CONSTRUCTING AN AUTOMORPHISM FROM AN ANTI-AUTOMORPHISM

Christine Ayoub

(received March 18, 1968)

We consider the following problem: Let G be a group with distinct automorphisms $\,\beta\,$ and $\,\sigma\,$ and an anti-automorphism $\,\alpha\,$ such that

(1)
$$x \in G \Rightarrow \sigma(x) = \beta(x) \text{ or } \alpha(x).$$

What can be said about G?

If $\sigma = \alpha$, σ is both an automorphism and an anti-automorphism so that G is abelian. Hence we assume that $\sigma \neq \alpha$. In this case, we show that G is non-abelian, but has an abelian subgroup of index 2. Conversely, for such a group G there always exist distinct automorphisms β and σ and an anti-automorphism α such that (1) holds.

The case when β is the identity mapping and α is the mapping $\mathbf{x} \rightarrow \mathbf{x}^{-1}$ was the content of a problem (# 5471) in the Monthly. It was required to prove that G is solvable. Theorem 4 shows what structure G must have.

THEOREM 1. Let G be a group, α an anti-automorphism of G, and $\sigma \neq \alpha$ a non-trivial automorphism of G and assume

(2)
$$x \in G \Rightarrow \sigma(x) = x \text{ or } \sigma(x) = \alpha(x).$$

Then G has a (normal) abelian subgroup H of index 2. α induces a non-trivial automorphism on H. If G = < H, g>, g⁻¹ hg = α (h) for h ϵ H. Furthermore, α (g) = bg, where $1 \neq b \in H$ and α (b) = b⁻¹.

<u>Proof.</u> Let $H = \{x \in G \mid \sigma(x) = x\}$. Then H is a proper subgroup of G. If $h \in H$, $g \notin H$, $\sigma(hg) = \alpha(hg) = \alpha(g) \alpha(h) = \sigma(h) \sigma(g) = h \alpha(g)$. Hence we have

(3)
$$\alpha(h) = \alpha(g)^{-1} h \alpha(g)$$
, for $h \in H$, $g \not\in H$.

Canad. Math. Bull. vol. 11, no. 3, 1968

From (3) we see that for x and y in H, $\alpha(xy) = \alpha(x) \alpha(y)$, but $\alpha(yx) = \alpha(x) \alpha(y)$. Hence xy = yx and H is abelian.

If there exists an element g_o in $G \setminus H$ such that $\alpha(g_o) \in H$, we have: $\alpha(h) = \alpha(g_o)^{-1} h \alpha(g_o) = h$, for all $h \in H$. This implies that $\sigma(g) = \alpha(g)$ for all $g \in G$, or that $\sigma = \alpha$, contrary to hypothesis. Hence $\alpha^{-1}(H) \leq H$. Applying α^{-1} to (3) we get

(4)
$$\alpha^{-1}(h) = g^{-1} hg \text{ for } h \in H, g \not\in H.$$

Since $\alpha^{-1}(h) \in H$, (4) shows that H is normal in G.

Now let x, $y \in G \setminus H$. Then for $h \in H$, $(xy)^{-1} h(xy) = y^{-1} \alpha^{-1}(h)y = \alpha^{-2}(h)$ since $\alpha^{-1}(h) \in H$. On the other hand, if $xy \notin H$, $(xy)^{-1} h(xy) = \alpha^{-1}(h)$ so that $\alpha^{-1}(h) = \alpha^{-2}(h) \Rightarrow \alpha(h) = h$ for $h \in H$. But this implies that $\alpha = \sigma$, contrary to hypothesis.

Hence if x, y \in G \ H, xy \in H and α^{-2} (h) = h for h \in H. Thus G/H has order 2, and α induces an automorphism of order 2 on H.

If we let $G = \langle H, g \rangle$, then $g^2 = a \in H$; and by (4), $g^{-1}hg = \alpha(h)$ for $h \in H$. Clearly $\alpha(a) = a$. Since $\alpha(g) \not\in H$, we have $\alpha(g) = bg$, where $b \in H$. If b = 1, $\sigma(h) = h$ and $\sigma(hg) = \sigma(h) \sigma(g) = h \alpha(g) = hg$ for $h \in H$, i.e. σ is the trivial automorphism of G. Hence $b \not\in 1$.

