
JFP 32, e11, 60 pages, 2022. c© The Author(s), 2022. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.
doi:10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq

D A N I L A N N E N K O V
Computer Science, Aarhus University, Aarhus, Denmark

(e-mail: danil.v.annenkov@gmail.com)

M I K K E L M I L O
Computer Science, Aarhus University, Aarhus, Denmark

(e-mail: mikkelmilo@gmail.com)

J A K O B B O T S C H N I E L S E N
Computer Science, Aarhus University, Aarhus, Denmark

(e-mail: jakob.botsch.nielsen@gmail.com)

B A S S P I T T E R S
Computer Science, Aarhus University, Aarhus, Denmark

(e-mail: bas@cs.au.dk)

Abstract

We implement extraction of Coq programs to functional languages based on MetaCoq’s certified
erasure. We extend the MetaCoq erasure output language with typing information and use it as an
intermediate representation, which we call λT

�. We complement the extraction functionality with a
full pipeline that includes several standard transformations (e.g. eta-expansion and inlining) imple-
mented in a proof-generating manner along with a verified optimisation pass removing unused
arguments. We prove the pass correct wrt. a conventional call-by-value operational semantics of
functional languages. From the optimised λT

� representation, we obtain code in two functional smart
contract languages, Liquidity and CameLIGO, the functional language Elm, and a subset of the
multi-paradigm language for systems programming Rust. Rust is currently gaining popularity as a
language for smart contracts, and we demonstrate how our extraction can be used to extract smart
contract code for the Concordium network. The development is done in the context of the ConCert
framework that enables smart contract verification. We contribute with two verified real-world smart
contracts (boardroom voting and escrow), which we use, among other examples, to exemplify the
applicability of the pipeline. In addition, we develop a verified web application and extract it to fully
functional Elm code. In total, this gives us a way to write dependently typed programs in Coq, verify,
and then extract them to several target languages while retaining a small trusted computing base of
only MetaCoq and the pretty-printers into these languages.

1 Introduction

Proof assistants offer a promising way of delivering the strongest guarantee of correct-
ness. Many software properties can be stated and verified using the currently available
tools such as, e.g. Coq, Agda, and Isabelle. In the current work, we focus our atten-
tion on the Coq proof assistant based on dependent-type theory (calculus of inductive

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796822000077
https://orcid.org/0000-0001-8278-3069
mailto:danil.v.annenkov@gmail.com
https://orcid.org/0000-0003-3261-5205
mailto:mikkelmilo@gmail.com
https://orcid.org/0000-0002-0459-2678
mailto:jakob.botsch.nielsen@gmail.com
https://orcid.org/0000-0002-2802-0973
mailto:bas@cs.au.dk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796822000077&domain=pdf
https://doi.org/10.1017/S0956796822000077

2 D. Annenkov et al.

constructions—CIC). Since the calculus of Coq is also a programming language, it is pos-
sible to execute programs directly in the proof assistant. The expressiveness of Coq’s type
system allows for writing specifications directly in a program type. These specification can
be expressed, for example, in the form of pre- and postconditions using subset types imple-
mented in Coq using the dependent pair type (�-type). However, in order to integrate the
formally verified code with existing components, one would like to obtain a program in
other programming languages. One way of achieving this is to extract the executable code
from the formalised development. Various verified developments rely extensively on the
extraction feature of proof assistants (Cruz-Filipe and Spitters, 2003; Filliâtre & Letouzey,
2004; Leroy, 2006; Cruz-Filipe & Letouzey, 2006; Klein et al., 2014). However, currently,
the standard extraction feature in proof assistants focuses on producing code in conven-
tional functional languages (Haskell, OCaml, Standard ML, Scheme, etc.). Nowadays,
there are many new important target languages that are not covered by the standard
extraction functionality.

An example of a domain that experiences rapid development and the increased impor-
tance of verification is the smart contract technology. Smart contracts are programs
deployed on top of a blockchain. They often control large amounts of value and cannot
be changed after deployment. Unfortunately, many vulnerabilities have been discovered
in smart contracts and this has led to huge financial losses (e.g. TheDAO,1 Parity’s multi-
signature wallet2). Therefore, smart contract verification is crucially important. Functional
smart contract languages are becoming increasingly popular, e.g. Simplicity (O’Connor,
2017), Liquidity (Bozman et al., 2018), Plutus (Chapman et al., 2019), Scilla (Sergey
et al., 2019) and LIGO.3 A contract in such a language is a partial function from a message
type and a current state to a new state and a list of actions (transfers, calls to other con-
tracts), making smart contracts more amenable for formal verification. Functional smart
contract languages, similarly to conventional functional languages, are often based on a
well-established theoretical foundation (variants of the Hindley–Milner type system). The
expressive type system, immutability, and message-passing execution model allow for rul-
ing out many common errors in comparison with conventional smart contract languages
such as Solidity.

For the errors that are not caught by the type checker, a proof assistant, in particular Coq,
can be used to ensure correctness. Once properties of contracts are verified, one would like
to execute them on blockchains. At this point, the code extraction feature of Coq would be
a great asset, but extraction to smart contract languages is not available in Coq.

There are other programming languages of interest in different domains that are not
covered by the current Coq extraction. Among these, Elm (Feldman, 2020)—a functional
language for web development and Rust (Klabnik & Nichols, 2018)—a multi-paradigm
systems programming language, are two examples.

Another issue we face is that the current implementation of Coq extraction is written
in OCaml and is not itself verified, potentially breaking the guarantees provided by the
formalised development. We address this issue by using an existing formalisation of the

1 https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/ (accessed 2021-
07-20).

2 https://www.parity.io/the-multi-sig-hack-a-postmortem/ (accessed 2021-07-20).
3 https://ligolang.org/ (accessed 2021-07-20).

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.parity.io/the-multi-sig-hack-a-postmortem/
https://ligolang.org/
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 3

meta-theory of Coq and provide a framework that is implemented Coq itself. Being writ-
ten in Coq gives us a significant advantage since it makes it possible to apply various
techniques to verify the development itself.

The current work extends and improves the results previously published and pre-
sented by the same authors at the conference Certified Programs and Proofs (Annenkov
et al., 2021) in January 2021. We build on the ConCert framework (Nielsen & Spitters,
2019; Annenkov et al., 2020) for smart contracts verification in Coq and the MetaCoq
project (Sozeau et al., 2020). We summarise the contributions as the following, marking
with † the contributions that extend the previous work.

• We provide a general framework for extraction from Coq to a typed functional lan-
guage (Section 5.1). The framework is based on certified erasure (Sozeau et al.,
2019) of MetaCoq. The output of MetaCoq’s erasure procedure is an AST of an
untyped functional programming language λ�. In order to generate code in typed
programming languages, we implement an erasure procedure for types and inductive
definitions. We add the typing information for all λ� definitions and implement an
annotation mechanism allowing for adding annotations in a modular way—without
changing the AST definition. We call the resulting representation λT

� and use it as an
intermediate representation. Moreover, we implement and prove correct an optimisa-
tion procedure that removes unused arguments. The procedure allows us to optimise
away some computationally irrelevant bits left after erasure.

• We implement pre-processing passes before the erasure stage (see Section 5.2). After
running all the passes, we generate correctness proofs. The passes include

– η-expansion;
– expansion of match branches†;
– inlining†.

• We develop in Coq pretty-printers for obtaining extracted code from our intermedi-
ate representation to the following target languages.

– Liquidity—a functional smart contract language for the Dune network
(see Section 5.3).

– CameLIGO—a functional smart contract language from the LIGO family for
the Tezos network (see Section 5.3)†.

– Elm—a general purpose functional language used for web development
(see Section 5.4).

– Rust—a multi-paradigm systems programming languages (see Section 5.5)†.

• We develop an integration infrastructure, required to deploy smart contracts written
in Rust on the Concordium blockchain†.

• We provide case studies of smart contracts in ConCert by proving properties of
an escrow contract and an anonymous voting contract based on the Open Vote
Network protocol (Sections 6 and 7). We apply our extraction functionality to study
the applicability of our pipeline to the developed contracts.

Apart from the extensions marked above, we have improved over the previous work in
the following points.

• The erasure procedure for types now covers type schemes. We provide the updated
procedure along with the discussion in Section 5.1.1

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

4 D. Annenkov et al.

PCUIC λ□λλλT*

ConCert
Smart contracts

MetaCoq
Coq proof assistant Target languages

CertiCoq

Template
Coqq

sm
ar

t
 c

on
tra

ct
s

ge
ne

ra
l

pu
rp

os
e

T*TT

Fig. 1: The pipeline.

• We extract the escrow contract to new target languages and finalise the extrac-
tion of the boardroom voting contract, which was not previously extracted. For the
Elm extraction, we develop a verified web application that uses dependent types to
encode the validity of the data in the application model. We demonstrate how the
fully functional web application can be produced from the formalisation.

2 The pipeline

We begin by describing the whole pipeline covering the full process of starting with a pro-
gram in Coq and ending with extracted code in one of the target languages. This pipeline
is shown in Figure 1. The items marked with ∗ (also given in green) are contributions of
this work and the items in bold cursive are verified. The MetaCoq project (Sozeau et al.,
2020) provides us with metaprogramming facilities and formalisation of the meta-theory
of Coq, including the verified erasure procedure.

We start by developing a program in Gallina that can use rich Coq types in the style
of certified programming, see e.g. Chlipala (2013). In the case of smart contracts, we
can use the machinery available in ConCert to test and verify the properties of interact-
ing smart contracts. We obtain a Template Coq representation by quoting the program.
This representation is close to the actual AST representation in the Coq kernel. We then
apply a number of certifying transformations to this representation (see Section 5.2). This
means that we produce a transformed term along with a proof term, witnessing that the
transformed term is equal to the original in the theory of Coq. Currently, we assume that
the transformations applied to the Template Coq representations preserve convertibility.
Therefore, we can easily certify them by generating simple proofs consisting essentially
of the constructor of Coq’s equality type eq_refl. Although the transformations them-
selves are not verified, generated proofs give strong guarantees that the behaviour of the
term has not been altered. One can configure the pipeline to apply several transformations,
in this case, they will be composed together and applied to the Template Coq term. The
correctness proofs are generated after all the specified transformations are applied.

The theory of Coq is presented by the predicative calculus of cumulative inductive con-
structions (PCUIC) (Timany & Sozeau, 2017), which is essentially a cleaned-up version of
the kernel representation. The translation from the Template Coq representation to PCUIC
is mostly straightforward. Currently, MetaCoq provides the type soundness proof for the

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 5

translation, but computational soundness (wrt. weak call-by-value evaluation) is not veri-
fied. However, the MetaCoq developers plan to close this gap in the near future. Most of
the meta-theoretic results formalised by the MetaCoq project use the PCUIC representation
(see Section 3 for the details about different MetaCoq representations).

From PCUIC, we obtain a term in an untyped calculus of erased programs λ� using
the verified erasure procedure of MetaCoq. By λT

�, we denote λ� enriched with typing
information, which we obtain using our erasure procedure for types (see Section 5.1.1).
Specifically, we add to the λ� representation of MetaCoq the following.

• Constants and definitions of inductive types in the global environment store the
corresponding “erased” types (box_type in Section 5.1.1).

• We explicitly represent type aliases (definitions that accept some parameters and
return a type) as entries in the extended global environment.

• The nodes of the λ� AST can be optionally annotated with the corresponding
“erased” types (see Section 5.3).

The typing information is required for extracting to typed functional languages. The λT
�

representation is essentially a core of a pure statically typed functional programming lan-
guage. Our extensions make it a convenient intermediate representation containing enough
information to generate code in various target languages.

The pipeline provides a way of specifying optimisations in a compositional way. These
optimisations are applied to the λT

� representation. Each optimisation should be accom-
panied with a proof of computational soundness wrt. the big-step call-by-value evaluation
relation for λ� terms. The format for the computational soundness is fixed and the indi-
vidual proofs are combined in the top-level statement covering given optimisation steps
(see Theorem 2). At the current stage, we provide an optimisation that removes dead
arguments of functions and constructors (see Section 5.1.2).

The optimised λT
� code is then can be printed using the pretty-printers developed directly

in Coq. The target languages include two categories: languages for smart contracts and
general-purpose languages. The Rust programming language is featured in both categories.
However, the use case of Rust as a smart contract language requires slightly more work for
integrating the resulting code with the target blockchain infrastructure (see Section 5.5).

Our trusted computing base (TCB) includes Coq itself, the quote functionality of
MetaCoq and the pretty-printing to target languages. While the erasure procedure for
types is not verified, it does not affect the soundness of the pipeline (see discussion in
Section 5.1).

When extracting large programs, the performance of the pipeline inside Coq might
become an issue. In such cases, it is possible to obtain an OCaml implementation of our
pipeline using the standard Coq extraction. However, this extends the TCB with the OCaml
implementation of extraction and the pre-processing pass, since the proof terms will not be
generated and checked in the extracted OCaml code.

Our development is open-source and available in the GitHub repository https://
github.com/AU-COBRA/ConCert/tree/journal-2021. In the text, we refer to our for-
malisation using the following link format: path/to/file.v:lemma_name. The path starts at
the root of the project’s repository, and the optional lemma_name parameter refers to a
definition in the file.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/tree/journal-2021
https://github.com/AU-COBRA/ConCert/tree/journal-2021
https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction
https://doi.org/10.1017/S0956796822000077

6 D. Annenkov et al.

Pretty-printing and formalisation of target languages. The printing procedure itself is a
partial function in Coq that might fail (or emit errors in the resulting code) due to unsup-
ported constructs. The unsupported constructs could result from limitations of a target
language, or a pretty-printer itself. Similarly to the standard extraction of Coq, the printed
code may be untypable. The reason is that the type system of Coq is stronger than the type
systems of the target languages. In the standard extraction, it is solved with type coercions,
but in most of our target languages, the mechanisms to force the type checker to accept the
extracted definitions are missing. We discuss these issues and some solutions in Section 5.
Note, that the pipeline gives a guarantee that the λT

� code will evaluate to a correct value.
Therefore, if the corresponding pretty-printer is correct, the computational behaviour of the
extracted code is sound. We discuss the restrictions for each target language in Sections
5.3–5.5.

As we mentioned earlier, the pretty-printing is part of the TCB. It bridges the gap
between λT

� and a target language. This gap varies for various target languages. Elm
is very close to λT

�. CameLIGO and Liquidity are not too far, but have several restric-
tions and require mapping λT

� constructs to native types and operations. We also apply
several standard extraction techniques when printing to a concrete syntax. For example,
we replace absurd cases (unreachable branches) in pattern matching with exceptions or
non-terminating functions. Such transformations have certain semantic consequences spe-
cific to each target language, which are currently captured only informally by the printing
procedures.

From that point of view, the pipeline offers partial correctness guarantees ending with
the λT

� representation. To extend the guarantees provided by extraction and close this gap,
one needs to consider the semantics of the target languages. That is, can add a translation
step from λT

� to the target language syntax and prove the translation correct. Ongoing work
at Tezos on formalising the semantics of LIGO languages4 would allow for connecting
our λT

� semantics with the CameLIGO semantics, and eventually get a verified pipeline
producing verified Michelson code, directly executed by the Tezos infrastructure.

The gap between λT
� and Rust is larger, and it would be beneficial to provide a trans-

lation that would take care of modelling memory allocation, for example. Projects like
RustBelt (Jung et al., 2021) and Oxide (Weiss et al., 2019) are aiming to give formal
semantics to Rust. However, currently, they do not formalise the Rust surface language.

3 The MetaCoq project

Since MetaCoq (Anand et al., 2018) is integral to our work, we briefly introduce the project
structure and explain how different parts of it are relevant to our development.

Template Coq. This subproject adds metaprogramming facilities to Coq. That is, Coq def-
initions can be quoted giving an AST of the original term represented as an inductive data
type term internally in Coq. The term type and related data types in Template Coq are very
close to the actual implementation of the Coq kernel written in OCaml, which makes the
quote/unquote procedures straightforward to implement. This representation is suitable for

4 https://gitlab.com/ligolang/ligo/-/tree/dev/src/coq (accessed 2022-02-21).

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://gitlab.com/ligolang/ligo/-/tree/dev/src/coq
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 7

defining various term-level transformations as Coq functions. The results of such transfor-
mations can be unquoted back to an ordinary Coq definition (provided that the resulting
term is well-typed).

The Template Coq metaprogramming facilities are used as the first step in our pipeline.
Given a (potentially verified and dependently typed) program in Coq, we can use quote to
obtain the program’s AST that is then transformed, extracted, optimised, and finally pretty-
printed to one of the target languages (see Figure 1). The transformations at the level of
the Template Coq AST are used as a pre-processing step in the pipeline.

Template Coq features vernacular commands for obtaining the quoted representations,
e.g. MetaCoq Quote Definition In addition to that, it features the template monad,
which is similar in spirit to the IO monad and allows for interacting with the Coq environ-
ment (quote, unquote, query, and add new definitions). We use the template monad in our
pipeline for various transformations whenever such interaction is required. For example,
we use it for implementing proof generating transformations (see Section 5.2).

PCUIC. Predicative calculus of cumulative inductive constructions (PCUIC) is a variant
of the calculus of inductive constructions (CIC) that serves as the underlying theoretical
foundation of Coq. In essence, PCUIC representations is a “cleaned-up” version of the
Template Coq AST: it lacks lacks type casts and has the standard binary application, com-
pared to the n-ary application in Template Coq. MetaCoq features translation between the
two representations.

Various meta-theoretic results about PCUIC has been formalised in MetaCoq, including
the verified type checker (Sozeau et al., 2019). In our development, we use the certified
programming approach that relies on the results related to reduction and typing.

Verified erasure. One important part of the MetaCoq project that we build on is the veri-
fied erasure procedure. The erasure procedure takes a PCUIC term as input and produces
a term in λ�. The meta-theory of PCUIC developed as part of MetaCoq is used exten-
sively in erasure implementation and formalisation of the correctness results. The erasure
procedure is quite subtle and its formalisation is a substantial step towards the fully veri-
fied extraction pipeline. We discuss the role and the details of MetaCoq’s verified erasure
in Section 5.1.

4 The ConCert framework

The present work builds on and extends the ConCert smart contract certification framework
presented by the three authors of the present work at the conference Certified Programs
and Proofs in January 2020 (Annenkov et al., 2020). In this section, we briefly describe
relevant parts of ConCert along with the extensions developed in Annenkov et al. (2021)
and in the present work.

Execution Layer. The execution layer provides a model that allows for reasoning on con-
tract execution traces which makes it possible to state and prove temporal properties of
interacting smart contracts. In the functional smart contract model, the contracts consist of
two functions.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

8 D. Annenkov et al.

init : Chain→ ContractCallContext→ Setup→ option State

The init function is called after the contract is deployed on the blockchain. The first
parameter of type Chain represents the blockchain from a contract’s point of view. The
ContractCallContext parameter provides data about the current call, e.g. caller address,
the amount sent to the contract, etc. Setup is a user defined type that supplies custom
parameters to the initialisation function.

receive : Chain→ ContractCallContext→ State→ option Msg
→ option (State * list ActionBody)

The receive function represents the main functionality of the contract that is executed for
each call to the contract. Chain and ContractCallContext are the same as for the init
function. State represents the current state of the contract and Msg is a user-defined type
of messages that contract accepts. The result of the successful executions is a new state
and a list of actions represented by ActionBody. The actions can be transfers, calls to other
contracts (including the contract itself), and contract deployment actions.

