ELEMENTARY FACTORIZATION IN π-REGULAR RINGS

ARTHUR STEGER*

1. Introduction. This paper extends the results of A. L. Foster (1) on elementary factorization in Boolean-like rings to commutative π -regular rings. After proving some preliminary lemmas we proceed to the partition of the set of non-units of a π -regular ring into irreducible and composite elements. Finally, we prove a number of theorems concerning factorization rings, weakly unique factorization rings, principal ideal rings, etc. The principal result is that a π -regular ring is a weakly unique factorization ring if and only if it is a principal ideal ring.

In this paper, ring will always mean a commutative ring with identity. Following van der Waerden (5), we say that two elements b, c of a ring R are associates provided there exists a unit $u \in R$ such that b = uc. In this event, we write $b \sim c$.

2. Preliminary lemmas. In each of the lemmas of this section, R denotes a ring.

LEMMA 2.1. Let b, $e \in R$ with $e^2 = e$. If bR = eR, then $b \sim e$.

Proof. Since e is idempotent, b = be and b = e(1 - e + b). Let e = bx. It is easily verified that (1 - e + b)(1 - e + ex) = 1. Hence, $b \sim e$.

Lemma 2.2. Let $b \in R$ and let n be a natural number. Then the following are equivalent:

- I. $b^n = b^n x b^n$ for some $x \in R$.
- II. $b \sim e + \beta$ for some $e, \beta \in R$ with $e^2 = e$ and $\beta^n = 0$.
- III. $b^n \sim f$ for some idempotent $f \in R$.

Proof. I \Rightarrow II. Let $e = xb^n$. Then $e = e^2 = bexb^{n-1}$ and $e \in beR$. Thus, eR = beR and, by Lemma 2.1, $e \sim be$. Now let be = ue where u is a unit in R, and let $\gamma = b(1 - e)$. Then $\gamma^n = 0$ and $b = be + \gamma$. Hence,

$$b = ue + \gamma = u(e + u^{-1}\gamma).$$

Therefore, $b \sim e + \beta$ where $\beta = u^{-1}\gamma$ and $\beta^n = 0$.

II \Rightarrow III. $(e + \beta)^n = e(1 + \delta)$ where $\delta = n\beta + \ldots + n\beta^{n-1}$. Hence, δ is nilpotent and $1 + \delta$ is a unit. Therefore, $b^n \sim (e + \beta)^n \sim e$.

Received November 30, 1964. Research supported by the National Science Foundation, Grant GP-1816.

III \Rightarrow I. Let $f = vb^n$ with v a unit in R. Therefore, $(vb^n)^2 = vb^n$ and $b^n = b^n vb^n$.

Lemma 2.3. Let b, $e \in R$ with $e^2 = e$. If $b^n \sim e$, then, for every $m \geqslant n$, $b^m \sim e$.

Proof. Let k be a natural number such that $kn \ge m$. Hence.

$$eR = b^{kn}R \subset b^mR \subset b^nR = eR$$
.

Therefore, $b^m R = eR$ and $b^m \sim e$.

It follows, from the proof of Lemma 2.2 and the fact that associated idempotents are equal, that if R is a ring and $b \in R$, then there is at most one idempotent $e \in R$ such that, for some nilpotent $\beta \in R$, $b \sim e + \beta$. Further, by Lemma 2.3, e is the unique idempotent associated with all sufficiently high powers of b.

3. Irreducible and composite elements. N. H. McCoy (3) defined a ring S to be π -regular provided that for every $b \in S$ there is an $x \in S$ and a natural number n such that $b^n = b^n x b^n$. Lemma 2.2 provides two alternative characterizations of π -regular rings. Included among π -regular rings are regular rings with Boolean rings and p-rings as special cases; rings with descending chain condition on ideals (in particular, finite rings); and Boolean-like rings. The following facts are well known and easily verified. (1) The homomorphic image (in particular, a direct summand) of a π -regular ring is π -regular. (2) A finite direct sum of π -regular rings is π -regular. This need not be the case for infinite direct sums. (3) A ring is both an integral domain and π -regular if and only if it is a field. (4) In a π -regular ring any prime ideal (other than the entire ring) is a maximal ideal.

