ELEMENTARY FACTORIZATION IN »-REGULAR RINGS
ARTHUR STEGER*

1. Introduction. This paper extends the results of A. L. Foster (1) on
elementary factorization in Boolean-like rings to commutative w-regular rings.
After proving some preliminary lemmas we proceed to the partition of the
set of non-units of a w-regular ring into irreducible and composite elements.
Finally, we prove a number of theorems concerning factorization rings, weakly
unique factorization rings, principal ideal rings, etc. The principal result is
that a w-regular ring is a weakly unique factorization ring if and only if it is
a principal ideal ring.

In this paper, ring will always mean a commutative ring with identity.
Following van der Waerden (5), we say that two elements b, ¢ of a ring R
are associates provided there exists a unit # € R such that & = uc. In this
event, we write b ~ c.

2. Preliminary lemmmas. In each of the lemmas of this section, R denotes
a ring.

LEMMA 2.1. Let b, ¢ € R with e* = e. If bR = ¢eR, then b ~ e.

Proof. Since e is idempotent, b = be and b = e(1 — e + b). Let e = bx. It
is easily verified that (1 — e 4 8)(1 — e + ex) = 1. Hence, b ~ e.

LEMMA 2.2. Let b € R and let n be a natural number. Then the following are
equivalent.
I. o* = b"xb™ for some x € R.
II. b ~e + B for somee, B € R with e* = ¢ and g* = 0.
II1. 8" ~ f for some idempotent f € R.

Proof. 1 =11. Let e = xb". Then e = e? = bexd"! and e € beR. Thus,
eR = beR and, by Lemma 2.1, ¢ ~ be. Now let be = ue where « is a unit in
R,and let v = (1 — e). Then v* = 0 and b = be + «v. Hence,

b=ue+v=ule+ uly).

Therefore, b ~ ¢ + 8 where 8 = u~'y and g* = 0.
II=111. (¢ + B)" = e(l + 6) where 6§ = n8 + ...+ n8*1. Hence, § is
nilpotent and 1 + & is a unit. Therefore, 8" ~ (e 4+ B)" ~ e.
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III = 1. Let f =" with v a unit in R. Therefore, (¥8")? = vb* and
o = bb.

LeEMMA 2.3. Let b, e € R with e* = e. If b" ~ ¢, then, for every m > n,
"~ e.

Proof. Let k be a natural number such that kn > m. Hence,
eR = "R C "R C "R = eR.
Therefore, b™R = eR and 0™ ~ e.

It follows, from the proof of Lemma 2.2 and the fact that associated
idempotents are equal, that if R is a ring and b € R, then there is at most
one idempotent ¢ € R such that, for some nilpotent 8 € R, b ~ ¢ + 8. Further,
by Lemma 2.3, e is the unique idempotent associated with all sufficiently high
powers of b.

3. Irreducible and composite elements. N. H. McCoy (3) defined a ring
S to be w-regular provided that for every & € S thereis an x € Sand a natural
number 7z such that " = b"xb". Lemma 2.2 provides two alternative charac-
terizations of w-regular rings. Included among w-regular rings are regular rings
with Boolean rings and p-rings as special cases; rings with descending chain
condition on ideals (in particular, finite rings); and Boolean-like rings. The
following facts are well known and easily verified. (1) The homomorphic
image (in particular, a direct summand) of a w-regular ring is m-regular. (2) A
finite direct sum of w-regular rings is m-regular. This need not be the case for
infinite direct sums. (3) A ring is both an integral domain and =-regular if and
only if it is a field. (4) In a w-regular ring any prime ideal (other than the
entire ring) is a maximal ideal.

For the remainder of this paper, S will always denote a w-regular ring. In
addition, the following conventions will be observed. Letters followed by an
asterisk, b*, ¢*, d*, ..., will denote idempotents; Greek letters, 8, v, 6, ...,
will denote nilpotents; and, lastly, if & € S, the unique idempotent associated
with all sufficiently high powers of & will be denoted by &*.

LeEmMMA 3.1. Let b, ¢ € S. Then (bc)* = b*c*.
Proof. By Lemma 2.3, for some #, b" ~ b* and ¢* ~ c¢*. Hence (bc)" ~ b*c*.
LeMMA 3.2. Let u € S. Then u is a unit if and only if u* = 1.

Proof. If u* =1, then 4" ~ 1 for some »# and » is a unit. Conversely, if «
is a unit, then u ~ 1, u* ~ 1, and u* = 1.

