ON POLYNOMIAL EXPANSIONS OF ANALYTIC FUNCTIONS ${ }^{1}$

FRED GROSS

(Received 5 October 1967)

1. Introduction

A set of polynomials $p_{0}(z), p_{1}(z), \cdots$ is said to form a basic set if every polynomial can be expressed in one and only one way as a finite linear combination of them.

Given any family F of polynomials we shall let $U(n)$ denote the number of polynomials in F of degree less than n. It is clear that any linearly independent set of polynomials satisfying the condition $U(n)=n$ is a basic set. Such a basic set is called a simple set.

Suppose that $\left\{p_{i}(z)\right\} i=0,1,2, \cdots$ is a simple set of polynomials. We may write

$$
\begin{array}{cl}
p_{i}(z)=\sum_{j=0}^{i} p_{i} z^{j}, \text { where } p_{i i}=1 & (i=0,1,2, \cdots) \\
z^{i}=\sum_{j=0}^{i} \pi_{i j} p_{j}(z) & (i=0,1,2, \cdots), \tag{2}
\end{array}
$$

where $\pi_{i i}=1$.
Let us define the operator Π_{i} as

$$
\sum_{k=i}^{\infty} \frac{\pi_{k i}}{k!} D^{k},
$$

where D denotes the differential operator.
The purpose of this paper is to generalize the following result ([1], Theorem 2).

Theorem 1. Let

$$
p_{i}(z)=\sum_{i=0}^{i} p_{i j} z^{j}, \text { where } p_{i i}=1 \quad(i=0,1,2, \cdots)
$$

be a simple set of polynomials whose coefficients satisfy the inequality

[^0]$$
\left|p_{i j}\right| \leqq M
$$
and let $f(z)$ be analytic in $|z|<R$, where $R>1+M$. Then the basic series
$$
\sum_{i=0}^{\infty} p_{i}(z)\left(\Pi_{i} f\right)(0)
$$
converges absolutely to $f(z)$ in $|z|<R$, where $\left(\Pi_{i} f\right)(0)$ is defined as $\left[\Pi_{i} f(z)\right]_{z=0}$.

More specifically, let $\left\{p_{i}^{k}(z)\right\}(k=0,1,2, \cdots, n ; i=0,1,2, \cdots)$ be a finite family of simple sets of polynomials such that $p_{i}^{0}(z)=z^{i}$ and for $j \leqq 1$ define $p_{i j}^{k}$ by

$$
\begin{equation*}
p_{i}^{k+1}=\sum_{j=0}^{i} p_{i j}^{k} p_{j}^{k}(z) \tag{3}
\end{equation*}
$$

$(k=0,1,2, \cdots, n-1 ; i=0,1,2, \cdots)$ where $p_{i i}^{k}=1$. For $j>i$ define $p_{i j}^{k}=0$.

Let $\pi_{i j}^{n}$ be defined by

$$
z^{i}=\sum_{j=0}^{i} \pi_{i j}^{n} p_{j}^{n}(z) \quad(i=0,1,2, \cdots)
$$

so that $\pi_{i i}^{n}=1$. Furthermore, let Π_{i}^{n} denote the operator

$$
\sum_{k=i}^{\infty} \frac{\pi_{k i}^{n}}{k!} D^{k}
$$

We shall show that if $\left|p_{i j}^{k}\right| \leqq M$ and if $f(z)$ is analytic in $|z|<R$ where $R>1+M$, then the basic series

$$
\sum_{i=0}^{\infty} p_{i}^{n}(z)\left(\Pi_{i}^{n} f\right)(0)
$$

converges absolutely to $f(z)$ in $|z|<R$.
We shall show further that the boundedness condition of theorem 1 is not a necessary condition and that for certain simple sets of polynomials the uniform boundedness of the zeros of the polynomials is a necessary and sufficient condition for the theorem to hold.

Finally, we remark that for a suitably restricted class of entire functions Whittaker [1 p. 11] needs no condition on the $p_{i j}$ to assure that a basic series converges to $f(z)$. We are, however, throughout concerned with the convergence of a basic series to $f(z)$ for arbitrary f, in which case it is necessary to restrict the polynomials, though not necessarily as severaly as in theorem 1.

2. An extension of theorem 1

With $p_{i j}$ and $\pi_{i j}$ defined for $j \leqq i$ by (1) and (2), and $p_{i j}=\pi_{i j}=0$ for $j>i$, Whittaker [1, pp. 6, 15] shows that $\left(\pi_{i j}\right)\left(p_{i j}\right)=I$ (the unit matrix) and that if also $\left|p_{i j}\right| \leqq M$ (a constant) then

$$
\begin{equation*}
\left|\pi_{i j}\right|<(1+M)^{i-j} \quad(0 \leqq j \leqq i, i=0,1,2, \cdots) \tag{4}
\end{equation*}
$$

Lemma 1 below is a generalization of (4) and will be used together with Lemma 2 to prove Theorem 2. Before proceeding, however, we would like to make some comments about the notation $\left(p_{i j}\right)^{-1}$ to be used in the sequel. Indeed ($\tau_{i j}$) is the unique left inverse of ($p_{i j}$) among row-finite matrices conceivably ($p_{i j}$) could have some other (non-row-finite) left inverse. But, a lower triangular matrix A with non-zero diagonal elements has a unique right inverse A^{-1} (which is also lower tiangular), and A^{-1} is also a left inverse (and the only row-finite left inverse) - consult, for example, Cooke [3, p. 22].

