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CONSTRUCTION OF ELLIPTIC CURVES
WITH CYCLIC GROUPS OVER PRIME FIELDS

NAOYA NAKAZAWA

The purpose of this article is to construct families of elliptic curves E over finite fields
F so that the groups of F-rational points of E are cyclic, by using a representation of
the modular invariant function by a generator of a modular function field associated
with the modular group T0(N), where N = 5, 7 or 13.

1. INTRODUCTION

The purpose of this article is to give some families of elliptic curves E defined over
finite fields F so that the groups E{F) of F-rational points of E are cyclic. An approach
to construct families of such elliptic curves is to use the representation of the modular
invariant function J by a generator of a modular function field of genus 0. Let AT be a
positive integer. Denote by T(N) the principal congruence subgroup of SL2{Z) of level N
and by A(N) the modular function field over C associated with the group T(N). In [6],
to this purpose, the author used the representation of J given by J = X5 + 5X4 + 40X3,
where X is a generator of a subfield of 4(5) of degree 5 over C(J)(see [4]).

In this article, we construct such families of elliptic curves by using the modular
function field AQ(N) associated with the modular group T0(N). Let N be one of 2, 3, 5,
7 and 13. Then Ao(N) is of genus 0 and it is well known that AQ(N) is generated over C
by a modular function h = (TI{T)/V{NT))24/{N~1\ where T)(T) = e

27riT/24 f ] (1 - e2niriT).

This result is easily obtained from Theorem 21 of [7, p. 153]. We remark in the case N
is prime, A0(N) is of genus 0 if and only if N — 2,3,5,7,13. Since J G A0{N), J is a
rational function JNW oih. See [2, Section 4] for the explicit forms of jN(h). By putting
g = NW'^/h, JNW is transformed into JN(9) as follows:

(N = 2) h(g) = (g + 16)3/g,

(N = 7) ~j7(g) = (g2 + 13g + 49)(5
2 + 5g+ l)3/<7,

(N = 13) ]n(g) = (g2 + 5g + 13)(<?4 + 7g3 + 20g2 + I9g + \f/g.
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Now, for non-zero s 6 Q, such that JN{S) ^ 0,1728, define an elliptic curve EN(S) by

n\ c i \ 2 f i \ 3 o 3N{S) O JN{S)
i l l Cj K\ S) . U "~ J N\°\ X) ^— X — O~ X — £t ~*

J7v(s; ~ 1728 3N\S) — 1728
It is well known that the j-invariant of EN(S) is JN(S) and £w(s)(Q) has a Q(s)-rational
cyclic group of order N. For example, see [1, Section 3]. This implies that if N is odd,
then the iV-division polynomial IPN(X) of EN(S) has a Q(s)-rational factor DN(S,X) of
degree (TV - l)/2 as a polynomial of x.

The following Proposition 1.1, obtained easily from a result of Gupta and Murty ([3,
Lemma 1]), is essential for our argument. For an elliptic curve E defined over a field L
and a prime number /, we denote by Kt(E) the field generated over L by the coordinates
of all /-division points of E.

PROPOSITION 1 . 1 . Assume that a prime number p is of the form
p = q™1 ... q™n +1, where <?i, . . . , qn-i and qn are distinct primes. For an elliptic curve E
defined over Q such that E has good reduction at p, let E be the reduction of E modulo
p. Then the group E(¥p) of Fp-rational points is cyclic if and only if p does not split
completely in Kqi (E),..., Kqn_, (E), and Kqn(E).

PROPOSITION 1 .2 . Let E be an elliptic curve over a field L, and I be a prime
number distinct from the characteristic ofL. If the /-division poiynomiaJ ipi(x) ofE does
not split over L, then not all elements of order I of E{L) are rational over L.

PROOF: The splitting field in L of rpi over L is the subfield generated by the x-
coordinates of the elements of order / of E(L). D

By Propositions 1.1 and 1.2, we have the following assertion.

THEOREM 1 .3 . Let s e Q, N be one of 3, 5, 7 and 13, and p be a prime number
of the form p = 2m*NmN + 1. Assume that an elliptic curve EN(s) defined by (1) has
good reduction at p. If DN(s,x) and /N(S, X) do not split completely modulo p, then the
group EN(s)(Wp) is cyclic.

P R O O F : By Proposition 1.2, psplits completely neither in KN(Ejv(s)) nor K2(EN(s)).
Therefore, by Proposition 1.1, the assertion holds true. D

By using Theorem 1.3, we construct families of elliptic curves with the desired prop-

erties for every iV = 3,5,7,13. However, here, we shall give our results only for N = 5,7

or 13.