However, reasoning about the contract functions in isolation is not suffi-
cient. A call to receive potentially emits more calls to other contracts or to
itself. To capture the whole execution process, we define the type of execu-
tions traces ChainTrace as the reflexive-transitive closure of the proof-relevant rela-
tion ChainStep : ChainState → ChainState → Type. ChainStep captures how the
blockchain state evolves once new blocks as added and contract calls are executed.

Extraction Layer. Annenkov et al. (2020) presented a verified embedding of smart con-
tracts to Coq. This work shows how it is possible to verify a contract as a Coq function
and then extract it into a program in a functional smart contract language. This layer rep-
resents an interface between the general extraction machinery we have developed and the
use case of smart contracts. In the case of smart contract languages, it is necessary to pro-
vide functionality for integrating the extracted smart contracts with the target blockchain
infrastructure. In practice, it means that we should be able to map the abstractions of the
execution layer (contract’s view of the blockchain, call context data) on corresponding
components in the target blockchain.

Currently, all extraction functionality we have developed, regardless of the relation
to smart contracts, is implemented in the extraction layer of ConCert. In the future,
we plan to separate the general extraction component from the blockchain-specific
functionality.

5 Extraction

The Coq proof assistant comes with a dependently typed programming language Gallina
that allows due to the language’s rich type system to write programs together with their
specifications in the style of certified programming (see e.g. Chlipala, 2013). Coq features
a special universe of types for writing program specifications, the universe of propositions
Prop. For example, the type {n : nat | 0 < n } belongs to so-called subset types, which
are essentially a special case of a dependent pair type (�-type). In this example, 0 < n is
a proposition, i.e. it belongs to the universe Prop. Subset types allow for encoding many

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 9

useful invariants when writing programs in Gallina. An inhabitant of {n : nat | 0 < n }

is a pair with the first component being a natural number and the second component—a
proof that the number is strictly greater than zero. In the theory of Coq, subset types are
represented as an inductive type with one constructor:

Inductive sig (A : Type) (P : A→ Prop) : Type :=
exist : forall x : A , P x→ {x : A | P x}

where {x : A | P x} is a notation for sig A P.
The invariant represented by a second component can be used to ensure, for example,

that division by zero never happens since we require that arguments can only be strictly
positive numbers. The proofs of specifications are only used to build other proofs and
do not affect the computational behaviour of the program, apart from some exceptions
called the empty and singleton elimination principle.5 The Prop universe marks such com-
putationally irrelevant bits. Moreover, types appearing in terms are also computationally
irrelevant. For example, in System F this is justified by parametric polymorphism. This
idea is used in the Coq proof assistant to extract the executable content of Gallina terms
into OCaml, Haskell, and Scheme. The extraction functionality thus enables proving prop-
erties of functional programs in Coq and then automatically producing code in one of the
supported languages. The extracted code can be integrated with existing developments or
used as a stand-alone program.

The first extraction using Prop as a marker for computationally irrelevant parts of
programs was introduced by Paulin-Mohring (1989) in the context of the calculus of con-
struction (CoC), which earlier versions of Coq were based on. This first extraction targeted
System Fω, which can be seen as a subset of CoC, allowing one to get the extracted
term internally in CoC. The current Coq extraction mechanism is based on the theoret-
ical framework from a PhD thesis by Letouzey (2004). Letouzey extended the previous
work of Paulin-Mohring (1989) and adapted it to the full calculus of inductive construc-
tions. The target language of the current extraction is untyped, allowing to accommodate
more features from the expressive type system of Coq. However, the untyped representa-
tion has a drawback; the typing information is still required when extracting to statically
typed programming languages. To this end, Letouzey considers practical issues for imple-
menting an efficient extraction procedure, including recovering the types in typed target
languages, using type coercions (Obj .magic) when required, and various optimisations.
The crucial part of the extraction process is the erasure procedure that utilises the typing
information to prune irrelevant parts. That is, types and propositions in terms are replaced
with � (a box). Formally, it is expressed as a translation from CIC (Calculus of Inductive
Constructions) to λ� (an untyped version of CIC with an additional constant �). The
translation is quite subtle and is discussed in detail in by Letouzey (2004). Letouzey also
provides two (pen-and-paper) proofs that the translation is computationally sound: one
proof is syntactic and uses the operational semantics and the other proof is based on the
realisability semantics. Computational soundness means that the original programs and the
erased programs compute the same (in a suitable sense) value.

5 The principle includes important use cases: empty types like False and definitions by well-founded recursion
with Acc.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

10 D. Annenkov et al.

Having this in mind, we have identified two essential points:

• The target languages supported by the standard Coq extraction do not include many
new target languages, that represent important use cases (smart contracts, web
programming).

• Since the extraction implementation becomes part of a TCB, one would like to
mechanically verify the extraction procedure in Coq itself and the current Coq
extraction is not verified.

Therefore, it is important to build a verified extraction pipeline in Coq itself that also allows
for defining pretty-printers for new target languages.

Until recently, the proof of correctness of one of the essential ingredients, the erasure
procedure, was only done on paper. However, the MetaCoq project made an important step
towards verified extraction by formalising the computational soundness of erasure (Sozeau
et al., 2019, Section 4). The MetaCoq’s verified erasure is defined for predicative calculus
of cumulative inductive constructions (PCUIC) a variant of CIC that closely corresponds
to the meta-theory of Coq. See Section 3 for a brief description of the project’s structure
and Sozeau et al. (2019, Section 2) for the detailed exposition of the calculus. The result
of the erasure is a λ� term, that is, a term in an untyped calculus. On the other hand,
integration with typed functional languages requires recovering the types from the untyped
output of the erasure procedure. Letouzey (2004) solves this problem by designing an
erasure procedure for types and then using a modified type inference algorithm, based
on the algorithm M by Lee & Yi (1998), to recover types and check them against the
type produced by extraction. Because the type system of Coq is more powerful than type
systems of the target languages (e.g. Haskell or OCaml), not all the terms produced by
extraction will be typable. In this case, the modified type inference algorithm inserts type
coercions forcing the term to be well-typed. If we start with a Coq term the type of which is
outside the OCaml type system (even without using dependent types), the extraction might
have to resort to Obj .magic in order to make the definition well-typed. For example, the
code snippet below

Definition rank2 : forall (A : Type) , A→ (forall A : Type , A→ A) → A
:= fun A a f⇒ f _ a .

Extraction rank2 .

gives the following output on extraction to OCaml:

(** val rank2 : ’a1→ (__→ __→ __)→ ’a1 **)
let rank2 a f = Obj .magic f __ a

These coercions are “safe” in the sense that they do not change the computational
properties of the term, they merely allow to pass the type checking.

5.1 Our extraction

The standard Coq extraction targets conventional general-purpose functional programming
languages. Recently, there has been a significant increase in the number of languages that
are inspired by these, but due to the narrower application focus are different in various
subtle details. We have considered the area of smart contract languages (Liquidity and
CameLIGO), web programming (Elm) and general-purpose languages with a functional

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 11

subset (Rust). They often pose more challenges than the conventional targets for extraction.
We have identified the following issues.

1. Most of the smart contract languages6 and Elm do not offer a possibility to insert
type coercions forcing the type checking to succeed.

2. The operational semantics of λ� has the following rule (Sozeau et al., 2019,
Section 4.1): if � � t1 �� and � � t2 � v then � � (

t1 t2
) ��, where − � − � −

is a big-step evaluation relation for λ�, t1 and t2 are λ� terms, and v is a λ� value.
This rule can be implemented in OCaml using the unsafe features, which are, again,
not available in most of our target languages. In lazy languages, this situation never
occurs (Letouzey, 2004, Section 2.6.3), but most of the languages we consider follow
the eager evaluation strategy.

3. Data types and recursive functions are often restricted. E.g. Liquidity, CameLIGO
(and other LIGO languages) do not allow for defining recursive data types (like lists
and trees) and limits recursive definitions to tail recursion on a single argument.
Instead, these languages offer built-in lists and finite maps (dictionaries).

4. Rust has a fully-featured functional subset, but being a language for systems
programming, does not have a built-in garbage collector.

We can make design choices, concerning the point above, in such a way that the soundness
of the extraction will not be affected, given that terms evaluate in the same way before
and after extraction. In the worst case, the extracted term will be rejected by the type
checker of the target language. However, some care is needed: the pretty-printing step still
presents a gap in verification. A more careful treatment of the semantics of target languages
would allow extending the guarantees. Some subtleties come from, e.g. handling of absurd
pattern-matching cases and its interaction with optimisations. As for now, we apply the
approach inspired by the standard extraction in such situations.

Let us consider in detail what the restrictions outlined above mean for extraction. The
first restriction means that certain types will not be extractable. Therefore, our goal is to
identify a practical subset of extractable Coq types and give the user access to transforma-
tions helping to produce well-typed programs. The second restriction is hard to overcome,
but fortunately, this situation should not often occur on the fragment we want to work.
Moreover, as we noticed before, terms that might give an application of a box to some
other term will be ill-typed and thus, rejected by the type checker of the target language.
The third restriction can be addressed by mapping Coq’s data types (lists, finite maps) to
the corresponding primitives in a target language. The fourth restriction applies only to
Rust and means that we have to provide a possibility to “plug-in” a memory management
implementation. Luckily, Rust libraries contain various implementations one can choose
from.

At the moment, we consider the formalisation of typing in target languages out of scope
for this project. Even though the extraction of types is not verified, it does not compromise
run-time safety: if extracted types are incorrect, the target language’s type checker will

6 At least, Simplicity, Liquidity, CameLIGO (and other LIGO languages), Love https://dune.
network/docs/dune-node-next/love-doc/reference/love.html (accessed 2021-08-05), Scilla and
Sophia https://aeternity-sophia.readthedocs.io/ (accessed 2021-08-05).

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://dune.network/docs/dune-node-next/love-doc/reference/love.html
https://dune.network/docs/dune-node-next/love-doc/reference/love.html
https://aeternity-sophia.readthedocs.io/
https://doi.org/10.1017/S0956796822000077

12 D. Annenkov et al.

reject the extracted program. If we followed the work by Letouzey (2004), which the cur-
rent Coq extraction is based on, giving guarantees about typing would require formalising
of target languages type systems, including a type inference algorithm (possibly algorithm
M). The type systems of many languages we consider are not precisely specified and are
largely in flux. Moreover, for the target languages without unsafe coercions, some of the
programs will be untypable in any case. On the other hand, for more mature languages
(e.g. Elm) one can imagine connecting our formalisation of extraction with a language
formalisation, proving the correctness statement for both the run-time behaviour and the
typability of extracted terms.

We extend the work on verified erasure (Sozeau et al., 2019) and develop an approach
that uses a minimal amount of unverified code that can affect the soundness of the verified
erasure. Our approach adds an erasure procedure for types, verified optimisations of the
extracted code and pretty-printers for several target languages. The main observation is
that the intermediate representation λT

� corresponds to the core of a generic functional
language. Therefore, our pipeline can be used to target various functional languages with
transformations and optimisations applied generically to the intermediate representation.

Before introducing our approach, let us give some examples of how the verified erasure
works and motivate the optimisations we propose.

Definition sum_nat (xs : list nat) : nat := fold_right plus 0 xs .

produces the following λ� code:

fun xs⇒ Coq .Lists .List .fold_right �� Coq .Init .Nat .add O xs

where the � symbol corresponds to computationally irrelevant parts. The first two argu-
ments to the erased versions of fold_right are boxes, since fold_right in Coq has
two implicit type arguments. They become visible if we switch on printing of implicit
arguments:

Set Printing Implicit .
Print sum_nat .
(* sum_nat = fun xs : list nat⇒ @fold_right nat nat Init.Nat.add 0 xs

: list nat→ nat *)

In this situation we have at least two choices: remove the boxes by some optimisation
procedure, or leave the boxes and extract fold_right in such a way that the first two
arguments belong to some dummy data type.7 The latter choice cannot be made for some
smart contract languages due to restrictions on recursion (fold_right is not tail-recursive),
therefore, we have to remap fold_right and other functions on lists to the corresponding
primitive functions. Generally, removing such dummy arguments in the extracted code is
beneficial for other reasons: the code size is smaller and some redundant reductions can be
avoided.

7 There are two rules in the semantics of λ� that do not quite fit into the evaluation model of the languages
we consider: pattern-matching on a box argument and having a box applied to some argument. The pattern-
matching on a box case is addressed in the last version of MetaCoq and we include this optimisation in our
pipeline. The applied box case requires implementing � as an argument consuming function, which is impossi-
ble in several of our target languages due to the absence of unsafe features. Therefore, we choose to implement
� as the unit type, potentially resulting in ill-typed programs after extraction. However, such cases mostly
occur due to the use of the subtyping rule Prop≤ Type. The examples we considered do not make use of this
feature.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 13

In the following example,

Definition square (xs : list nat) : list nat := map (fun x⇒ x * x) xs .

the square function erases to

fun xs⇒ Coq .Lists .List .map �� (fun x⇒ Coq .Init .Nat .mul x x) xs

The corresponding language primitive would be a function with the following signature:
TargetLang.map: (’ a → ’b) → ’a list → ’b list. Clearly, there are two extra boxes
in the extracted code that prevent us from directly replacing Coq .Lists.List.map with
TargetLang.map. Instead, we would like to have the following:

fun xs⇒ Coq .Lists .List .map (fun x⇒ Coq .Init .Nat .mul x x) xs

In this case, we can provide a translation table to the pretty-printing procedure mapping
Coq .Lists.List.map to TargetLang.map. Alternatively, if one does not want to remove
boxes, it is possible to implement a more sophisticated remapping procedure. It could
replace Coq .Lists.List.map � � with TargetLang.map, but it would require finding all
constants applied to the right number of arguments (or η-expand constants) and only then
replace them. Remapping inductive types in the same style would involve more complica-
tions: constructors of polymorphic inductive types will have an extra argument of a dummy
type. This would require more complicated pretty-printing of pattern-matching in addition
to the similar problem with extra arguments on the application sites.

By implementing the optimisation procedure we achieve several goals: make the code
size smaller, remove redundant computations, and make the remapping easier. Removing
the redundant computations is beneficial for smart contract languages since it decreases the
computation cost in terms of gas. Users typically pay for calling smart contracts and the
price is determined by the gas consumption. That is, gas serves as a measure of computa-
tional resources required for executing a contract. Smaller code size is also an advantage
from the point of view of gas consumption. For some blockchains, the overall cost of a
contract call depends on its size.

It is important to separate these two aspects of extraction: erasure (given by the transla-
tion CIC8 −→ λ�) and optimisation of λ� terms to remove unnecessary arguments. The
optimisations we propose remove some redundant reductions, make the output more read-
able and facilitate the remapping to the target language’s primitives. Our implementation
strategy of extraction is the following: (i) take a term and erase it and its dependencies
recursively to get an environment; (ii) analyse the environment to find optimisable types
and terms; (iii) optimise the environment in a consistent way (e.g. in our λT

�, the types must
be adjusted accordingly); (iv) pretty-print the result in the target language syntax according
to the translation table containing remapped constants and inductive types.

The mechanism of remapping constants and inductive types is similar to the Coq func-
tionality Extract Inlined Constant and Extract Inductive. Since we run the extraction
pipeline inside Coq, the we use ordinary Coq definitions to build a translation table that we
pass to the pipeline. For example, the typical translation table would look as the following.

Definition translation_table : list (kername * string) :=
[remap <%% Z %%> "int" ;

. . .

8 Note that by CIC terms we mean in this section a particular version of it formalised in MetaCoq—predicative
calculus of cumulative inductive constructions (PCUIC).

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

14 D. Annenkov et al.

remap <%% @List .map %%> "TargetLang.map" ;
. . .] .

We use remap <%% coq_def %%> "target_def" to produce an entry in the translation
table, where the <%% coq_def %%> notation uses MetaCoq to resolve the full name of
the given definition. Note that the translation table is an association list with kername as
keys. The kername type is provided by MetaCoq and represents fully qualified names of
Coq definitions.

5.1.1 Erasure for types

Let us discuss our first extension to the verified erasure presented in Sozeau et al. (2019),
namely an erasure procedure for types. It is a crucial part for extracting to a typed tar-
get language. Currently, the verified erasure of MetaCoq provides only a term erasure
procedure which will erase any type in a term to a box. For example, a function using the
dependent pair type (�-type) might have a signature involving sig nat (fun n ⇒ n > 10),
i.e. representing numbers that are larger than 10. Applying MetaCoq’s term erasure will
erase this in its entirety to a box, while we are interested in a procedure that instead
erases only the type scheme in the second argument: we expect type erasure to produce
sig nat �, where the square now represents an irrelevant type.

While our target languages have type systems that are Hindley-Milner based (and there-
fore, can recover types of functions), we still need an erasure procedure for types to be
able to extract inductive types. Moreover, our target languages support various extensions,
and their compilers may not always succeed to infer types. For example, Liquidity has
overloading of some primitive operations, e.g. arithmetic operations for primitive numeric
types. Such overloading introduces ambiguities that cannot be resolved by the type checker
without type annotations. CameLIGO requires writing even more types explicitly. Thus,
the erasure procedure for types is also necessary to produce such type annotations. The
implementation of this procedure is inspired by Letouzey (2004).

We have chosen a semi-formal presentation in order to guide the reader through the
actual implementation while avoiding clutter from the technicalities of Coq. We use con-
crete Coq syntax to represent the types of CIC. We do not provide syntax and semantics
of CIC, for more information we refer the reader to Sozeau et al. (2019, Section 2). The
types of λT

� are represented by the grammar below.

σ , τ : box_type ::= i | I | C | σ τ | σ −→ τ | � | T
Here i represents levels of type variables, I and C range over names of inductive types and
constants respectively. Essentially, box_type represents types of an OCaml-like func-
tional language extended with constructors � (“logical” types) and T (types that are not
representable in the target language). In some cases both � and T can later be removed
from the extracted code by optimisations, although T might require type coercions in the
target language. Note also that the types do not have binders, since they represent prenex-
polymorphic types. The levels of type variables are indices into the list of type variable
names starting from the head of the list. E.g. the type ’a → ’b is represented as 0 −→ 1 for
the context [a; b]. Additionally, we use colours to distinguish between the CIC terms and
the target erased types.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 15

Fig. 2: Erasure from CIC types to box_type.

Definition 1 (Erasure for types).
extraction/theories/Erasure.v:erase_type_aux

The erasure procedure for types is given by functions E T , E T
app and E T

head in Figure 2.

The E T function takes four parameters. The first is a context Ctx represented as a list
of assumptions. The second is an erasure context ECtx represented as a sized list (vector)
that follows the structure of Ctx; it contains either a translated type variable TV, informa-
tion about an inductive type Ind, or a marker Other for items in Ctx that do not fit into
the previous categories. The last two parameters represent terms of CIC corresponding to

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/5eb12f34fc29035eb0909ffdda523c4b70eaa462/extraction/theories/Erasure.v#L718
https://doi.org/10.1017/S0956796822000077

16 D. Annenkov et al.

types and an index of the next type variable. The next type variable index is wrapped in
the option type, and becomes None if no more type variables should be produced. The
function E T returns a tuple consisting of a list of type variables and a box_type.

First, we describe the most important auxiliary functions outlined on the Figure 2. An
important device used to determine erasable types (the ones we turn into the special target
types � and T) is the function flag_of_type : Ctx→ term→ type_flag, where the
return type type_flag is defined as a record with two fields: is_logical and is_arity.
The is_logical field carries a boolean, while is_arity carries a proof or a disproof
of convertibility to an arity. That is, whether a term is an arity up to reductions. For the
purposes of the presentation in the paper, we treat is_arity as a boolean value, while in
the implementation we use the proofs carried by is_arity to solve proof obligations for
the definition of E T .

