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THE DIVISION ALGORITHM IN COMPLEX BASES 

WILLIAM J. GILBERT 

ABSTRACT. Complex numbers can be represented in positional notation using cer­
tain Gaussian integers as bases and digit sets. We describe a long division algorithm 
to divide one Gaussian integer by another, so that the quotient is a periodic expansion 
in such a complex base. To divide by the Gaussian integer w in the complex base b, 
using a digit set D, the remainder must be in the set wT(b,D) H Z[/], where T(b,D) is 
the set of complex numbers with zero integer part in the base. The set T(b,D) tiles the 
plane, and can be described geometrically as the attractor of an iterated function system 
of linear maps. It usually has a fractal boundary. The remainder set can be determined 
algebraically from the cycles in a certain directed graph. 

1. Complex bases. A Gaussian integer b, together with a digit set Z), of Gaussian 
integers containing zero, is called a valid base for the complex numbers if every Gaussian 
integer, z, can be represented uniquely in the form 

s 

z = Y1 ajbf> where Oj G D. 

Such a representation will be denoted by z = (asas-\ • • • a\ao)b and the valid base will 
be denoted by (b9D). It can be shown, using arguments similar to [6, Theorem 2] or [8, 
Theorem 10], that every complex number z G C has an infinité radix expansion in the 
valid base (b,D) of the form 

s 

z = ^2 ajW> where aj G D. 
j=—oo 

This will be denoted by z = (asas-\ • • • a\ao.a-\a-2 • • •)&• As in the standard bases, these 
infinite expansions are not necessarily unique. The digits to the left of the radix point, 
(asas-\ - - - a\ao)b, constitute the integer part of the representation. 

Knuth [7, Section 4.1] describes many positional number systems, including the bi­
nary expansion of the complex numbers in the base — 1 + / using the digits 0 and 1. For 
example, in this base, (—2 — i)/2 can be written as (110.01)_i+l. If (b,D) is a valid base, 
then the digit set D must be a complete residue system modulo ft, and the number of 
digits must be bb = Norm(è) [2]. The most obvious generalizations from the real bases 
to the complex bases occur if we choose the digit set to be the set of natural numbers 
{0,1,2,. . . ,Norm(ft) — 1}. In this case, Kâtai and Szabo [6] show that the only valid 
bases for the complex numbers are — n ± /, where « is a positive integer, and the digit 
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set is {0,1,2, . . . , n2}. However if the digits are allowed to be complex, there are many 
valid bases. 

Each complex base (b,D), gives rise to a tile 

T(b,D)={(0.ala2--)t\aieD}cC 

consisting of the complex numbers expressible in the base with zero integer part. If the 
base is valid, then T(b,D) is a closed set with unit area that tiles the plane by transla­
tions using the group Z[/]. The translate of T(b,D) by a Gaussian integer z consists of 
those complex numbers with integer part z. For example, T(— 1 + /, {0,1}), shown in Fig­
ure 1(a), is the space-filling twin dragon curve [7, Section 4.1]. The boundary of the tiles 
T{—w+/, {0,1 ,2 , . . . , n2 }) are all fractal curves. Points on the boundary of T(b, D) also lie 
on the boundary of two (or more) translated regions and correspond to complex numbers 
with two (or more) expansions in the base (b, D) with different integer parts [3]. 

FIGURE 1 : The tiles (a) T(-1 +1, {0,1}) and 
(b) T(—2 + /, {0,1,2,3,4}) lie in the complex plane and have unit area with fractal boundaries. 

2. Iterated function systems. The tile T(b,D) can also be viewed as the attractor 
of an iterated function system, where the number of functions is the number of digits 
in the base. For each digit a G D in the base (b,D), define the function fa: C —* C by 
fa(z) = (z + a)/b. These are linear contraction maps and, if z = (0. a\a2 • • -)b £ T(b,D), 
then/a(0. a\a2 •••)& = (0. aa{a2 --)b e T(b,D). Hence 

T(b,D)= \Jfa{T(b9D)) 

and T(b, D) is the unique invariant (or attractor) set determined by Hutchinson's Theorem 
[5] applied to the set of functions {fa \ a G D}. Moreover, the set T(b,D) is self-similar 

https://doi.org/10.4153/CMB-1996-006-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-006-1


THE DIVISION ALGORITHM IN COMPLEX BASES 49 

with respect to these functions. The set \fa \ a E D} forms an iterated function system 
as defined in [1, Section 3.7]. 

