of the unit of mass, can be
compensated by a change in the numerical values of the renormalized parameters. All
that changes is the parameterization of the set of renormalized theories by coupling(s) and
masses. This is the subject of the renormalization group (RG) – Sec. 3.5 – which is a vital
technique in perturbative QCD.

Minimal subtraction with other regulators

Although minimal subtraction is normally defined using dimensional regularization, the
concept applies to any regularization method. With regularization by a lattice spacing a,
one could define the counterterms in each order to be a polynomial in ln(aμ) with no
constant term. This would define a different scheme, related by a RG transformation to the
standard MS scheme, which uses dimensional regularization.

3.3 Renormalization counterterms of QCD

Renormalization plays an essential role in perturbative QCD calculations. Not only does
renormalization enable finite results to be obtained, but the counterterms themselves

3 Warning: In comparing formulae for Sε , note that some authors use a different convention for ε than this book.
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p − kp

i /p(Z2 − 1) − (Z2Zm − 1)mf

)b()a(

Fig. 3.3. (a) Quark self-energy graph. (b) Counterterm.

determine the renormalization-group coefficients that we will see are vital to predicting
the scale dependence of measurable quantities. This is useful, since counterterms are much
simpler to calculate than the finite parts of graphs.

This section reviews the renormalization of QCD at the one-loop level, giving a complete
calculation for some parts and leaving the rest as an exercise. In Sec. 3.5, this will enable
us to verify the key result of asymptotic freedom of QCD.

3.3.1 Wave-function renormalization

The wave-function and mass renormalization factors are obtained from propagator cor-
rections, the “self-energy graphs”. For the case of the quark, the one-loop graph and its
counterterm are shown in Fig. 3.3. The graph’s value is

g2μ2εCF

(2π )4−2ε

∫
d4−2εk

γ μ(/p − /k +m)γ ν
[−gμν + (1− ξ )kμkν/(k2 + i0)

]
[
(p − k)2 −m2 + i0

] (
k2 + i0

) , (3.19)

where the CF factor is from the color matrices
∑

α tαtα , which gives 4/3 in QCD. We
combine the denominators using the Feynman parameter method (A.55), after which the
momentum integral can be shifted so that the denominator loses its linear term in k. The
use of standard Dirac algebra gives

g2μ2εCF

(2π )4−2ε

∫ 1

0
dx

∫
d4−2εk

{
(2− 2ε)/p(1− x)− (4− 2ε)m+ (1− ξ )(m− /px)[−k2 − p2x(1− x)+m2x − i0

]2

− 2(1− x)(1− ξ )(p2 /px2 + /k/p/k)[−k2 − p2x(1− x)+m2x − i0
]3 + terms odd in k

}
. (3.20)

A Wick rotation gives a spherically symmetric integral in a Euclidean k variable in 4− 2ε

dimensions, which can be performed analytically by using (A.34) and (A.50) and �(1+ ε)
= ε�(ε) to give

ig2(4πμ2)εCF

16π2
�(ε)

∫ 1

0
dx

[−p2x(1− x)+m2x − i0
]−ε

×
{

(2− 2ε)/p(1− x)− (4− 2ε)m+ (1− ξ )
[
m− /px − /p(1− x)(1− ε)

]
− εx2(1− x)(1− ξ )p2 /p[−p2x(1− x)+m2x − i0

]
}

. (3.21)
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Fig. 3.4. (a) and (b) One-loop graphs for quark-gluon vertex. (c) Counterterm graph.

The pole at ε = 0 is easy to extract, since �(ε) = 1/ε + finite, so that

pole part of graph (a) = ig2CF

16π2ε

[−3m+ ξ (/p −m)
]
. (3.22)

We require the pole part plus the order g2 part of the counterterm in Fig. 3.3(b) to be finite.
This gives

Z2 = 1− ξCF

αsSε

4πε
+O(α2

s ), (3.23)

Zm = 1− 3CF

αsSε

4πε
+O(α2

s ). (3.24)

Here, αs = g2/(4π ), a commonly used definition analogous to the fine-structure constant
in electromagnetism. The quantity Sε is defined in (3.18), used to define the MS scheme.

Similar calculations for the gluon and ghost give

Z3 = 1− αsSε

4πε

[(
ξ

2
− 13

6

)
CA + 4

3
TF nf

]
+O(α2

s ), (3.25)

Z̃ = 1+ αsSε

4πε
CA

(
3

4
− ξ

4

)
+O(α2

s ). (3.26)

In QCD, with its SU(3) gauge group and quarks in the triplet representation, the group
theory coefficients used here are CA = 3 and TF = 1/2. See Sec. A.11 for more details.
The quantity nf is the number of quark flavors in QCD.

3.3.2 Quark-gluon vertex

To obtain g0, we need to calculate one of the vertex functions. The simplest is the quark-
gluon vertex, because it is only logarithmically divergent. The one-loop graphs and the
counterterm are shown in Fig. 3.4. Now the UV divergence is independent of masses and
external momenta. So we simplify the calculation by setting these variables to zero, and by
ignoring any ε dependence that does not affect the pole. From the first graph we need

Va = tαgμεSε

g2

16π4
(CF − 1

2CA) PP
∫

UV

d4−2εk

(k2)3

[
−γ ν/kγ μ/kγν + 1− ξ

k2
/k/kγ μ/k/k

]
,

(3.27)
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where “PP” means “pole part at ε = 0”. The subscript “UV” on the integration means that
we restrict the integration to the UV region; we cut out a neighborhood of k = 0. The
prefactors are those present in the lowest-order vertex. A Wick rotation and elementary
spherically symmetric integrals over Euclidean k give the integral in terms of∫

UV

d4−2εk

(k2)2
= π2−ε

�(2− ε)

∫ ∞
finite

d|k2|
|k2|1+ε

, (3.28)

so that

Va = −itαγ μgμεSε

g2

16π2ε
ξ (CF − CA/2). (3.29)

Similarly, graph (b) gives

Vb = −tαgμεSε

g2

16π4
( 1

2CA)

× PP
∫

UV
d4−2εk

γ κ ′/kγ ν ′

(k2)3
(−2kμgκν + kνgκμ + kκgνμ)

×
(
−gν ′ν + (1− ξ )

kν ′kν

k2

)(
−gκ ′κ + (1− ξ )

kκ ′kκ

k2

)

= −itαγ μgμεSε

g2

16π2ε
CA

(
3

4
+ 3

4
ξ

)
. (3.30)

From these, we deduce the one-loop counterterm and, hence, from the previously cal-
culated values of Z2 and Z3 we get the bare coupling:

g0 = gμε

[
1− αsSε

4πε

(
11

6
CA − 2

3
TF nf

)
+O(α2

s )

]
. (3.31)

Note that the manipulations to obtain the coupling are performed with only the first two
terms in a strict expansion in powers of g.