Now $a = \alpha(a) = \alpha(g^2) = \alpha(g)^2 = (bg)^2 = bg^2 g^{-1} bg = ba \alpha(b)$. Thus $\alpha(b) = b^{-1}$.

(5)
$$\sigma(h) = h \quad \underline{\text{for}} \quad h \in H$$

$$\{ \sigma(\mathbf{x}) = \alpha(\mathbf{x}) \neq \mathbf{x} \quad \underline{\text{for}} \quad \mathbf{x} \neq H.$$

<u>Proof.</u> Let $G = \langle H, g \rangle$, and let $g^2 = a \in H$. Let $\alpha(h) = g^{-1} hg$ for $h \in H$. We note next that there exists an element $b \neq 1$ such that $\alpha(b) = b^{-1}$. In fact, if we choose $h \in H$ with $g^{-1} hg \neq h$ (hexists since G is non-abelian) and let $b = h^{-1} \alpha(h)$, then $b \neq 1$ and $\alpha(b) = \alpha(h)^{-1} \alpha(h) = \alpha(h)^{-1} h = b^{-1}$ since H is abelian. Define $\alpha(hg) = bhg$ for $h \in H$. Then $\alpha(hg) = bg^{-1} hg = \alpha(g) \alpha(h)$. Define σ by equations (5).

We have to verify that α is an anti-automorphism and σ an automorphism of G, i.e. for \mathbf{x}_1 , $\mathbf{x}_2 \in G$ we have to show that $\alpha(\mathbf{x}_1\mathbf{x}_2) = \alpha(\mathbf{x}_2) \alpha(\mathbf{x}_1)$ and $\sigma(\mathbf{x}_1\mathbf{x}_2) = \sigma(\mathbf{x}_1) \sigma(\mathbf{x}_2)$. There are four cases to distinguish:

(i)
$$x_1, x_2 \in H$$
.

(iv)
$$x_1 \notin H$$
, $x_2 \notin H$.

It is a simple matter to compute that the required equations hold in each of these cases. We prove case (iv) as an example: Let $\mathbf{x}_1 = \mathbf{h}_1 \mathbf{g}$, $\mathbf{x}_2 = \mathbf{h}_2 \mathbf{g}$ where \mathbf{h}_1 , $\mathbf{h}_2 \in \mathbf{H}$. Then $\mathbf{x}_1 \mathbf{x}_2 = \mathbf{h}_1 \mathbf{g} \mathbf{h}_2 \mathbf{g} = \mathbf{h}_1 \mathbf{a} \alpha(\mathbf{h}_2)$; $\alpha(\mathbf{x}_1 \mathbf{x}_2) = \alpha(\mathbf{h}_1) \mathbf{a} \mathbf{h}_2$;

$$\alpha(\mathbf{x}_{2}) \alpha(\mathbf{x}_{1}) = bh_{2}gbh_{1}g = bh_{2} a g^{-1}(bh_{1})g = bh_{2} a \alpha(b)\alpha(h_{1})$$

$$= bh_{2}ab^{-1} \alpha(h_{1}) = \alpha(h_{1}) a h_{2}.$$

Hence $\alpha(\mathbf{x}_1 \mathbf{x}_2) = \alpha(\mathbf{x}_2) \alpha(\mathbf{x}_1)$. $\sigma(\mathbf{x}_1 \mathbf{x}_2) = \mathbf{x}_1 \mathbf{x}_2$ since $\mathbf{x}_1 \mathbf{x}_2 \in \mathbf{H}$. $\sigma(\mathbf{x}_1) \sigma(\mathbf{x}_2) = \alpha(\mathbf{x}_1) \alpha(\mathbf{x}_2) = \alpha(\mathbf{x}_2 \mathbf{x}_1) = \alpha(\mathbf{h}_2) \mathbf{a} \mathbf{h}_1 = \mathbf{x}_1 \mathbf{x}_2$. Hence $\sigma(\mathbf{x}_1 \mathbf{x}_2) = \sigma(\mathbf{x}_1) \sigma(\mathbf{x}_2)$.

Note: If H is an abelian group of order $\neq 1$ and $\neq 2$, then H has a non-trivial automorphism of order 2, and hence there exists a non-abelian extension G of H such that G/H has order 2.

