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1. Introduction. This paper extends the results of A. L. Foster (1) on 
elementary factorization in Boolean-like rings to commutative 7r-regular rings. 
After proving some preliminary lemmas we proceed to the partition of the 
set of non-units of a x-regular ring into irreducible and composite elements. 
Finally, we prove a number of theorems concerning factorization rings, weakly 
unique factorization rings, principal ideal rings, etc. The principal result is 
that a 7r-regular ring is a weakly unique factorization ring if and only if it is 
a principal ideal ring. 

In this paper, ring will always mean a commutative ring with identity. 
Following van der Waerden (5), we say that two elements b, c of a ring R 
are associates provided there exists a unit u £ R such that b = uc. In this 
event, we write b ~ c. 

2. Preliminary lemmas. In each of the lemmas of this section, R denotes 
a ring. 

LEMMA 2.1. Let b, e £ R with e2 = e. If bR = eR, then b ~ e. 

Proof. Since e is idem potent, b = be and b = e(l — e + b). Let e = bx. It 
is easily verified that (1 — e + b) (1 — e + ex) = 1. Hence, b ~ e. 

LEMMA 2.2. Let b € R and let n be a natural number. Then the following are 
equivalent: 

I. bn = bnxbn for some x G R. 
IL b ~ e + P for some e, (3 Ç R with e2 = e and @n = 0. 

III. bn ~ f for some idempotent f G R. 

Proof. I => II. Let e = xbn. Then e = e2 = bexbn~l and e G beR. Thus, 
eR = beR and, by Lemma 2.1, e ~ be. Now let be = ue where u is a unit in 
R, and let 7 = b(l — e). Then yn = 0 and b = be + y. Hence, 

b = ue + y = u(e + u~ly). 

Therefore, b ~ e + fi where 0 = u~ly and fin — 0. 
II => III. (e + ff)n « «(1 + 5) where 5 = w/3 + . . . + npn~K Hence, Ô is 

nilpotent and 1 + 8 is a unit. Therefore, 6W ~ (e + /3)w ^^ g. 
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III ==> I. Let / = vbn with v a unit in R. Therefore, (vbn)2 = vbn and 

LEMMA 2.3. Let b, e £ R with e2 = e. If bn ~ e, then, for every m > ny 

bm ~e. 

Proof. Let k be a natural number such that kn > m. Hence, 

eR = bknR C £™i? C J»j? = &R. 

Therefore, bmR = ^ and bm ~ e. 

It follows, from the proof of Lemma 2.2 and the fact that associated 
idempotents are equal, that if R is a ring and b 6 R, then there is at most 
one idempotent e £ R such that, for some nilpotent 0 £ R, b ~ e + (3. Further, 
by Lemma 2.3, e is the unique idempotent associated with all sufficiently high 
powers of b. 

3. Irreducible and composite elements. N. H. McCoy (3) defined a ring 
S to be 7r-regular provided that for every b £ S there is an x G 5 and a natural 
number n such that bn = bnxbn. Lemma 2.2 provides two alternative charac­
terizations of 7r-regular rings. Included among 7r-regular rings are regular rings 
with Boolean rings and p-r'mgs as special cases; rings with descending chain 
condition on ideals (in particular, finite rings) ; and Boolean-like rings. The 
following facts are well known and easily verified. (1) The homomorphic 
image (in particular, a direct summand) of a 7r-regular ring is 7r-regular. (2) A 
finite direct sum of 7r-regular rings is 7r-regular. This need not be the case for 
infinite direct sums. (3) A ring is both an integral domain and 7r-regular if and 
only if it is a field. (4) In a x-regular ring any prime ideal (other than the 
entire ring) is a maximal ideal. 

For the remainder of this paper, 5 will always denote a 7r-regular ring. In 
addition, the following conventions will be observed. Letters followed by an 
asterisk, b*, c*t d*y . . . , will denote idempotents; Greek letters, /3f y, 5, . . . , 
will denote nilpotents; and, lastly, if b G S, the unique idempotent associated 
with all sufficiently high powers of b will be denoted by b*. 

LEMMA 3.1. Let b, c G S. Then (be)* = b*c*. 

Proof. By Lemma 2.3, for some n, bn ̂  b* and cn ̂  c*. Hence (bc)n ~ b*c*. 

LEMMA 3.2. Let u G S. Then u is a unit if and only if u* = 1. 

Proof. If u* = 1, then un ~ 1 for some n and u is a unit. Conversely, \i-u 
is a unit, then u ~ 1, u* ~ 1, and u* = 1. 