LEMMA 3.3. Let b, ¢ € S. If b ~ ¢, then b* = c*.
Proof. Let b = uc with « a unit. Then §* = u*c* = c*.

LemMA 3.4. Let b*, 8 € S. Then b* 4+ 8 ~ b* if and only if b*8 = B.
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Proof. 1 b*8 = B, then b* + B = b* 4+ b*8 = b*(1 4+ B). Conversely, if
b* + 8~ b*, let b* + B = ub*. Multiplying by 1 — b*, we obtain

1 =08 =0.
Thus, b*8 = 5.

DEFINITION 3.1. Let R be a ring, b € R, and b not be a unit. Then, b is
irreducible provided its only divisors are associates and units, b is composite
provided there are elements s, t ¢ R such thats ~ b, t ~ b, and b = st.

It is clear that a non-unit cannot be both irreducible and composite. It
may, however, be neither. For example, in Z + Z, Z = integers, the non-unit
(1, 0) is neither irreducible nor composite. The definitions above are equivalent
to the classical ones for integral domains where the cancellation law provides
a trivial proof that a non-zero non-unit is either irreducible or composite. The
next theorem will characterize the irreducible and composite elements of a
w-regular ring. It is then an immediate consequence that in a w-regular ring
every non-unit (including zero) is either irreducible or composite. In the
partition of the non-units of a w-regular ring into irreducible and composite
elements we may, by Lemmas 2.2 and 3.2, restrict our attention to elements
of the form &* + B with #* 1. Recall, finally, that if R is a ring and J is
the set of idempotents in R, then (J,M,’) is a Boolean algebra where
aMb=uaband ¢/ =1 —a (2). An element of J is said to be a co-atom
(= prime) if its only divisors in J are itself and 1.

THEOREM 3.1. Let b* + B € S with b* = 1. Then (1) b* + B is irreducible
if b* is a co-atom, and either b*n = vy for every nilpotent n € S or (1 — b*)8
cannot be expressed as the product of two nilpotents; and (2) b* + B is composite
if either b* is not a co-atom, or b*y # n for some nilpotent n € S and (1 — b*)B
can be expressed as the product of two nilpotents.

Proof. (1) Suppose b*y = 5 for every nilpotent 5 € S. Let ¢* + v be a
non-unit divisor of b* + B. Since b* is a co-atom, by Lemmas 3.1 and 3.2,
¢* = b*. By Lemma 3.4, ¢* + v ~ b* ~ b* + 3. On the other hand, assume
that (1 — #*)B8 cannot be expressed as the product of two nilpotents, and let

b+ B = (c* + v)(@* +9)
where ¢* + v and d* + § are non-units. Multiplying by 1 — 5*, we see that
(I =8%B =[A = p*)v][A — %8,

a contradiction. Hence, #* + B is irreducible.
(2) Suppose b* is not a co-atom. Then there is ¢* such that ¢* £ 1, ¢* = b*,
and b* = b*c*. One verifies that

Pt = [t 4 (1 =+ 0B = ¢+ %) + (¢F — 5%)8]
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and that 1 — ¢* + b* is idempotent. Further, 1 — ¢* + 5* 5 b* since ¢* # 1.
By Lemma 3.3, * 4 8 is reducible.

Finally, assume that b*p £ 5 for some 5 € S and that (1 — 4*)8 can be
expressed as the product of two nilpotents. There are two cases: b*8 = 8 and
b*B = B. If b*8 = B,lety = (1 — b*)y. Then v £ 0 and b*y = 0. Let # = the
least natural number such that 4" = 0. Since v # 0, n > 1. Clearly,

b* = (0% + v) (* + " .
Assume that d* ~ b* 4+ v and let ud* = b* 4+ . Multiplying by 1 — #*, we
see that v = 0, a contradiction. Similarly, * ~ b* + y*~1. Thus, b* is re-
ducible. The assumption that *8 = B implies that 8* 4+ 8 ~ b*. Thus, o* + 8

is reducible.
If 8*8 = B, let (1 — 5*)3 = po. One verifies that

o* + 8 = [6* + (1 — b*)p][6* + %8 + (1 — b¥)a].
Assume that o* 4+ g~ b* + (1 — d*)p and let »* + (1 — b)*p = u(b* + B).
Multiplying by 1 — &%, we see that
A =0"p =ul — )8 =u(l — b*)po.
Hence,
[(1 — 8%)p][l — uc] = 0.
Since 1 — uo is a unit, (1 — #*)p = 0. Therefore (1 — *)8 = 0 and 6*8 = 3,

a contradiction. Similarly,
b* 4+ B b* 4+ 0*8 + (1 — b%)o.
Thus, b* 4+ B is reducible.