THEOREM 3. Let G be a group with distinct automorphisms β and σ and an anti-automorphism $\alpha \neq \sigma$ such that (1) $\mathbf{x} \in G \Rightarrow \sigma(\mathbf{x}) = \beta(\mathbf{x})$ or $\alpha(\mathbf{x})$. Then G is non-abelian and has an abelian subgroup H of index 2.

<u>Proof.</u> Let $\rho = \beta^{-1} \sigma$. Then ρ is an automorphism of G and $\rho(\mathbf{x}) = \mathbf{x}$ or $\rho(\mathbf{x}) = \beta^{-1} \alpha(\mathbf{x})$. $\beta^{-1} \alpha$ is an anti-automorphism of G and $\rho \neq \beta^{-1} \alpha$, since $\sigma \neq \alpha$. The theorem follows by applying Theorem 1.

THEOREM 4. Let G be a group and assume that G has a non-trivial automorphism σ such that (6) $\mathbf{x} \in G \Rightarrow \sigma(\mathbf{x}) = \mathbf{x}$ or $\sigma(\mathbf{x}) = \mathbf{x}^{-1}$. Then either: (a) $\sigma(\mathbf{x}) = \mathbf{x}^{-1}$ for all \mathbf{x} in G, G is abelian and $\sigma^2 \neq 1$, or: (b) $\sigma^2 = 0$, where H is an abelian group which contains an element a of order 2, and $\sigma^2 \neq 1$.

 $g^2 = a$ and g^{-1} hg = h^{-1} for all $h \in H$. Then:

(7)
$$\sigma(\mathbf{x}) = \mathbf{x} \quad \underline{\text{for}} \quad \mathbf{x} \in \mathbf{H}$$
$$\sigma(\mathbf{x}) = \mathbf{x}^{-1} \quad \text{for} \quad \mathbf{x} \notin \mathbf{H}$$

Conversely, if G is defined by (b) the mapping given by (7) is an automorphism of G.

<u>Proof.</u> If $\sigma(\mathbf{x}) = \mathbf{x}^{-1}$ for all \mathbf{x} in G, then G is abelian; $G^2 \neq 1$ since σ is not trivial. Let α be defined by $\alpha(\mathbf{x}) = \mathbf{x}^{-1}$ and assume that $\alpha \neq \sigma$. By Theorem 1, $G = \langle H, g \rangle$, where H is abelian, $g^{-1} hg = h^{-1}$, $g^2 = a \in H$. Since α is non-trivial on H, $H^2 \neq 1$. Also $a^{-1} = \alpha(a) = g^{-1}$ a g = a so that $a^2 = 1$. If $g^2 = 1$, $\sigma(hg) = \sigma(h) \sigma(g) = h g^{-1}$ = hg for all $h \in H$ and this implies that σ is trivial, contrary to hypothesis. Hence a has order a. (7) holds from the definition of a in Theorem 1.

Conversely, suppose that $G = \langle H, g \rangle$, where H is abelian, $g^{-1}hg = h^{-1}$, $g^2 = a \in H$ has order 2, and $H^2 \neq 1$. Then by Theorem 2 there exists an anti-automorphism α of G and an automorphism σ of G such that (5) holds. To show that (7) holds it is only necessary to show that $\alpha(h) = h^{-1}$. But in the proof of Theorem 2, we defined α so that $\alpha(h) = g^{-1}hg$. Hence $\alpha(h) = h^{-1}$ for $h \in H$, and the theorem is proved.

Remark. If instead of studying the problem stated in the introduction, we require that α and β both be automorphisms and σ an automorphism such that (1) holds, it is easy to see that $\sigma = \alpha$. For let $A = \{g \in G \mid \sigma(g) = \alpha(g)\}$ and $B = \{g \in G \mid \sigma(g) = \beta(g)\}$. Then A and B are subgroups of G and $G = A \cup B$. This implies that G = A or G = B. But $G \neq B$ and hence G = A, $\sigma = \alpha$.

If on the other hand, we require both α and β to be anti-automorphisms, the answer seems to be much more difficult. I was not able to determine when this could happen.

This work was supported by an NSF Science Faculty Fellowship.

Pennsylvania State University