
J. Austral. Math. Soc. 19 (Series B), (1975), 112-115.

SOME REMARKS ON RELATIVE STABILITY

PETER E. KLOEDEN

(Received 21 February 1975)

1. Introduction

In 1962 Lakshmikantham ([1],[2]) extended the concept of extreme
stability (e.g. [4]) of a system described by an ordinary differential equation, not
necessarily with uniqueness, to relative stability of two such systems. Here we
show the restrictiveness of his definition of relative stability in that it implies
not only are the solutions of two systems unique for each initial condition, they
are in fact identical. We then introduce and give an example of a weaker
version of relative stability which is of some interest for control systems. For
greater simplicity and generality we use Roxin's attainability set defined
General Control Systems [3] to describe the dynamics of our systems, as they
subsume both ordinary differential equations without uniqueness and ordinary
differential control equations.

2. Definitions

Let X be a complete locally compact metric space with bounded metric p.
A General Control System with state space X is given in terms of an

attainability set function F(xo,t0,t,) which is defined for all x0E.X and
t,^to = 0- The attainability sets are assumed nonempty and compact with
F(xo,to, to) = {x0}- Other assumptions, not required here, are also made and be
found in [3].

A motion of a General Control Systems is defined as a time function
4>:[fo,°°)-»X, for some fo§0, satisfying <f>(f2) e F(<t>(t,),t,,t2) for all f 2 S f , s
to= 0. Their existence and continuity have been established by Roxin [3] and
we denote by <J>(x0,to;F) the set of all motions with (f>(to) = xo of a General
Control System F.

Let A and B be two nonempty subsets of X. We define a distance
associated with them by

y(A,B) = sup{p(a,b);a GA,b G B}

Clearly y(A,B) = 0 if and only if A = B = {a0} for some a o £ X.
112

https://doi.org/10.1017/S0334270000000989 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000989


[2] Remarks on relative stability 113

The following is Lakshmikantham's definition of relative stability in terms
of General Control Systems.

DEFINITION 1. Two General Control Systems F, and F2 on a state space X
are said to be relatively strongly equi-stable if for each e > 0 and t0 ̂  0 there
exists a 8 = 8(to,e)>0 such that

y(F,(Xo,toJ),F2(yo,to,t))<e (1)

f o r all xo,yo£X w i t h p(xo,yo)<8 a n d all t ^ t 0 .

In view of the compactness of the attainability sets of General Control
Systems (1) is equivalent to p((f>l(t),<f>2(t))< e for all motions <f>, e.$>(xo,to;F,)
and <t>2 G <£>(y<>, t0; F2). This is in fact how Lakshmikantham stated his definition.

When the two General Control Systems in definition 1 are identical we call
it extreme strong equi-stability. It should however be observed that
Yoshizawa's definition of extreme stability [4] is much stronger than ours,
being in fact a global asymtotic version of it.

In analogy with Roxin's weak Lyapunov stability of a set [3] we define
relative weak equi-stability.

DEFINITION 2. Two General Control Systems F, and F2 on a state space X
are said to be relatively weakly equi-stable if for each t0 ̂  0 and e > 0 there
exists a 8 = 8 (t0, e) > 0 such that for any x0, y0 e X with p (x0, y0) < 8 there can
be found motions $, e<t>(xo,to,F,) and #2e<I>(;yo,fo;F2) satisfying
p((t>,(t),<f>2(t))<e f o r a l l t^t0.

Here too we call it extreme weak equi-stability if the two systems are
identical. Moreover, in both definition 1 and 2 we include the term "uniform" if
8 is independent of /0.

3. Relative stability
Our main result is the following theorem which shows that Lakshmikan-

tham's definition of relative strong equi-stability is very restrictive and also
superfluous as it reduces to extreme strong equi-stability.

THEOREM 1. Let F, and F2 be two relatively strongly equi-stable General
Control Systems on a state space X. Then they are identical and consist of a
unique motion for each initial x o £ X and fo=£0.

