A COUNTEREXAMPLE TO A CLASSIFICATION THEOREM OF LINEARLY STABLE POLYTOPES

DAVID ASSAF

1. Introduction. We give an example of a centrally symmetric 5-polytope which is linearly stable though its vertices do not form a subset of the vertices of a 5 -cube. This example contradicts the "only if" part of the classification theorem on linearly stable polytopes stated by P. McMullen [2]. Moreover the example gives a 5 -polytope, the vertices of which form a subset of a 5 -cube while its dual does not possess the same property.

I wish to thank Professor M. Perles for directing me on my Masters' thesis where this example arose.
2. Notation and lemmas. We shall follow the notation and definitions of Grünbaum [1] and McMullen [2]. We shall write c.s. for centrally symmetric. A c.s. polytope P is called linearly stable if every c.s. polytope which is combinatorially equivalent to P is linearly equivalent to P. The regular d-cube will be denoted by C^{d} and is the d-polytope with the 2^{d} vertices of the form $\left(\xi_{1}, \ldots, \xi_{d}\right)$ where $\xi_{i}= \pm 1$. Any d-polytope linearly equivalent to C^{d} will be called a d-cube. For any c.s. d-polytope P we shall denote its dual by P^{*}. The set of vertices of a polytope P will be denoted by vert P and the convex hull of a set A will be denoted by conv A.

The following lemmas are proved by McMullen [2]:
(1) Lemma. If P is a linearly stable d-polytope then its dual P^{*} is linearly stable.
(2) Lemma. Let P be a c.s. d-polytope. Then there is a d-cube C such that vert $P \subset$ vert C if and only if among the facets of P there are d linearly independent facets each of which contains half the vertices of P.
(3) Lemma. If P is a c.s. d-polytope such that vert $P \subset$ vert C for some d-cube C, then P is linearly stable.
(Lemma (3) is the result of the "if" part of the main theorem in [2]).
As a consequence of (2) and basic properties of P^{*} we have:
(4) Lemma. Let P be a c.s. d-polytope. Then there is a d-cube C such that vert $P \subset$ vert C if and only if among the vertices of P^{*} there are d linearly independent vertices, each of which is contained in half the facets of P^{*}.

McMullen [2] incorrectly states as part of his main theorem that if P is a linearly stable c.s. d-polytope, then vert $P \subset$ vert C for some d-cube C.

Received January 2, 1975 and in revised form, May 2, 1975.
3. Example. Let P be the c.s. 5-polytope with vertices $\pm \nu_{i}, 1 \leqq i \leqq 7$ where

$$
\begin{array}{ll}
\nu_{1}=(1,1,1,-1,1) & \nu_{2}=(-1,1,-1,-1,1) \\
\nu_{3}=(-1,-1,1,-1,1) & \nu_{4}=(-1,-1,-1,-1,1) \\
\nu_{5}=(1,-1,-1,-1,1) & \nu_{6}=(-1,1,-1,1,1) \\
\nu_{7}=(1,-1,1,1,1) &
\end{array}
$$

Then vert $P \subset$ vert C^{5} and thus by (3), P is linearly stable.
It is easily verified that $F_{1}=\operatorname{conv}\left\{\nu_{1}, \nu_{2}, \nu_{3},-\nu_{5}, \nu_{6}\right\}$ and $F_{2}=$ conv $\left\{-\nu_{1}, \nu_{3}, \nu_{4}, \nu_{6}, \nu_{7}\right\}$ are facets of P (The corresponding facet hyperplanes are given by the equations $-X_{1}+X_{2}+X_{3}+X_{5}=2$ and $-X_{1}-X_{2}+X_{4}+$ $X_{5}=2$), and that
$\nu_{4}, \nu_{7} \notin F_{1} \cup-F_{1}$ and $\nu_{2}, \nu_{5} \notin F_{2} \cup-F_{2}$.
Thus the vertices $\pm \nu_{2}, \pm \nu_{4}, \pm \nu_{5}$, and $\pm \nu_{7}$ are not contained in half the facets of P, and so there are no 5 linearly independent vertices of P each of which is contained in half the facets of P. By (4), we deduce that there is no 5 -cube C for which vert $P^{*} \subset$ vert C. Hence we see, using (1), that P^{*} is linearly stable but its vertices do not form a subset of the vertices of any 5 -cube.

References

1. B. Grünbaum, Convex polytopes (Wiley, New York, 1967).
2. P. McMullen, Linearly stable polytopes, Can. J. Math., 21 (1969), 1427-1431.

Hebrew University, Jerusalem, Israel