For the remainder of this paper, S will always denote a π -regular ring. In addition, the following conventions will be observed. Letters followed by an asterisk, b^* , c^* , d^* , ..., will denote idempotents; Greek letters, β , γ , δ , ..., will denote nilpotents; and, lastly, if $b \in S$, the unique idempotent associated with all sufficiently high powers of b will be denoted by b^* .

LEMMA 3.1. Let b, $c \in S$. Then $(bc)^* = b^*c^*$.

Proof. By Lemma 2.3, for some n, $b^n \sim b^*$ and $c^n \sim c^*$. Hence $(bc)^n \sim b^*c^*$.

LEMMA 3.2. Let $u \in S$. Then u is a unit if and only if $u^* = 1$.

Proof. If $u^* = 1$, then $u^n \sim 1$ for some n and u is a unit. Conversely, if u is a unit, then $u \sim 1$, $u^* \sim 1$, and $u^* = 1$.

LEMMA 3.3. Let b, $c \in S$. If $b \sim c$, then $b^* = c^*$.

Proof. Let b = uc with u a unit. Then $b^* = u^*c^* = c^*$.

LEMMA 3.4. Let b^* , $\beta \in S$. Then $b^* + \beta \sim b^*$ if and only if $b^*\beta = \beta$.

Proof. If $b^*\beta = \beta$, then $b^* + \beta = b^* + b^*\beta = b^*(1 + \beta)$. Conversely, if $b^* + \beta \sim b^*$, let $b^* + \beta = ub^*$. Multiplying by $1 - b^*$, we obtain

$$(1 - b^*)\beta = 0.$$

Thus, $b^*\beta = \beta$.

DEFINITION 3.1. Let R be a ring, $b \in R$, and b not be a unit. Then, b is irreducible provided its only divisors are associates and units; b is composite provided there are elements s, $t \in R$ such that $s \sim b$, $t \sim b$, and b = st.

It is clear that a non-unit cannot be both irreducible and composite. It may, however, be neither. For example, in $Z \dotplus Z$, Z = integers, the non-unit (1,0) is neither irreducible nor composite. The definitions above are equivalent to the classical ones for integral domains where the cancellation law provides a trivial proof that a non-zero non-unit is either irreducible or composite. The next theorem will characterize the irreducible and composite elements of a π -regular ring. It is then an immediate consequence that in a π -regular ring every non-unit (including zero) is either irreducible or composite. In the partition of the non-units of a π -regular ring into irreducible and composite elements we may, by Lemmas 2.2 and 3.2, restrict our attention to elements of the form $b^* + \beta$ with $b^* \neq 1$. Recall, finally, that if R is a ring and J is the set of idempotents in R, then $\langle J, \cap, ' \rangle$ is a Boolean algebra where $a \cap b = ab$ and a' = 1 - a (2). An element of J is said to be a co-atom (= prime) if its only divisors in J are itself and 1.

THEOREM 3.1. Let $b^* + \beta \in S$ with $b^* \neq 1$. Then (1) $b^* + \beta$ is irreducible if b^* is a co-atom, and either $b^*\eta = \eta$ for every nilpotent $\eta \in S$ or $(1 - b^*)\beta$ cannot be expressed as the product of two nilpotents; and (2) $b^* + \beta$ is composite if either b^* is not a co-atom, or $b^*\eta \neq \eta$ for some nilpotent $\eta \in S$ and $(1 - b^*)\beta$ can be expressed as the product of two nilpotents.

Proof. (1) Suppose $b^*\eta = \eta$ for every nilpotent $\eta \in S$. Let $c^* + \gamma$ be a non-unit divisor of $b^* + \beta$. Since b^* is a co-atom, by Lemmas 3.1 and 3.2, $c^* = b^*$. By Lemma 3.4, $c^* + \gamma \sim b^* \sim b^* + \beta$. On the other hand, assume that $(1 - b^*)\beta$ cannot be expressed as the product of two nilpotents, and let

$$b^* + \beta = (c^* + \gamma)(d^* + \delta)$$

where $c^* + \gamma$ and $d^* + \delta$ are non-units. Multiplying by $1 - b^*$, we see that

$$(1 - b^*)\beta = [(1 - b^*)\gamma][(1 - b^*)\delta],$$

a contradiction. Hence, $b^* + \beta$ is irreducible.