NOTATION. In the following, for a = a/6 6 Q, (a, b) = 1, and a prime number p, we put

(a/Py = (ab/p).

2. THE CASE N = 5

For a non-zero number 5 S Q, such that j5(s) ^ 0,1728, we shall consider an elliptic
curve E5(s) defined by (1). The 5-division polynomial ips(x) of Es{s) has a quadratic
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factor

D5(s, x) = A(s)(s2 + 4s - 1) V + 2A(s)(s2 + 10s + 5)(s2 + 4s - l)x

+ (s2 + 10s + 5)2(s2 + 22s + 89),

where A(s) = s2 + 22s + 125. The discriminant of Da(s, x) is

243M(s)(s2 + 10s + 5)2(s2 + 4s - I)2.

Let p be a prime number of the form p = 2m 35m ! + 1. If (A(s)/p)* = - 1 , then
D5(s, x) does not split completely modulo p. By the way, the discriminant of /5(s, x) is

2836(s2

(s2 + 4s- l )M(s)3 '

Thus if (A(s)/p)* = - 1 and (s/p)* = 1, then by Theorem 1.3, the group £5(s)(Fp) is
cyclic. If we take a non-square integer e and a pair of rational numbers (S, T) such that

(2) A{S2) = S4 + 22S2 + 125 = eT2,

then for a prime number of the form p = 2m25ms +1 satisfying (e/p) = — 1 and s = S2, we
know E5(s)(¥p) is a cyclic group. For instance, by taking e = 13, we have the following
theorem.

THEOREM 2 . 1 . Let p be a prime number of the form p = 2m25m5 + 1 satisfying
(13/p) = — 1. Consider the elliptic curve S\ defined by

£1 : V2 = U3 - 5658121/ - 163779759.

Then we have the following assertions.

(i) £i is transformed into the curve defined by S4 + 22S2 +125 = 13T2, by the
transformation

5(V + 24U + 10647)

and

10(V2 - 270V + 1314E/2 + 1131624C/ + 243513621)
(V - 541/ - 23517)2

(ii) The point Q = (1092,22815) is a rationai point of £\ ofinSnite order.

1-1{U,V)- (T/ - 541/ - 23517)2

(iii) Let [m]Q = Q + • • •+ Q = (Um,Vm) and Sm = S(Um,Vm). If the elliptic
curve Es{Sn) has good reduction at p, then the group £:

5(52,)(FP) is cyclic.
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PROOF: Since [m]Q ^ O, for integers 1 < m < 12, by Mazur's theorem ([9, p. 223]),
we see the order of Q is infinity. This shows (ii). Putting 5 = S{U, V) and T = T(U, V)
in the equation (2), for e = 13, we see that S{U,V)4 + 22S(U,V)2 + 125 - 13T(U,V)2

is a multiple of V2 - U3 + 565812C/ + 163779759. This shows (i). The assertion (iii) is
obvious by the above argument. 0

We shall list some examples of prime numbers of the form p = 2m25m* + 1 satisfying
(13/p) = - 1 and the orders of E6(S^)(WP) in Table 1.

m

p = 235 + 1

2452 + 1

2652 + 1

2r53 + 1

2135 + 1

2165 + 1

1

32

392

1642

15862

40962

163422

2

52

432

1572

15852

40612

163832

3

52

372

1632

15932

41152

164022

4

32

382

1562

16072

41202

163812

5

32

402

1622

16152

40822

164062

6

52

432

1582

15972

40742

163462

7

52

392

1632

15832

41182

164472

Table 1: Orders of ES(S^)(FP) in Theorem 2.1.

3. THE CASE N = 7

Let u = (-1 + vc:3)/2. For a non-zero number s € Q(w), such that J7(s) ^ 0,1728,
we consider an elliptic curves E7(s) defined by (1). The 7-division polynomial ^(x) of
E7(s) has a cubic factor

(3) D7(s, x) = A(s)3x3 + 3A{s)2B(s)C(s)x2

+ 3A(s)B(s)2C(s)(s2 + 13s + 33)x

+ B{s)3C{s)(s4 + 26s3 + 219s2 + 778s + 881),

where A(s) = s4 + 14s3 + 63s2 + 70s - 7, B{s) = s2 + 5s + 1 and C(s) = s2 + 13s + 49.
By replacing A(s)x/B(s) by x, (3) is transformed into

(4) x3 + 3C(s)x2 + 3C(s) (s2 + 13s + 33)i + C{s) (s4 + 26s3 + 219s2 + 778s + 881).