A type is an arity if it is a (possibly nullary) product into a sort: ∀
a :
A, s for s=
Type | Prop and
a :
A a vector of (possibly dependent) binders and types. Inhabitants of
arities are type schemes.

The predicate is_sort is not a field of type_flag, but it uses the data of is_arity
field to tell whether a given type is a sort, i.e. Prop or Type. Sorts are always arities; we
use is_sort to turn a proof of converitibility to an arity into a proof of convertivility to a
sort (or return None if it is not the case). Finally, a type is logical when it is a proposition
(i.e. inhabitants are proofs) or when it is an arity into Prop: ∀
a :
A, Prop (i.e. inhabitants
are propositional type schemes). As concrete examples, Type is an arity and a sort, but
not logical. Type→ Prop is logical, an arity, but not a sort. forall A : Type, A → A is
neither of the three.

We use the reduction function redβιζ in order to reduce the term to βιζ weak head
normal form. Here, β is reduction of applied λ-abstractions, ι is reduction of match on
constructors, and ζ is reduction of the let construct. The infer function is used to recover
typing information for subterms. We also make use of the destructuring let (a, b) := . . .

for tuples and projections fst, snd.
The erasure procedure proceeds as follows. First, it reduces the CIC term to βιζ weak

head normal form. Then, it uses flag_of_type to determine how to erase the reduced
type. If it is a logical type, it immediately returns �, if not, it performs case analysis on
the result. The most interesting cases are dependent function types and applications. For
function types, if the domain type is logical, it produces � for the resulting domain type
and erases the codomain recursively. If the domain is a “normal” type (not logical and not
an arity), it erases recursively both the domain and the codomain. Otherwise, the type is an
arity and we add a new type variable into �e for the recursive call and append a variable
name to the returned list. For an application, the procedure decomposes it into a head term
and a (possibly empty) list of arguments using decompose_app. Then, it uses E T

head to
erase the head and E T

app to process all the arguments. Note that in the Coq implementation,
when we erase an application

(
u v

)
, we drop the arguments, if the head of the application

is not an inductive or a constant. Other applied box_type construtors would correspond
to a not well-formed application. In the cases not covered by the case analysis, we
emit T.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 17

For example, the type of map : forall A B : Type, (A → B) → list A → list B
erases to the following.

([A; B], (0 −→ 1) −→ list 0 −→ list 1)

One of the advantages of implementing the extraction pipeline fully in Coq is that we
can use certified programming techniques along with the verified meta-theory provided
by MetaCoq. The actual type signatures of the functions in Figure 2 restrict the input to
well-typed CIC terms. In the implementation, we are required to show that the reduction
machinery we use does not break the well-typedness of terms. For that purpose, we use
two results: the reduction function is sound with respect to the relational specification, and
the subject reduction lemma, that is, reduction preserves typing.

The termination argument is given by a well-founded relation since erasure starts with
βιζ -reduction using the redβιζ function and then later recurses on subterms of the reduced
term. This reduction function is defined in MetaCoq also by using well-founded recursion.
Due to the use of well-founded recursion, we write E T as a single function in our for-
malisation by inlining the definitions of E T

app and E T
head; this makes the well-foundedness

argument easier. We extensively use the Equations Coq plugin (Sozeau & Mangin, 2019)
in our development to help manage the proof obligations related to well-typed terms and
recursion.

The difference with our previous erasure procedure for types given in Annenkov et al.
(2021) is twofold. First, we make the procedure total. That means that it does not fail in the
cases when it hits a non-prenex type, instead, it tries to do its best or emits T if no further
options are possible. That is, for rank2 from Section 5 we get the following type.

([A], 0 → (�→T→T) → 0)

Clearly, the body of rank2 a f = f � a cannot be well-typed, since the type of a is not T.
However, in some situations, it is better to let the extraction produce some result that could
be optimised later. For example, if we never used the f argument, it could be removed by
optimisations leaving us with the definition whose that does not mention T.

In particular, we have improved the handling of arities that makes it possible to extract
programs defined in terms of elimination principles. For example one can define map in the
following way: list_rect (fun x ⇒ list B) [] (fun x _ rec ⇒ f x :: rec) xs. Where
list_rect is the dependent elimination principle for lists.

list_rect : forall (A : Type) (P : list A→ Type) ,
P [] →
(forall (a : A) (l : list A) , P l→ P (a : : l)) →
forall l : list A , P l

Clearly, the type of list_rect is too expressive for the target languages we consider.
However, it is still possible to extract a well-typed term for the definition of map above.
The extracted type of list_rect looks as follows.

([a; p], 1 −→ (0 −→ list 0 −→ 1 −→ 1) −→ list 0 −→ 1)

Second, we have introduced an erasure procedure for type schemes. The proce-
dure allows us to handle type aliases, that is, Coq definitions that when applied
to some arguments return a type. Type aliases are used quite extensively in the

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

18 D. Annenkov et al.

standard library. For example, the standard finite maps FMaps contain definitions like
Definition PositiveMap.t : Type → Type := PositiveMap.tree. In η-expanded form it
is a function that take a type and returns a type: fun T ⇒ PositiveMap.tree T. Without
this extension, we would not be able to extract programs that use such definitions.

Definition 2 (Erasure for type schemes).
extraction/theories/Erasure.v:erase_type_scheme

The erasure procedure for type schemes is given by two functions E TS and E TS
η in

Figure 3.

The signatures of E TS and E TS
η are similar to E T but we also add a new context ACtx

representing the type of a type scheme, which we call arity. So, for an arity ∀(a : A)
(b : B) . . . (z : Z), Type, we have �a = [(a, A); (b, B); . . . ; (z, Z)]. The E TS function reduces
the term and then, if it is a lambda-abstraction, looks at the result of flag_of_type for
the domain type. If it is a sort (or, more generally, an arity) it adds a type variable. If
the reduced term is not a lambda abstraction, we know that it requires η-expansion, since
its type is ∀(a′ : A′), t. Therefore, we call E TS

η with the arity context (a′, A′) :: �a. In E TS
η ,

we use the ↑1 t operation that increments the indices of all variables in t by one. The term(
(↑1 t) 0

)
denotes an application of a term t with incremented variable indices to a variable

with index 0 A simple example of a type scheme is the following:

Definition Arrow (A B : Type) := A→ B .

It erases to a pair consisting of a list of type variables and a box_type:

([A; B], 0 −→ 1)

Type schemes that use dependent types can also be erased. For example, one can create an
abbreviation for the type of sized lists.

Definition vec (A : Type) (n : nat) := {xs : list A | length xs = n}.

which gives us the following type alias

([A; n], sig (list 0) �)

where sig corresponds to the dependent pair type in Coq given by the nota-
tion {xs : list A | length xs = n } := sig (list A) (fun xs ⇒ length xs = n). The
erased type can be further optimised by removing the occurrences of � and irrelevant type
variables.

The two changes described above bring our implementation closer to the standard
extraction of Coq and allow for more programs to be extracted in comparison with our pre-
vious work. Returning T instead of failing creates more opportunities for target languages
that support unsafe type casts.

Having defined the erasure procedure for types, we implement an erasure procedure for
inductive definitions. Bringing it all together with the verified erasure of MetaCoq and the
erasure for type schemes, we can define a procedure that erases lists of global declarations,
which are called global environments. We enrich the representation of global environments
of the MetaCoq’s erasure with the typing information we obtained using E T and E TS . Each
entry in the global environment is represented by the following inductive type.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/5eb12f34fc29035eb0909ffdda523c4b70eaa462/extraction/theories/Erasure.v#L983
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 19

Fig. 3: Erasure for type schemes.

Inductive global_decl :=
| ConstantDecl : constant_body→ global_decl
| InductiveDecl : mutual_inductive_body→ global_decl
| TypeAliasDecl : option (list type_var_info * box_type) → global_decl .

where constant_body adds the constant’s erased type (the cst_type field), which is absent
in the corresponding definition of MetaCoq’s λ�:

Record constant_body :=
{ cst_type : list name * box_type; cst_body : option term ; }.

Moreover, mutual_inductive_body is enriched with typing information as well. We
explicitly treat type aliases by having a separate entry TypeAliasDecl, which corresponds
to type schemes. We call the representation above λT

� and use it as an intermediate
representation.

5.1.2 Optimising extracted code

Our second extension of the verified erasure is deboxing—a simple optimisation proce-
dure for removing some redundant constructs (boxes) left after the erasure step. First, we
observe that removing redundant boxes is a special case of more general optimisation:
dead argument elimination. Informally it boils down to the equivalence (λx. t) v ∼ t when
x does not occur free in t. Here ∼ means that both sides evaluate to the same value. Then,
deboxing becomes a special case: (λA. t) �∼ t. Where the A variable corresponds, for
example, to the type abstraction λ(A : Type). t. Erasure replaces the occurrences of A in t
with boxes.9 Having in mind this equivalence, we implement in Coq a function with the
following signature:

dearg : ind_masks→ cst_masks→ term→ term

9 In our implementation, we do not rely on this property and instead more generally remove unused parameters.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

20 D. Annenkov et al.

The first two parameters are lookup tables for inductive definitions and for constants defin-
ing which arguments of constructors and constants are unused. The information about
unused arguments is represented using masks—lists of boolean values with true denoting
the unused arguments. The type term represents λ� terms. The dearg function traverses
the term and adjusts all applications of constants and constructors using the masks.

We define the following function that processes the definitions of constants:

dearg_cst : ind_masks→ cst_masks→ constant_body→ constant_body

This function deargs the body using dearg and additionally removes lambda abstrac-
tions in correspondence to the mask for the current constant. Note that, since the
masks apply only to constants in the program, we only remove dead arguments of
top-level functions: abstractions representing closures are untouched. Additionally, as
dearging removes arguments from the top-level function, we must adjust the type sig-
natures produced by the type erasure correspondingly. For example, for the constant
Definition foo (n m k : nat) := n we get a mask mask = [false; true; true] and the
optimised constant Definition foo (n : nat) := n

To generate the masks we implement an analysis procedure that finds dead parameters
of constants and dead constructor arguments. For arguments of constants, we check syn-
tactically if they do not appear in the body, while for constructor arguments we find all
unused arguments in pattern matches and projections across the whole program. This is
implemented as a linear pass over each function body that marks all uses of arguments
and constructor arguments in that function. As we noted above, the erased arguments will
be unused and therefore this procedure gives us a safe way of removing many redundant
boxes, cf. Letouzey (2004, Section 4.3).

The syntactic check is quite imprecise; for example, it will not remove a parameter if its
only use is to be passed to another function in which it is also unused. To deal with this,
the analysis and dearging procedure can be iterated multiple times, but since our main use
of the dearging is to remove arguments that are erased, this is not necessary.

For definitions of inductive types, we define the function

dearg_mib : mib_masks→N→ one_inductive_body→ one_inductive_body

which adjusts the definition of one inductive’s body of a (possibly) mutual inductive defini-
tion. With dearg_cst and dearg_mib, we can now define a function that removes arguments
according to given masks for all definitions in the global environment:

dearg_env : ind_masks→ cst_masks→ global_env→ global_env

Dearging is then done by first analysing the environment to obtain ind_masks and
cst_masks and then applying the dearg_env function.

We prove dearging correct under several assumptions on the masks and the program
being erased. First, we assume that all definitions in the program are closed, which is a
reasonable assumption given by typing. Secondly, we assume that the masks are valid,
meaning that all removed arguments of constants and constructors should be unused in the
program. By unused we mean that the argument does not syntactically appear except for
in the binder. The analysis phase outlined above is responsible for generating masks that
satisfy this condition, although currently, we do not prove this and instead recheck that

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 21

the condition holds for the masks that were output. Finally, we assume that the program
is η-expanded according to all the masks: all occurrences of constructors and constants
should be applied to the arguments that are supposed to be removed. We implement a
certifying procedure that performs η-expansion and generates proofs that the expanded
terms are equal to the original ones (see Section 5.2). The erasure procedure is a pruning
transformation, meaning that it does not remove abstractions or arguments in applications,
it just replaces some terms with �. Therefore, η-expanded terms are preserved by erasure.
We, however, have not formalised this result and currently validate the terms after erasure
to ensure that they are applied enough.

Our Coq formalisation features a proof of the following soundness theorem about the
dearg function.

Theorem 1 (Soundness of dearging).
extraction/theories/OptimizeCorrectness.v:dearg_correct

Let � be a closed erased environment and t a closed λ�-term such that � and t are valid
and expanded according to provided masks.
Then

� � t � v

implies

dearg_env(�) � dearg(t) � dearg(v)

where dearging is done using the provided masks.

Here − � − � − denotes the big-step call-by-value evaluation relation of λ� terms10 and
values are given as a subset of terms. The theorem ensures that the dynamic behaviour is
preserved by the optimisation function. This result, combined with the fact that the erasure
from CIC to λ� preserves dynamic behaviour as well, gives us guarantees that the terms
that evaluate in CIC will be evaluated to related results in λ� after optimisations.

Theorem 1 is a statement talking only about the dearging optimisation that is used by
our extraction. The extraction pipeline itself is more complicated and works as outlined
at the end of Section 5.1: it is provided a list of definitions to extract in a well-typed
environment and recursively erases these and their dependencies (see the full pipeline in
Figure 1). Note that only dependencies that appear in the erased definitions are considered
as dependencies; this typically gives an environment that is substantially smaller than the
original. Once the procedure has produced an environment, the environment is analysed to
find out which arguments can be removed from constructors and constants, and finally, the
dearging procedure is invoked.

MetaCoq’s correctness proof of erasure requires the full environment to be erased. Since
we only erase dependencies, we prove a strengthened version of the erasure correctness
theorem that is applicable for our case. Combining this with Theorem 1 allows us to
obtain a statement about the extraction pipeline (starting from the PCUIC representation
and excluding the pretty-printing).

10 The relation is part of MetaCoq. We contributed to fixing some issues with the specification of this relation.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/5eb12f34fc29035eb0909ffdda523c4b70eaa462/extraction/theories/OptimizeCorrectness.v#L2809
https://doi.org/10.1017/S0956796822000077

22 D. Annenkov et al.

Theorem 2 (Soundness of extraction).
extraction/theories/ExtractionCorrectness.v:extract_correct

Let � be a well-typed axiom-free environment and let C be a constant in �. Let �′ be
the environment produced by successful extraction (including optimisations) of C from �.
Then, for any unerasable constructor Ctor, if

� �p C � Ctor

it holds that

�′ � C � Ctor

Here − �p − � − denotes the big-step call-by-value evaluation relation for CIC terms.
Informally, the above statement can be specialised to say that any program computing
a boolean value will compute the same value after extraction. Of course, one still has to
keep in mind that the pretty-printing step of the extracted environment is not verified,
and there are discrepancies of λ� and the target language’s semantics as we outlined
in Section 5.1. We also discuss in Section 5.1.4 how the handling of absurd cases (e.g.
False_rect) interacts with the dearging transformation. With the translation from the
Template Coq representation to PCUIC (ongoing work in the MetaCoq team), we would
have a complete end-to-end theorem covering all steps that happen after quoting a Gallina
term and before printing the resulting code. The quote functionality would still remain the
the TCB.

While the statement does not say anything about constructor applications,11 it does infor-
mally generalise to any value that can be encoded as a number, since it can be used to show
that each bit of the output will be the same.

One of the premises of Theorem 2 is that the environment is axiom-free, which is
required for the soundness of erasure as stated in MetaCoq and adapted in our work. In
general, we cannot say anything about the evaluation of terms once axioms are involved.
One possible way of fixing this issue is by following the semantic approach as in Letouzey
(2004, Section 2.4).

While dearging subsumes deboxing we cannot guarantee that our optimisation
removes all boxes even for constants applied to all logical arguments due to cumula-
tivity.12 E.g. for @inl Prop Prop True : sum Prop Prop it is tempting to optimise the
extracted version inl ��� into just inl, but the optimised definition of the sum
type will still have the inl constructor that takes one argument, because its type is
inl : forall A B : Type, A → A + B and the argument A is, in general, relevant for
computation.

As mentioned previously, the dearging of functions removes parameters which means
that it must also adjust the type signatures of those functions. In addition to this adjustment
of type signatures, we also do a final pass to remove logical inductive type parameters. We
define functions that perform deboxing of types box_type and, eventually on the contents

11 It is hard to give an easily understandable statement since dearging removes applications.
12 By cumulativity we mean subtyping for universes. Particularly relevant for us: if A : Prop, then it is also

A : Typei for some level i. Therefore, if a function takes an argument A : Type, we can pass Prop, since
it is at the lowest level of the universe hierarchy.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/5eb12f34fc29035eb0909ffdda523c4b70eaa462/extraction/theories/ExtractionCorrectness.v#L56
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 23

of the global environment.

debox_box_type : box_type→ box_type

debox_env_types : global_env→ global_env

Note that the deboxing of types does not affect the structure of arrow types, since these
are connected to dearging. Instead, it recursively finds inductive types I and type constants
C applied to boxes � and filters out the boxes. This step is completely orthogonal to the
dearging of terms and serves only to remove useless type parameters. This does not affect
the dynamic semantics, but mistakes in it might mean that the code does not type-check in
the target language.

For a concrete example, sigma types are defined in Coq as

Inductive sig (A : Type) (P : A→ Prop) :=
exist : forall x : A , P x→ sig A P

In the constructor, P is a type scheme while the argument of type P x is a proof, so these
are erased by type erasure, resulting in the type A−→�−→ sig A �. The analysis will
show that the proof argument is never used since any use is also erased. This means the
constructor is changed to A−→ sig A � as part of the dearging process, and any use of
this constructor in a function (e.g. for pattern matching, or to construct a value) is similarly
adjusted. Finally, removal of logical type parameters (deboxing of types) means that the
type parameter P is completely removed from the type, giving the final constructor type as
A−→ sig A. Function signatures using sig are also adjusted correspondingly, having the
P argument removed.

After applying the optimisations, we pretty-print the optimised code to several func-
tional languages. We discuss issues related to extraction to Liquidity and CameLIGO in
Section 5.3, to Elm in Section 5.4, and to Rust in Section 5.5.

5.1.3 Optimisations and library APIs

While it is often beneficial to remove all unused arguments, it is also necessary, in some
cases, to maintain compatibility with APIs when extracting libraries. That is, some argu-
ments should not be removed. The signatures of the extracted functions exposed to external
code should not depend on their implementation.

The separation between analysis and optimisation helps us make the pipeline more con-
figurable. We allow the users to override masks for arbitrary constants and inductive types.
This way, one can provide masks preserving all (or some required number of) arguments
during the optimisation step. The users can decide what functions should have a fixed sig-
nature by providing appropriate masks. The signature-preserving masks can be generated
by a separate analysis procedure. For example, such a procedure can generate a mask for
the occurrences of logical types in signatures to avoid removing dead arguments that can
change the signatures. One can check whether this mask is a sub-mask of the mask returned
by our current analysis and use it to override dearging for selected definitions. Thus, our
dearging can reproduce the same behaviour as the standard Coq extraction, while allowing
for more aggressive optimisations if required.

In fact, overriding masks has proven to be useful for integrating smart contracts with
the blockchain infrastructure. In this case, the main contract functions must have a fixed

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

24 D. Annenkov et al.

signature to match the harness we use to run the extracted code. Another situation where it
is important to keep some arguments is discussed in Section 5.1.4.