(2) Suppose b^* is not a co-atom. Then there is c^* such that $c^* \neq 1$, $c^* \neq b^*$, and $b^* = b^*c^*$. One verifies that

$$b^* + \beta = [c^* + (1 - c^* + b^*)\beta][(1 - c^* + b^*) + (c^* - b^*)\beta]$$

and that $1 - c^* + b^*$ is idempotent. Further, $1 - c^* + b^* \neq b^*$ since $c^* \neq 1$. By Lemma 3.3, $b^* + \beta$ is reducible.

Finally, assume that $b^*\eta \neq \eta$ for some $\eta \in S$ and that $(1-b^*)\beta$ can be expressed as the product of two nilpotents. There are two cases: $b^*\beta = \beta$ and $b^*\beta \neq \beta$. If $b^*\beta = \beta$, let $\gamma = (1-b^*)\eta$. Then $\gamma \neq 0$ and $b^*\gamma = 0$. Let n = the least natural number such that $\gamma^n = 0$. Since $\gamma \neq 0$, n > 1. Clearly,

$$b^* = (b^* + \gamma)(b^* + \gamma^{n-1}).$$

Assume that $b^* \sim b^* + \gamma$ and let $ub^* = b^* + \gamma$. Multiplying by $1 - b^*$, we see that $\gamma = 0$, a contradiction. Similarly, $b^* \sim b^* + \gamma^{n-1}$. Thus, b^* is reducible. The assumption that $b^*\beta = \beta$ implies that $b^* + \beta \sim b^*$. Thus, $b^* + \beta$ is reducible.

If $b^*\beta \neq \beta$, let $(1 - b^*)\beta = \rho \sigma$. One verifies that

$$b^* + \beta = [b^* + (1 - b^*)\rho][b^* + b^*\beta + (1 - b^*)\sigma].$$

Assume that $b^* + \beta \sim b^* + (1 - b^*)\rho$ and let $b^* + (1 - b)^*\rho = u(b^* + \beta)$. Multiplying by $1 - b^*$, we see that

$$(1-b^*)\rho = u(1-b^*)\beta = u(1-b^*)\rho\sigma.$$

Hence,

$$[(1-b^*)\rho][1-u\sigma] = 0.$$

Since $1 - u\sigma$ is a unit, $(1 - b^*)\rho = 0$. Therefore $(1 - b^*)\beta = 0$ and $b^*\beta = \beta$, a contradiction. Similarly,

$$b^* + \beta \sim b^* + b^*\beta + (1 - b^*)\sigma$$
.

Thus, $b^* + \beta$ is reducible.

4. Factorization in π -regular rings.

LEMMA 4.1. Let b, $c \in S$ with bS = cS. Then $b \sim c$.

Proof. Let b = rc and c = sb. Then, for every natural number n, $b = r^n s^n b$ and $c = r^n s^{n+1}b$. Therefore, $b \sim r^* s^* b$, $c \sim r^* s^* b$, and $b \sim c$.

Recall that a non-unit p of a ring R is said to be a prime provided pR is a prime ideal in R. For a π -regular ring, it follows from Lemma 4.1 that a composite cannot be a prime; and since in a π -regular ring a non-unit is either irreducible or composite it further follows that a prime is necessarily irreducible. The important special case in which, conversely, each irreducible element is necessarily a prime will be discussed later in this section.

Lemma 4.2. Let p be a prime in S and let $p^m \mid p^n f$ where m > n and $p \nmid f$. Then $p^m \sim p^n$.

Proof. Since each prime ideal in S is maximal, for some $x, y \in S$, px + fy = 1. Therefore, $p^{n+1}x + p^nf = p^n$. Since $n + 1 \le m$, $p^{n+1} \mid p^nf$. Hence $p^{n+1} \mid p^n$ and $p^{n+1} \sim p^n$. The result follows by induction.

DEFINITION 4.1. A ring R is said to be a factorization ring if each non-unit of R can be expressed as the product of irreducible elements.

Theorem 4.1. If S satisfies the ascending chain condition, then S is a factorization ring.

We omit the proof, which can be patterned after the proof of the corresponding theorem for integral domains. The only properties of a π -regular ring that are needed are: (1) a non-unit is either irreducible or composite and (2) two elements generating the same principal ideal are associates.

Theorem 4.2. If S is a factorization ring, then S has only a finite number of idempotents.