Further by replacing x by x — C(s), (4) is transformed into

(5) d7(s, x) = x3 - 48C(s)x + 64(2s + 13)C(s).

Since the discriminant of d7(s,x) is 21236C(s)2, the Galois group of the splitting field over
Q(w) of ^ ( s , x) is isomorphic to a subgroup of Z/3Z. Further we know that the roots of
the equation d7(s,x) = 0 are given by
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where

9X = -6y ((2s + 13) + 3N/=3) ((2S + 13) - Zy/^7,

S + 13) + 3V=3)2({2s + 13) - Sv/3^).

Let p be a prime ideal of Q(w) over p. We remark that if 6\ + Q-i € Fp, then 9\, d2 S Fp.
By the way, the discriminant of fj[s, x) is

2836B(s)6C(s)2s
A(s)'

Therefore, we have

PROPOSITION 3 . 1 . Let p be a prime number and p a prime ideal of Q(w) over
p. Then, for s € Q(OJ), we have the following assertions.

(i) If ((2s + 13) + 3-/::3)/((2s + 13) - Sy/^ is non-cubic modulo p, then
Dy(s, x) does not split completely modulo p.

(ii) Ifs is non-square modulo p, then /7(s, x) does not split completely modulo
P-

Let p be a prime number of the form p = 2mj7m7 + 1 and put 5 = 2s + 13. Suppose
that p + 1 ^ 0 mod 9. Then we have (w/(p))3 = w^>2~1^3 ^ 1. Let us consider a pair
(5, T) of elements of Q(w) such that

| | g = o ; T 3 , where T € Q(u>).

Then we have

Since (u/(p)h ^ 1, by Proposition 3.1, D7((S(T) - 13)/2,z) does not split completely
modulo (p).

In the following, we restrict ourselves to the case S(T) is a rational number. First,
we shall show the following lemma.

LEMMA 3 . 2 . For T e Q(w), put

Then S(T) e Q if and only ifT = a + v^36 for some a, b € Q suci that a2 + 3ft2 = 1.

PROOF: Assume that
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Then we know

where T is the complex conjugate of T. By a simple calculation, we know T37L = 1.
Since TT € K, we see that TT = 1. Put T = a + v / r36(o,6 € Q). Then we have
TT — a2 + 362 = 1. Conversely, if T = a + y/^3b, where o, 6 are rational numbers such
that o2 + 362 = 1, then by a simple calculation, we see

= (y^3)3(l+a;T3) = 9(12a62 - 1263 - a + 36)
y ' 1-uT3 Uah2 + 36ft3 - a - 96 - 2 V" rj

By Lemma 3.2 and the above argument, if we take a pair of rational numbers (a, 6)
such that a2 + 362 = 1 and put T = a + v/z36, then we see D7((S(T) - 13)/2, x\ does
not split completely modulo p.

We know there exist infinity many pairs of rational numbers (o, 6) such that a2 + Zb2

= 1. For instance,
_ f-3a2 + /?2 2a/3

1 ' >~ V3a2+ £2 ^
is a Q-rational solution of a2 + 3b2 = 1, for a, 0 € Z. Hence we have

THEOREM 3 . 3 . Let p be a prime number of the form p = 2m27m7 + 1 satisfying
p + 1 =£0mod9. Fora,0€Z, {a,0) ^ (0,0), let

S(a'P} ~ 3 Q 3 + 9a2/? - 3a/?2 - /?3 "

If E7(s(a,j3)) has good reduction at p, and (s(a,f3)/p)* = - 1 , then the group
E7(s(a,0))(¥p) is cyclic.

PROOF: Put a = (-3a2 + £2)/(3a2 + p2), b = (2a£)/(3a2 + /?2) and

3a2

By (6), we have (S(T) — 13)/2 = s(a, /?). Therefore, by Proposition 3.1, the polynomials
D7(s(a,P),x) and f7(s(a,fi),x) do not split completely modulo p. By Theorem 1.3, we
have our assertion. D

We remark that 2m27t"7 + 2 = 0 mod 9 if and only if m2 + 4m7 = 4 mod 6. For
instance, we have m2 + 4m7 ^ 4 mod 6 for prime numbers

p = 227 + 1,2273 + 1,2276 + 1,247 + 1,2475 + 1,24719 + 1,2672 + 1,2675 + 1,267U + 1.