The results for the counterterms to higher order, up to four loops, can be deduced from
the published values (Tarasov, Vladimirov, and Zharkov, 1980; Larin and Vermaseren,
1993; van Ritbergen, Vermaseren, and Larin, 1997; Czakon, 2005) of the RG coefficients,
the primary ones being given in Sec. 3.7. See problem 3.2.

3.4 Meaning of unit of mass, renormalization scale

The unit of mass μ is a rather abstract concept seemingly tied to the use of dimensional
regularization. It appears as a renormalization scale in renormalized quantities. We will see
later (Sec. 3.5) that the value of the renormalization scale can be freely chosen, provided that
the numerical value of the coupling and masses are adjusted in compensation. Perturbative
calculations can be optimized in accuracy by a suitable choice of μ.

To understand how to choose μ, I now present a simple example that gives μ an intuitive
meaning as approximating a cutoff in the physical dimension at a certain value of transverse
momentum.
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3.4 Meaning of unit of mass, renormalization scale 49

Now, in many of our calculations for scattering, there will be preferred coordinates
determined by the momenta of two of the particles. The Breit frame for DIS is a good
example. Let us use these directions to fix a plane of t and z. Then for an integration
over a momentum k, we first perform the k0 and kz integrals. After that we have a two
(or 2− 2ε) dimensional integral over a transverse momentum kT, which is often rota-
tionally symmetric. A generic one-loop integral, relative to a lowest-order calculation,
is then

I0 = g2πμ2ε

(4π )4−2ε

∫
d2−2ε kT

1

k2
T +M2

= g2

16π2

(
4πμ2

)ε
�(1− ε)

∫ ∞
0

dk2
T

(k2
T)−ε

k2
T +M2

. (3.32)

The factor π in the first line is typical for a two-dimensional integral over the two lon-
gitudinal components of k. In an actual application, M would be a function of external
longitudinal kinematic variables as well as of masses of particles and fields. For examples,
see (9.4) and (10.137).

Using (A.50), we express the integral in terms of � functions, and then obtain the pole
and finite part using (A.47):

I0 = g2

16π2
�(ε)

(
4πμ2

M2

)ε

= g2Sε

16π2

(
1

ε
+ ln

μ2

M2
+O(ε)

)
. (3.33)

Subtraction of the MS pole gives the renormalized value

IR = lim
ε→0

(
I0 − g2Sε

16π2ε

)
= g2

16π2
ln

μ2

M2
. (3.34)

Without the Sε factor in the definition of the MS counterterm, we would get an extra term
containing ln(4π )− γE. The simple logarithmic dependence on the unit of mass μ is a
general expectation, but for a more general integral the rest of the result will not be so
simple and will not always have a simple analytic form.

To obtain an interpretation, we now rewrite the counterterm as a subtraction at the level
of the integrand. Since the divergence is associated with the asymptotic large kT behavior
of the integrand, we consider an integral over this asymptotic behavior:

g2πμ2ε

(4π )4−2ε

∫
k2

T>Cμ2

d2−2ε kT

k2
T

= g2

16π2

(
4πμ2

)ε
�(1− ε)

∫ ∞
Cμ2

dk2
T

(k2
T)1+ε

. (3.35)

The integral is of a power of kT, so it is trivial to calculate. Since the extraction of
the asymptotic behavior would otherwise expose an IR divergence, we put a lower limit
proportional to μ2 on the integration, with a coefficient C that is to be adjusted to obtain
the correct finite part of the counterterm. The integral is

g2Sε

16π2ε

eγEε

�(1− ε)
C−ε . (3.36)
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ln k2
T

ln k2
T

)b()a(

Fig. 3.5. (a) Integrand times k2
T of ((3.37) when μ� M . (b) Same when μ is close to M .

Since the second factor is 1+O(ε2), we can reproduce the renormalized graph by using
(3.36) in place of the true MS counterterm, provided that we set C = 1. Then the renor-
malized graph is an integral in the physical dimension with a subtracted integrand:

IR = g2

16π3

∫
d2kT

(
1

k2
T +M2

− θ (|kT| > μ)

k2
T

)
. (3.37)

The integrand is plotted in Fig. 3.5. Because of the logarithmic behavior at large kT, it
is convenient to multiply the integrand by k2

T and to plot it against ln k2
T, to correspond to

the integrand on the r.h.s. of an integral of the form∫
dk2

T f (kT) =
∫

d ln k2
T

[
k2

Tf (kT)
]
. (3.38)

We now interpret (3.37), with a view to generalization.

• The natural expansion parameter for perturbation theory is g2/16π2, which arises as the
product of the coupling, the factor 1/(2π )4 for a loop integral, and π2 for an angular
integration in four dimensions.

• This is multiplied by a group-theory factor and the number of graphs.
• In simple cases, renormalization can be performed by a subtraction of the asymptote of

the integrand. The lower bound on kT in the subtraction is commonly exactly μ.
• The coefficient Sε defining the MS scheme is responsible for the cutoff being μ rather

than a factor times μ. This gives a direct connection to the physical scale M in the
integrand.

• In a more general graph, finite terms with modest, typically rational, numbers must be
added. The need for this can be seen in the quark self-energy calculation, where the ε

dependence of the numerator algebra enters.
• To get perturbative corrections of a natural size, μ should be close to the scale that is set

by the transverse momentum dependence of the integrand, i.e., a scale characterizing the
change from 1/k2

T behavior at large kT to constant behavior at small kT.
• Although our example integral is exactly zero when μ = M , this is not true in general;

also M will generally be a function of external momentum. The best general statement
is that for a single graph without a group-theory coefficient, the expected coefficient of
g2/16π2 is a modest number of typical size unity if μ is close to a natural scale.

• For large values of μ, μ behaves like a cutoff on kT in the unsubtracted integral.
• The rationale for these results suggests that they should approximately generalize to

higher orders. In a well-behaved L-loop calculation, we can expect the result to be
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roughly (g2/16π2)L times an effective number of graphs times a typical group-theory
factor, provided again that μ is of the order of the physically relevant scale in transverse
momentum.

• When we meet badly behaved situations, it is a good idea to search for explanations for
large perturbative corrections in terms of the sizes of integrands in relevant kinematic
regions.

3.5 Renormalization group

The general idea of renormalization prescribes only that counterterms cancel divergences;
thus the finite parts of counterterms can be chosen freely. Within many schemes, like MS,
there is also a parameter μ that can be chosen freely. At first sight, the choices remove
predictive power from the theory since any numerical value can be obtained from a one-
loop integral with given external momenta. In reality, as explained more fully in textbook
accounts of renormalization, this is not so. Instead we exploit the freedom in choosing μ

to optimize the accuracy of finite-order perturbative calculations.
The complete theory is exactly invariant if when changing μ (or, more generally, the

renormalization prescription) we also change the numerical values of the renormalized
parameters of the theory. This is the renormalization-group (RG) invariance of the theory. An
RG transformation amounts to a change in the partitioning of the full Lagrangian L into the
three terms in (3.12). Thus it corresponds to a rearrangement of the perturbation expansion.
The most important case for us is the transformation of the renormalized coupling and
masses when the renormalization mass μ is changed.