5.1.4 Handling absurd cases

Our approach should be able to handle the cases when Coq programs contain some
unreachable code, originating from provably impossible cases. As an example let us
consider the following program in Coq.

Program Definition safe_head {A} (non_empty_list : {l : list A | length l > 0}) : A :=
match non_empty_list as l’ return l’ = non_empty_list→ A with
| [] ⇒ fun _⇒ False_rect _ _
| hd : : tl⇒ fun _⇒ hd
end eq_refl .

The type of the program ensures that one always can take the first element of
the input list. In the body of the program, we have to deal with two cases for
the given list. Clearly, we should never hit the empty list case. Therefore, we use
False_rect : forall P : Type, False → P that allows us to construct anything, provided
we have a contradiction at hand. Using the Program tactic we construct such proof from
the fact that length [] > 0 is in fact a contradiction. In Coq, this definition gives us a
total function safe_head, which we then can use in other definitions, provided that we can
construct an element of {l : list A | length l > 0}. For example, we can use it in the
following program.

Program Definition head_of_repeat_plus_one {A} (n : nat) (a : A) : A
:= safe_head (repeat a (1+n)) .

Next Obligation . intros . cbn . lia . Qed .

However, in the extracted code, safe_head must return some value of the appropriate type
in the case of an empty list. It can be done in different ways, depending on the features
available in a target language. One way of doing this would be to throw an exception in lan-
guages that support this kind of side effect. E.g. the standard Coq extraction to OCaml uses
assert false for that purpose. For the languages that do not support exceptions, we can
use non-termination for the same purpose. Therefore, once we encounter pattern-matchings
on any empty inductive type (an inductive type with no constructors, e.g. False) we replace
it with a construct that throws an exception or a call to a non-terminating function.

There is an issue, however, with this naive approach. It is related to subtle interac-
tions of constants that eliminate from an empty type, like False_rect, with our dearging
optimisation in eager languages. In our initial version, we produced masks for constants
like False_rect that instructed the optimisation procedure to remove all arguments. Even
though it is sound at the λT

� level by Theorem 1, at the pretty-printing stage, the body
of False_rect will be replaced with something like assert false, which will be immedi-
ately evaluated in eager languages, leading to exceptions. That is, the soundness guarantees
of Theorem 1 could be broken by the actual generated code. In our current implementa-
tion, we have adopted the following strategy, following Letouzey (2004), At the analysis
stage, if all the arguments of a constant are logical (i.e. of type � or T) we generate a mask
that keeps one argument, guarding the constant’s body by a lambda abstraction. That is,
we never remove all the arguments of constants that have purely logical arguments. This
also applies to Acc_rect and related machinery for defining functions by well-founded
recursion, where removing all arguments may lead to non-termination.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 25

Fig. 4: The counter contract.

The separation of analysis and optimisation gives us a flexible way of implementing the
standard fixes for such issues. However, these situations highlight the fact that the final
extraction guarantees can be given only after careful consideration of the semantics of tar-
get languages. Formally, it can be fixed by connecting our development to formalisations
of target languages, as we sketched in Section 2. We remark on how the pattern-matching
on empty types is implemented in our targets in the corresponding sections.

5.1.5 The counter contract

As an example, let us consider a simple smart contract represented as a Gallina function.
The state of the contract is an integer number and it accepts increment and decrement
messages (Figure 4, extraction/examples/CounterSubsetTypes.v). The main functional-
ity is given by the two functions inc_counter and dec_counter. We use subset types to
encode the functional specification of these functions. E.g. for inc_counter we encode in
the type that the result of the increment is greater than the previous state given a positive
increment. Subset types are represented in Coq as dependent pairs (�-types). For exam-
ple a positive integer is encoded as {z : Z | 0 <? z}, where the second component is a
proposition 0 <? i = true (we use an implicit coercion from booleans to propositions).
Similarly, we encode the specification dec_counter. The counter function validates the
input and provides a proof that the input satisfies the precondition (of being positive).
The functions inc_counter and dec_counter are defined only for positive increments
and decrements, therefore, we do not need to validate the input again. Note that in order
to construct an inhabitant of positive, we use the decidability of equality for booleans
bool_dec : forall b1 b2 : bool, {b1 = b2} + {b1 <> b2} that gives us access to the
proof of 0 <? i. We will use the example from Figure 4 in subsequent sections for showing
how it can be extracted to concrete target languages.

5.2 Proof-generating transformations

The optimisation pass in our pipeline (see Figure 1) expects constants and constructors to
be applied to all logical arguments in order to be valid. Moreover, some constants have

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/examples/CounterSubsetTypes.v
https://doi.org/10.1017/S0956796822000077

26 D. Annenkov et al.

types that are too expressive for the target languages that can make the extracted programs
untypable. However, the constants can be specialised in a way that the extracted code
is well-typed. In order to ensure that our input satisfies these and some other technical
requirements, we apply transformation passes at the very beginning of our pipeline—at
the Template Coq level (see Figure 1). These transformation passes are implemented as
unverified functions transforming the Template Coq AST. In order to ensure that the passes
are computationally sound, we apply the certifying approach to transformation. It is similar
to how certifying compilers are used to produce proof-carrying code (Necula, 1997). The
overall idea is that the transformation produces a new program (in our case it is the same
language) and a proof term that the desired property is preserved by the transformation.
Each transformation in the Template Coq part of the pipeline has the following type

transform : global_env→ Result global_env string

where global_env is the Template Coq global environment (list of top level declarations),
Result is a error monad. Given a list of transforms, we can compose them using the fact
that Result is a monad. In fact, we can reuse the same way of composing transforma-
tion for different passes in our pipeline and define a common type of transformations as
Definition Transform (A : Type) := A → result A string. As a result, we define the
composition of transformation in the usual monadic way.

After successfully completing all the transformations, we can generate proofs that the
definitions we transformed behave in the same way as the originals. All the transfor-
mations we have considered have one property in common: they produce terms that are
definitionally equal to the originals. Definitional equality in Coq means that the two terms
are convertible, i.e. equivalent with respect to βδιζ -reduction, η-expansion and irrelevant
terms in SProp.13 Where β and η are standard and δ means constant unfolding, ι—reduction
of match on a constructor, ζ—let .. in reduction. From the computational point of view,
convertible terms represent the same program. The fact that the terms are convertible
gives us a simple way of generating the correctness proofs. Let trans be a transforma-
tion function and t0 : A a term. If trans t0 = Ok t1, i.e. the application of this function
to t0 succeeds with some transformed term t1, we can construct the following proof
term:

@eq_refl A t1 : t0 = t1

This proof term shows that we can prove that the two terms t0 and t1 are equal in the
theory of Coq. Moreover, this term is well-typed only if t0 and t1 are convertible.

We use the following approach to generating the proof terms:

• Given a definition def, quote it along with all the dependencies, producing a global
environment �0 with quoted terms.

• Apply the composed transformations to all elements in the original global environ-
ment �0 and get the transformed environment �1.

• For each constant from �0 find a corresponding constant in �1.
• If a constant is found, compare the constant bodies for syntactic equality (it is possi-

ble since we operate in meta-theory). In case the bodies are not equal—add (unquote)

13 See more about the conversion mechanism in Coq’s manual: https://coq.inria.fr/refman/language/
core/conversion.html (accessed 2021-07-23).

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://coq.inria.fr/refman/language/core/conversion.html
https://coq.inria.fr/refman/language/core/conversion.html
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 27

a new definition from �1 to the current scope; if they are equal, or constant not
found—do nothing.

• If def or its dependencies were affected by the transformation, generate a proof term
and add (unquote) it to the current scope.

The certifying approach is quite flexible wrt. changes and additions of new passes since
no modifications of proofs are required, provided that the passes preserve convertibility.
This is a big advantage in our setting when fine-tuning of the transformations is required
for achieving the desired result (see, for example, the inlining transformation below).
Potentially, the pass can be extended with more general optimising transformations like
partial evaluation.

Below, we describe transformations currently implemented in our framework.

η-expansion extraction/theories/CertifyingEta.v. The idea is to find partially applied
constants (or constructors) and expand them by introducing lambda-abstractions. For
example for a term let f := fun n ⇒ add n in f 0 0 would be expanded (if we demand
full η-expansion) to let f := fun n m ⇒ add n m in f 0 0. The extent to which the
expansion is performed is controlled by lookup tables mapping the names of con-
stants (or constructor information) to a number, indicating the number of arguments
that should be added, and the constant’s (constructor’s) type. The typing information is
required for introducing the lambda-abstractions since the Template Coq unquote func-
tionality expects a fully specified term, and all binders typically have explicit types in
the AST. Calling the type checker would introduce too much overhead, therefore, we
keep the required information in the lookup tables. The transformation is mostly stan-
dard but requires a bit of care when dealing with types of lambda-abstractions. Let
us consider an example, writing all relevant types explicitly. For the following code
let f : list nat → list nat := @cons nat 0 in f [] . Our expansion table will contain
the type of cons : forall {A : Type}, A → list A → list A. In order to introduce a
lambda-abstraction, we need to know the type of the last argument of cons. Therefore,
we need to specialise the type of cons wrt. the arguments it is applied to. We do so by
substituting the arguments, to which the constant or a term is applied, into the term’s type.

Since our main use case for η-expansion is to ensure that constants and constructors
are applied to all logical arguments, we use the masks generated by the analysis phase
for optimisations (see Section 5.1) to compute to which extent constants and constructors
should be η-expanded.

Since η-equality is part of Coq’s conversion mechanism, the resulting terms will be
convertible to the originals.

Expansion of match branches. This transformation is tightly related to the representation
of the match construct in Coq. The branches are represented as a list with each position
corresponding to a constructor of the type of the discriminee.14 Each element of the list of
branches is a pair with the first component being a number of a constructor’s arguments,
and the second—a term, that can be applied to the number of arguments, specified in the

14 By discriminee we mean a term on which the pattern-matching is performed.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/theories/CertifyingEta.v
https://doi.org/10.1017/S0956796822000077

28 D. Annenkov et al.

first component. The second component might be not η-expanded. Let us consider a simple
(contrived) example.

Definition match_list_id (xs : list nat) : list nat :=
match xs with
| [] ⇒ []
| cons x xs⇒ cons x xs
end .

The internal representation of the branches is a list, admitting different ways of represent-
ing the second branch. For example, it is perfectly fine to just use the cons constructor
applied only to the type of elements, but not to the other two arguments. This list looks as
follows in term of the AST constructors (we abbreviate the MetaCoq representation of the
list of natural numbers as LIST and the type of natural numbers as NAT).

[(0 , tApp (tConstruct LIST 0 []) [NAT]) ;
(2 , tApp (tConstruct LIST 1 []) [NAT])]

The pretty-printing procedure expects that all the branches start with lambdas if the cor-
responding patterns have arguments. This invariant makes it possible to print the patterns
in the usual way, with the top lambda-abstractions becoming pattern variables. Therefore,
we would like to expand the second branch, so it has the following shape (we abbreviate
the binder information for lambda-abstractions as X and XS):

tLambda X NAT
(tLambda XS LIST

(tApp (tConstruct LIST 1 []) [NAT ; tRel 1; tRel 0])))])

Or, written in the concrete syntax fun (x : nat) (xs : list nat) ⇒ cons x xs.
In most cases, writing a program in Coq does not lead to unexpanded representation of

branches, but we have noticed that certain automatically generated definitions, like elim-
inators, might contain branches that are not expanded enough. One example of such a
definition is sig_rect, an eliminator for the sig type from the standard library of Coq.
Without expansion, such definitions would prevent us from using our extraction pipeline.

The implementation of the branch expansion is similar to the η-expansion pass with one
subtlety. As we have noted before, we need to specify types for each binder introduced
by lambda-abstractions. Getting the information about the type of branches is quite com-
plicated and with the current representation of branches in Template Coq would require
running type inference. Instead, we use a recent feature of Template Coq, called holes.
Holes in Coq are represented by so-called existential variables, that can be manipulated by
tactics and instantiated by the elaboration mechanism. In our case, the surrounding context
provides enough information for these variables to be instantiated. Implementation-wise,
due to similarities with the “regular” η-expansion, the passes are defined together.

Inlining extraction/theories/CertifyingInlining.v. The motivation for having an inlin-
ing pass is that some definitions that are not typable in the extracted code, become typable
after inlining and specialising the bodies. Inlining also helps to overcome some potential
performance issues. We have two common examples of this kind.

• Dependent eliminators. The code produced after extraction might be not typable
because the original type is more expressive than prenex polymorphism in
our target languages. Languages like CameLIGO do not support polymorphism
at all. Moreover, using eliminators like bool_rect (non-dependent version of

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/theories/CertifyingInlining.v
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 29

it is essentially if_then_else) is impractical, because the target languages
use the call-by-value evaluation strategy. Therefore, evaluating expressions
like bool_rect _ branch1 branch_2 cond will effectively lead to evaluating both
branches regardless of the condition, while we would like it to behave similarly to
if_then_else. After inlining, bool_rect unfolds to pattern-matching and behaves
as expected.

• General definition of a monad. The definition of a monad uses rank-2 polymorphism,
which, again, goes beyond the supported types in the target languages. But inlining
concrete instances of bind and return allows us to avoid this issue and continue
using high-level abstraction in Coq while extracting the well-typed code.

In our framework, the inlining function has the following signature.

template_inline : (kername→ bool) → Transform global_env

The argument is a function indicating which constants should be inlined. Apart from just
inlining the bodies of specified constants, we also perform ι and β-reductions. The extent
to which the term is reduced is determined empirically from the applications to extraction.
Clearly, since inlining is δ-reduction, accompanied with ι- and β-reductions, the result-
ing terms are convertible to the original ones since all these reductions are part of Coq’s
conversion mechanism.

5.3 Extracting to Liquidity and CameLIGO

Liquidity is a functional smart contract language for the Tezos and Dune blockchains
inspired by OCaml. It compiles to Michelson15—a stack-based functional core language
supported directly by the blockchain, developed by Tezos.

LIGO is another functional smart contract language for Tezos that compiles
to Michelson. LIGO has several concrete syntaxes: PascaLIGO, ReasonLIGO, and
CameLIGO. We target the CameLIGO syntax due to its similarity with Coq.

Compared to a conventional functional language, Liquidity and CameLIGO have many
restrictions, mostly inherited from Michelson. Hence, we briefly present the key issues
when extracting to these languages.

In both Liquidity and CameLIGO, data types are limited to non-recursive inductive
types, and support for recursive definitions is limited to tail recursion on a single argu-
ment.16 That means that one is forced to use primitive container types to write programs.
Therefore, the functions on lists and finite maps must be replaced with “native” versions
in the extracted code. We achieve this by providing a translation table that maps names
of Coq functions to the corresponding Liquidity/CameLIGO primitives. Moreover, since
the recursive functions can take only a single argument, multiple arguments need to be
packed into a tuple. The same applies to data type constructors since the constructors take
a tuple of arguments. Currently, the packing into tuples is done by the pretty-printers after
verifying that constructors are fully applied.

15 https://tezos.gitlab.io/active/michelson.html (accessed 2021-07-21).
16 We reported the restrictions to the developers: recursive functions https://github.com/OCamlPro/

liquidity/issues/265 and https://gitlab.com/ligolang/ligo/-/issues/1248, data types
https://github.com/OCamlPro/liquidity/issues/266.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://tezos.gitlab.io/active/michelson.html
https://github.com/OCamlPro/liquidity/issues/265
https://github.com/OCamlPro/liquidity/issues/265
https://gitlab.com/ligolang/ligo/-/issues/1248
https://github.com/OCamlPro/liquidity/issues/266
https://doi.org/10.1017/S0956796822000077

30 D. Annenkov et al.

Another issue is related to the type inference in Liquidity and CameLIGO. Due to the
support of overloaded operations on numbers, type inference requires type annotations. We
solve this issue by providing a “prelude” for extracted contracts that specifies all required
operations on numbers with explicit type annotations. This also simplifies the remapping
of Coq operations to the Liquidity/CameLIGO primitives. Moreover, we produce type
annotations for top-level definitions.

In Coq Records are simply inductive types with one constructor. At the pretty-printing
stage, we identify any such types and print them as native records. Liquidity does not allow
records with only a single field, or inductive types with one constructor. In this case, we
print the type as an alias for the type of the field/constructor. For example, consider the
Coq record below, and the function get_x which retrieves the x field of the record using
Coq’s built-in record projection syntax.

Record A := {
x : nat ;

}.
Definition get_x (n : A) : nat := n . (x) .

This printed to Liquidity as

type a = nat
let get_x (n : a) = n

Note in particular how the projection a .(x) is printed simply as a.
As a consequence of these restrictions on Liquidity, one should use either type aliases

or single-field records in place of inductive types with one constructor in the Coq code.
These restrictions only apply if the contract is to be extracted to Liquidity. For the other
target languages, these restrictions do not apply.

Higher-order functions in Liquidity. Some standard functional programming patterns do
not work in Liquidity due to some non-standard features of its type system. For example,
the type of a closure contains information about the environment to which it is closed.17

For that reason, some programs, which are completely unproblematic in many functional
languages are not accepted by the Liquidity compiler. For example, the following program
refuses to compile

let my_map (f : int→ int) (xs : int list) =
List .map f xs

let bar (i : int) (xs : int list) =
my_map (fun (x : int) → x + i) xs

producing a type error Types ((int -> int)[@closure :int]) and int -> int
are not compatible. The my_map function expects a function of type nat → nat,
but the call of my_map in the body of bar gets a function of a different type:
(int → int)[@closure :int], where :int refers to the type of the variable i. This makes
using higher-order functions highly problematic. Moreover, this problem extends to clo-
sures returned from different branches of match expressions, limiting the number of
programs that one can extract to Liquidity without additional efforts.

Handling absurd cases . We follow the general strategy outlined in Section 5.1.4. Both
Liquidity and CameLIGO feature an effectful operation failwith, which allows for

17 See https://github.com/OCamlPro/liquidity/issues/264.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/OCamlPro/liquidity/issues/264
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 31

interrupting the contract execution. We identify pattern-matchings with no branches at the
pretty-printing stage and insert the failwith operation. However, inlining some constants
(e.g. False_rect) is required in order to make examples like safe_head to compile with
the CameLIGO compiler, otherwise, extraction produces polymorphic definitions, which
are not supported. In Liquidity, however, we run into issues unrelated to the handling of
absurd cases. The failwith works as expected, but closure types carry information about
the environment wrt. which they are closed. Dependent pattern-matching in Coq produces
code with many closures, which are not accepted by the Liquidity compiler. Therefore,
extraction of programs to Liquidity that extensively uses dependent pattern-matching is
currently limited.

Explicit type annotations in CameLIGO. LIGO’s typechecker is not able to infer types
in some instances. These are

• 0-ary constructors of primitive parametric types, e.g. None and the empty list [];
• function types and in particular arguments of lambda expressions;
• the type of failwith.

Therefore we need to add explicit type annotations to these terms. To do this, we augment
λ� terms with their types, obtained using the erasure procedure for types Section 5.1.1.
We designed a general annotation procedure that can add arbitrary data to the λ� AST
nodes without changing the AST representation itself. This is achieved using dependent
types: we implement a procedure that for each AST node builds a (nested) product type
recursively. The fragment of the procedure is given below.