Proof. Let
$$0 = pq \dots r$$
 where p, q, \dots, r are irreducible. Then $0 = p^*q^* \dots r^*$

where p^* , q^* , ..., r^* are co-atoms. The conclusion follows from a well-known theorem of Boolean algebra.

The following example shows that the converse of Theorem 4.2 is false. Let $R = K[x_1, x_2, \ldots, x_n, \ldots]$ where K is a field. Let

$$A = (x_1^2, x_1 - x_2^2, \dots, x_n - x_{n+1}^2, \dots).$$

Then R/A is a π -regular ring with 0 and 1 as its only idempotents but R/A is not a factorization ring.

In all that follows, exponents are assumed to be non-negative integers.

DEFINITION 4.2. Let R be a ring, $b \in R$, and suppose that

$$b \sim p_1^{i_1} p_2^{i_2} \dots p_n^{i_n}$$

with each p_i irreducible and $p_i \sim p_j$ if $i \neq j$. Then $p_1^{i_1}p_2^{i_2} \dots p_n^{i_n}$ is said to be an irredundant factorization of b if

$$j_1 \leqslant i_1, j_2 \leqslant i_2, \dots, j_n \leqslant i_n$$
, and $\sum_{1}^{n} j_k < \sum_{1}^{n} i_k$

implies $b \sim p_1^{j_1} p_2^{j_2} \dots p_n^{j_n}$

DEFINITION 4.3. R is a weakly unique factorization ring provided that R is a factorization ring and that if

$$p_1^{i_1}p_2^{i_2}\dots p_n^{i_n}$$
 and $p_1^{j_1}p_2^{j_2}\dots p_n^{j_n}$

are irredundant factorizations of some $b \in R$, then $i_1 = j_1, i_2 = j_2, \ldots, i_n = j_n$.

We note, as is customary, that an irreducible factor with zero exponent may be added or discarded as is convenient.

THEOREM 4.3. Let S be a factorization ring. Then the following are equivalent:

- I. Each irreducible element of S is a prime.
- II. S has weakly unique factorization.
- III. For every $b^* \in S$, if $b^* + \beta$ and $b^* + \gamma$ are irreducible, then $b^* + \beta \sim b^* + \gamma$.

Proof. I \Rightarrow II. Let $b \in S$ and let

$$p_1^{i_1}p_2^{i_2}\dots p_n^{i_n}$$
 and $p_1^{j_1}p_2^{j_2}\dots p_n^{j_n}$

be two irredundant factorizations of b. Suppose $i_1 > j_1$. By Lemma 4.2, $p_1^{i_1} \sim p_1^{j_1}$. Hence, $b \sim p_1^{j_1} p_2^{i_2} \ldots p_n^{i_n}$, a contradiction. Therefore, $i_1 \leq j_1$ and similarly, $j_1 \leq i_1$. In the same way $i_s = j_s$ for $s = 1, 2, \ldots, n$.

II \Rightarrow III. Let $b^* + \beta$ and $b^* + \gamma$ be irreducible. For some natural number $a, b^* \sim (b^* + \beta)^n \sim (b^* + \gamma)^n$. By assumption II, $b^* + \beta \sim b^* + \gamma$.

III \Rightarrow I. Let p be irreducible and let $p \mid bc$. Also, let $b = p_1 p_2 \dots p_m$ and $c = q_1 q_2 \dots q_n$ be factorizations of b and c into the product of irreducible elements. Then, $p^* \mid p_1^* p_2^* \dots p_m^* q_1^* q_2^* \dots q_n^*$ with p^* , p_i^* , q_j^* necessarily co-atoms. Therefore $p^* = p_s^*$ for some s or $p^* = q_t^*$ for some t. Say $p^* = p_1^*$. By hypothesis, $p \sim p_1$. Hence $p \mid b$ and p is a prime.

Theorem 4.4. If S is a weakly unique factorization ring, then each pair of elements in S has a greatest common divisor (necessarily unique to within associates by Lemma 4.1).

