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A VARIATIONAL INEQUALITY IN NON-COMPACT SETS
AND ITS APPLICATIONS

WON KYU KIM AND KOK-KEONG TAN

In this note, we shall prove a new variational inequality in non-compact sets and
as an application, we prove a generalisation of the Schauder-Tychonoff fixed point
theorem.

Let E be a. Hausdorff topological vector space. Denote the dual space of E by E*

and the pairing between E* and E by (w,x) for each w £ E* and x G E. If A is a
subset of E, we shall denote by 1A the family of all non-empty subsets of A and by
cl A the closure of A in E, and co A the convex hull of A.

The following Fan-Browder fixed point theorem [2] is essential in convex analysis
and is also the basic tool in proving many variational inequalities and intersection
theorems in nonlinear functional analysis:

THEOREM. [2] Let X be a non-empty compact convex subset of a Hausdorff

topological vector space and let T : X —» 2X be a multimap satisfying the following:

(1) for each x E X, T(x) is convex,

(2) for each y G X, T^fo/) is open.

Then T has a Axed point x £ X, that is x £ T(x).

The Fan-Browder theorem can be proved by using Brouwer's fixed point theorem

or the KKM-theorem. Until now, there have been numerous generalisations and appli-

cations of this Theorem by several authors; for example, see [4, 7] and the references

there.

In a recent paper [4], Ding, Kim and Tan further generalise the above result to

non-compact sets in locally convex spaces and the following is a special case of the fixed

point version of their Theorem 1:

LEMMA 1 . [4] Let X be a non-empty convex subset of a locally convex Hausdorff

topological vector space and D be a non-empty compact subset of X. Let T : X —+ 2 D

be a multimap satisfying the following:

(1) for each x G X, coT(x) C D,
(2) for each y G X, T~1(y) is open in X.
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Then there exists a point x £ X such that x £ coT(x).

Recall that for a topological vector space E, the strong topology on its dual space
E* is the topology on E* generated by the family {U(B; e) : B is a non-empty bounded
subset of E and e > 0} as a base for the neighbourhood system at 0, where U(B; e) —
{feE*: sup | ( / , x ) |< e } .

xeB
We begin with the following

LEMMA 2 . Let E be a topological vector space and E* be the dual space of E
equipped with the strong topology. Let X be a non-empty bounded subset of E and
T : X —* 2E be an upper semicontinuous multimap such that each T(x) is (strongly)
compact. Then for each y £ E, the real-valued function gy : X —> R defined by

gJx) — inf Re (w,x — y), for each x £ X,

is lower semicontinuous.

PROOF: Let xo £ X be given. For any e > 0, we shall show that there exists an
open neighbourhood N{XQ) of x<> such that

gy(x) ^ fl^xo) — e for each x £ N(x0).

Indeed, let V := {p G E* : sup \p(t)\ < e/3}, where X -y = {x-y : x £ X}. Then
X

V is a strongly open neighbourhood of 0 in E* since X — y is a bounded set in E.
Since T is upper semicontinuous at Xo and T(xo) + V is a strongly open set containing
T(xo), there exists an open neighbourhood No of xo in X such that T(x) C T(xo) + V
for each x 6 No .

Next, for each u G T(XQ) , we let

VU:=(P€E*: sup \p(t) - u(t)\ < (I,

where X — X = {x — z : x,z £ X}\ then Vu is also a strongly open neighbourhood
of u in E* since X — X is a bounded set in E. Since T(xo) is strongly compact and
T(xo) C UueT(x0)Vu, there exists a finite subset {ui,...,un} of T(x0) with T(x0) C
UJLj VUi. For each i — 1 , . . . , n, since u,- is a continuous linear functional, there exists an
open neighbourhood Ni of xo in X such that |UJ(X) — u,(xo)| < e/3 for each x £ Ni.