Fixpoint annots {A : Type} (t : term) : Type :=
match t with
| tLambda _ body⇒ A * annots body
| tApp hd arg⇒ A * (annots hd * annots arg)
. . .
end .

For CameLIGO, we specialise our annotation machinery to box_type giving us the
type of annotated terms annots box_type t for any term t of λ�. This type-augmented
representation is (optional) part of our intermediate representation λT

�.
The CameLIGO pretty-printer function recurses on the annotated terms and utilises the

typing information whenever is necessary. Since the annotation pass is done separately
and independently from the pretty-printer, it may be used for other purposes or new target
languages in the future.

No polymorphic types in CameLIGO. Unlike Liquidity, CameLIGO does not currently
support user-defined polymorphic types, but there is ongoing work to support polymorphic
types in the near future. One possibility to circumvent this restriction is to implement a
full specialisation pass that produces completely monomorphised code. However, with
the prospect of support for polymorphic types, we instead simply ignore this restriction,
although we are aware not all the examples will type check currently.18

18 Update from Feb, 2022. The changes from the MR https://gitlab.com/ligolang/ligo/-/
merge_requests/1294 were incorporated into the LIGO compiler. Starting from v0.31.0 CameLIGO sup-
ports polymorphic functions and parametric types. The example code from Appendix B is well-typed and
compiles to Michelson.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://gitlab.com/ligolang/ligo/-/merge_requests/1294
https://gitlab.com/ligolang/ligo/-/merge_requests/1294
https://doi.org/10.1017/S0956796822000077

32 D. Annenkov et al.

Integration. In order to generate code for a contract’s entry points (functions
through which one can interact with the contract), we need to wrap the calls
to the main functionality of the contract into a match construction. This is
required because the signature of the entry point in Liquidity and CameLIGO is
params → storage → (operation list) * storage, where params is a user-defined type
of parameters, storage a user-defined state and operation is a transfer of contract call.
The signature looks like a total function, but since Liquidity and CameLIGO support a
side effect failwith, the entry-point function can still fail. On the other hand, in our Coq
development, we use the option monad to represent computations that can fail. For that
reason, we generate a wrapper that matches on the result of the extracted function and calls
failwith if it returns None.

The ChainBase type class represents an address abstraction, specifying which proper-
ties are required from a type of addresses for accounts. Smart contracts defined using the
execution layer infrastructure are abstracted over a ChainBase instance. That means that
types Chain and ContractCallContext, along with init and receive functions will get
an additional parameter corresponding to the ChainBase instance. When printing the con-
tract code, we need to remap Chain and ContractCallContext to their representation in
the target language, and the dependency on ChainBase makes it problematic. We define
a specialisation procedure that specialises all definitions dependent on ChainBase to an
axiomatic instance and removes the corresponding parameter. Currently, this procedure is
defined on PCUIC representation and is not verified.

Examples. The extracted counter contract code to Liquidity and CameLIGO is given,
respectively, in Figure 5(a) and (b). We omit some wrapper code and the “prelude” defini-
tions and leave the most relevant parts (see Appendices A and B for the full versions).
As one can see, the extraction procedure removes all “logical” parts from the origi-
nal Coq code. Particularly, the sig type of Coq becomes a simple wrapper for a value
(type ’a sig_ = ’a in the extracted code). Currently, we resort to an ad hoc remapping
of sig to the wrapper sig_ because Liquidity and CameLIGO do not support variant
types with only a single constructor. The remapping is done using the translation table,
as described in the end of Section 5.1. Ideally, this class of transformations can be added
as an optimisation for inductive types with only one constructor taking a single argument.
This example shows that for certain target languages optimisation is a necessity rather than
an option.

We show the extracted code for the coq_inc_counter function and omit
coq_dec_counter, which is extracted in a similar manner. These functions are called from
the counter function that performs input validation. Since the only way of interacting
with the contract is by calling counter it is safe to execute them without additional input
validation, exactly as it is specified in the original Coq code.

Apart from the example in Figure 4, we successfully applied the developed extraction to
several variants of the counter contract, the crowdfunding contract described in Annenkov
et al. (2020), the contracts from Sections 6 and 7 and an interpreter for a simple expres-
sion language. The latter example shows the possibility of extracting certified interpreters
for domain-specific languages such as Marlowe (Lamela Seijas & Thompson, 2018),
CSL (Henglein et al., 2020) and the CL language (Bahr et al., 2015; Annenkov & Elsman,

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 33

(a) (b)

Fig. 5: Extracted code.

2018). This represents an important step towards safe smart contract programming. The
examples show that smart contracts fit well to the fragment of Coq that extracts to well-
typed Liquidity and CameLIGO programs. Moreover, in many cases, our optimisation
procedure removes all the boxes resulting in cleaner code.

Gas consumption. Running smart contracts on a blockchain requires so-called “gas”,
which serves as a measure of computational efforts. The execution environment calcu-
lates the gas consumption according to the cost of each operation and uses it to terminate
the execution if the maximum gas consumption is reached. The caller pays a fee in the
blockchain’s internal currency for calling a contract. If the fee is too low and the gas con-
sumption is too high, there is a chance that the transaction will not be included in a block.
This behaviour is slightly different from Ethereum, but we will not provide the details here.

We have deployed and executed some of our extracted contracts on test networks (these
networks use the same execution model as the main one, but no real money is required
to run contracts). Comparing the gas consumption shows that extracted contracts perform
well in the realistic setting, even though, the extracted code consumes more gas compared
to a hand-written implementation. We have compared the ERC20 token implementation
against the Liquidity code from the online IDE. The extracted code consumes 2–2.5 times
more gas, but the consumption is quite far from reaching the hard limit on a single contract
call. We have also experimented with the prototype DSL interpreter extracted from our
Coq developments on the Tezos network. The recommended fees, converted to US dollars
were lower than $0.03 even for DSL programs with 100 instructions. Such transaction
costs can be considered negligible. Most of the gas consumption can be attributed to type
checking of a contract for each call, which, of course, depends on its length and complexity.
However, gas consumption and the associated fees become smaller with each update of the
Tezos network, making the transaction fees negligible for many common use cases. The
threshold on gas consumption also increases, allowing for more expressive smart contracts.
Therefore, our smart contract extraction is able to deliver verified code with reasonable
execution costs.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

34 D. Annenkov et al.

5.4 Extracting to Elm

Elm (Feldman, 2020) is a general purpose functional language used for web development.
It is based on an extended variant of the Hindley–Milner type system and can infer types
without user-provided type annotations in most situations. However, we generate type
annotations for top-level definitions to make the extracted code more readable. Moreover,
unlike Liquidity, there is no restriction in Elm regarding data types with one constructor.
That allows implementing a simple extraction procedure for Coq records as data types with
one constructor and projections defined as functions that pattern-match on this constructor.
Compared to Liquidity and CameLIGO, Elm is a better target for code extraction, since it
does not have some limitations pointed out in Section 5.3.

Extraction to Elm also poses some challenges. For example, Elm does not allow shadow-
ing of variables and definitions. Since Coq allows for a more flexible approach to naming,
one has to track scopes of variables and generate fresh names in order to avoid clashes.
The syntax of Elm is indentation sensitive, so we are required to track indentation lev-
els. Various naming conventions apply to Elm identifiers, e.g. function names start with
a lower-case character, types and constructors—with an upper case character, requiring
some names to be changed when printing.

Handling absurd cases. We follow the general strategy outlined in Section 5.1.4. Elm is a
pure functional language and does not feature exceptions, which we could use to handle the
absurd cases. However, there is one side-effect at our disposal, namely, non-termination.
Therefore, we define the following constant.

false_rec : () → a
false_rec _ = false_rec ()

At the pretty-printing stage, we identify pattern-matchings with no branches and insert a
call to false_rec.

Examples extraction/examples/ElmExtractExamples.v. We tested the extracted code with
the Elm compiler by generating a simple test for each extracted function. We imple-
mented several examples by extracting functions on lists from the standard library of
Coq, functions using subset types and functions that eliminate absurd cases by exploit-
ing contradictions. All our examples resulted in well-typed Elm code after extraction.
Particularly, in Figure 6(b) one can see the safe_head function (a head of a non-empty
list) from Section 5.1.4. The example uses the elimination principle False_rect in the
case of an empty list, exploiting the contradiction with the assumption that the input list is
non-empty. We used the usual style of writing functions with dependent types in Coq with
the help of the Program tactic.

As a result, the logical parts corresponding to proofs are erased and Coq’s imple-
mentation of subset types is extracted as a simple wrapper type Sig a = Exist a. In the
impossible (absurd) case, safe_head calls false_rect, which is implemented in terms of
false_rec, using our strategy of handling absurd cases. We also extract a example function
that uses safe_head:

Program Definition head_of_repeat_plus_one {A} (n : nat) (a : A) : A
:= safe_head (repeat a (1+n)) .

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/examples/ElmExtractExamples.v
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 35

(a) (b)

Fig. 6: Extracted test code in Elm.

Clearly, it is always safe to take the first element from a list that is generated by repetition
1 + n times. Therefore, the whole program is safe to use and the absurd case will never be
hit. When extracting programs as libraries, one could move some static checks to runtime
to ensure that the invariants, expected by dependently typed functions are preserved.

We also extract the Ackermann function ackermann : nat * nat → nat defined using
well-founded recursion which uses the lexicographic ordering on pairs. This shows that
extraction of definitions based on the accessibility predicate Acc is possible. Computation
with Acc is studied in more detail in Sozeau & Mangin (2019).

Verified Web Application extraction/examples/ElmForms.v. We develop a more Elm-
specific example in Coq: a simple web application. A typical Elm web application follows
the Elm architecture (TEA):

1. Model—a data type representing the state of the application.
2. Update—a function that takes a message, a previous state (model instance) and

returns a new state and, potentially, commands (e.g. sending data to a server, etc.)
3. View—a function that turns the model into HTML. HTML is generated using special

Elm functions, available as part of the Elm standard library.

If we look at the first two items, they look very similar to the smart contract execution
model. At the moment, we do not provide an Elm-specific execution model as part of our
framework, but we can leverage Coq dependent types to encode some invariants of the
model and then use our extraction pipeline to produce an Elm web application. Therefore,
we implement the model and the update functionality along with validation rules in Coq,
extract it to Elm and combine it with hand-written rendering code (the view).

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/examples/ElmForms.v
https://doi.org/10.1017/S0956796822000077

36 D. Annenkov et al.

The example we consider is inspired by the Elm guide on forms. Our application consists
of an input form, a validator and a view for rendering a list of valid items. The input form
consists of three fields: a username, user’s password, and a field to re-enter the password.
In Coq, we model it with the following code.

Record Entry := { name : string ;
password : string ;
passwordAgain : string }.

This part of the model contains “raw” data, as entered by a user. We define then “valid
data” using the subset types of Coq.

Definition ValidEntry :=
{entry : Entry | entry . (name) �= "" ∧

8 ≤? String .length entry . (password) ∧
entry . (password) =? entry . (passwordAgain)} .

We use the boolean versions of less-or-equal (≤?) and equality (=?) on strings, which are
implicitly coerced to propositions using is_true (p : bool) : Prop := p = true. This
representation makes the interaction with the validation function easier. Then, we define a
type of entries that we are going to store in the list of users in the model. In the same way,
we define what it means to be valid for such stored entries.

Record StoredEntry :=
{ seName : string ; sePassword : string }.

Definition ValidStoredEntry :=
{ entry : StoredEntry | entry . (seName) �= "" ∧

8 ≤? String .length entry . (sePassword)} .

Having defined ValidStoredEntry, we can then proceed with the definition of a model for
the whole application.

Record Model :=
{ (** A list of valid entries such with unique user names *)
users : {l : list ValidStoredEntry | NoDup (seNames l)} ;
(** A list of errors after validation *)
errors : list string ;
(** Current user input *)
currentEntry : Entry }.

As one can see, users in our model are represented as a list of valid entries without
duplication of names. Next, we define the messages for updating the model.

(** Messages for updating the model according to the current user input *)
Inductive Msg :=

| MsgName (_ : string)
| MsgPassword (_ : string)
| MsgPasswordAgain (_ : string) .

(* Messages for updating the current entry and adding the current entry
to the list of users *)

Inductive StorageMsg :=
Add

| UpdateEntry (_ : Msg) .

Now, we can define a function that performs updates to the model by interpreting the
messages it receives.

Program Definition updateModel : StorageMsg→ Model→ Model * Cmd StorageMsg
:= fun msg model⇒

match msg with

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 37

| Add⇒ match validateModel model with
| [] ⇒ let validEntry : ValidEntry := model . (currentEntry) in

let newValidStoredEntry : ValidStoredEntry :=
toValidStoredEntry validEntry in

let newList := newValidStoredEntry : : model . (users) in
(model<| users := newList | > , none)

| errs⇒ (model<| errors := errs | > , none)
end

| UpdateEntry entryMsg⇒
(model<|currentEntry := updateEntry entryMsg model . (currentEntry) | > , none)

end .

We use the record update notation model<| users := newList |> that uses type classes
and Template Coq-based generation of field setters (part of our development). We also
use the standard way of working with subset types in Coq using Program command that
allows writing code in the style of regular functional programming while manipulating
richer types under the hood. Program inserts projections from the values of subset types
and constructs values, leaving the proof component as an obligation that the user can prove
later.

The main idea behind having valid entries is that most of the functionality of our web
application manipulates valid data. This guarantees that no invariants can be broken by
these functions. The validation is performed only once, at the “entry point” of our applica-
tion, the updateModel function and it is driven by the validity predicates of the components
of the model. Therefore, when writing a validation function, it would be impossible to miss
some validation rule, because valid data requires explicit proofs of validity. Since the Elm
architecture guarantees that the only way our model is updated when users interact with
the web application is by calling the updateModel function, we know that in the extracted
code the model invariant will not be broken.

The term produced by Program might be quite complex, due to the transformations and
elaboration required to produce a fully typed term. Our extraction pipeline is able to cope
with the terms generated by Program and can be run completely in Coq itself. We define
the required remappings to replace the usage of standard functions with Elm counterparts.
E.g. we remap Coq types string, list, bool and the product type to the corresponding
types in Elm. We also remap natural numbers of Coq to type of bounded integers Int.
In principle, using bounded numbers might be a problem, but in our case, the only use
of numbers is for computing the password length, and String.length in Elm has type
String → Int. Therefore, our choice is coherent with the assumptions about string length
in Elm.

We use the inlining pass in the pipeline to inline some of the record update infras-
tructure. Inlining also prevents us from generating a type alias (related to the records
update infrastructure) that is invalid in Elm due to an unused type parameter, which is not
allowed.

Overall, we show that one can use the usual certified programming style in Coq in order
to implement the logic of a web application that can be then extracted to a fully functional
Elm web application (provided that the view functionality is written directly in Elm). The
generated application is well-typed in Elm, even though we have used dependent types
extensively.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

38 D. Annenkov et al.

5.5 Extracting to Rust

Rust is a mixed paradigm general-purpose programming language that features many of
the same concepts as functional programming languages. It is aimed at being a fast lan-
guage with low overhead, which also makes it an attractive smart contract programming
language. Therefore, it provides a lot of control and is also a relatively low-level pro-
gramming language. The Concordium blockchain toolchain uses Rust as its primary
programming language for writing smart contracts. The actual code that is executed on-
chain is WebAssembly. WebAssembly is designed to be a safe, portable and efficient
low-level language with well-defined semantics making it well-suited for verification
in a proof assistant (Watt, 2018). Like Rust, WebAssembly does not feature a garbage
collector, making it a good target for compiling Rust.

When writing smart contracts in Rust, the implementors have more ways of control-
ling performance. One of the most expensive operations on blockchains is updating the
contract’s state. Rust allows for destructive updates of the mutable contract state with the
precise control of the serialisation/deserialisation process allowing for careful performance
tuning. Using the Concordium toolchain, smart contracts written in Rust are compiled to
WebAssembly modules using LLVM. The WebAssembly modules can be then deployed
and executed on-chain.

Rust has a powerful functional subset that includes

• Sum/product types
• Pattern matching
• Higher-order functions and closures
• Immutability by default
• Everything-is-an-expression
• A Hindley–Milner (without let-polymorphism) based type system

These features make Rust a suitable and relatively straightforward target for printing from
λT
�. However, as Rust is a low-level language giving a lot of control, it also comes with its

own set of challenges.

Extracting data types. The type system of Rust features the concept of ownership—
variable bindings have ownership of what they bind. The ownership system is a sub-
structural type system allowing for precise control of the resource usage: allocating,
deallocating, copying, etc. It is used in Rust as a zero-cost abstraction allowing for safe
memory management. The part of the compiler called the borrow checker checks that the
resources are used according to the ownership rules.

In Rust, the programmer controls whether fields of data structures are stored by-value
or through indirection. For recursive data structures, such as linked lists, it is necessary to
use indirection since otherwise, the size of the data type would be infinite. Concretely, this
means that a type such as

Inductive list (A : Type) :=
| nil
| cons (head : A) (tail : list A) .

cannot be extracted in a straightforward way where the tail is just of type list A. Instead, it
is necessary to use indirection to store a form of a pointer to the tail of the list. In Rust, there

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 39

are several ways to store indirection, including C-like raw pointers, borrowed references,
owned references, and through reference counting (the Rc and Arc types). The benefit of
the Box, Rc, and Arc types is that ownership is managed implicitly, while for raw pointers
and borrowed references it is necessary to store the data somewhere else. Borrowing means
passing a reference to something without transferring the ownership. Roughly speaking, a
borrowed reference can be seen as a pointer with additional static guarantees provided by
the type system of Rust. An owned reference Box<T> is a smart pointer, pointing to the
data allocated on the heap.

Since functional languages generally rely on sharing to perform well the same sharing
should be supported in the final extracted Rust program. In particular, this disqualifies
owned references as those can only be shared through expensive copying. Reference
counted types in Rust require explicit cloning to manually indicate when the reference
count must be incremented. This complicates extraction significantly as extraction then
has to determine that it needs to insert such clonings when passing arguments and when
capturing local variables for closures.

As a result of these considerations, the extraction uses borrowed references to store
nested data types. Such references are trivially copyable and can be shared freely, but
require that the data be stored somewhere else. Additionally, this requires data structures
to be generalised over a lifetime. Lifetimes are used by the borrow checker to determine
how long references are valid. In some situations, they can be inferred by the compiler.
However, storing references in data types require explicit lifetime parameters. For uni-
formity, we add a lifetime to all data types we extract. As Rust datatypes must use all
lifetimes and type parameters they introduce, the extraction also adds “phantom” uses of
these through the use of PhantomData, a zero-cost Rust type meant to specify to the Rust
compiler that a lifetime or type parameter is allowed to be unused. For uniformity, such
PhantomData types are emitted as the first member of all data types in all constructors,
leading to a final extraction of lists as

enum list<’a , A> {
nil(PhantomData<&’a A>) ,
cons(PhantomData<&’a A>, A , &’a list<’a , A>)

}

where the ’a parameter is lifetime, and A is a type parameter. The &’a syntax corresponds
to a borrowed reference with lifetime ’a.

Memory model differences. Rust is an unmanaged language without a garbage collector.
When extracting from a language like Coq, in which all memory allocation is handled
implicitly for the programmer, this leads to some challenges. This is made significantly
easier when it is noted that smart contract execution is self-contained and very short-lived.
Due to this, it is feasible to allocate as much memory as necessary during the execution
and then clean up only after the execution is done, a technique known as region-based
memory allocation. The extraction can thus use an off-the-shelf library that implements
region-based memory allocation; in particular, the Bumpalo library is used.