LEMMA 3.3. Let b, c £ S. If b ~ c, then b* = c*. 

Proof. Let b — uc with u a unit. Then ô* = u*c* = c*. 

LEMMA 3.4. Let b*, 0 £ S. Then b* + (3 ~ b* if and only if b*(3 = 0. 
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Proof. If b*p = P, then b* + p = b* + b*(3 = J*(l + 0). Conversely, if 
b* + p — b*, let b* + p = wo*. Multiplying by 1 - 6*, we obtain 

(1 - j*)0 = o. 

Thus, b*p = 0. 

DEFINITION 3.1. Le£ R be a ring, b £ R, and b not be a unit. Then, b is 
irreducible provided its only divisors are associates and units; b is composite 
provided there are elements s, t G R such that s oo b, t oo b, and b = st. 

It is clear that a non-unit cannot be both irreducible and composite. It 
may, however, be neither. For example, in Z + Z, Z = integers, the non-unit 
(1, 0) is neither irreducible nor composite. The definitions above are equivalent 
to the classical ones for integral domains where the cancellation law provides 
a trivial proof that a non-zero non-unit is either irreducible or composite. The 
next theorem will characterize the irreducible and composite elements of a 
7r-regular ring. It is then an immediate consequence that in a 7r-regular ring 
every non-unit (including zero) is either irreducible or composite. In the 
partition of the non-units of a 7r-regular ring into irreducible and composite 
elements we may, by Lemmas 2.2 and 3.2, restrict our attention to elements 
of the form b* + P with b* ^ 1. Recall, finally, that if R is a ring and J is 
the set of idempotents in R, then (/, P\, ') is a Boolean algebra where 
a C\b = ab and a' = 1 — a (2). An element of / is said to be a co-atom 
(= prime) if its only divisors in / are itself and 1. 

THEOREM 3.1. Let b* + p G S with b* ̂  1. Then (1) b* + p is irreducible 
if b* is a co-atom, and either b*rj = rj for every nilpotent t\ G S or (1 — b*)P 
cannot be expressed as the product of two nilpotents; and (2) b* + p is composite 
if either b* is not a co-atom, or b*rj 7e r? for some nilpotent rj G 5 and (1 — b*)P 
can be expressed as the product of two nilpotents. 

Proof. (1) Suppose b*r) = rj for every nilpotent rj G S. Let c* + y be a 
non-unit divisor of b* + p. Since b* is a co-atom, by Lemmas 3.1 and 3.2, 
c* = b*. By Lemma 3.4, c* + y ~ b* ~ b* + p. On the other hand, assume 
that (1 — b*)P cannot be expressed as the product of two nilpotents, and let 

b* + P = (c* + y)(d* + Ô) 

where c* -f y and d* + ô are non-units. Multiplying by 1 — b*, we see that 

(1 - b*)0 = [(1 - b*)y][(l - b*)B], 

a contradiction. Hence, b* + P is irreducible. 
(2) Suppose b* is not a co-atom. Then there is c* such that c* 9* 1, c* j* b*, 

and b* = b*c*. One verifies that 

b* + p = [c* + (1 - c* + i*)j8][(l - c* + b*) + (c* - b*)fi] 
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and that 1 — c* + 6* is idempotent. Further, 1 — c* + 6* 9e 6* since c* ^ 1. 
By Lemma 3.3, 6* + 0 is reducible. 

Finally, assume that b*ri ^ r? for some r) £ S and that (1 — 6*)0 can be 
expressed as the product of two nilpotents. There are two cases: 6*0 = 0 and 
6*0 5* 0. If 6*0 = 0, let 7 = (1 ~ b*)rj. Then 7 ^ 0 and 6*7 = 0. Let n = the 
least natural number such that yn = 0. Since 7 9^ 0, n > 1. Clearly, 

6* = (6* + 7) (6* + 7""1). 

Assume that b* ~ 6* + 7 and let ^6* = 6* + 7. Multiplying by \ — 6*, we 
see that 7 = 0, a contradiction. Similarly, b* 00 6* + 7re_1. Thus, 6* is re­
ducible. The assumption that 6*0 = 0 implies that b* + 0 ^ 6*. Thus, 6* + 0 
is reducible. 

If 6*0 j* 0, let (1 - 6*)0 = per. One verifies that 

6* + 0 = [b* + (1 - 6*)p][6* + 6*0 + (1 - 6*)a]. 

Assume that b* + 0 ~ 6* + (1 - 6*)p and let 6* + (1 - 6)*p = u(b* + 0). 
Multiplying by 1 — b*, we see that 

(1 - J*)p = U{\ - b*)0 = u(l - b*)P<T. 
Hence, 

[(1 - b*)p][l - ua] = 0. 