Now let N(x0) :— n"_0JV,-; then N(x0) is an open neighbourhood of x0 in X.
We shall show that this open neighbourhood N(xo) of xo is the desired one. For
each x £ N(xo) and each w £ T(x), since x £ No, there exists u £ T(xo) such
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[3] A variational inequality 141

that u G Vu. . Therefore we have

that w -u G V. Also, since u G T(x0) C U^=1Vni, there exists t0 G { l , . . . ,n} such

Therefore we have

\Re{w,x-y) - Re{u,x - y)\ ^ \{w-u,x-y)\ < -,

so that
Re(w,x-y)> Re(u,x-y) - -

= Re(u,x0 -y) + #e(ii,z - x0) - „

= Re(u,x0 - y) + Re{u - uio,x - x0)

+ Re(uio,x - xo> - g

e e e

inf i2e(u,zo — 3/) —
t>€T(!T0)

Since w G T(x) is arbitrary, we have gv(x) = inf Re(w,x — y) ^ 5j(a;o) — e,
TB6T(I)

which completes the proof. U

Lemma 2 is a multivalued generalisation of Lemma 1 in [2] (see also [10, Lemma 1]

where it was observed that the result holds for X being bounded instead of compact).

Now we shall prove the following new variational inequality in non-compact sets.

THEOREM 1 . Let X be a bounded convex subset of a locally convex Hausdorff

topological vector space E and D be a non-empty compact subset of X. Let T :

X —> 2B' be an upper semicontinuous multimap from the relative topology of X to

the strong topology of E* such that each T(x) is (strongly) compact. Suppose further

that for each x G X \ D,

(*) inf Re{w,y — x) ^ 0 forally^X.
ti>6T(»)

Tien there exists a point x G X such that

inf Re(w,x — x) ^ 0 for all x G X.
w€T(7)

Furthermore, if T(x) is also convex, then there exists a point US G T(x) such that

Re{w, x — x) ^ 0 for all x G X.
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PROOF: Suppose that for each x £ X there exists a point x £ X such that
inf Re(w,x - x) > 0. Then by the assumption (*), x £ D. Now we define a

multimap P : X -> 2 D by

P(x) :={y£D: inf Re(w,x - y) > 0} for all a; £ X.

Then for each x £ X, P(x) is non-empty. For each x £ X, we shall show that co P(a;) C
n

£>. Indeed, let n£ N, y1,...,yn £ P(x) and * i , . . . , < n £ [0,1] with £ t , - = 1; then for

each i — 1 , . . . , n, *~

inf Re(w,x - yj > 0;

it follows that

inf Re(w,x—y Uyi) ^ / U inf Re{w,x — yA > 0.

Since JZ »̂2/« ^ %i ty ^ e assumption (*) again, ^Z »̂J/» 6 •"• Hence coP(x) C X>.
»=1 i = l

Next for each y £ D, we shall show that P~1(t/) is open in X. Let (a!a)a 6 r be a
net in X \ P~1(y), which converges to some XQ £ X. Then we have

inf Re(w, xa - y) ^ 0 for all a £ T.

By Lemma 2, the real-valued function

x —> inf Re(w,x — y)

is lower semicontinuous, it follows that

inf i?e(w,xo — y) ^ 0.

Therefore X \ P - 1 (y) is closed, and hence P~1(y) is open in X. Thus all the hypotheses
of Lemma 1 are satisfied, so that by Lemma 1 there exists a point x £ X such that

m
x £ coP{x). But then there exist yi,.. • ,ym £ P{x) and Ai,. . . , Am ^ 0 with £] ^t —

m
1 such that x = Y) ^iVi • Therefore we have
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0 = inf Re(wi x — x)

m

= inf Re(w,x-y^jXiyi)

m

= inf ^ \{Re{w, x - yi)

\i inf Re(w,x-yi) > 0,

which is a contradiction. Hence there must exist a point x £ X such that

(1) inf Re(w,x-x) < 0 for all x £ X.

To prove the second assertion, suppose that T(x) is convex. Then we define / :
X x T{x) -^Rby

f{x,w) := Re(w,x — x) for each (x,io) £ X x T(x).

Note that for each fixed a £ X, x —» Re(w,x — x) is continuous affine, and for
each w G T(x), x —> i?e(w,x — x) is affine. Thus, by Kneser's minimax theorem [8],
we have

min sup f(x,w) = sup min f(x,w).
w£T(7)xeX xeXw€T(7)

Thus min sup Re{w,x — x) ^ 0 by (1).

