Peter Scherk
(received May 13, 1958)

Let x, y denote real column vectors with n elements. Let A be a regular symmetric real $n \times n$ matrix. Dashes indicate transposition.

If x is fixed, $x^{\prime} A x>0$, the discriminant of A at x is the quadratic form
$y^{\prime} S y$ where $S=S(x)=x^{\prime} A x \cdot A-A x x^{\prime} A$.
In Can. Math. Bull. 1, pp.175-179, Dr. Schwerdtfeger proved the equivalence of the following properties of A :
(i) A is of the congruence type $[+,-, \ldots,-]$.
(ii) y^{\prime} Sy $\leqslant 0$ for all y, equality holding if and only if y is a multiple of x. His note is of particular interest because he also discusses the eigen-values of S. If only the quoted result is aimed at, the following procedure may be shorter.

Following Dr. Schwerdtfeger, we transform A into its congruence normal form J. If the image of the fixed vector x is again denoted by x, we have
(1) $x^{\prime} J x=\sum_{1}^{p} x_{k}^{2}-\sum_{p+1}^{n} x_{k}^{2}>0$;
here $1 \leqslant p \leqslant n$.
Any vector y permits a unique decomposition
(2) $y=z+\lambda x \quad$ where $x^{\prime} J z=0$.

On account of $S x=0$, this leads to $S y=S z+\lambda S x=S z$ and
$y^{\prime} S y=z^{\prime} S z=x^{\prime} J x \cdot z ' J z$
If A is positive definite, we have $p=n$ and $z ' J z>0$. By (1) and (3), S will be non-negative definite.

Now let $p=1$. Then by (1) and (2)

Can. Math. Bull., vol. 1, no. 3, Sept. 1958

$$
x_{1}^{2}>\sum_{2}^{n} x_{k}^{2} \quad, \quad x_{1} z_{1}=\sum_{2}^{n} x_{k} z_{k} .
$$

Hence bySchwarz's inequality

$$
\begin{aligned}
& x_{1}^{2} \cdot z^{\prime} J z= \\
& x_{1}^{2}\left(z_{1}^{2}-\sum_{2}^{n} z_{k}^{2}\right)=\left(\sum_{2}^{n} x_{k} z_{k}\right)^{2}-x_{1}^{2} \cdot \sum_{2}^{n} z_{k}^{2} \\
& \leqslant\left(\sum_{2}^{n} \quad x_{k} z_{k}\right)^{2}-\left(\sum_{2}^{k} x_{k}^{2}\right) \cdot\left(\sum_{2}^{k} z_{k}^{2}\right) \leq 0
\end{aligned}
$$

or $z^{\prime} J z \leqslant 0$, equality holding if and only if $z=0$. Thus (3) shows that (i) implies (ii).

$$
\text { If } p=n-1,(1) \text { and (2) read }
$$

$$
\begin{equation*}
x_{n}^{2}-\sum_{1}^{n-1} x_{k}^{2}<0, x_{n} z_{n}=\sum_{1}^{n-1} x_{k} z_{k} \tag{4}
\end{equation*}
$$

Any nontrivial solution z of $\sum_{1}^{n-1} x_{k} z_{k}=0, z_{n}=0$ will satisfy

$$
z^{\prime} J z=\sum_{1}^{n-1} z_{k}^{2}-z_{n}^{2}>0
$$

On the other hand,

$$
z^{\prime}=\left(x_{n} x_{1}, \ldots, x_{n} x_{n-1}, \sum_{1}^{n-1} x_{k}^{2}\right)
$$

satisfies (4) and

$$
z^{\prime} J z=x_{n}^{2} \sum_{1}^{n-1} x_{k}^{2}-\left(\sum_{1}^{n-1} x_{k}^{2}\right)^{2}=\sum_{1}^{n-1} x_{k}^{2}\left(x_{n}^{2}-\sum_{1}^{n-1} x_{k}^{2}\right)<0,
$$

Finally, let $l<p<n-1$. Then there are numbers

$$
\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{p}} ; \mathrm{t}_{\mathrm{p}+1}, \ldots, \mathrm{t}_{\mathrm{n}}
$$

satisfying

$$
\sum_{1}^{p} x_{i} t_{i}=0, \sum_{1}^{p} t_{i}^{2}>0 ; \sum_{p+1}^{n} x_{i} t_{i}=0, \sum_{p+1}^{n} t_{i}^{2}>0 .
$$

put

$$
z^{\prime}=\left(t_{1}, \ldots, t_{p}, \quad \rho t_{p+1}, \ldots, \quad \rho t_{n}\right)
$$

Thus x'Jz=0: The function

$$
f(\rho)=z^{\prime} J z=\sum_{1}^{p} t_{i}^{2}-\rho^{2} \sum_{p+1}^{n} t_{i}^{2}
$$

is positive for $\rho=0$, negative for large ρ. Thus (ii) does not hold if (i) if not satisfied.
University of Saskatchewan