For more general-purpose extraction of programs that may be long-running, we
are considering using a conservative garbage collector such as the Boehm–Demers–
Weiser (Boehm & Weiser, 1988; Boehm et al., 1991) garbage collector. Here the challenge

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

40 D. Annenkov et al.

Fig. 7: The add function extracted to Rust.

lies in implementing the right heuristics to figure out when garbage collection should be
invoked during an extracted program.

Extraction produces a structure Program that contains the region (or arena) of memory
that can be allocated from. Structures struct are similar to records, but in addition to
fields can have functions associated with them. Such functions are called methods. The
first parameter of a method is &self, a reference to the instance of the struct. Methods
are defined in the corresponding impl block.

We extract the entire program as methods on the Program structure that can then access
the region when memory allocation is required. As an example, consider the function
add : nat → nat → nat. Note that we produce two versions of add: curried and uncur-
ried. The curried version returns a closure implemented using dynamically dispatched trait
objects of type Fn. We discuss the details of closure extraction and partial applications
below. The extracted code of the add function with all of its dependencies is presented
in Figure 7.

Our Rust extraction also supports remapping and that nat normally would be remapped
to either a big-integer type or to the u64 type using checked arithmetic. With the example
we have considered, including functions on lists and other inductive types, extracting a

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 41

complete implementation of a program produces well-typed code, also wrt. ownership.
However, we have not attempted to fully extract complex container libraries, such as
FMaps.

It is sometimes necessary to remap Coq container types (lists, finite maps) to corre-
sponding Rust libraries. In this case, one has to take care of the ownership issues manually
for the corresponding remapped fragments of code. This can be done by first defining a
wrapper function manually in Rust, having in mind the memory model of the extracted
code. One can then make sure that the wrapper code compiles, so it can be added to a
translation table for pretty-printing.

Handling ‘monomorphised’ closures. In order to handle polymorphic functions (func-
tions with type parameters), the Rust compiler performs a transformation called monomor-
phisation. That means that the compiler generates copies of a generic function with
parameters replaced with concrete types, used in the program. Rust implements closures in
an efficient way by combining their code with the environment they capture into an anony-
mous type. Functions can be monomorphised with respect to these types, allowing the use
of closures to be a zero-cost abstraction. For example, closures can be inlined as if they
are normal functions or stored directly in data structures. However, the semantics of such
closures are different from the semantics of closures in traditional functional languages.

In Coq, a closure behaves like any other function and is fully compatible with other
functions of that function type. For example, it is possible and unproblematic to store
multiple different closures of the same function type in a list. This uniform behaviour does
not carry over to Rust’s default treatment of closures: when storing a closure in a list,
the list must be typed over the anonymous closure type that the compiler has generated
automatically. Therefore, it is not possible to store two different closures, even of the same
function type, in such a list.

Rust still allows for semantics that match Coq’s at the cost of some performance through
trait objects. Trait objects use virtual dispatch to allow for example closures to behave uni-
formly as functions, hiding away the associated environment.19 Trait objects can exist only
as a reference and extraction must thus allocate closures and turn them into references. The
extraction automatically provides the helper function closure that performs this allocation
using the same region-based allocation as described above. In some cases, the Rust com-
piler requires annotations when using closures through allocated trait objects. Therefore,
we use the following wrapper to aid the type inference.

fn hint_app<TArg , TRet>(f : &dyn Fn(TArg) → TRet) → &dyn Fn(TArg) → TRet { f }

The dyn keyword denotes the fact that the Fn trait object is dynamically dispatched. We
conservatively insert the wrapper whenever the head of the application is not a constant, a
constructor, or an application.

Partial applications. Rust requires all functions to be fully applied when called, unlike
Coq which supports partial application. Partial applications can be emulated easily
through closures, by generating both curried versions and uncurried versions of functions.

19 Note that Rust also has “regular” traits that are similar to type classes and are statically dispatched.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

42 D. Annenkov et al.

However, using closures is less efficient, so as an optimization the extraction avoids clo-
sures when possible. Concretely, this results in both curried and uncurried versions as is
seen in the extraction above, with the curried version calling into the uncurried version.

Internal fixpoints. Coq supports recursive closures through the fix construct. In compar-
ison, Rust does not have similar support for recursive closures and supports only recursive
local functions which do not allow capturing. This means that only top-level recursive Coq
functions can straightforwardly be made recursive during extraction; when a fixpoint is
used internally (for example, through a let fix binding), there is no simple way to extract
this. To work around this issue, we apply a technique known as “Landin’s knot” (Landin,
1964). Namely, our extraction uses recursion through the heap. Concretely, when an inter-
nal fixpoint is encountered, extraction produces code that allocates a cell on the heap to
store a reference to the closure. The closure can access this heap cell and thus access itself
when it needs to recurse. To exemplify, a straightforward definition of the Ackermann
function in Coq uses nested recursion:

Fixpoint ack (n m : nat) : nat :=
match n with
| O⇒ S m
| S p⇒
let fix ackn (m : nat) :=

match m with
| O⇒ ack p 1
| S q⇒ ack p (ackn q)
end

in ackn m
end .

Non-mutual top-level fixpoints are extracted as a common special case by trans-
forming the fixpoint’s arguments into lambda-abstractions before printing. See
/extraction/theories/TopLevelFixes.v. The inner fixpoints are extracted using “Landin’s

knot”. Our extraction produces the following Rust code.

fn ack(&’a self , n : &’a Nat<’a>, m : &’a Nat<’a>)→ &’a Nat<’a> {
match n {

&Nat : :O(_) ⇒ { self .alloc(Nat : :S(PhantomData, m)) } ,
&Nat : :S(_ , p) ⇒ {

let ackn = {
let ackn = self .alloc(std : :cell : :Cell : :new(None)) ;
ackn .set(Some(
self .closure(move |m2 | {
match m2 {

&Nat : :O(_) ⇒ {
self .ack(
p ,
self .alloc(Nat : :S(PhantomData, self .alloc(Nat : :O(PhantomData))))

)
} ,
&Nat : :S(_ , q) ⇒ { self .ack(p , ackn .get () .unwrap () (q)) } ,

}
}))) ;

ackn .get () .unwrap()
};
ackn(m)

} ,
}

}

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/theories/TopLevelFixes.v
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 43

Mutual internal fixpoints are also supported. In fact any mutual fixpoint is extracted as an
internal fixpoint, even if it is a top-level definition.

Handling absurd cases. We follow the general strategy outlined in Section 5.1.4. The
natural choice for implementing the elimination principle for an empty type is to use Rust’s
panic! macro. In this case the elimination principle for False extracts to the following Rust
code.

fn False_rect<P : Copy>(&’a self , u : ()) → P {
panic!("Absurd case!")

}

We identify pattern-matchings with no branches at the pretty-printing stage and insert the
panic! macro.

Integrating with Concordium extraction/theories/ConcordiumExtract.v.
Concordium maintains the smart contract state in a serialised form, i.e. as an array of
bytes. Similarly, when a smart contract is called, its message is passed as an array of
bytes. To aid in conversion between the smart contract’s data types and these byte arrays,
the Concordium toolchain provides automatic derivation of serialisers and deserialisers
between arrays of bytes and standard Rust data types. This conversion, however, does
not support references, as it is unclear how to deserialise into a reference. In addition,
the ConCert smart contracts extracted are not immediately compatible with the signatures
expected by Concordium.

To aid in connecting between ConCert and Concordium a standard library is provided by
ConCert. This standard library includes several helper types that extracted smart contracts
depend on, and additionally also provide procedural macros that can be used to derive
serializers and deserializers that, through the use of regions, support deserialising refer-
ences. When a smart contract is extracted, it automatically has serializers and deserializers
derived for its structures, and the extraction takes care to generate glue code that properly
performs deserialisation and serialization with a proper region. Finally, the glue code also
connects between Concordium’s expected smart contract signature and the one extracted
by ConCert.
We proceed to highlight some case studies using the ConCert framework.

6 The escrow contract

In this section, we present an escrow contract execution/examples/Escrow.v. It is an
example of a nontrivial contract we can verify and extract. The purpose of this contract
is to enable a seller to sell goods in a trustless setting via the blockchain. The Escrow
contract is suited for goods that cannot be delivered digitally over the blockchain; for
goods that can be delivered digitally, there are contracts with better properties, such as
FairSwap (Dziembowski et al., 2018).

Because goods are not delivered on-chain, there is no way for the contract to verify that
the buyer has received the item. Instead, the contract incentivises the parties to follow the
protocol by requiring that both parties commit additional money that they are paid back

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/theories/ConcordiumExtract.v
https://github.com/AU-COBRA/ConCert/blob/journal-2021/execution/examples/Escrow.v
https://doi.org/10.1017/S0956796822000077

44 D. Annenkov et al.

at the end. Assuming a seller wants to sell a physical item for x amount of currency, the
contract proceeds in the following steps:

1. The seller deploys the contract and commits (by including the amount with the
deployment call) 2x.

2. The buyer commits 2x before a deadline.
3. The seller delivers the goods (outside of the smart contract).
4. The buyer confirms (by sending a message to the smart contract) that they have

received the item. They can then withdraw x from the contract while the seller can
withdraw 3x from the contract.

If there is no buyer who commits funds, the seller can withdraw their money back after
the deadline. Note that when the buyer has received the item, they can choose not to notify
the smart contract that this has happened. In this case, they will lose out on x, but the seller
will lose out on 3x. In our work, we assume that this does not happen, and we consider
the exact game-theoretic analysis of the protocol to be out of scope. Instead, we focus
on proving the logic of the smart contract correct under the assumption that both parties
follow the protocol to completion. The logic of the Escrow is implemented in approx.
a hundred lines of Gallina code. The interface to the Escrow is its message type given
below.

Inductive Msg :=
commit_money

| confirm_item_received
| withdraw .

To state correctness, we first need a definition of what the escrow’s effect on a party’s
balance has been.

Definition 3 (Net balance effect).
execution/examples/Escrow.v:net_balance_effect

Let π be an execution trace and a be an address of some party. Let Tfrom be the set of
transactions from the Escrow to a in π , and let Tto be the set of transactions from a to the
contract in π . Then the net balance effect of the Escrow on a is defined to be the sum of
amounts in Tfrom, minus the sum of amounts in Tto.

The Escrow keeps track of when both the buyer and seller have withdrawn their money,
after which it marks the sale as completed. This is what we use to state correctness.

Theorem 3 (Escrow correctness).
execution/examples/Escrow.v:escrow_correct

Let π be an execution trace with a finished Escrow for an item of value x. Let S be the
address of the seller and B the address of the buyer. Then:

• If B sent a confirm_item_received message to the Escrow, the net balance effect
on the buyer is −x and the net balance effect on the seller is x.

• Otherwise, the net balance effects on the buyer and seller are both 0.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/5eb12f34fc29035eb0909ffdda523c4b70eaa462/execution/examples/Escrow.v#L537
https://github.com/AU-COBRA/ConCert/blob/5eb12f34fc29035eb0909ffdda523c4b70eaa462/execution/examples/Escrow.v#L554
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 45

Below, we show how the informal statement of Theorem 3 is implemented in Coq using the
infrastructure provided by the execution layer (see Section 4). In the comments, we point
out the corresponding parts and notations from the informal statement of the theorem.

Theorem escrow_correct
{ChainBuilder : ChainBuilderType}
prev new header acts :

(* For a trace (π) ending with a successful addition of a block (reachability) *)
builder_add_block prev header acts = Ok new→
let trace := builder_trace new in
forall caddr ,
env_contracts new caddr = Some (Escrow .contract : WeakContract) →
exists (depinfo : DeploymentInfo Setup)

(cstate : State)
(inc_calls : list (ContractCallInfo Msg)) ,

deployment_info Setup trace caddr = Some depinfo ∧
contract_state new caddr = Some cstate ∧
incoming_calls Msg trace caddr = Some inc_calls ∧
(* the value of the item (x) *)
let item_worth := deployment_amount depinfo / 2 in
(* the address of the seller S *)
let seller := deployment_from depinfo in
(* the address of the buyer B *)
let buyer := setup_buyer (deployment_setup depinfo) in
is_escrow_finished cstate = true→
(* the net balance effect is x on the seller and −x on the buyer *)
(buyer_confirmed inc_calls buyer = true ∧
net_balance_effect trace caddr seller = item_worth ∧
net_balance_effect trace caddr buyer = item_worth ∨
(* otherwise, the net balance effects on the buyer and seller are both 0. *)
buyer_confirmed inc_calls buyer = false ∧
net_balance_effect trace caddr seller = 0 ∧
net_balance_effect trace caddr buyer = 0) .

In Coq, we first prove a slightly more general statement of the theorem
(escrow_correct_strong), which is then used to prove the statement that corresponds to
Theorem 3. The proof is by induction on the structure of the contract’s execution trace
ChainTrace. We use a specialised induction principle that allows for better proof structure.
Moreover, we provide textual hints for the user for each case when applying the inductive
principle in the interactive mode.

Extracting the contract extraction/examples/EscrowExtract.v. We have successfully
extracted the escrow contract to Rust, CameLIGO, and Liquidity. For CameLIGO
and Liquidity, we remap the Amount type (which is just an alias for Z) to tez, the
on-chain currency. We also remap the fields of Chain and ContractCallContext to
equivalent API calls in CameLIGO/Liquidity. For example, the ctx_contract_balance
field of ContractCallContext is remapped to Tezos.balance for CameLIGO, and
Current.balance for Liquidity.

Liquidity has a small caveat that it does not allow external functional calls in the initial-
isation function. Using the inlining transformation described in Section 5.2, we ensure that
the necessary function definitions are inlined in the initialisation function. Furthermore,
we also inline various monad instances implicitly used in the contract code, such as the
instance for Monad option, since higher-kinded types are not supported in CameLIGO and
Liquidity.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/examples/EscrowExtract.v
https://doi.org/10.1017/S0956796822000077

46 D. Annenkov et al.

The Rust version of the escrow contract was successfully deployed and instantiated on
the Concordium’s test network. This demonstrates that the integration infrastructure is
fully functional. The size of the resulting WebAssembly executable that was obtained by
compiling the extracted contract is about 39KB, while the threshold is 64KB.

7 The boardroom voting contract

Hao, Ryan, and Zielińsky developed the Open Vote Network protocol (Hao et al., 2010),
an e-voting protocol that allows a small number of parties (‘a boardroom’) to vote anony-
mously on a topic. Their protocol allows tallying the vote while still maintaining maximum
voter privacy, meaning that each vote is kept private unless all other parties collude. Each
party proves in zero-knowledge to all other parties that they are following the protocol
correctly and that their votes are well-formed.

This protocol was implemented as an Ethereum smart contract by McCorry,
Shahandashti and Hao (McCorry et al., 2017). In their implementation, the smart con-
tract serves as the orchestrator of the vote by verifying the zero-knowledge proofs and
computing the final tally.

We implement a similar contract in the ConCert framework
execution/examples/BoardroomVoting.v. The original protocol works in three steps.

First, there is a sign-up step where each party submits a public key and a zero-knowledge
proof that they know the corresponding private key. After this, each party publishes a
commitment to their upcoming vote. Finally, each party submits a computation repre-
senting their vote, but from which it is computationally intractable to obtain their actual
private vote. Together with the vote, they also submit a zero-knowledge proof that this
value is well-formed, i.e. it was computed from their private key and a private vote (either
‘for‘ or ‘against‘). After all parties have submitted their public votes, the contract is able
to tally the final result. For more details, see the original paper (Hao et al., 2010). The
contract accepts messages given by the type:

Inductive Msg :=
| signup (pk : A) (proof : A * Z)
| commit_to_vote (hash : positive)
| submit_vote (v : A) (proof : VoteProof)
| tally_votes .

Here, A is an element in an arbitrary finite field, Z is the type of integers and positive can
be viewed as the type of finite bit strings. Since the tallying and the zero-knowledge proofs
are based on finite field arithmetic, we develop some required theory about Zp includ-
ing Fermat’s theorem and the extended Euclidean algorithm. This allows us to instantiate
the boardroom voting contract with Zp and test it inside Coq using ConCert’s executable
specification. To make this efficient, we use the Bignums library of Coq to implement
operations inside Zp efficiently.

The contract provides three functions make_signup_msg, make_commit_msg and
make_vote_msg meant to be used off-chain by each party to create the messages that should
be sent to the contract. As input, these functions take the party’s private data, such as pri-
vate keys and the private vote, and produces a message containing derived keys and derived
votes that can be made public, and also zero-knowledge proofs about these. We prove
the zero-knowledge proofs attached will be verified correctly by the contract when these

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/execution/examples/BoardroomVoting.v
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 47

functions are used. Note that, due to this verification done by the contract, the contract
is able to detect if a party misbehaves. However, we do not prove formally that incor-
rect proofs do not verify since this is a probabilistic statement better suited for tools like
EasyCrypt or SSProve (Abate et al., 2021).

When creating a vote message using make_vote_msg the function is given as input the
private vote: either ‘for‘, represented as 1, and ‘against‘, represented as 0. We prove that the
contract tallies the vote correctly assuming that the functions provided by the boardroom
voting contract are used. Note that the contract accepts the tally_votes message only
when it has received votes from all public parties, and as a result stores the computed tally
in its internal state. We give here a simplified version of the full correctness statement
which can be found in the attached artifact.

Theorem 4 (Boardroom voting correct).
execution/examples/BoardroomVoting.v:boardroom_voting_correct

Let π be an execution trace with a boardroom voting contract. Assume that all messages
to the Boardroom Voting contract in π were created using the functions described above.
Then:

• If the boardroom voting contract has accepted a tally_votes message, the tally
stored by the contract equals the sum of private votes.

• Otherwise, no tally is stored by the contract.

Below, we show how the informal statement of Theorem 4 is implemented in Coq using the
infrastructure provided by the execution layer (see Section 4). In the comments, we point
out the corresponding parts and notations from the informal statement of the theorem.

Theorem boardroom_voting_correct
(bstate : ChainState)
(caddr : Address)
(* For any trace (π) from the initial state to a reachable state [bstate] *)
(trace : ChainTrace empty_state bstate)
(* a list of all public keys, in the order of signups *)
(pks : list A)
(* a function mapping a party to information about them *)
(parties : Address→ SecretVoterInfo) :

env_contracts bstate caddr = Some (boardroom_voting : WeakContract) →
exists (cstate : State)

(depinfo : DeploymentInfo Setup)
(inc_calls : list (ContractCallInfo Msg)) ,

deployment_info Setup trace caddr = Some depinfo ∧
contract_state bstate caddr = Some cstate ∧
incoming_calls Msg trace caddr = Some inc_calls ∧
(* assuming that the message sent were created with the functions

provided by this smart contract *)
MsgAssumption pks parties inc_calls→
(* ..and that people signed up in the order given by ’index’ and ’pks’ *)
SignupOrderAssumption pks parties inc_calls→
(* ..and that the correct number of people register *)
(finish_registration_by (setup cstate) < Blockchain .current_slot bstate→
length pks = length (signups inc_calls)) →
(* then if we have not tallied yet, the tally is none *)
((has_tallied inc_calls = false→ tally cstate = None) ∧

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/5eb12f34fc29035eb0909ffdda523c4b70eaa462/execution/examples/BoardroomVoting.v#L814
https://doi.org/10.1017/S0956796822000077

48 D. Annenkov et al.

(* or if we have tallied yet, the tally is correct *)
(has_tallied inc_calls = true→
tally cstate = Some (sumnat (fun party⇒ if svi_sv (parties party) then 1 else 0)

(map fst (signups inc_calls))))) .