B6T0t€X

Since T(x) is compact, there exists w G T(x) such that

sup Re(w, x — x) = min sup .Re(u>,x — x).
X (J) X

Therefore Re(w, x — x) ^ 0 for all x £ X. This completes the proof. D

When X = D is compact convex, we obtain the following generalisation of
Hartman-Stampacchia's variational inequality [6] due to Browder [3, Theorem 6]:

COROLLARY 1. Let X be a non-empty compact convex subset of a locally convex
Hausdorff topological vector space E and let T : X —> 2B* be an upper semicontinuous
multhnap from the relative topology of X to the strong topology of E* such that each
T[x) is a (strongly) compact convex subset of E*.
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Then there exists a point x € X and w £ T(x) such that

Re(w, x — x) ^ 0 for all x £ X.

The following is a single-valued version of Theorem 1:

COROLLARY 2 . Let X be a bounded convex subset of a locally convex Hausdorff
topological vector space E and D be a non-empty compact subset of X. Let T : X —>
E* be a continuous mapping from the relative topology of X to the strong topology of
E* satisfying the following condition:

for each x £ X \ D, Re{T(y),y - x) ^ 0 for ally £ X.

Then there exists a point x £ X such that

Re(T(x), x - x) ^ 0 for all x EX.

Let £ be a topological vector space and M be a topological space. Recall that
a multimap F : M —» 2E is upper hemicontinuous (for example, see [1, p.122]) if for
each p £ E* and for each A £ R, the set {x £ M : sup Re(p,u) < A} is open

«£F(x)

in M. For relationships among upper semicontinuity, upper demicontinuity and upper
hemicontinuity, we refer to [11, Propositions 1 and 2 and Examples 1 and 2].

As an application of Corollary 2, we prove the following fixed point theorem:

THEOREM 2. Let X be a non-empty paracompact bounded convex subset of a
locally convex Hausdorff topological vector space E,D be a non-empty compact subset
of X. Let F : X —» 2E be an upper hemicontinuous multimap satisfying the following:

(1) for each x £ X, F(x) is non-empty closed convex,
(2) for each x £ X, F(x) Hcl(x + Ux>oHX - x)) ^ <j>,
(3) for each x£X\D, y £X andpeE*, if int{Re(p, y - z) : z £ F(y)} >

0, then Re(p,y-x) ^ 0.

Then there exists x£X such that x £ F(x).

PROOF: Since F is upper hemicontinuous, for each p £ E*, the set

U(p) = {x £ X : sup Re{p,z) < Re(p,x)}
z6F(x)

= UAefi[{z G X : sup Re(p,z) < A}
zeF(z)

n {x £ X : Re{p,x) > A}]

is open in X. Suppose x £ F(x) for each x £ X. Then for each x £ X, there exists
p£ E* such that sup Re(p,z) < Re(p,x) so that x G U(p). Thus {U(p) : p £ E*}
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[7] A variational inequality 145

is an open cover of the paracompact space X. Let {V(p) : p G E*} be a locally finite
open precise refinement of {U(p) : p G E*} and {/3P : p G E*} be the continuous
partition of unity subordinated to this refinement {V (̂p) : p G E*}. Define a mapping
T : X -» E* by

T(x) = J ] Pv(.x)P for aU x G X.
p€E*

Let x G X be given. If p G 22* and /3p(x) > 0, then x G V(p) C t/(p) so that
sup Re(p,z) < i2e(p,x); it follows that inf Re(p,x — z) > 0. Therefore for each

inf Re{T(x),x-z) = inf ^ /3p(x)fle(p,x - z)

(*)

> 0.
Now we shall show that T satisfies all hypotheses of Corollary 2. To show that T is
continuous from the relative topology of X to the strong topology of E*, let (x a ) a € r

be a net in X which converges to some x0 G X. Since {V(p) : p G E*} is locally finite,
there is an open neighbourhood Uo of Xo in X such that {p G E* : V(jp) D Uo ^ <j>} is
finite, so we let {p G E* : V(p) D Uo ^ <f>} = {pi, • • • ,Pn}- Let i? be any non-empty
bounded subset of E; then by Theorem 1.18 [9], M = max sup{|p;(x)| : x G B} < oo.

Since each /3Pi is continuous, there exists ai G F such that for each a ^ a i ,

Also since (xa) converges to x
exists a2 G F such that for each a
each a ^ ao, we have

and Uo is an open neighbourhood of xo, there
a2, xa G t/o • Let ao ^ max{ai,a2}- Then for

= sup
B

= sup

t = l
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and hence (T(xa)) converges to T(XQ) in the strong topology of E*.