PROOF. Let 8 = 8(to,e)>0 be that from definition 1 and let e = e(to,8)
be its inverse for each fo = 0. We can assume without loss of generality that
e(to,8)^>0 as 5^0 for each to^0.

Now 0 = p (jto, Xo) < 8 for any x0 G X and 8 > 0, so from the relative strong
equi-stability of F, and F2 we have

0^y(F,(xo,to,t),F2(xo,to,t))<eUo,8)
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and hence on taking 5—*0

y(F,(x0, t0, t), F2(x0,to, t)) = 0

for all x0 e X and f g t o § 0 .
Thus F,(x0, fo, O = F2(x0, to, 0 = {<£ (x0, to;t)}GX for all x0 e X and f g t0 g

0. Clearly for each xo€EX and fo = 0 this <f>(xo,to',-) is a motion.
This completes the proof.

COROLLARY. If F is an extremely strongly equi-stable General Control
System on a state space X then it has a unique motion for each initial x0 £ X
and fo§0.

For relative weak equi-stability we have an analogous, yet far less
restrictive result to that of theorem 1. As the proof is quite similar we omit it.

THEOREM 2. If F, and F2 are two relatively weakly equi-stable General
Control Systems on a state space X then

for all Xo £ X and ( o g 0 i.e. they have at least one motion in common for each
initial condition.

As an example we define two General Control Systems F, and F2 on
X = R+ by

F,(x0, to, 0 = [x0, Xo exp (t - to)]

and

F2(x0,f0,0 = [x0exp(f0- O,x0]

for all Xo £ X and t =£ t0 § 0. (These two systems are actually generated by the
autonomous ordinary differential control equation x'= ux on X, with openloop
controls constrained to 0 g u ^ 1 and - 1 ^ u ^ 0 respectively.)

It is easy to see that F, and F2 are uniformly relatively weakly equi-stable
with 8(e) = £. Moreover, each is also uniformly extremely weakly equi-stable.

A possible application for relative weak equi-stability arises in cooperative
two-person dynamical games in which the control actions of the players are
uncoupled e.g. the inflight refuelling of a fighter by a tanker aircraft.

4. Lyapunov conditions

We could derive from first principles necessary and sufficient Lyapunov
conditions for these relative strong and weak equi-stabilities. Instead, we
indicate how they follow as paraphrases of already known results on strong and
weak Lyapunov stabilities of a set for General Control Systems.
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Let F, and F2 be two General Control Systems on a state space X. We
define their cartesian product F, x F2 on X x X by

F, x F2(Xo, y0, to, t) = F,(x0,t0, t) x F2(y0, f0, 0

for all Xo,.yoEX and t g r o ^ 0 . It is easily seen, with any convenient product
metric o n X x X that F, x F2 is a General Control System on X x X. Moreover
for any xo,yoEX and f og0 its set of motions is

O, y0, t0; F, x F2) = <D(x0, f0; F,) x <J>(y0, t0; F2).

Now let A = U {(JC,X); JC G AT} be the diagonal subset o f X x X . Then it is
easily seen that definition 1 of relative strong equi-stability of F, and F2 is
equivalent to the strong Lyapunov stability of the set A with respect to their
cartesian product F,x F2. Similarly, the relative weak equi-stability of F, and
F2 is equivalent to the weak Lyapunov stability of A with respect to F,x F2.

We leave to the reader the actual paraphrasing of the necessary and
sufficient Lyapunov conditions in [3] for the relative stabilities considered here.

References

[1] V. Lakshmikantham, Differential systems and extension of Lyapunov's method, Michigan
Math. J., 9 (1962), 161-166.

[2] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Volume I, Academic
Press, New York (1969); pp. 241-243.

[3] E. O. Roxin. Stability in general control systems, /. Differential Equations, 1 (1965), 115-150.
[4] T. Yoshizawa, Stability Theory by Lyapunov's Second Method, Math. Soc. Japan, Tokyo

(1967).

Department of Mathematics
University of Queensland

https://doi.org/10.1017/S0334270000000989 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000989