3.5.1 RG evolution

When we perform RG transformations for changes of μ, keeping observable quantities fixed,
each numerical value of μ corresponds to particular numerical values of the renormalized
parameters g(μ), mf (μ). When we change μ to another value μ′, not only do the coupling
and masses change, but also the normalization of the renormalized fields. So we write

φi(x; μ) = ζi(μ,μ′)φi(x; μ′). (3.39)

Here i labels the different types of field (gluon, quark, etc.). A Green function therefore
transforms as

G(p; μ, g(μ),m(μ)) =
∏

e

ζie (μ,μ′)G(p; μ′, g(μ′),m(μ′)), (3.40)

where p is the collection of external momenta of G, m is the set of renormalized masses,
and the product is over the external lines, e, of G, with ie labeling the corresponding types
of field.

The S-matrix and hence cross sections are RG invariant. This is because an S-matrix
element is obtained by applying to the corresponding off-shell Green function the following
operations: (a) divide out a full external propagator; (b) multiply by the square root of the
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residue of the particle pole; (c) put the external momenta on-shell. In this process there is a
cancellation of the ζ factors for each external line. Exactly the same idea applies to Green
functions of the composite external fields needed to obtain the S-matrix for composite
particles.

We now determine equations for μ dependence of g(μ). The coefficients in the equations
are obtained from the counterterms in the bare parameters, the starting point being RG
invariance of the bare parameters, as is necessary to keep the physics unchanged. The
normalizations of the bare parameters and the bare fields are fixed because terms like
iψ̄0 /∂ψ0 have unit coefficients. Our discussion is tailored to the MS scheme, but the main
principles and methods are general.

3.5.2 Coupling and mass

With a UV cutoff applied (ε �= 0), we hold the bare parameters g0 and m(0)f fixed and vary
μ. For g0, we get

0 = d

d ln μ
g0(μ, g(μ), ε) = ∂g0

∂ ln μ
+ dg

d ln μ

∂g0

∂g
= εg0 + dg

d ln μ

∂g0

∂g
. (3.41)

We distinguish between a total derivative d/ dμ, with respect to all the μ dependence,
and a partial derivative ∂/∂μ, for which the renormalized parameters g(μ), etc., are fixed.
It is convenient to use a logarithmic derivative, given that renormalized graphs have a μ

dependence that is polynomial in ln μ.
For the masses

0 = d

d ln μ
m0(m(μ), g(μ), ε) = dg

d ln μ

∂m0

∂g
+ dm

d ln μ

m0

m
, (3.42)

where we used the lack of explicit μ dependence of m0 in minimal subtraction.
It is convenient to use as the expansion parameter αs/4π = g2/16π2. Then from (3.41)

we find

dαs/4π

d ln μ
= g

8π2

dg

d ln μ
= − εg

8π2

g0

∂g0/∂g
. (General ε) (3.43)

The left-hand side is finite at ε = 0, and therefore the right-hand side is finite also; all poles
in ε must cancel. In the MS scheme each αs in the counterterms is accompanied by a factor
Sε and all the terms in g0 have negative powers of ε. We therefore find that the right-hand
side has the form4

−2ε
αs

4π
+ S−1

ε 2β(αsSε/(4π )), (3.44)

where the only ε dependence is in the −εαs term and in the explicit factors of Sε .
At the physical space-time dimension, i.e., at ε = 0, we use the perturbatively calculable

β function to give an equation for the scale dependence of the coupling:

dαs/4π

d ln μ
= 2β(αs/4π). (ε = 0) (3.45)

4 The factor of 2 multiplying β is to correspond to the definition in Larin and Vermaseren (1993); this arises because
these authors use derivatives with respect to ln μ2 instead of ln μ.
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The one-loop value of the bare coupling, in (3.31), immediately gives

β(αs/4π) = −
(

11

3
CA − 4

3
TF nf

)
α2

s

16π2
+O(α3

s ) (for general group)

= −
(

11− 2

3
nf

)
α2

s

16π2
+O(α3

s ). (for SU(3)) (3.46)

Provided there are at most 16 quark flavors, which is true in currently known strong
interactions, the coupling decreases with increasing scale, at least when it is small enough
at the outset. The coupling does in fact go to zero as μ→∞, as we will see, so that QCD
is asymptotically free. The importance of this is clear from the previous chapter.

The results at higher order will be quoted in Sec. 3.7. Here we just note that β can be
obtained from the single pole terms in g0. With the conventions of (3.16), we get:

β(αs/4π) =
∞∑

n=1

g2n+2

8π2
nBn1. (3.47)

The finiteness conditions for dαs/d ln μ enable the higher poles in g0 to be computed in
terms of the single poles.

The RG dependence of the mass is similarly obtained. A dimensionless function is
obtained by using logarithmic derivatives:

γm(αsSε/4π)
def= d ln m

d ln μ

= (
2εαsSε/4π − 2β(αsSε/4π)

) ∂ln Zm

∂αsSε/4π

= −6CF

αs

4π
Sε +O(α2

s ). (3.48)

Again, the divergences present in Zm must cancel in this derivative in order that γm is
finite. This time, it can be shown that the only ε dependence is in the Sε multiplying αs .
This RG coefficient is usually less important in practice, since most pQCD calculations are
performed with masses set to zero, or with a different scheme for heavy quarks.

The lack of mass dependence in the renormalization group coefficients β and γm follows
from the mass-independence property of MS counterterms.

3.5.3 Anomalous dimensions and RG equations for Green functions

To unify the treatment of the RG transformation for renormalized fields, let us use the
notation φi for the renormalized fields, with the label i denoting the type of field (gluon,
flavor of quark, etc.). We define its anomalous dimension by

γi(αsSε/4π, ξ )φi = − dφi

d ln μ
. (3.49)

Given that the corresponding bare field is φ(0)i = Z
1/2
i φi , it follows that

γi(αsSε/4π, ξ ) = 1

2

d ln Zi

d ln μ
. (3.50)
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A complication arises in gauge theories, from the gauge dependence of wave-function
renormalization. Because of the relation ξ0 = ξZ3, the gauge-fixing parameter obeys

d ln ξ

d ln μ
= −d ln Z3

d ln μ
= −2γ3. (3.51)

Then the definition of γ3 gives

γ3 =
(
−ε

αsSε

4π
+ β(αsSε/4π)

)
d ln Z3

dαsSε/4π
− γ3

∂ ln Z3

∂ξ
. (3.52)

Hence

γ3 =
(−ε αs

4π
Sε + β(αsSε/4π)

)
d ln Z3/d(αsSε/4π)

1+ ∂ ln Z3/∂ξ
. (3.53)

For the other anomalous dimensions, we have equations of the form

γ2 =
(
−ε

αsSε

4π
+ β(αsSε/4π)