Similarly to the escrow contract from Section 6, we first prove a more general theorem
using the specialised induction principle for the execution traces.

Extracting the contract extraction/examples/BoardroomVotingExtractionCameLIGO.v.
The boardroom voting contract gives a good benchmark for our extraction as it relies on
some expensive computations. It drives our efforts to cover more practical cases, and we
have successfully extracted it to CameLIGO. Extraction to Liquidity produces code that
fails to type check due to the closure typing as it is presented in Section 5.3. Extraction
to Rust should be possible with the appropriate extraction setup. We leave this as future
work.

The main problem with extraction for this contract is the use of higher-kinded
types. In particular, the implementation of the contract uses finite maps from the std++
library, which implicitly rely on higher-kinded types. In addition, the contract uses
monadic binds, implemented via type classes that require passing type families around.
Furthermore, the arithmetic operations and developed theory is captured in the type
class BoardroomAxioms (A : Type), where A is the element type of the finite field, and is
instantiated to Zp for extraction. All of this is not representable in prenex-polymorphic
type systems, and our target languages follow a similar typing discipline to prenex-
polymorphism. While we could adjust the implementation to avoid relying on higher
kinded types, we instead prefer to improve the extraction to work on more examples.
In particular, for our cases, we have identified that a few steps of reduction is enough
for most of the higher kinded types to disappear. For example, the signature of bind is
forall m : Type → Type, Monad m → forall t u : Type, m t → (t → m u) → m u whi-
ch, when it appears in the contract, typically looks like bind option option_monad ...

where option_monad is some constant that builds a record describing the option monad.
After very few steps of reduction, this reduces to the well-known bind for options, which is
unproblematic to extract. At this point, the pre-processing pass (see Section 5.2) comes in
handy and the inlining functionality is sufficient to produce definitions that are well-typed
after extraction.

For the BoardroomAxioms type class, on which the entire contract is parameterised over,
we would need a specialisation pass similar to the ChainBase specialisation described
in Section 5.3. It could be possible with a more general technique, such as partial eval-
uation. We leave this as future work, and in the meantime create a copy of the contract
where we have inlined Zp in place of A execution/examples/BoardroomVotingZ.v.

The extracted contract is 470LOC of CameLIGO code, compiled Michelson code is
3KLOC, and the size of the contract in the binary format is 49KB. The size exceeds
the limit on direct contract deployment. However, there are mechanisms in the Tezos
blockchain, e.g. global constants allowing for deployment of contracts exceeding the limit.
As future work, it would be interesting to evaluate the gas consumption of the contract.
However, without native support for some cryptographic primitives, we expect the gas
consumption to be relatively high.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/AU-COBRA/ConCert/blob/journal-2021/extraction/examples/BoardroomVotingExtractionCameLIGO.v
https://github.com/AU-COBRA/ConCert/blob/journal-2021/execution/examples/BoardroomVotingZ.v
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 49

8 Related work

Extraction to statically typed languages. The works in this direction are the most rele-
vant for the present development. By extraction we mean obtaining source code in a target
language which is accepted by the target language compiler and can be further integrated
with existing systems. Several proof assistants share this feature: Coq (Letouzey, 2003),
Isabelle (Berghofer & Nipkow, 2002), Agda (Kusee, 2017). They allow targeting conven-
tional functional languages such as Haskell, OCaml or Standard ML. However, extraction
in Isabelle/HOL is slightly different from Coq and Agda, since in the higher-order logic of
Isabelle/HOL programs are represented as equations and the job of the extraction mecha-
nism is to turn them into executable programs. Moreover, Isabelle/HOL does not feature
dependent types, therefore the type system of programs is closer to the extraction targets,
in contrast to Coq and Agda, where one has to make additional efforts to remove proofs
from terms.

Clearly, the correctness of the extraction code is crucial for producing correct executable
programs. This is addressed by several developments for Isabelle (Haftmann & Nipkow,
2007; Hupel & Nipkow, 2018). Hupel & Nipkow (2018) present verified compilation
from Isabelle/HOL to CakeML (Kumar et al., 2014). It also implements metaprogram-
ming facilities for quoting Isabelle/HOL terms similar to MetaCoq. Moreover, the quoting
procedure produces a proof that the quoted terms correspond to the original ones. The
current extraction implemented in the Coq proof assistant is not verified. Although the the-
oretical basis for it is well-developed by Letouzey (2004), Coq’s extraction also includes
unverified optimisations that are done together with extraction, making it harder to com-
pare it with the formal treatment given by Letouzey. So, the unverified extraction even
lacks a full paper proof. Our separation between erasure and optimisation facilitates such
comparisons, and allows reuse of the optimisation pass in a standalone fashion in other
projects. The MetaCoq project (Sozeau et al., 2019) aims to formalise the meta-theory of
the calculus of inductive constructions and features a verified erasure procedure that forms
the basis for extraction presented in this work. We also emphasise that the previous works
on extraction targeted conventional functional languages (e.g. Haskell, OCaml, etc.), while
we target the more diverse field of functional smart contract languages.

Šinkarovs & Cockx (2021) present an approach for defining embeddings and extrac-
tion procedures at the same time in Agda. The approach is best suited for domain-specific
languages and characterises the subset of Agda from which extraction is possible by the
successful execution of the extraction procedure. Currently, it seems impossible to estab-
lish semantic preservation properties for the extraction/embedding procedures, because
the meta-theory of Agda is not formalised. In our setting, we mostly work with general-
purpose languages. In this case, applying this approach seems to be problematic, since
embedding a general-purpose language can be a non-trivial effort. However, for certain
domain-specific contract languages, e.g. Marlowe (Lamela Seijas & Thompson, 2018),
CSL (Henglein et al., 2020), CL (Bahr et al., 2015; Annenkov & Elsman, 2018), the
approach of Šinkarovs & Cockx (2021) looks promising. It would be interesting to repro-
duce the approach in Coq, with the additional benefit of reasoning about the semantics
preservation using the MetaCoq formalisation. Currently, we have an example of a sim-
ple DSL interpreter extracted from Coq (see examples in Section 5.3) which could be
accompanied by an embedding.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

50 D. Annenkov et al.

The recent developments in quantitative type theory (QTT) by Atkey (2018) offer an
interesting perspective on erasure. QTT allows for tracking the resource usage in types,
and this information can be used to identify what can be erased at run-time. Agda’s GHC
backend uses QTT-inspired erasure annotations (Danielsson, 2019) in order to remove
computationally irrelevant parts of extracted Haskell programs. However, in our case,
it would require significantly changing the underlying theory of Coq. Therefore, such
techniques are currently not available to us.

Miquel (2001) develops the implicit calculus of constructions (ICC) that offers an alter-
native to using Prop for separating the computational content from specifications and
proofs. ICC adds an implicit product type ∀x : T .U allowing for quantifying over x without
introducing extra binders at the term level. However, the type checking in ICC is unde-
cidable. Barras & Bernardo (2008) present an annotated variant ICC∗, which recovers the
decidability. The terms of ICC∗ can be extracted to ICC by removing the annotations.
In the PhD thesis by Bernardo (2015), ICC and its annotated variant were extended with
dependent pairs (�-types), including an implicit version (similarly to the implicit prod-
uct). One benefit of using ICC-like type systems is that it allows for more definitional
equalities. E.g. for two dependent pairs (a ,p1) and (b ,p2) (p1 and p2 are proofs of some
property on a and b) are equal whenever the first components are equal. The proofs of
the same property are definitionally equal in such systems. The same definitional equality
can be obtained in Coq using the universe of definitionally proof-irrelevant propositions
SProp (Gilbert et al., 2019). However, ICC∗ allows for making binders of an arbitrary type
irrelevant, prohibiting their use in computationally relevant parts of a program. Effectively,
it means that irrelevant arguments do not occur in terms of pure ICC (after erasure), but
can be used without any restrictions in the codomain of the implicit product type. E.g.
fun {n} (v : vec n) ⇒ n is ill-typed in ICC∗, where vec is the type of sized lists (also
called vectors). This restriction cannot be expressed using SProp. Moreover, implement-
ing the conversion test through extraction to pure ICC gives a very expressive subtyping
relation. For example, vectors in this system would be subtypes of lists (using the impred-
icative encodings for vectors and lists). The approach of ICC looks promising and Barras
& Bernardo (2008) report that ICC∗ allows for a simpler implementation.20 However, it
seems that ICC has not been extended to handle the full calculus of inductive constructions.

Mishra-Linger & Sheard (2008) consider an approach similar to ICC in the context of
pure type systems (PTS). The present two calculi: EPTS (Erasure Pure Type Systems—a
calculus of annotated terms, similar to ICC∗) and IPTS (Implicit Pure Type Systems, sim-
ilar to ICC). The EPTS calculus features phase distinction annotations for distinguishing
between compile-time and run-time computations. The authors define an erasure proce-
dure from EPTS to IPTS and briefly discuss some implementation issues. It seems that the
implementation of the presented system is not currently available.

Execution of dependently typed languages. Related works in this category are concerned
with compiling a dependently-typed language to a low-level representation. Although the
techniques used in these approaches are similar to extraction, one does not need to fit the

20 A prototype implementation is available for older versions of Coq: http://www.lix.polytechnique.fr/
Labo/Bruno.Barras/coq-implicit/.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

http://www.lix.polytechnique.fr/Labo/Bruno.Barras/coq-implicit/
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/coq-implicit/
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 51

extracted code into the type system of a target language and is free to choose an inter-
mediate compiler representation. The dependently typed programming language Idris uses
erasure techniques for efficient execution (Brady et al., 2004). The Idris 2 implementa-
tion (Brady, 2021) implements QTT for both tracking the resource consumption and the
run-time irrelevance information.

Barras & Grégoire (2005) develop an approach for efficient convertibility testing of
untyped terms acquired from fully typed CIC terms for the Coq proof assistant. The
Œuf project (Mullen et al., 2018) features verified compilation of a restricted subset of
Coq’s functional language Gallina (no pattern-matching, no user-defined inductive types—
only eliminators for particular inductive types). Pit-Claudel et al. (2020) report on the
extraction of domain-specific languages embedded into Gallina to an imperative interme-
diate language that can be compiled to efficient low-level code. And finally, the certified
compilation approach to executing Coq programs is under development in the CertiCoq
project (Anand et al., 2017). The project uses MetaCoq for quotation functionality and uses
the verified erasure as the first stage. After several intermediate stages, C light code is emit-
ted and later compiled for a target machine using the CompCert certified compiler (Leroy,
2006). Since we implement our pass as a standalone optimisation on the same AST that
is used in CertiCoq, our pass can be integrated in a relatively straightforward fashion in
CertiCoq (see Section 9).

Dead arguments elimination. The techniques of removing computationally useless (dead)
code were extensively studied in the context of simply-typed (Berardi, 1996) and poly-
morphic (Boerio, 1994) λ-calculi. The techniques were extended to the calculus of
constructions (CoC) by Prost (1995). These techniques analyse the terms to identify unused
parts and mark them. As a result, one obtains a typed term with some redundancy removed.
This captures the proofs that do not contribute to the final result.

We follow the approach initially developed by Paulin-Mohring (1989) for CoC and later
adapted and extended to CIC by Letouzey (2004). Namely, all computationally irrelevant
propositions must be placed in a special universe Prop. However, we apply a pass that
removes dead arguments after erasure. Letouzey mentioned in his PhD thesis, that doing
so has the benefit of working with smaller terms (since large parts are replaced with the
� constructor). Moreover, Letouzey (2003) says that implementation of extraction con-
tains “a workaround designed to safely remove most of the external dummy lambdas”. We
demonstrate that this workaround can be replaced with a more general and principled opti-
misation (see Section 5.1.2). Current Coq implementation, performs a similar optimisation
pass that removes logical arguments. However, it seems that the formal treatment of the
transformations is currently lacking. Moreover, we believe that our dearg transformation is
flexible enough to accommodate the behaviour of the standard extraction, as we sketched
in Section 5.1.3.

Paraskevopoulou et al. (2021) implement in CertiCoq several certified optimisation
passes. These passes are performed on the untyped λANF representation and include dead
parameter elimination that is similar to our dearg transformation. Our transformation, how-
ever, is defined for the λ� representation, that precedes λANF in the CertiCoq pipeline.
Our typed intermediate representation λT

� retains a close connection between the extracted
type and the corresponding λ� term. The λANF representation, which is further down the

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

52 D. Annenkov et al.

pipeline, is less suited for extraction to typed languages, as it is harder to establish a con-
nection to the original type of the program. Our verified dearg transformation also allows
for more general removal of unused constructor parameters. A similar pass in CertiCoq
does not handle logical arguments of constructors and is not part of the certified pipeline.
We have integrated our pass with the CertiCoq project and have sent a pull request to the
CertiCoq repository.21 With small modifications, the pass seems to be beneficial for the
CertiCoq pipeline and can potentially replace a similar unverified pass, but it is not yet
merged into the main CertiCoq development. The main reason for that is that our optimi-
sation assumes that constants and constructors are applied to all arguments we remove.
That means that there should be an η-expansion pass in the pipeline, which we solve with
our proof generating approach. However, there is no such pass in CertiCoq, but there are
plans to add such a pass to the MetaCoq development. After that, our optimisation pass
could be fully integrated into CertiCoq.

9 Conclusion and future work

We have presented an extraction pipeline implemented completely in the Coq proof assis-
tant. This approach has an important advantage: we can use Coq for providing strong
correctness guarantees for the extraction process itself by verifying the passes of the
pipeline. The whole range of certified programming and proof techniques becomes appli-
cable since the pipeline consists of ordinary Coq definitions. Our extraction relies on the
MetaCoq verified erasure procedure, which we extend with data structures required for
extraction to our target languages. Our pipeline addresses new challenges originating from
the target languages we have considered and can be extended with new transformations if
required.

The developed approach allows for targeting various functional languages. Currently,
we support two target languages for smart contract extraction (Liquidity and CameLIGO)
and two general-purpose languages (Elm and Rust). Rust is also used as a smart con-
tract language for the Concordium blockchain. We have tested our extraction pipeline on
various example programs. In the domain of smart contracts, we have considered several
examples both designed for demonstration purposes and representing real-world use cases.
The short descriptions of the contracts are given below.

• Counter—a simple contract featuring the increment and decrement functionality
(similar to the example in Figure 4, but without using the advanced Coq types).

• Counter (subset types)—the example in Figure 4.
• ERC20 token—an implementation of a widely used token standard.
• Crowdfunding—a smart contract representing a common use case, also knows as

Crowdsale, Kickstarter-like contract, ICO contract, etc
• DSL Interpreter—a simple interpreter, demonstrating a feasibility of embedding

interpreted DSLs.
• Escrow—an implementation of an escrow (see Section 6).
• Boardroom voting—an implementation an anonymous e-voting protocol

(see Section 7).

21 https://github.com/CertiCoq/certicoq/pull/29 (accessed 2022-02-21).

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://github.com/CertiCoq/certicoq/pull/29
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 53

The examples we have considered confirm that our pipeline is suitable for extracting real-
world smart contracts.

In general, our experience shows that the extraction is well-suited for Coq programs
in a fragment of Gallina that corresponds to a generic polymorphic functional language
extended with subset types. This fragment is sufficient to cover most of the features found
in functional smart contract languages and is suitable for extracting many programs to
Rust and Elm, resulting in well-typed code. Our pipeline allows for implementing, testing,
verifying and extracting programs from Coq to new target languages while retaining a
small TCB.

Note, however, that the target languages we consider are different from traditional
extraction targets: they are often restricted in various ways. That introduces a difference in
the extraction methodology: the standard extraction aims to capture all of Gallina and pro-
duce executable code for any Coq function, possibly using type coercions (like Obj .magic).
On the other hand, we identify a suitable fragment that is extractable after applying the pre-
processing step. This, however, comes at a cost: the user has to use a limited number of
constructs and reiterate the extraction process several times if the extracted code is not
accepted by the target compiler. So far, many failures can only be seen at the final stage
and the debugging process is not ideal. One solution we envision is to introduce a possi-
bility in Coq of restricting to a subset of Gallina using something similar to the Program
environment. This feature would allow to catch certain issues earlier, before extraction,
making the process more convenient for the user. This convenience is, however, orthogo-
nal to the pipeline itself: we can add various steps at the beginning of the pipeline, leaving
the rest of the pipeline intact.

The embedding techniques give more precise control over the resulting code, but often
complicate proving properties of embedded programs. Perhaps, combining the embedding
techniques, considered by Annenkov et al. (2020) and Šinkarovs & Cockx (2021) with
extraction could give more control over the resulting code while retaining the simplicity of
reasoning about Coq functions.

As future work one can imagine various additional and improved optimisations, that fit
well with the infrastructure we have developed. For example, removing singleton inductive
types (e.g. Acc), “unboxing” the values built from one-argument constructors application
(originating from inductive types with one constructor, e.g. constructors of a subset type
sig). The proof-generating pass allows for inlining and specialising some definitions which
might not be typable after extraction, since our targets do not feature unsafe type casts, like
OCaml’s Obj .magic. Our pipeline is well-suited for adding new conversion-preserving
transformations at a very low cost: one just has to write a function, with the signature
global_env → Result global_env string and include it in the list of transformations. The
proofs of correctness will be generated automatically after all the transformations have
been applied. Even though not all the transformations are conversion preserving, we have
given two useful examples of such transformations. Moreover, our pipeline can accom-
modate more general transformations. For example, partial evaluation, as it is presented
by Tanaka (2021), is conversion-reserving for a subset of Gallina. It could be implemented
in Coq directly (instead of a plugin) using the metaprogramming facilities of MetaCoq.

We plan also to improve the boardroom voting contract extraction. First, we would
like to implement more machinery for program specialisation (like partial evaluation

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

54 D. Annenkov et al.

mentioned above), making the manual adjustments of the boardroom voting contract
unnecessary. Second, we would like to integrate it with extracted high-performance crypto-
graphic primitives using the approach of FiatCrypto (Erbsen et al., 2019). For example, the
Open Vote Network protocol, on which the contact is based, depends on computations in a
Schnorr group, a large prime-order subgroup of the multiplicative group of integers mod-
ulo some prime p. An efficient Rust implementation of a Schnorr group can be obtained
from FiatCrypto. We can then replace our naive implementation by this highly optimised
implementation.

Since we have already considered new target languages from the ML-family (Elm,
Liquidity and CameLIGO), we expect that our pipeline can also be used for extract-
ing to OCaml, similarly to the standard Coq extraction. Currently, the pipeline cannot
be used directly as a replacement for the standard extraction. The standard extraction of
Coq implements more optimisations than we support in our pipeline. However, our devel-
opment enables adding more verified optimisations in a compositional manner, giving a
systematic way of improving the extraction output. Another issue is that inserting unsafe
type coercions (Obj .magic) is currently not supported by our development, due to the
absence of such mechanisms in most of our targets. Implementing extraction to OCaml
could be done by connecting the λT

� representations with the formalisation of a suitable
fragment of OCaml including type inference. Such integration would make it possible to
use the type inference algorithm to find places where coercions are necessary (Letouzey,
2004, Section 3.2). As the first step towards making our pipeline available for further
improvements, we plan to integrate it with the MetaCoq project.

Acknowledgments

This work was partially supported by the Danish Industry Foundation in the Blockchain
Academy Network project, the Concordium Blockchain Research Center (COBRA), and
the Tezos Foundation.

