AN EXISTENCE THEOREM FOR ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACES

Moses A. Boudourides

The Cauchy problem x' = f(t, x), $x(0) = x_0$, is considered in a non-reflexive Banach space E, where f is weakly continuous. A local existence theorem is proved using the measure of weak noncompactness.

Let *E* be a real Banach space and *E*^{*} its dual. Norms in both *E* and *E*^{*} are denoted by $\|\cdot\|$. Let $x_0 \in E$ and a, b > 0. We set I = [0, a] and $D = \{x \in E : ||x-x_0|| \le b\}$.

We consider the ordinary differential equation in E ,

(1)
$$x' = f(t, x)$$

 $x(0) = x_0$.

If $f \in C(I \times D, E)$, local existence theorems for (1) can be proved through compactness type conditions, such as f being α -Lipschitzian, where α denotes the measure of non-compactness (for example, [5]).

It is our purpose to examine the case that f is weakly continuous and ω -Lipschitzian, where ω is the measure of noncompactness in the weak topology (as introduced by De Blasi [4]). To be specific, given any bounded subset A of a Banach space X, we define

Received 24 July 1980.

 $\omega(A) \ = \ \inf\{\varepsilon \ > \ 0 \ : \ \text{there exists a weakly compact} \ \mathcal{C} \subset X \ \text{such that} \\ A \subset \mathcal{C} + \varepsilon S\} \ ,$

where S is the unit closed ball in X. It follows from a well known characterization of reflexivity that $\omega(A) = 0$ for any bounded subset A of a reflexive Banach space X. Almost all of the following properties of ω were proved in [4] (for the proof of (10) we used the Weak Ascoli Theorem of [3]).

LEMMA 1. If A, B are bounded subsets of the Banach space X, then (1) $A \subseteq B$ implies $\omega(A) \leq \omega(B)$, (2) $\omega(A) = \omega(\overline{A}^{\omega})$, where \overline{A}^{ω} denotes the weak closure of A, (3) $\omega(A) = 0$ if and only if \overline{A}^{ω} is weakly compact, (4) $\omega(A \cup B) = \max\{\omega(A), \omega(B)\}$, (5) $\omega(A) = \omega(\operatorname{co} A)$, (6) $\omega(\{x\}+A) = \omega(A)$, for any $x \in X$, (7) $\omega(A+B) \leq \omega(A) + \omega(B)$, (8) $\omega(\lambda A) = |\lambda|\omega(A)$, for all $\lambda \in R$, (9) $\omega(\bigcup_{0 \leq \lambda \leq h} A) = h\omega(A)$.

If $M \subset C(I, E)$ (strongly) bounded and equicontinuous, then

(10) $\omega(M) = \sup \{ \omega(M(t)) : t \in I \}$.

We now state our main result.

458

THEOREM 2. Let $f : I \times D \rightarrow E$ be weakly continuous, (strongly) bounded with $M = \sup\{\|f(t, x)\| : (t, x) \in I \times D\}$ and ω -Lipschitzian, that is, there exists a $k \ge 0$ such that

$$\omega(f(I \times B)) \leq k\omega(B) , B \subset D .$$

Then (1) has a solution on J = [0, h], where

$$h \leq \min\{a, b/M\}$$
 and $hk < 1$.

By a solution we mean a strongly continuous, once weakly differentiable function $x : J \rightarrow E$ satisfying (1) in J with x' denoting the weak derivative. Of course, such an x is strongly

differentiable almost everywhere in J and satisfies (1) almost everywhere in J with x' denoting its strong derivative (see [7] and [9]).

If f is weakly continuous and $\overline{f(I \times D)}^{\omega}$ is weakly compact, then obviously f is ω -Lipschitzian. Furthermore, if f is weakly continuous and E is a reflexive Banach space, f is trivially ω -Lipschitzian. Thus the results of Kato [8] and Browder [2] (see also [5] and [10]) are special cases of Theorem 2. We state them as separate corollaries.