)
d ln Z2

dαsSε/4π
− γ3

∂ ln Z2

∂ξ
. (3.54)

See Sec. 3.7 for the values of the anomalous dimensions.
From the above results follows the renormalization-group equation (RGE) for a renor-

malized Green function G. If G has n2 external quark fields (and the same number of
antiquarks) and n3 external gluons, then

dG

d ln μ
= −(2n2γ2 + n3γ3) G. (3.55)

Exactly similar equations can be derived for other operator matrix elements, where the
states can be other than the vacuum and the fields not simple products of the elementary
fields of QCD at different space-time points. A simple example is the hadronic tensor Wμν

of DIS, (2.18). The electromagnetic current is a symmetry current of QCD and can be
shown to have zero anomalous dimension. Hence Wμν is RG invariant:

dWμν

d ln μ
= 0. (3.56)

3.6 Solution of RG equations

3.6.1 General form of solution

The RG equations for the coupling, mass, and Green functions are readily solved to relate
these quantities at different values of the MS, with the aid of integrals of β, γm and the
anomalous dimensions:

ln
μ

μ0
=
∫ αs (μ)/4π

αs (μ0)/4π

dα/4π

2β(α/4π )
, (3.57)

ln
m(μ)

m(μ0)
=
∫ μ

μ0

dμ′

μ′
γm(αs(μ

′)/4π ) =
∫ αs (μ)/4π

αs (μ0)/4π

dα/4π
γm(α/4π )

2β(α/4π )
, (3.58)

ln
G(μ)

G(μ0)
= −

∫ μ

μ0

dμ′

μ′
γG(αs(μ

′)/4π, ξ (μ′)) = −
∫ αs (μ)/4π

αs (μ0)/4π

dα/4π
γG(α/4π, ξ (μ′))

2β(α/4π )
.

(3.59)
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QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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Heavy Quarkonia
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Deep Inelastic Scattering
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Fig. 3.6. QCD effective coupling. With kind permission from Springer Science+Business
Media: Bethke (2009, Fig. 6). The lines represent the solution of the RGE for αs(μ) with the
±1σ limits on the constant of integration. The scheme used is MS with a variable number
of active quarks, as in Sec. 3.10. The data are, in increasing order of μ, from fits to the
τ width, ϒ decays, DIS, e+e− event shapes at 22 GeV at JADE, shapes at TRISTAN at
58 GeV, Z width, and e+e− event shapes at 91–208 GeV.

Here γG = 2n2γ2 + n3γ3 is the anomalous dimension of the Green function G, all of whose
momentum and mass arguments we have suppressed.5

Since β(α/4π ) is negative and O(α2) at small coupling, (3.57) shows that αs(μ)→ 0
as μ→∞, i.e., that QCD is asymptotically free.

3.6.2 Effective coupling; scale parameter �

The μ dependence of the coupling underlies all other RG calculations in QCD, so a detailed
analysis is useful. There is a one-parameter family of solutions of (3.45) for αs(μ), and the
physical solution is specified, for example, by the value of coupling at a given scale (e.g.,
“αs(MZ) = 0.1184± 0.0007 in the MS scheme with five active flavors”). The physical
solution is obtained by fitting the one parameter to data, with a result shown in Fig. 3.6.

One often-used procedure is the following, which is particularly useful for assessing the
errors due to the limited accuracy with which RG functions are known. It was obtained
(Buras et al., 1977) basically by expanding αs(μ) in powers of 1/ ln μ2 at large μ.

Let us write the expansion of β as

β(as)
def= das

d ln μ2
= −β0a

2
s − β1a

3
s − β2a

4
s − β3a

5
s +O(a6

s ), (3.60)

where as = αs/4π = g2/16π2. (The normalizations of all but β0 differ from the less
systematic conventions of the PDG; Amsler et al., 2008.) In the solution (3.57) the integral

5 Thus G(μ0) means G
(
p; μ0, g(μ0),m(μ0), ξ (μ0)

)
.
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is of 1/β, so we first separate out the singular parts of 1/β, and represent the general
solution of the RGE for as(μ) as

ln
μ2

�2
= 1

β0as

+ β1

β2
0

ln(β0as)− f (as), (3.61)

where

f (as)
def=
∫ as

0
da

(
− 1

β(a)
− 1

β0a2
+ β1

β2
0a

)
. (3.62)

Here the constant of integration is represented by a parameter �, of the dimension of mass;
it has an experimentally determined value6 of around 200 MeV. The constant β0 in the
logarithm in the second term on the r.h.s. of (3.61) merely amounts to a standard convention
for the definition of � whose rationale will become apparent below. When it is necessary
to distinguish � from other similar parameters, we will add a subscript, as in �QCD.

For small coupling, β is approximately −β0a
2
s , so that as(μ) behaves like 1/(β0 ln μ2)

at large μ. To improve this estimate, we expand in powers of 1/ ln(μ2/�2) (with some
modifications as required). This gives

αs

4π
= 1

β0 ln(μ2/�2)
− β1 ln ln(μ2/�2)

β3
0 ln2(μ2/�2)

+O

(
ln2 ln(μ2/�2)

ln3(μ2/�2)

)
. (3.63)

Normally we would expect a term constant/ ln2(μ2/�2), and the absence of this term is
effectively the definition of �, and is exactly correlated with the use of ln(β0as) rather than
ln as in (3.61). This convention is due to Buras et al. (1977). Then � can, in principle, be
extracted from the large μ asymptote of as(μ):

�2 = lim
μ→∞μ2 exp

[
− 1

β0as

− β1

β2
0

ln(β0as)

]
. (3.64)

Notice that this formula requires only the use of the known one- and two-loop terms in β,
not any of the higher terms not all of which are known. Of course the higher terms will
improve the accuracy of the measurement of � since as(μ) is only known at finite μ.

3.6.3 Dimensional transmutation

Suppose we were to approximate quark masses of QCD by zero. Since the masses of the light
quarks are considerably smaller than the proton mass, this is in fact a useful approximation,
for low-energy processes, if we keep only two (u, d) or three flavors (u, d, s), with the
heavier quarks being removed according to the decoupling theorem. Then the mass of any
particle, like the proton, would be a function of αs and μ only. But by dimensional analysis
it is μ times a function of αs :

mp = μF (αs) in massless QCD. (3.65)

6 Details depend on a treatment of heavy quark masses which we will present later (Sec. 3.10). The current best value
with five active quarks is (Bethke, 2009) � = (213± 9) MeV.
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Since mp is a physical mass, it is RG invariant, which fixes αs(μ) up to a multiplicative
factor. It follows that mp equals � times a pure number, Kp, which is a property of the
solution of massless QCD: mp = �Kp. The number Kp is non-perturbative and can be
obtained from lattice QCD calculations.

Instead of specifying the theory by the numerical value of its dimensionless coupling
g, we can instead specify a fixed mass parameter �. This is the property of dimensional
transmutation (Coleman and Weinberg, 1973).