Each function/, maps T(b,D) into itself. Moreover, for eachz E T(b,D) there exists 
aeD such that f~l(z) € T(b,D). If z = (0. a{a2a3 • • •)*, then f~l(z) = (0. a2a3 • • •)* is 
the Bernoulli shift on the sequence of digits to the right of the radix point. Therefore, for 
any z E T(b, D), there exists an infinite sequence a \, a2,... of elements of D such that 

/;1o...o^o^(z)GT(b,D) 

for ally. This idea will be used in the Escape Time Algorithm in the next section. The 
elements of the sequence a\, a2,... are precisely the digits in a base (6, D) expansion of 
z. 

3. The long division algorithm. In [4], we showed how to add, subtract, and mul­
tiply numbers in complex bases. We also gave examples of division, but gave no general 
division algorithm. 

The only problem in generalizing the usual long division algorithm to complex bases 
is to determine what the remainders should be when a Gaussian integer v is divided by the 
Gaussian integer w. We now show that the long division algorithm will remain bounded 
if and only if the remainders all lie in the set wT(b,D) D Z[/], that we call the remainder 
set and denote by RemSet(6, D, w). 

LONG DIVISION ALGORITHM. Let (b,D) be a valid base for the complex numbers. 
Ifv and w ^ O are Gaussian integers, then there exists a Gaussian integer A and digits 
aj G D such that 

v = Aw + ro 

bro = a\w + r\ 

br\ = a2w + r2 

where each remainder rj E RemSet(&,Z>, w) = wT(b,D) n Z[/]. 
There may be choices in the algorithm, but for each choice, 

v 
- =A + (0.aia2--)b. 
w 

The integer part A can be expanded in the base (b,D) and therefore each choice yields 
a base (b,D) expansion ofv/w. Moreover every such expansion can be obtained in this 
way. 

PROOF. Since T(b, D) tiles the complex plane using translations from Z[/], the mag­
nified set wT(b,D) will tile the plane using translations from wZ[i]. Hence, for any 
v E Z[/], there exists A E T[i\ such that v = Aw + r0, where r0 E wT(b,D). Since 
v, A and w are Gaussian integers, r0 E wT(b,D) D Z[/]. 
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To prove the long division algorithm, we shall convert the problem to one involving 
iterated function systems. The tile T(b,D) is the attractor of the iterated function system 
{fa | a G D) where fa(z) = (z + a)/b. Consider the conjugate iterated function system 
obtained by multiplication by w. The conjugate function tofaisga:C -^ C where 

_ i z + aw 
ga(z) = Wfa(w Z) = —j—. 

The magnified set wT(b,D) must be the attractor for the iterated function system {ga \ 
a G D). Each function ga has an inverse g~1 : C —» C, which is the expansion map defined 
by g~l(z) = bz — aw. The general term in the division algorithm is brj-\ = ajW + ry, 
which is equivalent to 

rj = brj-\-ajW = g-\rj-x). 

Hence the division algorithm can be viewed as a dynamical system that starts with the 
remainder r$ and produces the system of remainders r\,r2,... corresponding to a choice 
of digits au a2,..., where r} = g~l(rj-\). 

By the Escape Time Algorithm in [1, Section 7.1], or the repelling method in [9], 
there exists a sequence of maps g " 1 , ^ 1 , . . . , such that the successive terms r\, r2,... 
remain bounded if and only if the initial term ro is in the attractor wT(b,D). Moreover, if 
the sequence of remainders does remain bounded, then all the complex numbers r7 lie in 
wT(b, D). If a remainder r, were to lie outside wT(b9 D) then ry+J —• oo and rJ+sb~J~s -/* 0 
as s —> oo. Since ro was constructed to lie in wT(b,D\ there exists digits a\,a2,... 
satisfying the long division algorithm with each remainder ry G wT(b9D) Pi Z[/]. 