4. Factorization in 7-regular rings.
LemMmaA 4.1, Let b, ¢ € S with bS = ¢S. Then b ~ c.

Proof. Let b = rc and ¢ = sb. Then, for every natural number #n, b = r*s"b
and ¢ = rs"*t1h. Therefore, b ~ r*s*b, ¢ ~ r*s*b, and b ~ c.

Recall that a non-unit p of a ring R is said to be a prime provided pR is a
prime ideal in R. For a w-regular ring, it follows from Lemma 4.1 that a
composite cannot be a prime; and since in a w-regular ring a non-unit is either
irreducible or composite it further follows that a prime is necessarily irreducible.
The important special case in which, conversely, each irreducible element is
necessarily a prime will be discussed later in this section.

LeMMA 4.2, Let p be a prime in S and let p™ | p*f where m > n and p 1 f.
Then p™ ~ p".

Proof. Since each prime ideal in S is maximal, for some x,y € S, px + fy = 1.
Therefore, p**+ix 4 p"f = p™ Since n + 1 < m, p™t1 | p*f. Hence p"+1 | p* and
p"tt ~ p*. The result follows by induction.
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DEFINITION 4.1. 4 ring R s said to be a factorization ring if each non-unit
of R can be expressed as the product of irreducible elements.

THEOREM 4.1. If S satisfies the ascending chain condition, then S is a factoriza-
tion ring.

We omit the proof, which can be patterned after the proof of the correspond-
ing theorem for integral domains. The only properties of a w-regular ring that
are needed are: (1) a non-unit is either irreducible or composite and (2) two
elements generating the same principal ideal are associates.

THEOREM 4.2. If S is a factorization ring, then S has only a finite number of

idempotents.
Proof. Let 0 = pg...r where p, q, ..., r are irreducible. Then
0 = p*g*...r*
where p*, ¢*, ..., r* are co-atoms. The conclusion follows from a well-known

theorem of Boolean algebra.

The following example shows that the converse of Theorem 4.2 is false.
Let R = K|[x1, %2, ..., %y, ...] where K is a field. Let
A= (x1% 21— x2% ..., X — Xpp1 .. ).
Then R/A is a w-regular ring with 0 and 1 as its only idempotents but R/4
is not a factorization ring.
In all that follows, exponents are assumed to be non-negative integers.

DEFINITION 4.2. Let R be a ring, b € R, and suppose that
b~ pli1p2i2 “e e Pni"
with each p; irreducible and p; ~ p;if © = j. Then p1'1po®2. .. p,™ is said to be
an irredundant factorization of b if
n n
jl < ’il,jg < ’iz, e ,jn < ’L.n, and Z]Ic < z ’Lk
1 1
implies b ~ piiip.iz. .. p,In.
DEFINITION 4.3. R s a weakly unique factorization ring provided that R 1is
a factorization ring and that if
plilpziz . pnln and p111p2h L Pnjn
are irredundant factorizations of some b € R, then iy = j1, t2 = fo, <« . , Iy = Jn.
We note, as is customary, that an irreducible factor with zero exponent

may be added or discarded as is convenient.

THEOREM 4.3. Let S be a factorization ring. Then the following are equivalent:
1. Each irreducible element of S is a prime.
I1. S has weakly unique factorization.
I11. For every b* € S, if b* 4 B and b* + v are irreducible, then

o* + B~ 0* + .
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Proof. L = 11. Let b € S and let
p1i1p2iz . Pn{" and p171p212 . Pnjn

be two irredundant factorizations of b. Suppose 7; > j;. By Lemma 4.2,
pitt ~ pi/1. Hence, b ~ pif1ps?2. .. p,™, a contradiction. Therefore, 7; < j;
and similarly, j; < 71. In the same way 1, = j,fors =1,2,...,n.

II = III. Let * + B and #* 4+ v be irreducible. For some natural number
n, b* ~ (b* + B)" ~ (b* + v)". By assumption II, o* + 8 ~ b* + .