Conflicts of interest

Aarhus University (PI:Spitters) has received grants from the Concordium Foundation and
the Tezos Foundation.

Supplementary materials

For supplementary material for this article, please visit https://doi.org/10.1017/
S0956796822000077

References

Abate, C., Haselwarter, P. G., Rivas, E., Muylder, A. V., Winterhalter, T., Hritcu, C., Maillard, K.
& Spitters, B. (2021) SSProve: A Foundational Framework for Modular Cryptographic Proofs in
Coq. Cryptology ePrint Archive, Report 2021/397. Available at: https://eprint.iacr.org/
2021/397.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077
https://doi.org/10.1017/S0956796822000077
https://eprint.iacr.org/2021/397
https://eprint.iacr.org/2021/397
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 55

Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger, O., Sozeau, M. &
Weaver, M. (2017) CertiCoq: A verified compiler for Coq. In CoqPL’2017.

Anand, A., Boulier, S., Cohen, C., Sozeau, M. & Tabareau, N. (2018) Towards certified meta-
programming with typed template-Coq. In ITP18. LNCS, vol. 10895, pp. 20–39. Available at:
https://hal.archives-ouvertes.fr/hal-01809681

Annenkov, D. & Elsman, M. (2018) Certified compilation of financial contracts. In PPDP’2018.
Annenkov, D., Milo, M., Nielsen, J. B. & Spitters, B. (2021) Extracting smart contracts tested and

verified in Coq. In CPP 2021. Association for Computing Machinery, pp. 105–121. Available at:
https://doi.org/10.1145/3437992.3439934

Annenkov, D., Nielsen, J. B. & Spitters, B. (2020) ConCert: A smart contract certification
framework in Coq. In CPP’2020.

Atkey, R. (2018) Syntax and semantics of quantitative type theory. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science. LICS’18. New York, NY, USA:
Association for Computing Machinery, pp. 56–65.

Bahr, P., Berthold, J. & Elsman, M. (2015) Certified symbolic management of financial multi-party
contracts. SIGPLAN Not. 50(9), pp. 315–327.

Barras, B. & Bernardo, B. (2008) The implicit calculus of constructions as a programming language
with dependent types. In Foundations of Software Science and Computational Structures, Amadio,
R. (ed.). Springer Berlin Heidelberg, pp. 365–379.

Barras, B. & Grégoire, B. (2005) On the role of type decorations in the calculus of inductive
constructions. In CSL.

Berardi, S. (1996) Pruning simply typed λ-terms. J. Logic. Comput. 6(5), 663–681. Available at:
https://doi.org/10.1093/logcom/6.5.663.

Berghofer, S. & Nipkow, T. (2002) Executing higher order logic. In Types for Proofs and Programs,
Callaghan, P., Luo, Z., McKinna, J., Pollack, R. & Pollack, R. (eds). Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 24–40.

Bernardo, B. (2015) Un Calcul des Constructions implicite avec sommes dépendantes et à inférence
de type décidable. Theses, École polytechnique. Version soutenance. Available at: https://
hal.inria.fr/tel-01197380

Boehm, H., Demers, A. J. & Shenker, S. (1991) Mostly parallel garbage collection. In PLDI. ACM,
pp. 157–164.

Boehm, H. & Weiser, M. D. (1988) Garbage collection in an uncooperative environment. Softw.
Pract. Exp. 18(9), 807–820.

Boerio, L. (1994) Extending pruning techniques to polymorphic second order λ-calculus. In
Programming Languages and Systems—ESOP’94, Sannella, D. (ed.). Springer Berlin Heidelberg.

Bozman, c., Iguernlala, M., Laporte, M., Le Fessant, F. & Mebsout, A. (2018) Liquidity: OCaml
pour la Blockchain. In JFLA18.

Brady, E. (2021) Idris 2: Quantitative type theory in practice. In 35th European Conference
on Object-Oriented Programming (ECOOP 2021), Møller, A. & Sridharan, M. (eds). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 194. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, pp. 9:1–9:26.

Brady, E., McBride, C. & McKinna, J. (2004) Inductive families need not store their indices. In
Types for Proofs and Programs, Berardi, S., Coppo, M. & Damiani, F. (eds). Springer Berlin
Heidelberg, pp. 115–129.

Chapman, J., Kireev, R., Nester, C. & Wadler, P. (2019) System F in Agda, for fun and profit. In
MPC’19.

Chlipala, A. (2013) Certified Programming with Dependent Types: A Pragmatic Introduction to the
Coq Proof Assistant. MIT Press.

Cruz-Filipe, L. & Letouzey, P. (2006) A large-scale experiment in executing extracted programs.
Electron. Notes Theor. Comput. Sci. 151(1), pp. 75–91.

Cruz-Filipe, L. & Spitters, B. (2003) Program extraction from large proof developments. In Theorem
Proving in Higher Order Logics.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://hal.archives-ouvertes.fr/hal-01809681
https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1093/logcom/6.5.663
https://hal.inria.fr/tel-01197380
https://hal.inria.fr/tel-01197380
https://doi.org/10.1017/S0956796822000077

56 D. Annenkov et al.

Danielsson, N. A. (2019) Logical properties of a modality for erasure. Accessed July 7, 2021.
Available at: http://www.cse.chalmers.se/∼nad/publications/danielsson-erased.
pdf.

Dziembowski, S., Eckey, L. & Faust, S. (2018) FairSwap: How to fairly exchange digital goods. In
ACM Conference on Computer and Communications Security. ACM, pp. 967–984.

Erbsen, A., Philipoom, J., Gross, J., Sloan, R. & Chlipala, A. (2019) Simple high-level code for
cryptographic arithmetic - with proofs, without compromises. In IEEE Symposium on Security
and Privacy.

Feldman, R. (2020) Elm in Action. Manning.
Filliâtre, J.-C. & Letouzey, P. (2004) Functors for proofs and programs. In Programming Languages

and Systems, Schmidt, D. (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 370–384.
Gilbert, G., Cockx, J., Sozeau, M. & Tabareau, N. (2019) Definitional proof-irrelevance without K.

Proc. ACM Program. Lang. 3(POPL), pp. 1–28.
Haftmann, F. & Nipkow, T. (2007), A code generator framework for Isabelle/HOL. In Department

of Computer Science, University of Kaiserslautern.
Hao, F., Ryan, P. Y. & Zieliński, P. (2010) Anonymous voting by two-round public discussion. IET

Inf. Security 4(2), pp. 62–67.
Henglein, F., Larsen, C. K. & Murawska, A. (2020) A formally verified static analysis framework

for compositional contracts. In Financial Cryptography and Data Security (FC).
Hupel, L. & Nipkow, T. (2018) A verified compiler from Isabelle/HOL to CakeML. In Programming

Languages and Systems, Ahmed, A. (ed.), pp. 999–1026.
Jung, R., Jourdan, J.-H., Krebbers, R. & Dreyer, D. (2021) Safe systems programming in rust.

Commun. ACM 64(4), 144–152.
Klabnik, S. & Nichols, C. (2018) The Rust Programming Language. USA: No Starch Press.
Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R. & Heiser, G. (2014)

Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst. 32(1), 2:1–
2:70.

Kumar, R., Myreen, M. O., Norrish, M. & Owens, S. (2014) CakeML: A verified implementa-
tion of ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’14. ACM, pp. 179–191. Available at: http://doi.acm.org/
10.1145/2535838.2535841

Kusee, W. H. (2017) Compiling Agda to Haskell with Fewer Coercions. Master’s thesis.
Lamela Seijas, P. & Thompson, S. (2018) Marlowe: Financial contracts on blockchain. In

International Symposium o Leveraging Applications of Formal Methods, Verification and
Validation, Margaria, T. & Steffen, B. (eds). Industrial Practice.

Landin, P. J. (1964) The mechanical evaluation of expressions. Comput. J. 6, 308–320.
Lee, O. & Yi, K. (1998) Proofs about a Folklore let-polymorphic type inference algorithm. ACM

Trans. Program. Lang. Syst. 20(4), pp. 707–723.
Leroy, X. (2006) Formal certification of a compiler back-end, or: Programming a compiler with a

proof assistant. In POPL, pp. 42–54.
Letouzey, P. (2003) A new extraction for Coq. In Types for Proofs and Programs, pp. 200–219.
Letouzey, P. (2004) Programmation fonctionnelle certifiée – L’extraction de programs dans

l’assistant Coq. PhD thesis, Université Paris-Sud. English version: https://www.irif.fr/∼
letouzey/download/these_letouzey_English.ps.gz.

McCorry, P., Shahandashti, S. F. & Hao, F. (2017) A smart contract for boardroom voting with
maximum voter privacy. In FC 2017.

Miquel, A. (2001) The implicit calculus of constructions: Extending pure type systems with an
intersection type binder and subtyping. In Proceedings of the 5th International Conference on
Typed Lambda Calculi and Applications, TLCA’01. Springer-Verlag, pp. 344–359.

Mishra-Linger, N. & Sheard, T. (2008) Erasure and polymorphism in pure type systems. In
Foundations of Software Science and Computational Structures, Amadio, R. (ed.). Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 350–364.

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

http://www.cse.chalmers.se/~nad/publications/danielsson-erased.pdf
http://www.cse.chalmers.se/~nad/publications/danielsson-erased.pdf
http://doi.acm.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2535838.2535841
https://www.irif.fr/~letouzey/download/these_letouzey_English.ps.gz
https://www.irif.fr/~letouzey/download/these_letouzey_English.ps.gz
https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 57

Mullen, E., Pernsteiner, S., Wilcox, J. R., Tatlock, Z. & Grossman, D. (2018) Œuf: Minimizing the
Coq extraction TCB. In CPP 2018.

Necula, G. C. (1997) Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’97. New York, NY, USA:
Association for Computing Machinery, pp. 106–119. Available at: https://doi.org/10.1145/
263699.263712

Nielsen, J. B. & Spitters, B. (2019) Smart contract interactions in Coq. In FMBC’2019.
O’Connor, R. (2017) Simplicity: A new language for blockchains. In PLAS17.
Paraskevopoulou, Z., Li, J. M. & Appel, A. W. (2021) Compositional optimizations for certicoq.

Proc. ACM Program. Lang. 5(ICFP). Available at: https://doi.org/10.1145/3473591.
Paulin-Mohring, C. (1989) Extracting Fω’s programs from proofs in the calculus of constructions.

In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages’, POPL’89. New York, NY, USA: Association for Computing Machinery, pp. 89–104.

Pit-Claudel, C., Wang, P., Delaware, B., Gross, J. & Chlipala, A. (2020) Extensible extraction of
efficient imperative programs with foreign functions, manually managed memory, and proofs. In
Automated Reasoning, Peltier, N. & Sofronie-Stokkermans, V. (eds), pp. 119–137.

Prost, F. (1995) Marking techniques for extraction. Research Report LIP RR-1995-47, Laboratoire
de l’informatique du parallélisme. Available at: https://hal-lara.archives-ouvertes.fr/
hal-02102062.

Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A. & Chan, K. (2019) Safer smart contract
programming with Scilla. In OOPSLA19.

Šinkarovs, A. & Cockx, J. (2021) Choosing is Losing: How to combine the benefits of shallow and
deep embeddings through reflection.

Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F., Malecha, G., Tabareau, N. &
Winterhalter, T. (2020) The metacoq project. J. Autom. Reas. 64, pp. 947–999.

Sozeau, M., Boulier, S., Forster, Y., Tabareau, N. & Winterhalter, T. (2019) Coq Coq Correct!
verification of type checking and erasure for Coq, in Coq. In POPL’2019.

Sozeau, M. & Mangin, C. (2019) Equations reloaded: High-level dependently-typed functional
programming and proving in Coq. Proc. ACM Program. Lang. 3(ICFP) 86, pp. 1–29.

Tanaka, A. (2021) Coq to C translation with partial evaluation. In Proceedings of the 2021 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM 2021, pp. 14–31.

Timany, A. & Sozeau, M. (2017) Consistency of the predicative calculus of cumulative inductive
constructions (pCuIC). CoRR abs/1710.03912. Available at: http://arxiv.org/abs/1710.
03912

Watt, C. (2018) Mechanising and verifying the webAssembly specification. In Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, New
York, NY, USA, pp. 53–65.

Weiss, A., Gierczak, O., Patterson, D., Matsakis, N. D. & Ahmed, A. (2019) Oxide: The Essence of
Rust. arXiv e-prints.

A Extracted code for the counter contract in Liquidity

let[@inline] fst (p : ’a * ’b) : ’a = p . (0)
let[@inline] snd (p : ’a * ’b) : ’b = p . (1)
let[@inline] addInt (i : int) (j : int) = i + j
let[@inline] subInt (i : int) (j : int) = i − j
let[@inline] ltInt (i : int) (j : int) = i < j
type ’a sig_ = ’a
let exist_ a = a

type coq_msg = Coq_Inc of int | Coq_Dec of int
type coq_SimpleCallCtx = (timestamp * (address * (tez * tez)))
type storage = int

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/3473591
https://hal-lara.archives-ouvertes.fr/hal-02102062
https://hal-lara.archives-ouvertes.fr/hal-02102062
http://arxiv.org/abs/1710.03912
http://arxiv.org/abs/1710.03912
https://doi.org/10.1017/S0956796822000077

58 D. Annenkov et al.

type coq_sumbool = Coq_left | Coq_right

let coq_my_bool_dec (b1 : bool) (b2 : bool) = (if b1 then fun x→
if x then Coq_left else Coq_right else fun x→ if x then Coq_right else Coq_left) b2

let coq_inc_counter (st : storage) (inc : ((int) sig_)) =
exist_ ((addInt st ((fun x→ x) inc)))

let coq_dec_counter (st : storage) (dec : ((int) sig_)) =
exist_ ((subInt st ((fun x→ x) dec)))

let coq_counter (msg : coq_msg) (st : storage) =
match msg with
| Coq_Inc i→
(match coq_my_bool_dec (ltInt 0 i) true with

| Coq_left → Some ([] ,
((fun x→ x) (coq_inc_counter st (exist_ (i)))))

| Coq_right → None)
| Coq_Dec i→

(match coq_my_bool_dec (ltInt 0 i) true with
| Coq_left → Some ([] , ((fun x→ x) (coq_dec_counter st (exist_ (i)))))
| Coq_right → None)

let%init storage (setup : int) =
let inner (ctx : coq_SimpleCallCtx) (setup : int) = let ctx’ = ctx in
Some setup in
let ctx = (Current .time () ,

(Current .sender () , (Current .amount () ,Current .balance ()))) in
match (inner ctx setup) with
| Some v→ v
| None→ failwith ()

let wrapper param (st : storage) =
match coq_counter param st with
| Some v→ v
| None→ failwith ()

let%entry main param st = wrapper param st

B Extracted code for the counter contract in CameLIGO

[@inline] let addInt (i : int) (j : int) = i + j
[@inline] let subInt (i : int) (j : int) = i j
[@inline] let multInt (i : int) (j : int) = i * j
[@inline] let divInt (i : int) (j : int) = i / j
[@inline] let modInt (a : int) (b : int) : int = int (a mod b)
[@inline] let leInt (i : int) (j : int) = i ≤ j
[@inline] let ltInt (i : int) (j : int) = i < j
[@inline] let eqInt (i : int) (j : int) = i = j

(* ConCert’s call context *)
type cctx = {
ctx_from_ : address ;
ctx_contract_address_ : address ;
ctx_contract_balance_ : tez ;
ctx_amount_ : tez }

(* a call context instance with fields filled in with required data *)
let cctx_instance : cctx=
{ ctx_from_ = Tezos .sender ;
ctx_contract_address_ = Tezos .self_address;
ctx_contract_balance_ = Tezos .balance ;

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

Extracting functional programs from Coq, in Coq 59

ctx_amount_ = Tezos .balance }

type chain = {
chain_height : nat ;
current_slot : nat ;
finalized_height : nat }

let dummy_chain : chain = {
chain_height = Tezos .level ;
current_slot = Tezos .level ;
finalized_height = Tezos .level }

type ’a sig_ = ’a
let exist_ (a : _a) : _a = a
let id_func (a : _a) : _a = a

type chain = {
chain_height : nat ;
current_slot : nat ;
finalized_height : nat ;
account_balance : address→ nat }

let dummy_chain : chain = {
chain_height = 0n ;
current_slot = 0n ;
finalized_height = 0n ;
account_balance = fun (a : address) → 0n }

type coq_sumbool = Coq_left | Coq_right

type storage = int

type coq_msg = Coq_Inc of (int) | Coq_Dec of (int)

let coq_bool_dec (b1 : bool) (b2 : bool) = (if b1 then fun (x : bool) →
if x then Coq_left else Coq_right else fun (x : bool) → if x then Coq_right else Coq_left) b2

let coq_Transaction_none = ([] : (operation) list)

let coq_inc_counter (st : storage) (inc : (int) sig_) = exist_ ((addInt st (id_func inc)))
let coq_dec_counter (st : storage) (dec : (int) sig_) = exist_ ((subInt st (id_func dec)))

let coq_counter (msg : coq_msg) (st : storage) = match msg with
Coq_Inc (i) →
(match coq_bool_dec true (ltInt 0 i) with

Coq_left → (Some ((coq_Transaction_none , (id_func (coq_inc_counter st (exist_ (i)))))))
| Coq_right → (None : ((operation list * storage)) option))

| Coq_Dec (i) →
(match coq_bool_dec true (ltInt 0 i) with

Coq_left → (Some ((coq_Transaction_none , (id_func (coq_dec_counter st (exist_ (i)))))))
| Coq_right→ (None : ((operation list * storage)) option))

let coq_counter_wrapper (c : chain) (ctx : cctx) (s : storage) (m :
(coq_msg) option) = let c_ = c in
let ctx_ = ctx in
match m with
Some (m0) → (coq_counter m0 s)

| None → (None : ((operation list * storage)) option)

let init (setup : int) : storage =
let inner (ctx : cctx) (setup : int) : (storage) option =
let ctx_ = ctx in
Some (setup) in

let ctx = cctx_instance in
match (inner ctx setup) with

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

60 D. Annenkov et al.

Some v→ v
| None→ (failwith ("") : storage)

type init_args_ty = int
let init_wrapper (args : init_args_ty) = init args

type return = (operation) list * (storage option)
type parameter_wrapper = Init of init_args_ty | Call of coq_msg option

let wrapper (param , st : parameter_wrapper * (storage) option) : return =
match param with
Init init_args→ (([] : operation list) , Some (init init_args))

| Call p→ (
match st with
Some st→ (match (coq_counter_wrapper dummy_chain cctx_instance st p) with

Some v→ (v .0 , Some v .1)
| None→ (failwith ("") : return))

| None→ (failwith ("cannot call this endpoint before Init has been called") : return))
let main (action , st : parameter_wrapper * storage option) : return = wrapper (action , st)

https://doi.org/10.1017/S0956796822000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000077

	Extracting functional programs from Coq, in Coq
	Introduction
	The pipeline
	The MetaCoq project
	The ConCert framework
	Extraction
	Our extraction
	Erasure for types
	Optimising extracted code
	Optimisations and library APIs
	Handling absurd cases
	The counter contract

	Proof-generating transformations
	Extracting to Liquidity and CameLIGO
	Extracting to Elm
	Extracting to Rust

	The escrow contract
	The boardroom voting contract
	Related work
	Conclusion and future work
	Appendices
	Extracted code for the counter contract in Liquidity
	Extracted code for the counter contract in CameLIGO