In fact, there is a certain sense in which even this parameter is illusory. Suppose we
consider pure strong interactions with massless quarks. To completely define a measure-
ment of the numerical value of �, we must specify a system of units, i.e., specify what
a mass of numerical value unity means.7 But with only the strong interaction under con-
sideration, this can only mean some physical mass like the proton mass, which can be
taken as a physical definition of a standard mass. So a measurement of � is really a
measurement of the dimensionless ratio �/mP , whose value is a unique prediction of the
theory.

This is the sense in which massless QCD has no parameters. All real predictions of the
theory are pure numbers. For example, a cross section as a function of center-of-mass energy
σ (E) is of the form m−2

p S(E/mp), where S is a dimensionless function of a dimensionless
variable. This function is in principle predicted with no parameters by massless QCD.

Since the masses of the three light quarks are known to give only a relatively small
contribution to the nucleon mass, the above statements are approximately true in real QCD.
The real intrinsic parameters of QCD are the quark masses, expressed in terms of a suitable
chosen unit, e.g., � or mp.

There is a contrast with QED, because of the different physics of its classical long-
distance limit. For simplicity consider QED of a photon and electron field only. Then, again
by dimensional transmutation, there is only one true parameter me/�QED. As with its QCD
analog, �QED is in a region where the coupling is strong. In contrast to the QCD coupling,
the QED coupling increases at large scales, and in fact �QED is around the Planck scale. At
low energies compared to me, the electron decouples, giving a free Maxwell field theory
which we can solve completely and exactly. It therefore becomes much more sensible
than in QCD to use an on-shell renormalization prescription, and to define the expansion
parameter of the theory as the usual α � 1/137. Within pure single-lepton QED, we can
take the unit of mass to be me.

Of course, weak coupling methods are very useful and accurate for normal phenomena
in QED, including its bound states, in contrast to QCD, where perturbation theory has a
more restricted range of applicability.

Although dimensional transmutation has reduced the number of genuine parameters in a
quantum field theory by one compared with the apparent number, the parameter is regained
when the theory is treated as a component of a more complete theory. For example, we
can combine QED and QCD to get a complete theory underlying all nuclear, atomic and

7 The last sentence was carefully worded to avoid confusion between the concept of unit of mass in dimensional
regularization and the concept of the unit of mass in a system of units.
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molecular phenomena. Then me/�QCD is a parameter of the combined theory in addition
to the intrinsic parameters of the separate theories.

3.6.4 Bare coupling

We used (3.41) to obtain the (finite) β function from the divergent perturbation expansion
for the bare coupling. But we can also use it to obtain a formula for the bare coupling as a
function of � and ε. From the ε-dependent β function given in (3.44) we get

∂ ln a0

∂as

= ε

εas − S−1
ε β(asSε)

, (3.66)

where again as = g2/(16π2), while a0 = g2
0/(16π2) is the bare equivalent of asμ

2ε , with
mass dimension 2ε. The solution is

ln a0 = ln(asμ
2ε)+

∫ asSε

0
da

[
ε

εa − β(a)
− 1

a

]
, (3.67)

where the boundary condition is set by requiring a0/(asμ
2ε)→ 1 as as → 0 at fixed ε.

An important formula is obtained by expressing this in terms of �, and then taking the
limit ε → 0 at fixed as . This gives

g2
0

16π2
= 1

β0
ε1+εβ1/β

2
0

(
�2eβ1/β

2
0+γE

4π

)ε [
1+O(ε2)

]
. (3.68)

When ε → 0, the O(ε2) fractional correction can be dropped, since it is equivalent to a
change in � by a fraction of order O(ε): since � determines the coupling in the renormalized
theory, the correction does not affect renormalized Green functions at ε = 0. From the β

function, only the scheme-independent coefficients β0 and β1 are needed; the scheme choice
is manifested in the numerical coefficient multiplying �2. To provide a full specification of
the renormalization of the theory, only the one- and two-loop renormalization counterterms
in the coupling need to be known.

Similar results can be obtained when any regularization scheme is used. With a lattice
regulator, we would have

g2
0

16π2
= 1

−β0 ln(a2�2)
− β1 ln(− ln(a2�2))

β3
0 ln2(a2�2)

− A

ln2(a2�2)
, (3.69)

where a is the lattice spacing, and the coefficient A can be computed (Hasenfratz and
Hasenfratz, 1980; Dashen and Gross, 1981) from the perturbative expansion of the bare
coupling computed to two-loop order, with the renormalized coupling being in the MS
scheme.

Other bare parameters and renormalization factors may be treated similarly.

3.7 Values of RG coefficients

The β function has been calculated in the MS scheme up to three loops by Tarasov,
Vladimirov, and Zharkov (1980) and by Larin and Vermaseren (1993), and to four loops by
van Ritbergen, Vermaseren, and Larin (1997). The results have been confirmed by Czakon
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(2005). The first three coefficients in β are rational numbers. With the notation of (3.60),

β0 = 11

3
CA − 4

3
TF nf , (3.70a)

β1 = 34

3
C2

A − 4CF TF nf − 20

3
CATF nf , (3.70b)

β2 = 2857

54
C3

A + 2C2
F TF nf − 205

9
CF CATF nf − 1415

27
C2

ATF nf

+ 44

9
CF T 2

F n2
f +

158

27
CAT 2

F n2
f . (3.70c)

The expression for the four-loop coefficient β3 is more complicated and includes the irra-
tional number ζ3; the full expression is given in van Ritbergen, Vermaseren, and Larin
(1997). The fact that even the three-loop coefficient is a rational number indicates a funda-
mental simplicity in the theory and in minimal subtraction that is certainly not apparent in
straightforward calculations of Feynman diagrams. In the case of SU(3), i.e., for QCD, the
coefficients are

β0 = 11− 2

3
nf , (3.71a)

β1 = 102− 38

3
nf , (3.71b)

β2 = 2857

2
− 5033

18
nf + 325

54
n2

f , (3.71c)

β3 =
(

149 753

6
+ 3564ζ3

)
−
(

1 078 361

162
+ 6508

27
ζ3

)
nf

+
(

50 065

162
+ 6472

81
ζ3

)
n2

f +
1093

729
n3

f

≈ 29 243.0− 6946.30nf + 405.089n2
f + 1.499 31n3

f . (3.71d)

The anomalous dimensions have been computed by Larin and Vermaseren (1993) up
to three loops, and by Czakon (2005) to four loops. The full results can be found in these
papers.8 Up to two-loop order, where the coefficients are rational, the values are

γ2(αs/4π, ξ ) = αs

4π
CF ξ

+
( αs

4π

)2
(
−3

2
C2

F +
25

4
CF CA − CF nf + 2ξCF CA + ξ 2 1

4
CF CA

)
+ . . . ,

(3.72)

γ3(αs/4π, ξ ) = αs

4π

[
−13

6
CA + 2

3
nf + ξ

1

2
CA

]

+
( αs

4π

)2
[
−59

8
C2

A + 2CF nf + 5

2
CAnf + ξ

11

8
C2

A + ξ 2 1

4
C2

A

]
+ . . .