For any choice of the digits a\,a29...foT which the remainders are bounded 
v a\ a2 as rs 

w b b2 b3 wb8 

rs 

= A + (0. a\a2 - - • as)b + — > A + (0. ai«2 • • -)fe a s y "~̂  °°-
wb5 

Furthermore any base b expansion ofv/w yields a sequence of bounded remainders and 
therefore can be obtained in this way. • 

We show in the next section that the remainder set, RemSet(Z?, D, w), is a finite set 
of Gaussian integers, and so the remainders r^r\,r2,... must eventually repeat. This 
implies, as in real bases, that the Long Division Algorithm will eventually be periodic, 
or will terminate with zero remainder. 

4. The remainder set algorithm. As the boundary of the tile T(b9D) is usually a 
fractal, the set wT(b,D) C\ Z[/] could be difficult to calculate directly. You cannot de­
termine geometrically which integers lie on the fractal boundary. We therefore give an 
algebraic algorithm for determining the remainder set for division by w in the base b. 
This Remainder Set Algorithm uses a directed graph on the Gaussian integers, derived 
from the maps of an iterated function system. The remainder set will be the Gaussian 
integers in the cycles in this graph. 

We first show how to find the remainder set when w and b are coprime. We shall use 
the functions ga: C —* C defined by ga(z) = (z + aw)/b, but restrict them to the Gaussian 
integers. 
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THEOREM. Ifw and b are coprime Gaussian integers, define the function g: Z[i] —• 

m by 
z + aw 

gGO = ga(z) = —y-

where a depends on z and is chosen so that z+aw = 0 (mod b). Then z is in the remainder 
set RemSet(fr,Z), w) if and only ifff(z) = zfor some positive integer p. 

PROOF. Let z be a Gaussian integer. The set of digits, D, forms a complete residue 
system modulo the base b. Since w and b are coprime integers, {aw \ a E D} and 
{z + aw | a € D} also form complete residue systems modulo b. Hence there exists a 
unique digit a € D with z + aw = 0 (mod è). Therefore, for each Gaussian integer z, 
g(z) = ga(z) is well defined and is also a Gaussian integer. 

The map g is a contraction, when the modulus of z is large. Let M be the largest 
modulus of the digits in D and let R = M\w\/(\b\ — 1). Then, under iterations of g, the 
orbit of every Gaussian integer z must end up inside the circle of radius R, since 

, , xl \z + aw\ ^ \z\ +M\w\ . . , i i « 
|g(z)l = I—^—I - \b\ < |z|' whenever lzl > R' 

Since there are only a finite number of Gaussian integers with modulus less that R, the 
orbit of every Gaussian integer z must eventually cycle (or end up at a fixed point). 

It follows from the Long Division Algorithm that ro is in the remainder set 
RemSet(Z>,Z), w) if and only if there exists an infinite sequence of digits a\9a2,... from 
D, and Gaussian integers r\,r2,..., such that ry = g~l(rj-\). We can write r7_i = g(rj), 
since aj is the unique digit with gaj(rj) G Z[/]. Hence..., 7*2, r\, ro is part of an orbit under 
iterations of g, and rj = g (̂ry+ )̂ for all positive &. Therefore each Gaussian integer r7 has 
modulus less than R, and two of the remainders must be the same. This implies that ro 
must lie in a cycle; that is, there exists an integer/? such that ro = g^(ro). Conversely if 
ro lies in a cycle then it lies in the remainder set. • 

The function g determines an infinite directed graph whose vertices are the Gaussian 
integers. Each vertex has exactly one edge departing from it and Norm(ft) edges entering 
it. The vertices lying in the cycles form the remainder set RemSet(&, D, w). These cycles 
can be found as follows. 

REMAINDER SET ALGORITHM. The remainder set RemSet(£, D, w\for division by w 
in the base (b, D), can be computed as follows, whenever w and b are coprime Gaussian 
integers. Systematically look at all the Gaussian integers, z, with modulus less than R = 
M\w\/(\b\ — 1), where M is the largest modulus of the digits in D. If it is not known 
whether z lies in the remainder set, calculate the iterates under the function g defined in 
the previous theorem, i.e. z, g(z), ^(z), g3(z) • • •, until they cycle. If they start cycling at 
^(z) with ^(z) = ^+p(z), then ̂ {z), ^+l(z),... ,^p~\z) all lie in the remainder set, 
andz, g(z),... ,^~x(z) do not. 
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FIGURE 2: The directed graph for division by 3 in the base ( -1 + /, {0,1}). 