Next suppose there exists X\ £ X \ D such that for some y £ X,

(**) Re(T(y),y - Xl) = £ /3p(y)Re(p,y - Xl) > 0.

If pjy) > 0, then inf Re(p,y - z) > 0 so that by (3), Re(p,y - asi) < 0, which

contradicts (**).

Therefore by Corollary 2, there exists x £ X such that

(***) Re(T(x),x-y) ^ 0 for all y 6 X.

By the assumption (2), F{x) n cl(x + UA>OA(JT -x)) ^ <f>. Let J e f ( i ) , ( ^ ) a 6 r
 b e

a net in (0, oo) and (ua)Qgr b e a n e* *n % s u c n that (x + Aa(ua — i)) —> y. Then we
have

) , x - y ) = 1 i m Re(T{x),x - (x + Xa{ua - x)))

= hm Xa Re(T(x), x - ua)
a

^ 0 by (* * *).

Hence inf Re(T(x),x — z) ^ 0, which contradicts (*). This completes the proof. D
zeF(T)

Theorem 2 generalises Theorem 2 of Halpern [5, p.88] in the following ways: (i) X
need not be compact and (ii) F is upper hemicontinuous instead of upper semicontin-
uous.

The following is a reformulation of Proposition 3.1.21 of Aubin-Ekeland [1]:

LEMMA 3 . Let X and Y be topological spaces and $ : X x K — > i ? b e a
real-valued lower semicontinuous function on X x Y and T : Y —> 2X be upper semi-

continuous at 2/0 £ Y and T(t/o) l s non-empty compact. Then a real-valued function

g:Y->R defined by

g(y):= inf $(x,y), foraMyeY,

is lower semicontinuous at j/o •

LEMMA 4 . Let E be a normed space, X be a non-empty subset of E and

T : X —» 2B be an upper semicontinuous multimap such that each T(x) is (norm-)

compact. Then for each y £ E, the real-valued function gv : X —» R defined by

gy(x) := inf Re{w,x — y), for each x 6 X,
weT(x)
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is iower semicontinuous.

PROOF: Define * : X x E* -> R by

$(x,w) = Re(w,x - y) for each (x,w) G X X E*.

Let (xn) be a sequence in X which converges to x G X and (i0n) be a sequence in E*

which converges to w 6 E* . Then we have

|$(in,wn)-#(i,tt)|

= \Re(wn,xn -y) - Re(w,x - y)\

^\{wn-w,x-y)\ + \{wn,xn -x)\

< ||ton - w\\ \\x - y\\ + ||ton|| ||asm - x\\ -> 0,

since {||ton|| : n ̂  1} is bounded.

Thus $ is continuous. By Lemma 3, gy is lower semicontinuous. This completes

the proof. U

We remark that in the proof of Theorem 1, the condition " X is bounded" was never

needed until Lemma 2 was quoted. In view of Lemma 4, the same proof of Theorem 1

gives the following

THEOREM 3 . Let X be a convex subset of a normed linear space E and D be

a non-empty compact subset of X. Let T : X —> 2B be an upper semicontinuous

multimap from the relative topology of X to the norm topology of E* such that each

T(x) is (norm-) compact in E*. Suppose further that for each x G X \ D,

(*) inf Re{w,y-x) ^ 0 forallyeX.
€T()

Then there exists a point x G X such that

inf Re(w,x-x) ^ 0 for all x G X.
(7)

Furthermore, if T(x) is also convex, then there exists a point w G T(x) such that

Re(w, x — x) ^ 0 for all x £ X.

For the same reason, in case E is a normed space, the condition that X be bounded
in Corollary 2 can be deleted. As a result, we have the following norm-version of
Theorem 2; recalling that every metric space is paracompact:
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THEOREM 4 . Let X be a non-empty convex subset of a normed linear space

E and D be a non-empty compact subset oi X. Let F : X —> 2B be an upper

hemicontinuous multimap satisfying the following:

(1) for each x 6 X, F(x) is non-empty closed convex,

(2) for each x e X, F(x) f)cl(x + UA>OA(X - x)) ± <j>,

(3) for each x GX\D, y£X and p € E*, if mf{Re{p,y-z) : z £ F(y)} >

0, then Re(p,y-x) ^ 0.

Then there exists x 6 X such that x G F(x).
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