(3.73)

In these equations, the value TF = 1/2 was used.

8 The definition of γ has different normalization conventions in different books and papers. The conventions of this book
agree with those of Larin and Vermaseren (1993).
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3.8 Symmetries and approximate symmetries of QCD

In this section, I summarize the standard set of exact and approximate symmetries of QCD.
See Narison (2002, Chs. 53 and 54) for a recent account of many of their consequences,
especially those that are not further referenced in this section.

3.8.1 Exact symmetries

The QCD Lagrangian is exactly invariant when any one of the quark fields is multiplied
by a phase. By Noether’s theorem this gives rise to conservation of the number of quarks
(minus antiquarks) of each flavor: u-quark number, d-quark number, etc. The sum of all of
these, the total quark number, is particularly important because it is not broken by flavor-
changing weak interactions. Baryon number is simply one-third of total quark number, and
its invariance was established long before QCD.

QCD is also invariant under each of the discrete symmetries of parity, charge conjugation,
and time-reversal.

3.8.2 Note on “strong CP problem”

If QCD is specified simply as a renormalizable gauge theory, with an SU(3) gauge group
and some set of quark fields in the triplet representation, then one extra term is permitted
beyond those in the Lagrangian (2.1). In a standard normalization, the extra term has the
form

θ

16π2
Gα

μνG̃
α μν, (3.74)

where G̃α
μν = 1

2εμνρσGα ρσ . The extra term breaks CP invariance, and there is a stringent
observational bound on its coupling, θ � 10−9. It is considered problematic as to why θ is
so small. This is the strong CP problem, which is reviewed along with possible solutions
in Dine (2000).

3.8.3 Isospin and flavor SU(3)

If the up and down quarks were exactly equal in mass, QCD would be invariant under
the isospin symmetry of SU(2) transformations on the u- and d-quark fields. This sym-
metry is quite accurate; we will apply it to the flavor dependence of parton densities and
fragmentation functions in Secs. 6.9.7 and 12.4.8.

Rather less accurate is the flavor SU(3) symmetry that would be exact if the masses of
the lightest three quarks, u, d , and s, were equal. SU(3) breaking is described by the quark
mass terms, which correspond to the Q3 and Q8 terms of an operator transforming as an
octet under flavor SU(3). Treated to first order in perturbation theory, these give a good
description of the mass splittings within the well-known flavor-SU(3) octet and decuplet
multiplets of hadrons.
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3.8.4 Symmetries at zero mass

The masses of the u and d quarks are quite small. When these masses are neglected, the
QCD Lagrangian is further symmetric under separate SU(2) transformations on left- and
right-handed quark fields defined by

ψL = 1

2
(1− γ5)ψ, ψR = 1

2
(1+ γ5)ψ. (3.75)

Then chiral SU(2)L ⊗ SU(2)R transformations have six parameters ωL and ωR for two
commuting SU(2) groups, and the quark fields transform as(

uL

dL

)
�→ e−iωL·σ/2

(
uL

dL

)
,

(
uR

dR

)
�→ e−iωR ·σ/2

(
uR

dR

)
. (3.76)

The other fields (gluons, other quark flavors) are invariant. This symmetry is in fact sponta-
neously broken down to isospin SU(2). The low mass of the pions (about 140 MeV) relative
to other hadrons is indicative of the expectation that they would be Goldstone bosons for
spontaneously broken chiral symmetry in the limit of zero quark mass. Consequences can
be successfully derived by the use of Ward identities together with the chiral transfor-
mation properties of the quark mass terms. These form much of the subject of current
algebra.

3.8.5 Anomalies

When the u and d quarks are massless, the symmetry of their part of the Lagrangian
appears also to include separate U(1) transformations on the left- and right-handed fields.
(The quark-number symmetry corresponds to the same U(1) to both the left- and the
right-handed fields.)

This symmetry is in fact anomalously broken. Thus, unlike the case of SU(2)L ⊗ SU(2)R ,
there is no approximate Goldstone boson.

3.8.6 Chiral symmetry, hard scattering and factorization

When applying a factorization theorem like (1.1) there is a hard-scattering factor
dσ̂ (ξa, ξb, i, j ). This is normally computed with quark masses set to zero, and thus chiral
symmetry applies to it.

Many consequences arise because at the quark-quark-gluon vertex, the coupling is only
between quarks of the same helicity, and between quarks and antiquarks of the opposite
helicities. That is, only the following transitions are possible:

qL ↔ qL + g, qR ↔ qR + g, qL + q̄R ↔ g, qR + q̄L ↔ g. (3.77)

This produces many restrictions on the polarization dependence, as we will see in Secs.
11.6 and 13.16.
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3.9 Dealing with quark masses

Our basic technique for exploiting perturbation theory in QCD is to find quantities whose
calculation has internal lines of Feynman graphs far off-shell, i.e., with some large virtuality
Q2. In these quantities we set the renormalization scale of order Q, so that the weakness of
αs at large scales allows the use of low-order perturbation theory, and we normally neglect
quark masses.

However, there are quarks whose masses are not always negligible in these calculations,
so that the general procedure needs modification to deal with heavy quarks. These are
defined to be those quarks for which the coupling is small when the renormalization scale is
of order the mass: αs(mq)� 1. The known heavy quarks are c, b and t , with the remaining
quarks and the gluon being called “light”. The charm quark, of mass 1 to 1.5 GeV, is only
marginally heavy, but, for robust observables, perturbation theory may be applicable at
scales around the charm mass.

Clearly we need improved methods whenever Q, the physical of the process under
consideration, is comparable to or smaller than the mass of one or more heavy quarks.
First, we should not automatically neglect the mass. Second, the use of a mass-independent
scheme, like MS, becomes unsuitable whenever the scale is much less than one of the quark
masses.

The main issues are manifested in a calculation of the one-loop quark contribution to
the gauge-field self-energy:

�
μν

MS
=
∑

j

−g2μ2εδαβTF

(2π )4−2ε

∫
d4−2εk

Tr (/k +mj )γ μ(/p + /k +mq)γ ν(
k2 −m2

j + i0
) [

(p + k)2 −m2
j + i0

]
+ counterterm, with ε → 0

=
∑

j

−2iαsδαβTF

π
(−gμνp2 + pμpν)

∫ 1

0
dx x(1− x) ln

m2
j − p2x(1− x)

μ2
.

(3.78)

The following properties apply to this graph and more generally.

• If |p2| is large compared with m2
j , then mj can be neglected, with relative errors of order

m2
j /|p2|.

• Furthermore, in the same situation, |p2| � m2
j , there is logarithmic dependence on p2.