For p = 2672 + 1, we shall give some examples of (a, /?) such that (s(a, /J)/p)* = - 1 and

the orders of £7(s(a, /?))(Fp) in Table 2.
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(«,« II (1,1)
Er[a{a,fi))lVp) || 3200

(2,9)

3102

(3,2)

3146

(3,8)

3202

(4,1)

3186

(4,5)

3076

(5,2)

3060

J = 3u{g) =

Table 2: Orders of E7(s(a,p))(Wp)(p = 2672 + 1).

4. T H E CASE N = 13

For a non-zero rational number s, such that juis) ^ 0,1728, we consider an elliptic
curve Ei3(s) defined by (1).

4.1. COMPUTATION OF DI3{S,X). We shall determine a factor £>i3(s,a;) of degree 6
of the 13-division polynomial rpi3{x) of ^i3(s). By Schoof's method, Di3(s, x) can be
computed by coefficients of E\3(s) and of a 13-isogenous curve £13(3). The equation

(g2 + 5 g + 13) (g4 + 7g3 + 20g2 + 19g + I)3

9
can be transformed into the modular equation $(g,J) = 0 given in [5, Section 3.2.1].
Therefore, by Morain [5, Section 3.2], the curve Ei3(s) can be obtained as follows:

EZ(s) : y2 = x3 - 3 • l S 4 ^ 1 3 ^ - 2 • 1 3 6 ^ 1 3 ) ,

where

I ^ 1 3 ) = (s4 + 247s3 + 3380s2 + 15379s + 28561)H1(s)#2(s)2/28561,

E?u) = (s6 - 494s5 - 20618s4 - 237276s3 - 1313806s2 - 3712930s2 - 4826809)

xH1(s)H2{s)3/4826809,

Hi(s) = (s2 + 5s + 13)/(s2 + 6s + 13),

H2(s) = (s4 + 7s3 + 20s2 + 19s + l ) / ( s 6 + 10s5 + 46s4 + 108s3 + 122s2 + 38s - 1).

Let A 3 ( s , x) = x6 + e5x
5 + e4 i 4 + e3x3 + e2x2 -I- eyx + e0. Then by Schoof [8, Section 8],

we have

e0 = ff!(s)2//2(s)6(s14 + 38s13 + 649s12 + 6844s11 + 50216s10 + 271612s9

+1115174s8 + 3520132s7 + 8549270s6 + 15812476s5 + 21764840s4

+21384124s3 + 13952929s2 + 5282630s + 854569)/(s2 + 6s + 13),

d = 6ff1(s)2J?2(s)5(s10 + 27s9 + 316s8 + 2225s7 + 10463s6 + 34232s5

+78299s4 + 122305s3 + 122892s2 + 69427s + 16005),

e2 = 3#i(s)2#2(s)4(5s8 + 110s7 + 1045s6 + 5798s5 + 20508s4 + 47134s3

+67685s2 + 54406s + 17581),

e3 = 4#i(s)#2(s)3(5s6 + 80s5 + 560s4 + 2214s3 + 5128s2 + 6568s + 3373),

e4 = 3#!(s)#2(s)2(5s4 + 55s3 + 260s2 + 583s + 537),
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4.2. CONSTRUCTION OF CYCLIC GROUPS EI3(S)(¥P). Let p be a prime number of the
form p = 2m313mi3 + 1. By a simple computation using Mathematica 5.0, we know the
discriminant of D\3(s, x) is

and the discriminant of fn(s, x) defined in (1) is

2836s(s2

(s2 + 6s + 13)3

Thus if ((s2 + 6s + 13)/p)* = - 1 and (s/p)* = 1, then Dn(s,x) and fn{s,x) do not
split completely modulo p. Therefore, by Theorem 1.3, the group £13(s)(Fp) is cyclic. In
particular, if we take a rational number e and a pair of rational numbers (S, T) so that

(7) S 4 + 6 S 2 + 13 = eT2, f - J = - 1 ,

then the group £'13(52)(FP) is cyclic. For A 6 Z, if we take e = (A4 + 6A2 + 13)/A2, then
we have the following theorem.