Lemma 1. Let $T_{0}=I$ and $T_{m}=P_{m-1} \cdots P_{1} P_{0} \quad(m=1,2, \cdots, n)$, where $P_{k}=\left(p_{i j}^{k}\right)$ is defined by (3) and satisfies, for some constant M,

$$
\begin{equation*}
\left|p_{i j}^{k}\right| \leqq M \quad(i, j=0,1,2, \cdots ; k=0,1, \cdots, n-1) \tag{5}
\end{equation*}
$$

Then $T_{m}^{-1}=\left(\pi_{i j}^{m}\right)$ has the property

$$
\left|\pi_{i j}^{m}\right|<(i-j+1)^{m-1}(1+M)^{i-j} \quad(0 \leqq j \leqq i, i=0,1,2, \cdots)
$$

Proof. The result is trivial for $m=0$, and reduces to (4) for $m=1$. Suppose the inequality holds for some $m<n$.

Now $T_{m+1}=P_{m} T_{m}$, so that $T_{m+1}^{-1}=T_{m}^{-1} P_{m}^{-1}$; using the inductive hypothesis on T_{m}^{-1}, and (4) on P_{m}^{-1}, we then obtain

$$
\begin{aligned}
\left|\pi_{i j}^{m+1}\right| & <\sum_{k=j}^{i}(i-k+1)^{m-1}(1+M)^{i-k} \cdot(1+M)^{k-j} \\
& \leqq(i-j+1) \cdot(i-j+1)^{m-1}(1+M)^{i-j}
\end{aligned}
$$

and the lemma follows.
Lemma 2. If (5) holds and $R>1+M$ then

$$
M_{i}^{k}(R) \leqq(i+1)^{k} R^{i} \quad(k=0,1, \cdots, n ; i=0,1,2, \cdots)
$$

where $M_{i}^{k}(R)=\max _{|z|=R}\left|p_{i}^{k}(z)\right|$.
Proof. Since $p_{i}^{0}(z)=z^{i}$ we have $M_{i}^{0}(R)=R^{i}$, so that the result holds for $k=0$. Suppose it holds for some $k<n$. Then, by (3) and (5),

$$
\begin{aligned}
M_{i}^{k+1}(R) & \leqq M \sum_{j=0}^{i-1} M_{j}^{k}(R)+M_{i}^{k}(R) \\
& \leqq M \sum_{j=0}^{i-1}(j+1)^{k} R^{j}+(i+1)^{k} R^{i} \\
& \leqq(i+1)^{k} M \sum_{j=0}^{i-1} R^{j}+(i+1)^{k} R^{i} \\
& \leqq(i+1)^{k} i R^{i}+(i+1)^{k} R^{i}=(i+1)^{k+1} R^{i}
\end{aligned}
$$

and the lemma follows.
Let $f(z)=\sum_{i=0}^{\infty} a_{i} z^{i}$ be analytic in the region $|z|<R$ with $R>M+1$. We have

$$
z^{i}=\sum_{j=0}^{i} \pi_{i j}^{n} p_{j}^{n}(z), \pi_{i i}^{n}=1
$$

Let

$$
E(z)=\sum_{j=0}^{\infty} p_{j}^{n}(z) \sum_{k=j}^{\infty} a_{k} \pi_{k j}^{n}=\sum_{j=0}^{\infty} p_{j}^{n}(z)\left(\Pi_{j}^{n} f\right)(0) .
$$

We can now prove
Theorem 2. $E(z)$ converges absolutely to $f(z)$ in $|z|<R$.
Proof. If the order of summation is reversed in the double series defining $E(z)$, we obtain $f(z)$. Consequently the theorem will be proved if we can show that, for $|z|<R$ (and $R>1+M$), the series

$$
S \equiv \sum_{i=0}^{\infty}\left|a_{i}\right| \sum_{j=0}^{i}\left|x_{i j}^{n}\right|\left|p_{j}^{n}(z)\right|
$$

converges. First choose R_{0} such that $M+1<R_{0}<R$; then, if $|z| \leqq R_{0}$, $\left|p_{j}^{n}(z)\right|$ is majorized by $M_{j}^{n}\left(R_{0}\right)$, and using Lemmas 1 and 2 we obtain

$$
\begin{aligned}
S & \leqq \sum_{i=0}^{\infty}\left|a_{i}\right| \sum_{j=0}^{i}(i-j+1)^{n-1}(1+M)^{i-j} \cdot(j+1)^{n} R_{0}^{j} \\
& \leqq \sum_{i=0}^{\infty}\left|a_{i}\right|(i+1)^{2 n} R_{0}^{i}
\end{aligned}
$$

The last series converges, since if we choose R_{1} in $R_{0}<R_{1}<R$, we can make $(i+1)^{2 n} R_{0}^{i}<R_{1}^{i}$ for all sufficiently large i; and this proves the theorem.