IIT1 = 1. Let p be irreducible and let p | bc. Also, let & = py1 ps. .. p, and
€= qi1qz...¢, be factorizations of & and ¢ into the product of irreducible
elements. Then, p* | pr*po* . .. p.*g*qe* . .. ¢,* with p* p* ¢;* necessarily
co-atoms. Therefore p* = p* for some s or p* = ¢,* for some . Say p* = pi*.
By hypothesis, p ~ pi. Hence p | b and p is a prime.

TuEOREM 4.4. If S is a weakly unique factorization ring, then each pair of
elements in S has a greatest common divisor (necessarily unique to within as-
sociates by Lemma 4.1).

Proof. Let b, ¢ € S. If either b or ¢ is a unit, then it is clear that b and ¢
have a greatest common divisor. Therefore, assume that b and ¢ are non-units
and let p1¥ps2. .. p, ™ and piiips?2 . . . p,7» be irredundant factorizations of &
and ¢ respectively. Let m, = min {45, j;} for s =1,2,...,n. Clearly, if
d = p™ps™r. .. p,", then d is a common divisor of b and ¢. Now let f be a
common divisor of b and ¢ and let ¢ be an irreducible divisor of f. By Theorem
4.3, ¢ ~ p, for some t, 1 < ¢t < n. Therefore, we may let pi*1psfz. .. p,*» be
an irredundant factorization of f. By Lemma 4.2, ky > 7, implies p,*1 ~ p1
and thus, f ~ p1'1p,"2. .. p,Fr, a contradiction. Hence, k1 < 7; and, similarly,
k1 < j1. Thus, k; < m; and, in the same way, ks < m; for s = 1,2, ..., n.
Thus f | d and d is a greatest common divisor for  and c.

Unlike the situation with integral domains, the converse of Theorem 4.4 is
false as the following example shows. Let R = K]x, y] where K is a field and
let A = (x% xy, ¥*). Then R/A4 is a w-regular factorization ring in which each
pair of elements has a greatest common divisor but R/A4 does not have weakly
unique factorization.

LeMMA 4.3. Let S be a weakly unique factorization ring and let S = Sy + S..
Then Sy 1s a w-regular weakly unique factorization ring.

Proof. That Sy is w-regular is clear. Let & € S; with b a non-unit. Since S
is a factorization ring, let p1 ps. .. p, be a factorization of & into irreducible
elements in S. If % is the natural homomorphism of S onto .Sy, then

b=0bh= (prh)(p2h) ... (Pah)
where p; & is either a unit in S or an irreducible element in S; for

1=1,2,...,n
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Hence, .S is a factorization ring. Now let ¢; € S; with g¢; irreducible in .S; and
let es be the identity in S;. Then g1 4 e, is irreducible in S and, by Theorem
4.3, (q1 + €2)S is a prime ideal in S. Since (¢1 + ¢2)S D Sz (= kernel %) and
(g1 + e2)Sh = ¢1 Sy, it follows that g; is a prime in S;. Hence, S; has weakly
unique factorization.

LeMMA 4.4. Let S be a weakly unique factorization ring. If J is the set of
idempotents in S = {0, 1}, then S is a principal ideal ring.

Proof. Since 0 is the only co-atom in J, by Theorem 4.3, there is only one
irreducible element p (to within associates) in .S. Hence, if b € S, then b ~ p*
for some k. Let 4 be an ideal in S and let # be the smallest non-negative integer
such that p* € A. Clearly, A = p"S.

THEOREM 4.5. S is a weakly unique factorization ring if and only if S is a
principal ideal ring.

Proof. 1f S is a principal ideal ring, then S satisfies the ascending chain
condition for ideals. Also, each irreducible element in .S'is a prime. By Theorems
4.1 and 4.3, S is a weakly unique factorization ring.

Conversely, let S have weakly unique factorization. By Theorem 4.2, there
are only a finite number of idempotents in .S, and we may let

S=S54+S+...+S,

where S; has only two idempotents for ¢ = 1,2, ..., n. By Lemmas 4.3 and
4.4, S; is a principal ideal ring for ¢ = 1,2, ..., n. Hence, S is a principal
ideal ring.

We conclude with a structure theorem that is an easy consequence of a
structure theorem of G. Pollak (4). The proof is omitted.

THEOREM 4.6. R is a w-regular principal ideal ring if and only if R is the
direct sum of a finite number of completely primary rings in which the unique
prime tdeal is principal.
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