For example, Figure 2 shows part of the graph determined by division by 3 in the base 
— 1 + i with digit set D = {0,1}. Each edge z —» g{z) is labeled by the digit a G A where 
z + aw = 0 (mod b), so that g(z) = ga{z). The graph contains two cycles, an 8-cycle, 
and the origin as a fixed point. Hence the remainder set for division by 3 in the base 
(—1 + z, {0,1}) is { 0 , - 1 , - 2 , /, —/, 1 + z, — 1 — /, —2 — z, — 1 — 2/}. This remainder set 
can be used to show, for example, that 2z'/3 = (11.0011011 l)_i+/, where the bar over a 
sequence of digits indicates that the sequence is to be repeated indefinitely. 

If w and b are not coprime, we can write v/w = vu/w\ M, where w\ and b are coprime, 
and apply the Division Algorithm to vu/w\. 

It is also possible to construct a more complicated directed graph on the Gaussian 
integers to determine the remainder set when w and b are not coprime. For each digit 
a G D defineg"1 : Z[z] —» Z[/] by g^iz) = bz—aw. This defines an infinite directed graph 
on the Gaussian integers. There are Norm(Z?) edges leaving each vertex v, corresponding 
to each digit a E A and they point to the vertices g~x (v). The remainder set for division 
by w in the base b consists of the periodic vertices lying in the cycles in this graph, plus 
any pre-periodic vertices, lying in a path that eventually cycles. 

Figure 3 shows some examples of remainder sets, when w and b are coprime, that 
were computed using the Remainder Set Algorithm. Compare Figure 3 with Figure 1. 
The remainder sets consist of the Gaussian integers lying in the magnified set wT(b,D), 
or equivalently, the Gaussian integers z for which z/vv lies in T(b, D). 

Since the tile T(b,D) has unit area, the region wT(b,D) has area Norm(w). If the 
remainder set, RemSet(&, A w) contains exactly Norm(w) members, then the set will be 
a complete residue system modulo w and there will be no choice in the Long Division 
Algorithm. However, if the remainder set contains more than Norm(w) elements, then 
there will sometimes be a choice for division by w in the base b. In this case, some of 
the elements of the remainder set must lie on the boundary of wT(b, D). Each boundary 
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element must be congruent modulo w to some other boundary element, since wT(b9 D) 
tiles the plane by translations in wZ[/]. 

FIGURE 3: The remainder sets for (a) division by 11 in the base (— 1 + /, {0,1}), 
(b) division by 6 in the base ( -2 + /, {0, 1,2,3,4}) and 

(c) division by 2 in the base ( -2 + /, {0,1,2,3,4}). 

Each small square represents one Gaussian integer. The black square is the origin. 

The remainder set for division by 3 in the base (— 1 + /, {0,1}), computed in Figure 2, 
contains 9 elements and, as Norm(3) = 9, there will be no choice in the division algo­
rithm. Since the remainder set in Figure 3(a) has 121 elements, division by 11 in the base 
(— 1 + /, {0,1}) will also yield a unique expansion. Furthermore, this remainder set will 
tile the Gaussian integers by translations by elements of 11Z [/]. 

The remainder sets in Figure 3(b) and 3(c) however, contain 40 and 8 elements re­
spectively, which is more than Norm(6) = 36 and Norm(2) = 4. Hence sometimes 
there will be choices in the division algorithm for division by 6 or 2 in the base 
( -2 + /, {0,1,2,3,4}). 

Figure 3(c) can be used to show that (1 + i)/2 has three expansions in the base 
( -2 + /, {0,1,2,3,4}), namely (0. Ô4Ï)_2+/, (13. ÏÔ4)_2+/, and (14.4ÎÔ)_2+/. 

The analogous Long Division Algorithm holds when the base and all the digits are 
ordinary integers, with the norm in the real numbers being the absolute value. Matula [8] 
describes some unusual integer digit sets that give representations of all the real numbers. 
Matula gives an example of a rational number, 5 | , with three different representations 
in a base. The Division Algorithm and the Remainder Set Algorithm show that there are 
actually five representations of 51 in the base (5, {0,1,7,23, —1}), namely (ll.(— 1)) , 
( l ( - l ) . 7 ) 5 , (0.(23))5, (10.(-1)(23))5, and (l .(23)(-l))5 . Matula lists the first three 
of these expansions. 
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