We now show that the condition of theorem 1 that $\left|p_{i j}\right|<M$ is not a necessary condition. Though the following lemma is not really essential to prove this fact, nevertheless it is of independent interest and is worth mentioning.

Lemma 3. Given a sequence of polynomials $z^{n}-c_{1} z^{n-1}-c_{2} z^{n-2} \cdots-c_{n}$
($n=0,1,2, \cdots$), where the coefficients are uniformly bounded, the zeros of these polynomials must be uniformly bounded.

Proof. If the coefficients are uniformly bounded by M but the conclusion is false, then for some n, there is a zero z with $|z|>M+1$. But then

$$
|z|^{n} \leqq M\left(|z|^{n-1}+\cdots+1\right)=M\left(|z|^{n}-1\right) /(|z|-1)<|z|^{n}-1
$$

and this contradiction establishes the lemma.
Lemma 4. There exist simple sets of polynomials $\left\{p_{n}(z)\right\}$ such that their zeros are not uniformly bounded and yet every analytic functionf is representable in terms of these polynomials in its region of analyticity.

Proof. Let $p_{2 n}(z)=z^{2 n}$ and $p_{2 n+1}(z)=z^{2 n+1}-(2 n+1) z^{2 n}$. Clearly $2 n+1$ is a zero of $p_{2 n+1}(z)$, so that the zeros are unbounded. Suppose that

$$
\begin{aligned}
f(z) & =\sum_{k=0}^{\infty} a_{k} z^{k}=\sum_{n=0}^{\infty}\left(a_{2 n} z^{2 n}+a_{2 n+1} z^{2 n+1}\right) \\
& =\sum_{n=0}^{\infty}\left(a_{2 n}+(2 n+1) a_{2 n+1}\right) z^{2 n}+\sum_{n=0}^{\infty} a_{2 n+1}\left(z^{2 n+1}-(2 n+1) z^{2 n}\right)
\end{aligned}
$$

These last two series clearly converge for $|z|<R$ whenever $\sum a_{k} z^{k}$ does so, and the lemma follows.

Thus it follows that
Theorem 3. There exist simple sets of polynomials $\left\{p_{n}(z)\right\}$ such that their coefficients are not uniformly bounded and yet every analytic function f is representable in terms of these polynomials in its region of analyticity.

Now let $\left\{z_{n}\right\}$ be a sequence of complex numbers such that the set consisting of its distinct elements has no limit point. We consider the simple set S of polynomials whose elements $p_{n}(z)$ are given by

$$
\begin{aligned}
& p_{0}(z)=1 \\
& p_{1}(z)=\left(z-z_{1}\right) \\
& \vdots \\
& p_{n}(z)=p_{n-1}(z)\left(z-z_{n}\right) .
\end{aligned}
$$

Theorem 4. Let S be as above and $f(z)$ be analytic for $|z|<R$. Then $f(z)$ can be expressed in $|z|<R$ as

$$
\begin{equation*}
a_{0}+a_{1}\left(z-z_{1}\right)+a_{2}\left(z-z_{1}\right)\left(z-z_{2}\right)+a_{3}\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)+\cdots \tag{6}
\end{equation*}
$$

if and only if the z_{i} are bounded (i.e., $\left\{z_{n}\right\}$ as a set is finite).
Proof. Sato [2] showed that for every bounded set of $\left\{z_{n}\right\}$ (even if they have a limit point) such a representation is possible. On the other hand
assume that z_{n} is unbounded, then one can find an entire function f which vanishes at z_{n} with the appropriate multiplicity. Such an f cannot be represented by (6), since all a_{i} in the series would have to vanish.

References

[1] Whittaker, J. M., Interpolatory Function Theory (Cambridge Tract in Math. and Math. Phys., 33, Cambridge University Press, 1935).
[2] Sato, D., 'On the rate of growth of entire functions with integral derivatives at integral points! Dissertation, U.C.L.A., 1961.
[3] Cooke, R. G., Infinite matrices and sequence spaces. (Macmillan, 1950).
Department of Mathematics
University of Maryland
5401 Wilkens Avenue
Baltimore, Maryland, U.S.A. 21228

[^0]: ${ }^{1}$ The author is indebted to Professor E. G. Straus, who suggested some of the ideas in this paper.