COROLLARY 3. Let $f : I \times D \to E$ be weakly continuous and $\overline{f(I \times D)}^{\omega}$ be weakly compact. Then (1) has a solution on J = [0, h], where $h = \min\{a, b/M\}$ and $M = \sup\{\|f(t, x)\| : (t, x) \in I \times D\}$.

COROLLARY 4. Let E be reflexive and $f: I \times D \rightarrow E$ be weakly continuous and (strongly) bounded with

 $M = \sup\{\|f(t, x)\| : (t, x) \in I \times D\}.$

Then (1) has a solution on J = [0, h], where $h = \min\{a, b/M\}$.

Proof of Theorem 1. We are going to employ Euler's method of polygonal lines as it was developed by Szufla in [11] (also in [1]). The proof proceeds in three steps.

First Step. For any $A \subset D$, set

$$R(A) = x_0 + \bigcup_{\substack{0 \le \lambda \le h}} \lambda \operatorname{co} f(J \times A) ,$$

$$H = \bigcap_{A \in \Omega} A , \text{ where } \Omega = \{A \subseteq D : R(A) \subset A\}$$

It can be easily shown that $\Omega \neq \emptyset$, $H \neq \emptyset$ and H = R(H), and so His closed. Moreover H is weakly compact, since $\omega(H) = \omega(R(H)) \leq \omega(\bigcup_{\substack{0 \leq \lambda \leq h}} \lambda \text{ co } f(J \times H)) = h\omega(co f(J \times H)) = h\omega(f(J \times H))$ $\leq hk\omega(H)$

and
$$hk < 1$$
 implies that $\omega(H) = 0$; that is, $H = \overline{H}^D$ weakly compact.
Define
 $S = \{x : J \neq H \text{ such that } x(0) = x_0, ||x(t)-x(t')|| \leq M|t-t'|, t, t' \in J\}$.
As $S(t) \subset H$ implies $\omega(S(t)) \leq \omega(H) = 0$, for all $t \in J$, and since S

is bounded and equicontinuous

$$\omega(S) = \sup\{\omega(S(t)) : t \in J\} = 0;$$

that is, \vec{S}^{ω} is weakly compact.

Second step. We claim that for any $\varepsilon > 0$ there exists a $u \in S$ such that, for all $t \in J$,

$$||u(t) - x_0 - \int_0^t f(s, u(s)) ds || < \varepsilon t$$
.

Indeed, the weak continuity of f implies that f is weakly uniformly continuous on the weakly compact $J \times H$; that is, for any $\varepsilon > 0$ there is a $\delta > 0$ such that, for all $x^* \in E^*$,

$$\left|\left(f(t, x)-f(s, y), x^*\right)\right| \leq \varepsilon ,$$

whenever $t, s \in J$, $x, y \in H$ such that

$$|t-s| \leq \delta$$
, $||x-y|| \leq \delta$.

We divide J into n subintervals

$$0 = t_0 < t_1 < \dots < t_n = t_0 + h$$

so that

$$\max_{i=1,\ldots,n} |t_i - t_{i-1}| \leq \min\{\delta, \delta/M\}$$

and define a mapping $u : J \rightarrow E$ as

$$u(t_0) = x_0,$$

$$u(t) = u(t_i) + (t - t_i)f(t_i, u(t_i)),$$

for

$$t \in [t_i, t_{i+1}], i = 0, 1, ..., n-1.$$

Clearly, for $t \in [t_i, t_{i+1}]$, $u(t) = x_0 + (t_1 - t_0)f(t_0, x_0) + \dots + (t_i - t_{i-1})f(t_{i-1}, u(t_{i-1})) + (t - t_i)f(t_i, u(t_i))$.