The large logarithm can be removed by taking μ2 of order |p2|.
• If |p2| is much less than m2

j , the integral approaches a constant, ln(m2
j /μ

2). In (3.78),
this multiplies a factor quadratic in p, of the same momentum dependence as the UV
counterterm.

The last item exemplifies the non-trivial part of the decoupling theorem for heavy parti-
cles (Appelquist and Carazzone, 1975). This theorem concerns a situation where we hold
fixed the external scales of a Green function and make some internal mass much larger.
Then the contributions of convergent graphs with the large internal mass are suppressed.
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The suppression fails whenever the heavy internal lines are in a divergent loop, but the
unsuppressed contributions are equivalent to a contribution to renormalization coun-
terterms. Thus the unsuppressed contributions can be eliminated by a choice of
counterterm.

Suppose that we have the real-world situation that the quark masses are widely different.
Then we can have a conflict in the choice of μ that eliminates large logarithms, whenever
|p|2 lies between two heavy quark masses, e.g., m2

t � |p2| � m2
b, which is common in

practice. Different graphs for the same process involve different heavy quarks.
If we use MS renormalization, then, for the quarks that are heavy on a scale of p2, we

have logarithms ln(m2
j /μ

2), which can be removed by setting μ ∼ mj . For the quarks that
are light on a scale of p2, we have logarithms ln(−p2/μ2), which are removed by setting
μ2 ∼ |p2|. When the quark masses and |p2| cover a wide range, we have incompatible
conditions on μ.

The original way of using the decoupling theorem was to define a second theory in
which all fields are omitted whose masses are much larger than the external scales. This is
the low-energy effective theory (LEET) for a given set of heavy quarks. The renormalized
parameters of the LEET have numerical values that, in general, differ from those of the
full theory. These numerical values can be computed by comparing calculations of Green
functions in the two theories and requiring that they give equivalent results.

A LEET removes from calculations quarks whose masses are much larger than the
external scales. There can remain quarks with masses comparable to the external scales.
For example, in a calculation at Q ∼ 5 GeV, we would decouple the t quark, but none of
the others, so that the LEET has five quark fields. But we could not neglect the mass of the
b quark. Depending on the situation and required accuracy, we might be able to neglect the
charm quark mass or might need to retain its mass. One normally neglects all three light
quark masses in standard perturbative calculations.

For a full set of QCD calculations, we need to successively decouple the top, bottom
and charm quarks. This gives us a series of effective theories with three, four and five
quarks, with corresponding values of their MS couplings. Non-perturbative calculations at
low scales are normally done in the 3-flavor effective theory; these include the well-known
lattice Monte-Carlo simulations.

However, the method of LEETs has certain disadvantages, and in the next section I
present a better method. The primary disadvantage of a LEET is that it is limited in the
ultimate accuracy that it can achieve. For example, consider the 3-flavor effective theory.
We could obtain it by sequential decoupling of the three heavy quarks. Now, the decoupling
of the charm quark, to get the final 3-flavor LEET, assumes that it is much lighter than the
previously decoupled bottom quark; so we have the leading term in an expansion in powers
of mc/mb. But this ratio is only about 1/3, so the errors could be quite large relative to a
desirable accuracy. If instead we decouple both the charm and bottom quarks in one step,
then the matching conditions would include logarithmic dependence on mb/mc, which
would also reduce the accuracy.

A more general approach is to change the renormalization scheme to make decoupling
more manifest. The simplest of such schemes is momentum-space subtraction, in which the
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counterterms are chosen to set certain 1PI Green functions (and/or appropriate derivatives)
to zero at a particular point in momentum space. For the quark self-energy, we could choose
the renormalization point to be p2 = −μ2, obtaining

�
μν
MOM =

∑
j

−2iαsδαβTF

π
(−gμνp2 + pμpν)

×
∫ 1

0
dx x(1− x) ln

m2
j − p2x(1− x)

m2
j + μ2x(1− x)

. (3.79)

This scheme solves the difficulty of removing all large logarithms; these are eliminated
by setting μ2 of order |p2|, independently of the size of mj . Thus the scheme satisfies
manifest decoupling, which means that we obtain the low-energy effective theory simply
by deleting all graphs containing quarks much heavier than the external scale. The errors
in doing this are a power of p2 divided by the square of the mass of the lightest deleted
quark.

But the scheme has two technical disadvantages. One is that gauge invariance is not
automatically preserved. The defined momentum-space subtractions can only be applied
to a limited set of 1PI Green functions, sufficient to determine an independent set of
renormalization factors. The counterterms for the remaining 1PI divergent graphs are
determined by gauge invariance, and will generally not have an obvious momentum-space
definition. Indeed, a separate argument will be necessary to prove decoupling.

The second disadvantage is the practical one that the counterterms are mass dependent,
so that the renormalization-group equations for the coupling and mass will be compli-
cated and coupled. So the solution will be much more complicated and more difficult to
overview. Moreover, the calculations of counterterms become algorithmically much more
complicated: the exact values of off-shell Green functions are needed instead of just the pole
part at ε = 0. Calculation of on-shell Green functions is generally simpler than when they
are off-shell, and calculations of the pole parts are even easier. This was nicely illustrated
in our calculation of the quark-quark-gluon vertex graph in Sec. 3.3. This is an impor-
tant issue, since high-order calculations are extremely expensive in time and effort, which
rapidly increases with the order of the calculation. Moreover, for a given desired accuracy in
a final phenomenological result, it is generally necessary to compute RG coefficients to one
order higher than everything else, because the RG coefficients get integrated over a large
range of scales, thereby increasing the effect of an error due to uncalculated higher-order
corrections.

3.10 CWZ (ACOT) method for heavy quarks

A method that overcomes these complications was constructed by Collins, Wilczek, and
Zee (1978) (CWZ). This method is actually a composite scheme, composed of a sequence
of subschemes. The subschemes are parameterized by what is called the number of active
quarks, Nact. The active quarks are the Nact lightest, and the inactive are the remaining,
heavier quarks. Since the gluon has zero mass, it is always treated as active. For a 1PI graph
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containing only active quarks, normal MS counterterms are used. But zero-momentum
subtractions are used for any 1PI graph that has at least one internal line for an inactive
quark.

Normally, zero-momentum counterterms would have undesirable IR divergences in a
theory with massless fields, like the gluons in QCD. But the presence of at least one massive
line removes these divergences, to all orders of perturbation theory.

The CWZ scheme has the following advantages.

• Each subscheme automatically satisfies gauge invariance. That is, if the counterterms in
the Lagrangian are determined by some minimal set of 1PI Green functions, then the
remaining 1PI Green functions, with their counterterms determined by gauge invariance
of L also obey the CWZ renormalization condition. No extra finite counterterms are
needed.

• Manifest decoupling is satisfied in each scheme. In particular, the numerical value of the
coupling in the LEET with Nact flavors and pure MS renormalization is the same as in
the CWZ subscheme with Nact active quarks.

• The RG coefficients in each subscheme are mass independent and in fact exactly identical
to those in the theory obtained by deleting the inactive quarks.