Proof. Let $b, c \in S$. If either b or c is a unit, then it is clear that b and c have a greatest common divisor. Therefore, assume that b and c are non-units and let $p_1^{i_1}p_2^{i_2}\ldots p_n^{i_n}$ and $p_1^{j_1}p_2^{j_2}\ldots p_n^{j_n}$ be irredundant factorizations of b and c respectively. Let $m_s = \min\{i_s, j_s\}$ for $s = 1, 2, \ldots, n$. Clearly, if $d = p_1^{m_1}p_2^{m_2}\ldots p_n^{m_n}$, then d is a common divisor of b and c. Now let f be a common divisor of b and c and let d be an irreducible divisor of d. By Theorem 4.3, $d \sim p_d$ for some d, d is d in Therefore, we may let d in d is an irredundant factorization of d. By Lemma 4.2, d in d in d is an irredundant factorization of d. By Lemma 4.2, d in d in d is an irredundant factorization of d. By Lemma 4.2, d in d is an irredundant factorization of d. By Lemma 4.2, d in d is an irredundant factorization of d in the same way, d in d in d is a greatest common divisor for d and d.

Unlike the situation with integral domains, the converse of Theorem 4.4 is false as the following example shows. Let R = K[x, y] where K is a field and let $A = (x^2, xy, y^2)$. Then R/A is a π -regular factorization ring in which each pair of elements has a greatest common divisor but R/A does not have weakly unique factorization.

Lemma 4.3. Let S be a weakly unique factorization ring and let $S = S_1 + S_2$. Then S_1 is a π -regular weakly unique factorization ring.

Proof. That S_1 is π -regular is clear. Let $b \in S_1$ with b a non-unit. Since S is a factorization ring, let $p_1 p_2 \ldots p_n$ be a factorization of b into irreducible elements in S. If b is the natural homomorphism of S onto S_1 , then

$$b = bh = (p_1 h)(p_2 h) \dots (p_n h)$$

where $p_i h$ is either a unit in S_1 or an irreducible element in S_1 for

$$i = 1, 2, \ldots, n$$
.

Hence, S_1 is a factorization ring. Now let $q_1 \in S_1$ with q_1 irreducible in S_1 and let e_2 be the identity in S_2 . Then $q_1 + e_2$ is irreducible in S and, by Theorem 4.3, $(q_1 + e_2)S$ is a prime ideal in S. Since $(q_1 + e_2)S \supseteq S_2$ (= kernel h) and $(q_1 + e_2)Sh = q_1S_1$, it follows that q_1 is a prime in S_1 . Hence, S_1 has weakly unique factorization.

LEMMA 4.4. Let S be a weakly unique factorization ring. If J is the set of idempotents in $S = \{0, 1\}$, then S is a principal ideal ring.

Proof. Since 0 is the only co-atom in J, by Theorem 4.3, there is only one irreducible element p (to within associates) in S. Hence, if $b \in S$, then $b \sim p^k$ for some k. Let A be an ideal in S and let n be the smallest non-negative integer such that $p^n \in A$. Clearly, $A = p^n S$.

Theorem 4.5. S is a weakly unique factorization ring if and only if S is a principal ideal ring.

Proof. If S is a principal ideal ring, then S satisfies the ascending chain condition for ideals. Also, each irreducible element in S is a prime. By Theorems 4.1 and 4.3, S is a weakly unique factorization ring.

Conversely, let S have weakly unique factorization. By Theorem 4.2, there are only a finite number of idempotents in S, and we may let

$$S = S_1 \dotplus S_2 \dotplus \ldots \dotplus S_n$$

where S_i has only two idempotents for i = 1, 2, ..., n. By Lemmas 4.3 and 4.4, S_i is a principal ideal ring for i = 1, 2, ..., n. Hence, S is a principal ideal ring.

We conclude with a structure theorem that is an easy consequence of a structure theorem of G. Pollak **(4)**. The proof is omitted.

Theorem 4.6. R is a π -regular principal ideal ring if and only if R is the direct sum of a finite number of completely primary rings in which the unique prime ideal is principal.

REFERENCES

- 1. A. L. Foster, The theory of Boolean-like rings, Trans. Amer. Math. Soc., 59 (1946), 166-187.
- The idempotent elements of a commutative ring form a Boolean algebra, Duke Math.J., 12 (1945), 143–152.
- 3. N. H. McCoy, Generalized regular rings, Bull. Amer. Math. Soc., 45 (1939), 175-178.
- G. Pollak, Ueber die Struktur kommutativer Hauptidealringe, Acta Scient. Math., 22 (1961), 62-74.
- 5. B. I. van der Waerden, Moderne Algebra, 2nd ed., vol. I (New York, 1940), p. 63.

University of New Mexico, Albuquerque, New Mexico