Since 1 - ua is a unit, (1 - 6*)p = 0. Therefore (1 - 6*)0 = 0 and 6*0 = 0, 
a contradiction. Similarly, 

6* + 0 00 6* + 6*0 + (1 - 6*)o-. 

Thus, 6* + 0 is reducible. 

4. Factorization in 7r-regular rings. 

LEMMA 4.1. Let 6, c £ S with bS = cS. 77*ew 6 ~ c. 

Proof. Let b = re and c = 56. Then, for every natural number n, b = rwsn6 
and c = rV+ 16. Therefore, 6 ~ r*s*6, c ̂  r*s*6, and b ~ c. 

Recall that a non-unit p of a ring J? is said to be a prime provided £i£ is a 
prime ideal in R. For a 7r-regular ring, it follows from Lemma 4.1 that a 
composite cannot be a prime; and since in a x-regular ring a non-unit is either 
irreducible or composite it further follows that a prime is necessarily irreducible. 
The important special case in which, conversely, each irreducible element is 
necessarily a prime will be discussed later in this section. 

LEMMA 4.2. Let p be a prime in S and let pm \ pnf where m > n and p \ f. 
Then pm ~ pn. 

Proof. Since each prime ideal in S is maximal, for some x, y Ç S, px + fy = 1. 
Therefore, pn+1x + pnf = pn. Since n + 1 < m, pn+1 \ pnf. Hence pn+l \ pn and 
pn+± ~ pn. The result follows by induction. 
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DEFINITION 4.1. A ring R is said to be a factorization ring if each non-unit 
of R can be expressed as the product of irreducible elements. 

THEOREM 4.1. If S satisfies the ascending chain condition, then S is a factoriza­
tion ring. 

We omit the proof, which can be patterned after the proof of the correspond­
ing theorem for integral domains. The only properties of a 7r-regular ring that 
are needed are: (1) a non-unit is either irreducible or composite and (2) two 
elements generating the same principal ideal are associates. 

THEOREM 4.2. If S is a factorization ring, then S has only a finite number of 
idempotents. 

Proof. Let 0 = pq . . . r where p, q, . . . , r are irreducible. Then 
0 = p*q* . . . r* 

where p*, q*, . . . , r* are co-atoms. The conclusion follows from a well-known 
theorem of Boolean algebra. 

The following example shows that the converse of Theorem 4.2 is false. 
Let R — K[x\y X2, . . . , xn, . . .] where K is a field. Let 

A = (xi2 

Then R/A is a 7r-regular ring with 0 and 1 as its only idempotents but R/A 
is not a factorization ring. 

In all that follows, exponents are assumed to be non-negative integers. 

DEFINITION 4.2. Let R be a ring, b 6 R, and suppose that 

b^pi'ipi'*. . ,pn
in 

with each pt irreducible and pi ^ pj if i 9e j . Then p\ilp2i2. . . pn
in is said to be 

an irredundant factorization of b if 
n n 

i i < ii, J2 < i2, • • • , jn < in, and £ J* < E it 
l l 

implies b oo p^ip^i m # # pnUt 

DEFINITION 4.3. R is a weakly unique factorization ring provided that R is 
a factorization ring and that if 

Plllp2i2 • • • Pntn and plJlp2
J2 • • • PnJn 

are irredundant factorizations of some b 6 R, then i\ = ji, i2 = J21 . . . , in — jn* 

We note, as is customary, that an irreducible factor with zero exponent 
may be added or discarded as is convenient. 

THEOREM 4.3. Let S be a factorization ring. Then the following are equivalent: 
I. Each irreducible element of S is a prime. 

IL S has weakly unique factorization. 
III. For every b* 6 S, if b* + £ and b* + y are irreducible, then 

b* + p ~ b* + y. 
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Proof. I => II. Let ft 6 5 and let 

piilp*is. . . pn
in and p^p2

i% . . . pn
jn 

be two irredundant factorizations of ft. Suppose i\ > ji. By Lemma 4.2, 
p^i ~ p^i. Hence, ft ~ piilp2i2. . . A*S a contradiction. Therefore, ii K ji 
and similarly, j i < ii. In the same way 75 = jH for 5" = 1, 2, . . . , n. 

II => III. Let b* + 13 and ft* + Y be irreducible. For some natural number 
n, b* ~ (ft* + $)n ~ (ft* + Y)W. By assumption II, ft* + 0 ~ ft* + 7. 