• This apparently violates the theorem that we have scheme independence of the one- and
two-loop terms in β, and of the one-loop terms in the other RG coefficients. But the
theorem only applies if the counterterms are mass independent, which is not the case
here, when the number of active quarks changes.

• Normally, calculations of Green functions at zero external momentum are much easier
than with a general external momentum.

• No IR divergences are induced by the use of zero-momentum subtractions.

Since there is a sequence of subschemes, relations must be derived between the renormalized
parameters in the subschemes. This is quite straightforward, with some results listed below.
Moreover, there are no large logarithms in relating the subscheme with N1 active quarks
to the scheme with N1 + 1 active quarks, provided only that μ is of order the mass of the
single quark that is making the transition between active and inactive. We will see examples
later.

This scheme has become a standard, e.g., Bethke (2009). It extends quite simply to
the treatment of parton densities, etc., in which case it is called the ACOT scheme, as
expounded by Aivazis et al. (1994). It is the one I will use throughout this book, unless
otherwise specified.

An important misapprehension needs to be eliminated from the beginning. This is that
the MS scheme only applies to massless quarks. It is true that RG coefficients (and their
generalizations) do not depend on the quark masses. For this and other reasons, it is often
best to do many calculations with massless quarks. But there is no intrinsic reason for
it to be restricted to massless quarks. The misapprehension is coupled with some severe
conceptual misunderstandings concerning the factorization theorems of QCD, as we will
see in later chapters.
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Fig. 3.7. Range of scales for which particular numbers of active flavors are appropriate.
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Fig. 3.8. Possible choice of switching points between CWZ subschemes.

3.11 Relating CWZ subschemes with different numbers of active quarks

For a particular CWZ subscheme with a given number, N , of active quarks, the vacuum
polarization in (3.78) is replaced by

�
μν
CWZ =

−2iαs,NδαβTF

π
(−gμνp2 + pμpν)

∫ 1

0
dx x(1− x)

×
⎡
⎣ ∑

active j

ln
m2

j − p2x(1− x)

μ2
+

∑
inactive j

ln
m2

j − p2x(1− x)

m2
j

⎤
⎦ , (3.80)

where αs,N (μ) is the coupling appropriate to the subscheme. For a particular value of p2, to
eliminate large logarithms, we should (a) take μ2 of order |p2|, (b) make inactive all quarks
with m2

j � |p2|, and (c) make active all quarks with m2
j � |p2|. Obviously, for quarks

with m2
j ∼ |p2| we have a choice of whether to make them active or inactive, as illustrated

in Fig. 3.7. In the past, there was a tendency to make a definite switching point between
subschemes: quark j was considered active if μ > mj , and inactive otherwise. But this is
now seen as undesirable.

At one-loop, the relations between the subschemes are readily computed from the
vacuum polarization graphs, as we will now see. Let us define Z3,N to be the value of Z3

when the lightest N quarks are active, and similarly for Z̃ and the renormalized masses and
coupling. Let Z2,N,j be the field strength renormalization for quark j .

3.11.1 Field-strength renormalization

At one-loop, the self-energies of the first N quarks and the ghost have no inactive quark lines,
so MS counterterms apply in both of the subschemes we are relating. Similar considerations

https://doi.org/10.1017/9781009401845.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.003


Exercises 67

apply to the quarks which are inactive in both schemes.

Z̃N = Z̃N+1 +O(α2
s ), (3.81)

Z2,N,j = Z2,N+1,j +O(α2
s ), if j ≤ N or j ≥ N + 2, (3.82)

Zm,N,j = Zm,N+1,j +O(α2
s ), if j ≤ N or j ≥ N + 2. (3.83)

Here, we use a notation in which the quark label j equals its sequence number in order of
mass.

However, the counterterm for the gluon self-energy changes. From the earlier calcula-
tions we have

Z3,N = Z3,MS +
αsSε

3π
TF (nf −N )

∑
j>N

[
�(ε)

e−γEε

(
μ2

m2
j

)ε

− 1

ε

]
+O(α2

s ). (3.84)

Bare quantities, including fields, are the same in all schemes. We therefore obtain the
following relations between the fields and masses in the two subschemes:

AN = AN+1

[
1+ αs

6π
TF ln

μ2

m2
N+1

+O(α2
s )

]
, (3.85a)

ηN = ηN+1[1+O(α2
s )], (3.85b)

ψj,N = ψj,N+1[1+O(α2
s )], if j ≤ N or j ≥ N + 2, (3.85c)

mj,N = mj,N+1[1+O(α2
s )], if j ≤ N or j ≥ N + 2, (3.85d)

3.11.2 Coupling

Now consider the vertex for the ghost to a gluon. Its counterterm is pure MS in both
subschemes, and the counterterm is computed from g0 and the Z factors as proportional to
g0Z̃Z3,N − μεgN +O(g5). The bare coupling is the same in both subschemes, so it follows
that the renormalized coupling has the relation

αs,N = αs,N+1

[
1− αs

2π
TF ln

μ2

m2
N+1

+O(α2
s )

]
. (3.86)

Evidently, at the one-loop order, it is sufficient to compute the vacuum polarization.
Higher-order corrections to these relations have been made. For two-loop calculations,

see Bernreuther and Wetzel (1982); Bernreuther (1983a, b). For three-loop calculations,
see Chetyrkin, Kniehl, and Steinhauser (1997, 1998).

Exercises

3.1 Complete the calculation of the renormalization of QCD at one-loop order. The most
economical method is probably to calculate the gluon, quark and ghost self-energies
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in addition to the quark-gluon vertex.9 You will have thus verified for yourself the
asymptotic freedom of QCD.

3.2 Given the values of the renormalization-group coefficients, reconstruct formulae for
the MS renormalization factors for the coupling, and for the fields to at least two-
loop order. You may find the results useful if you ever do serious perturbative QCD
calculations.

(One method is to treat (3.41), etc., as differential equations determining renormal-
ization factors from the RG coefficients. Solve these order-by-order in powers of the
renormalized coupling. Then apply the boundary conditions that the Z factors and
g0/gμε go to unity at zero renormalized coupling.)

3.3 (**) There are competing definitions of the MS scheme. Show that these definitions
all agree in the values of renormalized Green functions at ε = 0, provided that Sε in
the different definitions agree to order ε.

3.4 Find the next term in the expansion (3.63) of the effective coupling. This will be
1/ ln3(μ2/�2) times a quadratic polynomial in ln ln(μ2/�2). To check your answer,
see (9.5) of Amsler et al. (2008), but beware of different conventions for defining the
βj coefficients.

9 The calculation of the three- and four-point gluon gluon functions is substantially more complicated, and should only
be attempted if you have much time and wish to verify the general theorems on the renormalizability of non-abelian
gauge theories. It is also possible to work with the ghost-gluon coupling, although this is a little more complicated,
because it has a derivative coupling.
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