THEOREM 4 . 1 . Let X be an integer such that A ^ 0 mod 13. Let p be a prime

number of the form p = 2m 213m'3 + 1 satisfying ((A4 + 6A2 + 13)/p) = - 1 . Consider the

elliptic curve £2(A) deSned by

£2(A) : V2 = U3 - 4A4(A4 + 6A2 + 13)2U - 3A6(A4 + 6A2 + 13)3,

and put e(A) = (A4 + 6A2 + 13)/A2. Then we have the following assertions.

(i) £2(A) is transformed into the curve deBned by S4 + 6S2 + 13 = e(A)T2, by the

transformation

„ . , A((3A2 + 13)t/ + V + A2(5A2 + 13)(A4 + 6A2 + 13))
n\u, V) A2(A2 + 3 ) £ / V r + A4(A2 + 5)(A4 + 6A2 + 13)

T-T(UV)-
(A2(A2 + 3)U - V + A4(A2 + 5)(A4 + 6A2 + 13))2'

where

B = -4A4(A4 - 13),

C = 2A6(A4 - 2A2 + 13)(A4 + 6A2 + 13)2.
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(ii) ThepomtQ(X) = ((A4+2A2 + 13)(A4+6A2 + 13)/4, (A4-13)(A4+6A2 + 13)2

is a rational point of £2 (A) of infinite order,

(iii) Let

and

HQ(A) = Q(A) + • • • + Q(X) = (Um(\), Vm(X))

Sm(A) = S(C/m(A),Vm(A)).

If the elliptic curve Ei3(Sm(X)2) has good reduction at p, then the group £13(Sm(A)2)(Fv)
is cyclic.

PROOF: First, we shall show the assertion (ii). Assume that Q(X) is a torsion
point. Then by the Nagell-Lutz Theorem ([9, p. 221]), the y-coordinate y of Q{X) is
an integer, y = 0, or the square of y-coordinate y of Q(X) divides the discriminant A
of €2{X). If A = 0 mod 2, then (A4 - 13)(A4 + 6A2 + 13)2/8 is not an integer. We
consider the case A = 1 mod 2. Obviously, [2]Q(A) ^ O. Suppose that y2 divides A.
Since A = -13A12(A4 + 6A2 + 13)6, and A is prime to 13, we have A4 - 13 divides
8(A4 + 6A2 + 13). Since8(A4 + 6A2 + 13) = 8(A4-13 + 2(3A2 + 13))and(A4-13)/4isodd,
we have (A4 -13) /4 divides 3A2 +13. Let p0 be an odd prime number dividing (A4 -13)/4.
Then we have A4 — 13 = 0 mod p0 and 3A2 + 13 = 0 mod po- These congruences imply
po = 13 and 13 divides A. This shows a contradiction. Therefore the assertion (ii) holds
true. Next, putting 5 = S{U,V) and T = T{U,V) in the equation (7), for e = e(A),
we see that S{U, V)A + 6S(U, V)2 + 13 - e(X)T(U, V)2 is a multiple of a polynomial
U3 - 4A4(A4 + 6A2 + 13)2U - 3A6(A4 + 6A2 +13)3 - V2. This shows the assertion (i). The
assertion (iii) is obvious. D

EXAMPLE 1. In Theorem 4.1, take A = 1 or 2. For A = 1, we have ((A4 + 6A2 + 13)/p)
= (5/p), and for A = 2, we have ((A4 + 6A2 + 13)/p) = (53/p). In Tables 3 and 4,
we shall list some examples of prime numbers of the form p = 2m213mi3 + 1 satisfying
((A4 + 6A2 + 13)/p) = - 1 , and the orders of ^13(5m(A)2)(Fp) for A = 1 and 2 respectively.

m

p = 2 2 13+l

22132 + 1

21 0 13+l

24133 + 1

2U132 + 1

1

58

678

13336

35028

2771264

2

58

singular

13314

34998

2769288

3

50

678

13266

35080

2770956

4

54

652

13180

35180

2767386

5

58

singular

13266

35418

2771728

6

singular

652

13310

35306

2769860

Table 3: Orders of £1 3(Sm(l)2)(Fp).

REMARK. At present we do not know the order and generators of the cyclic group
Ef/(s)(Wp). We think it is an interesting problem to determine them but this problem is
beyond the scope of this article.
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m

p = 22132 + 1

24133 + 1

214132 + 1

22O13 + 1

1

682

35414

2768842

13631026

2

678

34868

2770714

13634034

3

708

35184

2770870

13625124

4

652

34994

2769444

13632192

5

700

34998

2771706

13636114

6

674

35340

2766068

13628166

Table 4: Orders of £i3(Sm(2)2)(Fp).
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