III => I. Let p be irreducible and let p \ be. Also, let ft = £1 £ 2 . . . £w and 
c = °i °Z • • • Qn be factorizations of ft and £ into the product of irreducible 
elements. Then, p* \ pi*p2* . . . P?,*q\*q2* . . . <?w* with £*, £**, q* necessarily 
co-atoms. Therefore p* = ps* for some s or p* = q* for some /. Say p* = pi*. 
By hypothesis, p ~ pi. Hence p | ft and £ is a prime. 

THEOREM 4.4. If S is a weakly unique factorization ring, then each pair of 
elements in S has a greatest common divisor {necessarily unique to within as­
sociates by Lemma 4.1). 

Proof. Let ft, c Ç S. If either ft or c is a unit, then it is clear that ft and c 
have a greatest common divisor. Therefore, assume that ft and c are non-units 
and let piilp2i2 • . . pn

in and pi3lp2J2 . . . Aî n be irredundant factorizations of ft 
and c respectively. Let ms = min {is, j5} for 5 = 1, 2, . . . , n. Clearly, if 
d = pimip2m2. • • Aimn> then d is a common divisor of ft and c. Now let / b e a 
common divisor of ft and £ and let q be an irreducible divisor of/. By Theorem 
4.3, q ~ pt for some /, 1 < t < n. Therefore, we may let pi1p2'

2. . . £ / n be 
an irredundant factorization of/. By Lemma 4.2, ki > i\ implies pi1 ^ piil 

and thus, f ~ piilp2C2 • . . pn
kn, a contradiction. Hence, ki < ?i and, similarly, 

ki < j i . Thus, ki < Wi and, in the same way, ks < ms for 5 = 1, 2, . . . , n. 
Thus / I d and d is a greatest common divisor for ft and c. 

Unlike the situation with integral domains, the converse of Theorem 4.4 is 
false as the following example shows. Let R = K[x, y] where K is a field and 
let A = (x2, xy, y2). Then R/A is a x-regular factorization ring in which each 
pair of elements has a greatest common divisor but R/A does not have weakly 
unique factorization. 

LEMMA 4.3. Let S be a weakly unique factorization ring and let S = Si -f- S\. 
Then Si is a ir-regular weakly unique factorization ring. 

Proof. That Si is x-regular is clear. Let ft G Si with ft a non-unit. Since 5 
is a factorization ring, let pi p2. . . pn be a factorization of ft into irreducible 
elements in S. If h is the natural homomorphism of S onto Si, then 

b = bh = (pih)(p2h) . . . (pnh) 

where pt h is either a unit in Si or an irreducible element in Si for 

i = 1, 2, . . . , n. 
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Hence, Si is a factorization ring. Now let qi £ Si with qx irreducible in Si and 
let e2 be the identity in S2. Then qi + e2 is irreducible in S and, by Theorem 
4.3, (qi + e2)S is a prime ideal in 5. Since (qi + e2)S D S 2 (= kernel h) and 
(gi + e2)Sh = qi Si, it follows that ci is a prime in Si. Hence, Si has weakly 
unique factorization. 

LEMMA 4.4. Let S be a weakly unique factorization ring. If J is the set of 
idempotents in S = {0, 1}, then S is a principal ideal ring. 

Proof. Since 0 is the only co-atom in / , by Theorem 4.3, there is only one 
irreducible element p (to within associates) in S. Hence, if b £ S, then b ~ pk 

for some k. Let A be an ideal in S and let n be the smallest non-negative integer 
such that pn e A. Clearly, A = pnS. 

THEOREM 4.5. S is a weakly unique factorization ring if and only if S is a 
principal ideal ring. 

Proof. If S is a principal ideal ring, then S satisfies the ascending chain 
condition for ideals. Also, each irreducible element in S is a prime. By Theorems 
4.1 and 4.3, S is a weakly unique factorization ring. 

Conversely, let S have weakly unique factorization. By Theorem 4.2, there 
are only a finite number of idempotents in S, and we may let 

s = Si 4- s2 + . . . + sn 

where Sz has only two idempotents for i = 1, 2, . . . , n. By Lemmas 4.3 and 
4.4, St is a principal ideal ring for i = 1, 2, . . . , n. Hence, S is a principal 
ideal ring. 

We conclude with a structure theorem that is an easy consequence of a 
structure theorem of G. Pollak (4). The proof is omitted. 

THEOREM 4.6. R is a w-regular principal ideal ring if and only if R is the 
direct sum of a finite number of completely primary rings in which the unique 
prime ideal is principal. 
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