Now a direct computation shows that, for any $t, t' \in J$ and for all

460

 $x^* \in E^*$,

$$|(u(t)-u(t'), x^*)| \leq M|t-t'|$$

and by a well known consequence of the Hahn-Banach Theorem it is implied that

$$||u(t)-u(t')|| \leq M |t-t'|$$

Moreover it is not hard to see that $u(t) \in H$ for all $t \in J$. In fact, $u(t_0) = x_0 \in H$ and if $u(t) \in H$ for all $t \in [t_0, t_i]$, then for any $t \in [t_i, t_{i+1}]$, $u(t) \in x_0 + (t-t_0)$ co $f(J \times H) \subset R(H) = H$.

Finally, if $t \in [t_i, t_{i+1}]$, then we can find, for all $x^* \in E^*$,

$$\left| \left(u(t) - x_0 - \int_0^t f(s, u(s)) ds, x^* \right) \right| < \varepsilon t$$

and again as a consequence of the Hahn-Banach Theorem

$$||u(t) - x_0 - \int_0^t f(s, u(s)) ds || < \varepsilon t$$
,

which proves the claim.

Third step. Let $\{\varepsilon_n\}$ be a decreasing sequence of real numbers converging to 0. By the second step, there exists a sequence $\{u_n\} \subset S$ such that, for all n,

$$\left\|u_n(t) - x_0 - \int_0^t f(s, u_n(s))ds\right\| < \varepsilon_n t , \quad t \in J .$$

By the Eberlein-Šmulian Theorem ([6]), \vec{S}^{ω} weakly compact implies that S is weakly relatively sequentially compact, that is, there exists a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ converging weakly in C(J, E) to some $u \in S$. Hence from the weak uniform continuity of f on the weakly compact $J \times H$ it follows that $f(t, u(t)) = \omega - \lim_{k \to \infty} f(t, u_{n_k}(t))$ uniformly on J. Thus at the limit we obtain

$$u(t) = x_0 + \int_0^t f(s, u(s)) ds , \text{ for all } t \in J.$$

Since f is weakly continuous, u is strongly continuous, once weakly continuously differentiable on J, where it satisfies (1) with u' denoting the weak derivative of u.

References

- [1] J.M. Bownds and J.B. Diaz, "Euler-Cauchy polygons and the local existence of solutions to abstract ordinary differential equations", *Funkcial. Ekvac.* 15 (1972), 193-207.
- [2] Felix E. Browder, "Non-linear equations of evolution", Ann. of Math.(2) 80 (1964), 485-523.
- [3] Evin Cramer, V. Lakshmikantham and A.R. Mitchell, "On the existence of weak solutions of differential equations in nonreflexive Banach spaces", Nonlinear Anal. 2 (1978), 169-177.
- [4] Francesco S. De Blasi, "On a property of the unit sphere in a Banach space", Bull. Math. Soc. Sci. Math. R.S. Roumaine (N.S.) 21 (69) (1977), no. 3-4, 259-262.
- [5] Klaus Deimling, Ordinary differential equations in Banach spaces (Lecture Notes in Mathematics, 596. Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [6] Nelson Dunford and Jacob J. Schwartz, *Linear operators*. Part I: *General theory* (Pure and Applied Mathematics, 7. Interscience, New York, London, 1958).
- [7] Einar Hille, Ralph S. Phillips, Functional analysis and semi-groups, revised edition (American Mathematical Society Colloquium Publications, 31. American Mathematical Society, Providence, Rhode Island, 1957).
- [8] Shiego Kato, "On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces", Funkcial. Ekvac. 19 (1976), 239-245.
- [9] William J. Knight, "Counterexample to a theorem on differential equations in Hilbert space", Proc. Amer. Math. Soc. 51 (1975), 378-380.

- [10] A. Szép, "Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces", Studia Sci. Math. Hungar. 6 (1971), 197-203.
- [11] S. Szufla, "Some remarks on ordinary differential equations in Banach spaces", Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 16 (1968), 795-800.

Department of Mathematics, Democritus University of Thrace, Xanthi. Greece.